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Abstract

Summary statistics play an important role in networkdata analysis. They canprovide us

with meaningful insight into the structure of a network. The Randić index is one of the

most popular network statistics that has been widely used for quantifying information

of biological networks, chemical networks, pharmacologic networks, etc. A topic of

current interest is to find bounds or limits of theRandić index and its variants.Anumber

of bounds of the indices are available in literature. Recently, there are several attempts

to study the limits of the indices in the Erdős–Rényi random graph by simulation.

In this paper, we shall derive the limits of the Randić index and its variants of an

inhomogeneous Erdős–Rényi random graph. Our results charaterize how network

heterogeneity affects the indices and provide new insights about the Randić index and

its variants. Finally we apply the indices to several real-world networks.

Keywords Randić index · Harmonic index · Random graph · Asymptotic property

Mathematics Subject Classification 60K35 · 05C80

1 Introduction

A network (graph) consists of a set of agents and a set of pairwise interactions among

the agents.Networks are canonicalmodels that capture relationswithin or betweendata
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sets. Due to the increasing popularity of relational data, network data analysis has been

a primary research topic in statistics, machine learning and many other scientific fields

(Abbe 2018;Bickel andSarkar 2016;Goldenberg et al. 2010;Kolaczyk 2009;Newman

2009). One of the fundamental problems in network data analysis is to understand the

structural properties of a given network. The structure of a small network can be easily

described by its visualization. However, larger networks can be difficult to envision

and describe. It is thus important to have several summary statistics that provide us

with meaningful insight into the structure of a network. Based on these statistics, we

are able to compare networks or classify them according to properties that they exhibit.

There are a wealth of descriptive statistics that measure some aspect of the structure

or characteristics of a network. For example, the diameter of a network measures the

maximumdistance between two individuals; the global clustering coefficientmeasures

the extent to which individuals in a graph tend to cluster together; the modularity is a

measure of the strength of division of a network into subgroups.

Summary statistics of networks are sometimes termed topological indices, espe-

cially in chemical or pharmacological science (Ma et al. 2018).One of themost popular

topological indices is the Randić index invented in Randić (1975). The Randić index

measures the extent of branching of a network (Bonchev and Trinajstic 1978; Randić

1975). It was observed that the Randić index is strongly correlated with a variety

of physico-chemical properties of alkanes (Randić 1975). The Randić index play a

central role in understanding quantitative structure–property and structure–activity

relations in chemistry and pharmocology (Randić 2008; Randic et al. 2016). In sub-

sequent years, the Randić index finds countless applications. For instance, it is used

to characterize and quantify the similarity between different networks or subgraphs of

the same network (Fourches and Tropsha 2013), it serves as a quantitative character-

ization of network heterogeneity (Estrada 2010), and graph robustness can be easily

estimated by the Randić index (De Meo et al. 2018; Dattola et al. 2021). Moreover,

the Randić index possesses a wealth of non-trivial and interesting mathematical prop-

erties (Bollobás and Erdos 1998; Bollobás et al. 1999; Cavers et al. 2010; Das et al.

2017; Li and Shi 2008). Motivated by the Randić index, various Randić-type indices

have been introduced and attracted great interest in the past years. Among them, the

harmonic index is a well-known one (Fajtlowicz 1987; Favaron et al. 1993; RodrIguez

and Sigarreta 2017; Zhong 2012).
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One of the popular research topics in the study of topological indices is to derive

bounds of the indices and study their asymptotic properties. Recently, Martinez-

Martinez et al. (2020, 2021) performed numeric and analytic analyses of the Randić

index and the harmonic index in the Erdős–Rényi random graph. Analytic upper and

lower bounds of the two indices are obtained and simulation studies show that the

indices converge to one half of the number of nodes. Additionally, De Meo et al.

(2018), Doslic et al. (2020) and Li et al. (2021) ind the expectations of variants of the

Randić index in the Erdős–Rényi random graph. However, these results only apply to

the Erdős–Rényi random graph and the exact limits of the indices are not theoretically

studied.

In this paper, we shall derive the limits of the general Randić index and the general

sum-connectivity index in an inhomogeneousErdős–Rényi randomgraph. The general

Randić index and the general sum-connectivity index contain the Randić index and the

harmonic index as a special case, respectively. Thus our results theoretically validate

the empirical observations in Martinez-Martinez et al. (2020, 2021) that the indices

of the Erdős–Rényi random graph converge to one half of the number of nodes. In

addition, our results explicitly describe how network heterogeneity affects the indices.

We also observe that the limits of the Randić index and the harmonic index do not

depend on the sparsity of a network, while the limits of their variants do. In this sense,

the Randić index and the harmonic index are more preferable than their variants as

measures of network structure.

The structure of the article is as follows. In Sect. 2 we present the main results.

Section3 summarizes simulation results and real data application. Theproof is deferred

to Sect. 4.

Notations: Let c1, c2 be positive constants and n0 be a positive integer. For two

positive sequence an , bn , denote an � bn if c1 ≤ an
bn

≤ c2 for n ≥ n0; denote

an = O(bn) if
an
bn

≤ c2 for n ≥ n0; an = o(bn) if limn→∞ an
bn

= 0. Let Xn be a

sequence of random variables. Xn = OP (an) means Xn
an

is bounded in probability.

Xn = oP (an) means Xn
an

converges to zero in probability. Denote a+ = max{a, 0}.

2 The Randić index and its variants

A graph is a mathematical model of network that consists of nodes (vertices) and

edges. Let V = [n] := {1, 2, . . . , n} for a given positive integer n. An undirected

graph on V is a pair G = (V, E) in which E is a collection of subsets of V such that
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|e| = 2 for every e ∈ E . Elements in E are called edges. A graph can be conveniently

represented as an adjacency matrix A, where Ai j = 1 if {i, j} is an edge, Ai j = 0

otherwise and Aii = 0. It is clear that A is symmetric, since G is undirected. A graph

is said to be random if Ai j (1 ≤ i < j ≤ n) are random.

Let f = ( fi j ), (1 ≤ i < j ≤ n) be a vector of numbers between 0 and 1. The

inhomogeneous Erdős–Rényi random graph G(n, pn, f ) is defined as

P(Ai j = 1) = pn fi j ,

where pn ∈ [0, 1] and Ai j (1 ≤ i < j ≤ n) are independent. If all fi j are the

same, then G(n, pn, f ) is the Erdős–Rényi random graph. For a non-constant vector

f , G(n, pn, f ) is an inhomogeneous version of the Erdős–Rényi random graph. This

model covers several random graphs that have been extensively studied in random

graph theory and algorithm analysis (Chakrabarty et al. 2020a, b, 2021; Chiasserini

et al. 2016; Yu et al. 2021).

Given a constant α, the general Randić index of a graph G is defined as (Bollobás

and Erdos 1998)

Rα =
∑

{i, j}∈E
dα
i d

α
j , (1)

where dk is the degree of node k, that is, dk =∑ j �=k Ak j . The indexRα generalizes the

well-known Randić index R− 1
2
invented in Randić (1975). When α = −1, the index

R−1 corresponds to the modified second Zagreb index (Cavers et al. 2010; Nikolic

et al. 2003).

Another popular variant of the Randić index is the general sum-connectivity index

(Zhou and Trinajstic 2009, 2010) defined as

χα =
∑

{i, j}∈E
(di + d j )

α. (2)

An important special case is the harmonic indexH = 2χ−1 (Fajtlowicz 1987; Favaron

et al. 1993; Zhong 2012).

Recently Martinez-Martinez et al. (2020, 2021) conduct a simulation study of the

Randić index R− 1
2
and the harmonic index H = 2χ−1 in the Erdős–Rényi random

graph and observe that the indices converge to n/2. Moreover, De Meo et al. (2018),

Doslic et al. (2020) andLi et al. (2021) derive analytical expressions of the expectations

for the indices R−1, χ1,χ2 of the Erdős–Rényi random graph. In this paper, we shall
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derive the exact limits of the generalRandić indexRα and the general sum-connectivity

index χα in G(n, pn, f ). Our results significantly improve the results in De Meo et al.

(2018), Doslic et al. (2020), Martinez-Martinez et al. (2020, 2021) and Li et al. (2021)

and provide new insights about the Randić index and its variants.

Theorem 2.1 Let α be a fixed constant and G(n, pn, f ) be the inhomogeneous Erdős–

Rényi random graph. Suppose npn log 2 ≥ log n and min1≤i< j≤n{ fi j } > ε for some

positive constant ε ∈ (0, 1). Then

Rα =
[
1 + OP

(
(log(npn))4(1−α)+

√
npn

)]
p2α+1
n

∑

i< j

f α
i f α

j fi j , (3)

χα =
[
1 + OP

(
(log(npn))2(1−α)+

√
npn

)]
pα+1
n

∑

i< j

( fi + f j )
α fi j , (4)

where fi =∑n
j �=i fi j .

The condition min1≤i< j≤n{ fi j } > ε implies the minimum expected degree scales

with npn . The condition npn log 2 ≥ log n means that the graph is relatively dense.

A similar condition is assumed in Chakrabarty et al. (2020a) to study the maximum

eigenvalue of the inhomogeneous random graph.

Note that the expected total degree of G(n, pn, f ) has order n2 pn . Thus pn controls

the sparsity of the network: a graph with smaller pn would have fewer edges. By (3)

and (4), the limits of the Randić index R− 1
2
and the harmonic χ−1 do not depend on

pn , while the limits of their variants do involve pn . Asymptotically, the Randić index

and the harmonic are uniquely determined by the network structure parametrized by

f . In this sense, they are superior to their variants as measures of global structure of

networks.

Now we present two examples of G(n, pn, f ). The simplest example is the Erdős–

Rényi random graph, that is, fi j ≡ 1. We denote the graph as G(n, pn).

Corollary 2.2 Let α be a fixed constant. For the Erdős–Rényi random graph G(n, pn)

with npn log 2 ≥ log n, we have

Rα = n2(1+α) p2α+1
n

2

[
1 + OP

(
(log(npn))4(1−α)+

√
npn

)]
, (5)

χα = 2α−1nα+2 pα+1
n

[
1 + OP

(
(log(npn))2(1−α)+

√
npn

)]
. (6)
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Especially, the Randić index R− 1
2
is equal to

R− 1
2

= n

2

[
1 + OP

(
(log(npn))4(1−α)+

√
npn

)]
,

the modified second Zagreb index R−1 is equal to

R−1 = 1

2pn

[
1 + OP

(
(log(npn))4(1−α)+

√
npn

)]
,

and the harmonic index H is equal to

H = n

2

[
1 + OP

(
(log(npn))2(1−α)+

√
npn

)]
.

According to Corollary 2.2, the ratio 2
nR− 1

2
or 2

nH converges in probability to

1 when npn log 2 ≥ log n. This theoretically confirms the empirical observation in

Martinez-Martinez et al. (2020, 2021) that the Randić index R− 1
2
or the harmonic

index H is approximately equal to n
2 . The expectation of the indices R−1, χ1, χ2 are

derived in De Meo et al. (2018), Doslic et al. (2020) and Li et al. (2021). Our results

show the indices are asymptotically equal to their expectations. Moreover, Corollary

2.2 clearly quantifies how pn affects the convergence rates: the larger pn is, the faster

the convergence rates are.

In addition, (5) and (6) explicitly characterize how the leading terms ofRα and χα

depend on α. Note that

n2(1+α) p2α+1
n

2
= n

2
(npn)

2α+1,

2α−1nα+2 pα+1
n = 2α−1n(npn)

α+1.

For given n, pn such that npn log 2 ≥ log n, the leading terms are increasing functions

of α. The indices would be extremely large or small for large |α| and large n. In this

sense, it is preferable to use Rα or χα with small |α| (for instance, |α| ≤ 1).

Next, we provide a non-trivial example. Let fi j = e−κ i
n e−κ

j
n with a positive

constant κ . Then e−2κ ≤ fi j ≤ 1 for 0 ≤ i < j ≤ n. In this case, min1≤i< j≤n{ fi j } >

ε holds with ε = e−2κ . Straightforward calculation yields fi = ne−κ i
n (1−e−κ )

κ
(1 +
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o(1)) and

∑

i< j

f −1
i f −1

j fi j = κ2

2(1 − e−κ )2
+ o(1),

∑

i< j

f α
i f α

j fi j = n2(α+1)
(
1 − e−κ

)2α (1 − e−(1+α)κ
)2

2(1 + α)2κ2(α+1)
(1 + o(1)), α �= −1,

∑

i< j

( fi + f j )
α fi j = nα+2

2

(
1 − e−κ

κ

)α ∫ 1

0

∫ 1

0

(
e−κx + e−κ y

)α

eκ(x+y)
dxdy + o(1).

Then

R−1 =
[
1 + OP

(
(log(npn))2√

npn

)]
1

2pn

κ2

(1 − e−κ)2
, (7)

Rα =
[
1 + OP

(
(log(npn))2√

npn

)]
n2(α+1) p2α+1

n

2

(
1 − e−κ

)2α (1 − e−(1+α)κ
)2

(1 + α)2κ2(α+1)
,

α �= −1, (8)

χα =
[
1 + OP

(
(log(npn))2√

npn

)]
nα+2 pα+1

n

2

(
1 − e−κ

κ

)α ∫ 1

0
∫ 1

0

(
e−κx + e−κ y

)α

eκ(x+y)
dxdy. (9)

Since larger κ makes the expected degreesmore heterogeneous, the parameter κ can

be considered as heterogeneity level of the graph. As κ increases,Rα or χα decreases

if α > −1, andRα or χα increases if α ≤ −1. This shows the effect of heterogeneity

on Rα or χα . The indices could be used as indicators whether a network follows the

Erdős–Rényi random graph model.

3 Real data application

In this section, we apply the general Randić index and the general sum index to the fol-

lowing real-world networks: ‘karate’, ‘macaque’, ‘UKfaculty’, ‘enron’, ‘USairports’,

‘immuno’, ‘yeast’. These networks are available in the ‘igraphdata’ package of R.

For each network, the indicesR− 1
2
,R−1, χ− 1

2
, χ−1 and the bound log n/(n log 2)

are calculated. Here, log n/(n log 2) is the sparsity lower bound required by Theorem

2.1 and Corollary 2.2. In addition, we also compute several descriptive statistics:

the number of nodes (n), the edge density, the maximum degree (dmax ), the median

degree (dmean) and theminimum degree (dmin). These results are summerized in Table
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Table 1 The Randić index and harmonic index of real networks

Network n log n/(n log 2) Density dmax dmedian dmin R− 1
2

R−1 χ− 1
2

χ−1

karate 34 0.149 0.134 17 5 3 13.970 2.866 21.001 5.927

macaque 45 0.122 0.251 22 11 4 21.576 2.092 50.702 10.374

UKfaculty 81 0.078 0.175 41 13 2 37.728 2.957 99.101 17.738

enron 184 0.040 0.130 111 31 21 80.876 4.063 276.792 37.672

USairports 755 0.012 0.016 168 11 5 262.836 41.776 602.894 106.592

immuno 1316 0.0078 0.0072 17 10 3 648.820 70.951 1410.842 320.022

yeast 2617 0.004 0.003 118 10 4 1076.274 285.491 2034.479 469.020

1. The edge densities of networks ‘macaque’, ‘UKfaculty’, ‘enron’ and ‘USairports’

are greater than log n/(n log 2), which indicates our theoretical results are applicable.

The Randić indices R− 1
2
and the harmonic indices 2χ−1 of ‘enron’ and ‘USairports’

are much smaller than n
2 , the indices of the Erdős–Rényi random graph. Thus the

Erdős–Rényi random graph may not be a good model for these two networks. The

networks ‘macaque’ and ‘UKfaculty’ have the indices close to n
2 . In this sense, they

can be considered as samples from the Erdős–Rényi random graph model. For the

networks ‘karate’, ‘immuno’ and ‘yeast’, the edge densities are slightly smaller than

the bound log n/(n log 2). Note that the condition pn > log n/(n log 2) is a sufficient

condition for Theorem 2.1 and Corollary 2.2 to hold and can not be relaxed based on

the current proof technique. We conjecture that Theorem 2.1 and Corollary 2.2 still

hold if npn → ∞. Currently, we are not clear whether our theoretical results can be

applied to the networks ‘karate’, ‘immuno’ and ‘yeast’ or not. For sparse networks,

that is, npn = O (1), the Randić indexR− 1
2
could assume any value between 0 and n

2 ,

which is empirically verified inMartinez-Martinez et al. (2020). Therefore, the Randić

index R− 1
2
far less than n

2 does not necessarily imply the network are not generated

from the Erdős–Rényi random graph model. We point out that a statistical hypothesis

testing is needed to test whether the Randić index is equal to some number. Based on

our knowledge, there is no such test available in literature. It is an interesting future

topic to propose a test for the Randić index.
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4 Proof of main results

In this section, we provide the detailed proofs of the main results. Recall that Ai j = 1

if and only if {i, j} is an edge. Then the general Randić index in (1) and the general

sum-connectivity index in (2) can be written as

Rα =
∑

1≤i< j≤n

Ai j d
α
i d

α
j ,

χα =
∑

1≤i< j≤n

Ai j (di + d j )
α.

Note that the degrees di are not independently and identically distributed. Moreover,

Rα and χα are non-linear functions of di . These facts make it a non-trivial task to

derive the limits of Rα and χα for general α. The proof strategy is as follows: (a)

use the Taylor expansion to expand Rα or χα as a sum of leading term and reminder

terms; (b) find the order of the leading term and the reminder terms.

Proof of Theorem 2.1 (I) We prove the result of the general Randić index first. For

convenience, let

R−α =
∑

1≤i< j≤n

Ai j d
−α
i d−α

j . (10)

We provide the proof in two cases: α > −1 and α ≤ −1. Denote μi = E(di ) = pn fi .

Let α > −1. Applying the mean value theorem to the mapping x → x−α , we have

1

dα
i

= 1

μα
i

− α
di − μi

Xα+1
i

,

where di ≤ Xi ≤ μi or μi ≤ Xi ≤ di . Since Aii = 0 (i = 1, 2, . . . , n) and the

adjacency matrix A is symmetric, by (10) one has

R−α = 1

2

∑

1≤i, j≤n

Ai j

dα
i d

α
j

= 1

2

∑

1≤i, j≤n

Ai j

μα
i μα

j
− α

2

∑

1≤i, j≤n

Ai j (di − μi )

Xα+1
i μα

j

− α

2

∑

1≤i, j≤n

Ai j (d j − μ j )

Xα+1
j μα

i

+α2

2

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

. (11)
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Next we show the first term in (11) is the leading term. To this end, we will find the

exact order of the first term and show the remaining terms are of smaller order.

Firstly, we show the first term in (11) is asymptotically equal to its expectation. By

the assumption min1≤i, j≤n{ fi j } > ε, it is clear that npnε ≤ μi ≤ npn for all i ∈ [n]
and εn2 ≤ ∑1≤i, j≤n fi j ≤ n2. Note that Ai j (1 ≤ i < j ≤ n) are independent and

E(Ai j ) = pn fi j . Then

E

⎡

⎣
∑

1≤i< j≤n

Ai j − pn fi j
μα
i μα

j

⎤

⎦
2

=
∑

1≤i< j≤n

E

[
Ai j − pn fi j

μα
i μα

j

]2
= O

(
n2 pn

(npn)4α

)
.

By the Markov’s inequality, it follows that

∣∣∣∣∣∣

∑

1≤i< j≤n

Ai j

μα
i μα

j
−

∑

1≤i< j≤n

pn fi j
μα
i μα

j

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑

1≤i< j≤n

Ai j − pn fi j
μα
i μα

j

∣∣∣∣∣∣
= OP

(√
n
√
npn

(npn)2α

)
.

Then we get

∑

1≤i< j≤n

Ai j

μα
i μα

j
=

∑

1≤i< j≤n

pn fi j
μα
i μα

j
+ OP

(√
n
√
npn

(npn)2α

)

=
∑

1≤i< j≤n

pn fi j
μα
i μα

j

(
1 + OP

(
1√

n
√
npn

))
. (12)

Now we find a bound of the second term in (11). The idea is to find an upper bound

of the expectation of its absolute value and then apply the Markov’s inequality to get

a bound. Note that

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )

Xα+1
i μα

j

∣∣∣∣∣∣

⎤

⎦ = E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i≤n

⎛

⎝
∑

1≤ j≤n

Ai j

μα
j

⎞

⎠ (di − μi )

Xα+1
i

∣∣∣∣∣∣

⎤

⎦

≤ E

⎡

⎣
∑

1≤i≤n

⎛

⎝
∑

1≤ j≤n

Ai j

μα
j

⎞

⎠ |di − μi |
Xα+1
i

⎤

⎦ . (13)

Let δn = [log(npn)]−2. Recall that Xi is between di andμi . If Xi < δnμi and Xi < di ,
then Xi < di and Xi < μi . In this case, Xi can not be between di and μi . Therefore,
Xi < δnμi implies di ≤ Xi . Then I [Xi < δnμi ] ≤ I [di ≤ Xi < δnμi ] ≤ I [Xi <

δnμi ]. Note that npnε ≤ μi ≤ npn for all i ∈ [n], then we have

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )

Xα+1
i μα

j

∣∣∣∣∣∣

⎤

⎦ ≤ O

(
1

(npn)α

) ∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

]
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= O

(
1

(npn)α

) ∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [δnμi ≤ Xi ]
]

+O

(
1

(npn)α

) ∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [δnμi > Xi ]
]

,

= O

(
1

(npn)α

) ∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [δnμi ≤ Xi ]
]

+O

(
1

(npn)α

) ∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [di ≤ Xi < δnμi ]
]

.

(14)

Note that α > −1. If δnμi ≤ Xi , then

1

Xα+1
i

≤ 1

(δnμi )α+1 = O

(
1

(δnnpn)α+1

)
.

Hence we have

1

(npn)α
∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [δnμi ≤ Xi ]
]

≤ O

(
1

(δnnpn)α+1(npn)α

) ∑

1≤i≤n

E [di |di − μi |I [δnμi ≤ Xi ]]

≤ O

(
1

(δnnpn)α+1(npn)α

) ∑

1≤i≤n

E [di |di − μi |] . (15)

By definition, the second moment of degree di is equal to

E[d2i ] = E

⎡

⎣
∑

j �=k

Ai j Aik +
∑

j

Ai j

⎤

⎦ = p2n
∑

j �=k

fi j fik + pn
∑

j

fi j ,

and Var(di ) =∑ j �=i pn fi j (1− pn fi j ), then by the Cauchy-Schwarz inequality, one

has

∑

1≤i≤n

E [di |di − μi |] ≤
∑

1≤i≤n

√
E[d2i ]E[(di − μi )2]

=
∑

1≤i≤n

√√√√√

⎛

⎝p2n
∑

j �=k

fi j fik + pn
∑

j

fi j

⎞

⎠
∑

j

pn fi j (1 − pn fi j )

= O

(
n
√
n3 p3n

)
. (16)
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Combining (15) and (16) yields

1

(npn)α
∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [δnμi ≤ Xi ]
]

= O

(
n
√
n3 p3n

(δnnpn)α+1(npn)α

)

= n2 pn
(npn)2α

O

(
1

δα+1
n

√
npn

)

= n2 pn
(npn)2α

O

(
(log(npn))2(α+1)

√
npn

)
.

(17)

Now we bound the second term of (14). Note that if di ≤ Xi < δnμi , then di < μi

and di
Xα+1
i

≤ 1
dα
i
. Since di is the degree of node i , it can only take integer value between

0 and n − 1. Moreover, di = 0 implies Ai j = 0 for any j ∈ [n]. By the definition of

the Randić index (1), these terms with di = 0 are zero in (10) and (11). Therefore, we

only consider the terms with di ≥ 1 and d j ≥ 1. Then the second term of (14) can be

bounded by

1

(npn)α
∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [di ≤ Xi < δnμi ]
]

≤ 1

(npn)α
∑

1≤i≤n

E

[
μi − di
dα
i

I [di < δnμi ]
]

= 1

(npn)α
∑

1≤i≤n

δnμi∑

k=1

μi − k

kα
P(di = k). (18)

Next we obtain an upper bound of P(di = k). Note that the degree di follows the

Poisson-Binomial distribution PB(pn fi1, pn fi2, . . . , pn fin). Then

P(di = k) =
∑

S⊂[n]\{i},|S|=k

∏

j∈S
pn fi j

∏

j∈SC\{i}
(1 − pn fi j )

≤
∑

S⊂[n]\{i},|S|=k

∏

j∈S
pn

∏

j∈SC\{i}
(1 − pnε)

=
(
n

k

)
pkn(1 − pnε)

n−k . (19)
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Note that
(n
k

) ≤ ek log n−k log k+k and (1 − pnε)n−k = e(n−k) log(1−pnε). Then by (19)

we get

P(di = k) ≤ exp (k log(npn) − k log k + k + (n − k) log(1 − pnε)) . (20)

Let g(k) = k log(npn) − k log k + k + (n − k) log(1 − pnε). Then

g′(k) = log

(
npn

1 − pnε

)
− log k.

For k <
npn

1−pnε
, g′(k) < 0. For k >

npn
1−pnε

, g′(k) > 0. Hence g(k) achieves its

maximum at k = npn
1−pnε

. For k ≤ δnnpn , g(k) ≤ g(δnnpn). Hence

P(di = k) ≤ exp

(
δnnpn log

1

δn(1 − pnε)
+ δnnpn + n log(1 − pnε)

)

≤ exp (−npnε(1 + o(1))) .

Note that μi ≤ npn . Then for k ≤ δnμi ≤ δnnpn , by (18), (19), (20), one has

E

[
di |di − μi |

Xα+1
i

I [di ≤ Xi < δnμi ]
]

≤ exp (log(δnnpn)) exp (log(npn)) exp (−npnε(1 + o(1)))

= exp (−npnε(1 + o(1))) . (21)

Hence, we get

1

(npn)α
∑

1≤i≤n

E

[
di |di − μi |

Xα+1
i

I [di ≤ Xi < δnμi ]
]

= 1

(npn)α
ne−εnpn(1+o(1))

= n2 pn
(npn)2α

e−εnpn(1+o(1)). (22)

Recall that npn log 2 ≥ log n. Then (log(npn))s

(npn)k
e−εnpn(1+o(1)) = o(1) for any fixed

positive constants k, s, ε. By (13), (14), (17), (22) and the Markov’s inequality, one

has

∑

1≤i, j≤n

Ai j (di − μi )

Xα+1
i μα

j

= OP

(
n2 pn

(npn)2α
(log(npn))2(α+1)

√
npn

)
. (23)
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The third term in (11) can be similarly bounded as the second term.Nowwe consider

the last term in (11). Note that

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

=
∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , X j ≥ δnμ j ]

+
∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi < δnμi , X j ≥ δnμ j ]

+
∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , X j < δnμ j ]

+
∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi < δnμi , X j < δnμ j ]. (24)

We shall bound each term in (24). The first term can be bounded as follows.

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , X j ≥ δnμ j ]
∣∣∣∣∣∣

⎤

⎦

≤ 1

δ
2(α+1)
n

∑

1≤i, j≤n

E

[
Ai j |di − μi ||d j − μ j |

μα+1
i μα+1

j

I [Xi ≥ δnμi , X j ≥ δnμ j ]
]

≤ 1

δ
2(α+1)
n

O

(
1

(npn)2(α+1)

) ∑

1≤i, j≤n

E
[
Ai j |di − μi ||d j − μ j |

]
. (25)

Denote d̃i = ∑
k �= j,i Aik , d̃ j = ∑

k �= j,i A jk , μ̃i = E(d̃i ) and μ̃ j = E(d̃ j ). Then d̃i

and d̃ j are independent, di = d̃i + Ai j and d j = d̃ j + Ai j . It is easy to get that

|di − μi | = |d̃i − μ̃i + Ai j − pn fi j | ≤ |d̃i − μ̃i | + |Ai j − pn fi j | ≤ |d̃i − μ̃i | + 1,

E[|d̃i − μ̃i |] ≤
√
E[(d̃i − μ̃i

)2] =
√∑

k �= j,i

pn fik(1 − pn fik) = O(
√
npn).

Similarly, |d j − μ j | ≤ |d̃ j − μ̃ j | + 1 and E[|d̃ j − μ̃ j |] = O(
√
npn). Then we have

E
[
Ai j |di − μi ||d j − μ j |

] ≤ E[Ai j ] + E[Ai j |d̃i − μ̃i ||d̃ j − μ̃ j |]
+E[Ai j |d̃i − μ̃i |] + E[Ai j |d̃ j − μ̃ j |]

= pn fi j + pn fi jE[|d̃i − μ̃i |]E[|d̃ j − μ̃ j |]
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+pn fi jE[|d̃i − μ̃i |] + pn fi jE[|d̃ j − μ̃ j |]
= O

(
np2n
)

. (26)

Combining (25) and (26) yields

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , X j ≥ δnμ j ]
∣∣∣∣∣∣

⎤

⎦

≤ 1

δ
2(α+1)
n

O

(
n3 p2n

(npn)2(α+1)

)

= n2 pn
(npn)2α

O

(
1

δ
2(α+1)
n npn

)

= n2 pn
(npn)2α

O

(
(log(npn))4(α+1)

npn

)
, (27)

The second term in (24) can be bounded as follows.

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , d j ≤ X j < δnμ j ]
∣∣∣∣∣∣

⎤

⎦

≤ 1

δα+1
n

∑

1≤i, j≤n

E

[
Ai j |di − μi ||d j − μ j |

μα+1
i dα+1

j

I [Xi ≥ δnμi , d j ≤ X j < δnμ j ]
]

≤ 1

δα+1
n (npn)α+1

∑

1≤i, j≤n

E

[
Ai j |di − μi ||d j − μ j |

dα+1
j

I [d j < δnμ j ]
]

. (28)

Recall that

|di − μi | = |d̃i − μ̃i + Ai j − pn fi j |, |d j − μ j | = |d̃ j − μ̃ j + Ai j − pn fi j |.

Moreover, d j < δnμ j implies d̃ j < δnμ j . Then we have

E

[
Ai j |di − μi ||d j − μ j |

dα+1
j

I [d j < δnμ j ]
]

= E

[
Ai j |d̃i − μ̃i + Ai j − pn fi j ||d̃ j − μ̃ j + Ai j − pn fi j |

dα+1
j

I [d j < δnμ j ]
∣∣∣Ai j = 1

]
P(Ai j = 1)

≤ pnE

[
|d̃i − μ̃i + 1 − pn fi j ||d̃ j − μ̃ j + 1 − pn fi j |

(d̃ j + 1)α+1
I [d̃ j < δnμ j ]

]
. (29)
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Since d̃i , d̃ j are independent andE[|d̃ j −μ̃ j |] = O(
√
npn), then by a similar argument

as in (18)–(22), it follows that

pnE

[
|d̃i − μ̃i + 1 − pn fi j ||d̃ j − μ̃ j + 1 − pn fi j |

(d̃ j + 1)α+1
I [d̃ j < δnμ j ]

]

≤ pn
√
npnE

[
|d̃ j − μ̃ j + 1 − pn fi j |

(d̃ j + 1)α+1
I [d̃ j < δnμ j ]

]

≤ pn
√
npne

−εnpn(1+o(1)). (30)

Combining (21), (29) and (30) yields

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [Xi ≥ δnμi , d j ≤ X j < δnμ j ]
∣∣∣∣∣∣

⎤

⎦

≤ pn
√
npn

δα+1
n (npn)α+1

n2e−εnpn(1+o(1))

= n2 pn
(npn)2α

e−εnpn(1+o(1)). (31)

The third term in (24) can be similarly bounded as the second term.Nowwe consider

the last term in (24). By a similar argument as in (21)–(31), one gets

E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

I [di ≤ Xi < δnμi , d j ≤ X j < δnμ j ]
∣∣∣∣∣∣

⎤

⎦

≤
∑

1≤i, j≤n

E

[
Ai j |di − μi ||d j − μ j |

dα+1
i dα+1

j

I [di ≤ δnμi , d j ≤ δnμ j ]
]

≤
∑

1≤i, j≤n

E

[
Ai j |d̃i − μ̃i + Ai j − pn fi j ||d̃ j − μ̃ j + Ai j − pn fi j |

(d̃ j + Ai j )α+1(d̃ j + Ai j )α+1

I [d̃i ≤ δnμi , d̃ j ≤ δnμ j ]
]

≤ pn
∑

1≤i, j≤n

E

[
(|d̃i − μ̃i | + 1)(|d̃ j − μ̃ j | + 1)

(d̃ j + 1)α+1(d̃ j + 1)α+1
I [d̃i ≤ δnμi , d̃ j ≤ δnμ j ]

]

= pn

⎛

⎝
∑

1≤i≤n

E

[
(|d̃i − μ̃i | + 1)

(d̃i + 1)α+1
I [d̃i ≤ δnμi

]⎞

⎠
2

≤ pnn
2e−2εnpn(1+o(1)) = n2 pn

(npn)2α
e−2εnpn(1+o(1)). (32)
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By (24)–(32) and the Markov’s inequality, it follows that

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )

Xα+1
i Xα+1

j

= OP

(
n2 pn

(npn)2α
(log(npn))4(α+1)

npn

)
. (33)

It is easy to verify that
∑

1≤i< j≤n
pn fi j
μα
i μα

j
≥ εn(n−1)pn

2(npn)2α
. Then combining (11), (12),

(23) and (33) yields the limit of R−α with α > −1.

Next, we consider R−α for α ≤ −1. In this case, we rewrite the general Randić

index as

Rα =
∑

1≤i< j≤n

Ai j d
α
i d

α
j , α ≥ 1. (34)

By the Taylor expansion, we have

dα
i = μα

i + αXα−1
i (di − μi ),

where Xi is between di and μi . Then

Rα = 1

2

∑

1≤i, j≤n

Ai j d
α
i d

α
j

= 1

2

∑

1≤i, j≤n

Ai jμ
α
i μα

j

+α

2

∑

1≤i, j≤n

Ai j (di − μi )X
α−1
i μα

j + α

2

∑

1≤i, j≤n

Ai j (d j − μ j )X
α−1
j μα

i

+α2

2

∑

1≤i, j≤n

Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j . (35)

We shall show that the first term in (35) is the leading term and the remaining terms

are of smaller order. Similar to (12), it is easy to get

∑

1≤i< j≤n

Ai jμ
α
i μα

j =
∑

1≤i< j≤n

pn fi jμ
α
i μα

j

(
1 + OP

(
1√

n
√
npn

))
. (36)

Since the second term and the third term in (35) have the same order, we only need

to bound the second term and the last term. Let M = 4
ε(1−pnε)

. Clearly M is bounded

and M > 4. The expectation of the absolute value of the second term in (35) can be

bounded by
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E

⎡

⎣

∣∣∣∣∣∣

∑

1≤i, j≤n

Ai j (di − μi )X
α−1
i μα

j

∣∣∣∣∣∣

⎤

⎦

≤ E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi | Xα−1
i μα

j I [Mμi ≤ Xi ≤ di ]
⎤

⎦

+E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi | Xα−1
i μα

j I [Xi ≤ Mμi ]
⎤

⎦ . (37)

Note that

E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi | Xα−1
i μα

j I [Xi ≤ Mμi ]
⎤

⎦

≤ Mα−1(npn)
2α−1

∑

1≤i, j≤n

E

[
Ai j

∣∣∣d̃i − μi + Ai j

∣∣∣
]

= (npn)
2αn2 pnO

(
1√
npn

)
, (38)

and

E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi | Xα−1
i μα

j I [Mμi ≤ Xi ≤ di ]
⎤

⎦

≤ O((npn)
α)E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi | dα−1
i I [Mμi ≤ di ]

⎤

⎦

= O((npn)
α pn)

∑

1≤i, j≤n

E

[∣∣∣d̃i − μ̃i + 1 − pn fi j
∣∣∣ d̃α−1

i I [Mμi − 1 ≤ d̃i ]
]

= O((npn)
α pn)

∑

1≤i, j≤n

n−2∑

k=Mμi−1

kα−1(k − μ̃i + 1 − pn fi j )P(d̃i = k). (39)

By a similar argument as in (20), it follows that

n−2∑

k=Mμi−1

kα−1(k − μ̃i + 1 − pn fi j )P(d̃i = k) ≤
n−2∑

k=Mμi−1

kα

(
n

k

)
pkn(1 − pnε)

n−k

≤
n−2∑

k=Mμi−1

exp (α log k + g(k)) .

(40)
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Let h(k) = α log k + g(k). Then

h′(k) = α

k
+ log

(
npn

1 − pnε

)
− log k.

Hence h(k) is decreasing for k >
1.1npn
1−pnε

and large n. Since k ≥ Mμi −1 ≥ Mεnpn −
1 ≥ 2npn

1−pnε
for large n, then

h(k) ≤ h

(
2npn

1 − pnε

)
= α log

(
2npn

1 − pnε

)
− 2npn log 2

1 − pnε

+n log(1 − pnε) ≤ −npn log 2

1 − pnε
− εnpn .

By the assumption npn log 2 ≥ log n, it is easy to get log n − npn log 2
1−pnε

< 0. Then

n−2∑

k=Mμi−1

kα−1(k − μ̃i + 1 − pn fi j )P(d̃i = k) ≤ n exp

(
−npn log 2

1 − pnε
− εnpn

)

≤ exp (−εnpn(1 + o(1))) . (41)

Hence (37) is bounded by (npn)2αn2 pnO
(

1√
npn

)
.

Now we bound the last term in (35). Note that

∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣

=
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≤ Mμi , X j ≤ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≤ Mμi , X j ≥ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≥ Mμi , X j ≤ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≥ Mμi , X j ≥ Mμ j

]
.

(42)

Since Xi is between di and μi , then Xi ≤ Mμi implies di ≤ Xi ≤ Mμi , and

Xi ≥ Mμi implies di ≥ Xi ≥ Mμi . Similar results hold for X j . Then by (42) we

have

∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣
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≤
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≤ Mμi , X j ≤ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
Xi ≤ Mμi , d j ≥ X j ≥ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
di ≥ Xi ≥ Mμi , X j ≤ Mμ j

]

+
∑

1≤i, j≤n

∣∣Ai j (di − μi )(d j − μ j )X
α−1
i Xα−1

j

∣∣I
[
di ≥ Xi ≥ Mμi , d j ≥ X j ≥ Mμ j

]
. (43)

Now we bound the expectation of each term in (43). Since the second term and the
third term have the same order, it suffices to bound the first term, second term and the
last term. By a similar argument as in (39) and (41), it is easy to get the following
results.

E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi ||d j − μ j |Xα−1
i Xα−1

j I
[
Xi ≤ Mμi , X j ≤ Mμ j

]
⎤

⎦

≤ O
(
(npn)

2(α−1) pn
) ∑

1≤i, j≤n

E|d̃i − μ̃i + 1 − pn fi j ||d̃ j − μ̃ j + 1 − pn fi j |

= O
(
(npn)

2(α−1) pnn
2npn

)

= (npn)
2αn2 pnO

(
1

npn

)
, (44)

E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi ||d j − μ j |Xα−1
i Xα−1

j I
[
di ≥ Xi ≥ Mμi , d j ≥ X j ≥ Mμ j

]
⎤

⎦

≤ E

⎡

⎣
∑

1≤i, j≤n

Ai j d
α
i d

α
j I
[
di ≥ Mμi , d j ≥ Mμ j

]
⎤

⎦

≤ pn
∑

1≤i, j≤n

E

[
(d̃i + 1)α(d̃ j + 1)α I

[
d̃i ≥ Mμi − 1, d̃ j ≥ Mμ j − 1

]]

= pn

⎛

⎝
∑

1≤i≤n

E

[
(d̃i + 1)α I

[
d̃i ≥ Mμi − 1

]]
⎞

⎠
2

= O
(
n2 pn

)
exp (−2εnpn(1 + o(1))) , (45)

and

E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi ||d j − μ j |Xα−1
i Xα−1

j I
[
Xi ≤ Mμi , d j ≥ X j ≥ Mμ j

]
⎤

⎦

≤ O
(
(npn)

α−1
)
E

⎡

⎣
∑

1≤i, j≤n

Ai j |di − μi |dα
j I
[
d j ≥ Mμ j

]
⎤

⎦
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≤ O
(
(npn)

α−1 pn
) ∑

1≤i, j≤n

E

[
|d̃i − μ̃i + 1 − pn fi j |(d̃ j + 1)α I

[
d̃ j ≥ Mμ j − 1

]]

= O
(
(npn)

α−1 pnn
2√npn

)
exp (−εnpn(1 + o(1))) . (46)

Combining (35)–(46) yields the desired result. Then the proof of the result of the

general Randić index is complete.

(II). Now we prove the result of the general sum-connectivity index. We provide

the proof in two cases: α < 1 and α ≥ 1.

Firstly we work on χ−α with α > −1. By Taylor expansion or the mean value

theorem, we have

χ−α = 1

2

∑

1≤i, j≤n

Ai j

(di + d j )α
= 1

2

∑

1≤i, j≤n

Ai j

(μi + μ j )α

−α

2

∑

1≤i, j≤n

Ai j

Xα+1
i j

(di − μi + d j − μ j ), (47)

where Xi j is between μi +μ j and di + d j . We shall prove the first term is the leading

term and the second term has smaller order than the first term.

By a similar argument as in (12), it is easy to get

∑

i< j

Ai j

(μi + μ j )α
=
∑

i< j

pn fi j
(μi + μ j )α

(
1 + OP

(
1√
n2 pn

))
. (48)

Hence the first term of (47) is asymptotically equal to
∑

i< j
pn fi j

(μi+μ j )
α .

Let δn = [log(npn)]−2. Since Xi j is betweenμi+μ j and di+d j , Xi j ≤ δn(μi+μ j )

implies di + d j ≤ Xi j ≤ δn(μi + μ j ). Then

∑

i, j

∣∣∣∣∣
Ai j

Xα+1
i j

(di − μi + d j − μ j )

∣∣∣∣∣

≤
∑

i, j

∣∣∣∣∣
Ai j

Xα+1
i j

(di − μi + d j − μ j )

∣∣∣∣∣ I
[
di + d j ≤ Xi j ≤ δn(μi + μ j )

]

+
∑

i, j

∣∣∣∣∣
Ai j

Xα+1
i j

(di − μi + d j − μ j )

∣∣∣∣∣ I
[
Xi j ≥ δn(μi + μ j )

]
. (49)
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Next we bound the expectation of each term in (45). For the second term, the

expectation can be bounded as follows.

E

⎡

⎣
∑

i, j

Ai j

Xα+1
i j

(|di − μi | + |d j − μ j |)I
[
Xi j ≥ δn(μi + μ j )

]
⎤

⎦

≤ O

(
1

δα+1
n (npn)α+1

)∑

i, j

E

[
Ai j (|d̃i − μi + Ai j | + |d̃ j − μi + Ai j |)

]

= O

(
n2 pn

√
npn

δα+1
n (npn)α+1

)
= n2 pn

(npn)α
O

(
[log(npn)]2(α+1)

√
npn

)
. (50)

Next we focus on the first term in (45). It is clear that

E

⎡

⎣
∑

i, j

Ai j

Xα+1
i j

(|di − μi | + |d j − μ j |)I [di + d j ≤ Xi j < δn(μi + μ j )]
⎤

⎦

≤ E

⎡

⎣
∑

i, j

Ai j (|di − μi | + |d j − μ j |)
(di + d j )α+1 I

[
di + d j < δn(μi + μ j )

]
⎤

⎦ .

Note that di + d j < δn(μi + μ j ) implies di < δn(μi + μ j ) and d j < δn(μi + μ j ),

and

|di − μi | + |d j − μ j |
(di + d j )α+1 = |di − μi |

(di + d j )α+1 + |d j − μ j |
(di + d j )α+1 ≤ |di − μi |

dα+1
i

+ |d j − μ j |
dα+1
j

.

Then we have

E

⎡

⎣
∑

i, j

Ai j

Xα+1
i j

(|di − μi | + |d j − μ j |)I
[
di + d j ≤ Xi j < δn(μi + μ j )

]
⎤

⎦

≤ E

⎡

⎣
∑

i, j

Ai j |di − μi |
dα+1
i

I
[
di < δn(μi + μ j )

]
⎤

⎦

+E

⎡

⎣
∑

i, j

Ai j |d j − μ j |
dα+1
j

I
[
d j < δn(μi + μ j )

]
⎤

⎦
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≤ 2pnE

⎡

⎣
∑

i, j

|d̃i − μi + 1|
(d̃i + 1)α+1

I
[
d̃i < δn(μi + μ j )

]
⎤

⎦

= n2 pne
−εnpn(1+o(1)) = n2 pn

(npn)α
e−εnpn(1+o(1)). (51)

Combining (47)–(51) yields

χ−α = p1−α
n

∑

i< j

fi j
( fi + f j )α

(
1 + OP

(
[log(npn)]2(α+1)

√
n2 pn

))
, α > −1.

Now we work on χα with α ≥ 1. When α = 1, the proof is trivial. We will focus

on α > 1. By the mean value theorem, one has

χα = 1

2

∑

i, j

Ai j (di + d j )
α = 1

2

∑

i, j

Ai j (μi + μ j )
α

+α

2

∑

i, j

Ai j X
α−1
i j (di − μi + d j − μ j ), (52)

where Xi j is between μi + μ j and di + d j .

The remaining proof is similar to the proof of the case α < 1. Let M = 4
ε(1−pnε)

.

It is clear M is bounded and M > 4. Note that

∑

i, j

E

[
Ai j X

α−1
i j (|di − μi | + |d j − μ j |)I [Xi j ≤ M(μi + μ j )]

]

= (npn)
αn2 pnO

(
1√
npn

)
, (53)

and

∑

i, j

E

[
Ai j X

α−1
i j (|di − μi + d j − μ j |)I [di + d j ≥ Xi j > M(μi + μ j )]

]

≤ O(1)
∑

i, j

E

[
Ai j (d̃i + d̃ j + 2Ai j )

α−1(|d̃i + d̃ j − μi − μ j + 2Ai j |)

I [d̃i + d̃ j > M(μi + μ j − 1)]
]

≤ O(1)pn
∑

i, j

E

[
(d̃i + d̃ j + 2)α−1(d̃i + d̃ j )I [d̃i + d̃ j > M(μi + μ j − 1)]

]
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≤ O(1)pn
∑

i, j

2(n−2)∑

k=M(μi+μ j−1)

(k + 2)α−1kP(d̃i + d̃ j = k)

= n2 pnne
−εnpn(1+o(1)) = (npn)

αn2 pne
−εnpn(1+o(1)), (54)

where the second last step follows from a similar argument as in (41) by noting that

d̃i + d̃ j follows the Poisson–Binomial distribution.

Combining (52), (53) and (54) yields

χα =
(
1 + OP

(
1√
npn

))
pα+1
n

∑

i< j

( fi + f j )
α fi j , α ≥ 1.

Then the proof is complete. �
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