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Abstract
A generalized mixed shock model, which mixes two run shock models, is developed
and analyzed. According to the model, the system subject to both internal degrada-
tion and external shocks fails upon the occurrence of k1 consecutive shocks whose
magnitude is between predefined critical values of d1 and d2 such that d1 < d2, or k2
consecutive shocks whose magnitude is above d2. The system’s reliability, mean time
to failure, and mean residual lifetime are all calculated under the assumption that the
lifetime of the system due to internal wear and external shock arrival times follows
a phase-type distribution. The best policy for replacement is also discussed. There
are also graphical representations and numerical examples for the proposed model,
in which both lifetime distribution of internal degradation and the interarrival periods
between external shocks follow the Erlang distribution.

Keywords Optimal replacement time · Reliability · Mean residual lifetime · Shock
model · Internal degradation · Phase-type distributions
Mathematics Subject Classification 90B25

1 Introduction

In applied probability and reliability engineering, internal degradation mechanisms
and external shocks models are crucial. A system (or component) is subjected to both
internal wear degradation and external shocks of varying magnitudes and durations
in a shock model, and the system fails if a predetermined pattern of shocks and/or
times between shocks emerges. As a consequence, the system’s failure time can be
represented as a compound random variable that evolves as a function of shock mag-
nitudes and time intervals between subsequent shocks. The run shock model is one
of the most extensively researched shock models in the literature on reliability. A
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system that is subjected to random magnitude shocks at random times fails after k
consecutive critical shocks, according to run shock model ( Mallor and Omey (2001),
Ozkut and Eryilmaz (2019)). When k = 1, the run shock model is equivalent to the
extreme shock model. That is, a system’s breakdown occurs as a result of a single
critical shock. A critical shock is one that surpasses a preset threshold. Shanthikumar
and Sumita (1983), Gut and Hüsler (1999), Cha and Finkelstein (2011), Cirillo and
Husler (2011) and Bozbulut and Eryilmaz Bozbulut and Eryilmaz (2020) have looked
into the extreme shock model. Eryilmaz and Tekin (2019) recently introduced and
investigated a new mixed shock model that incorporates extreme and run shock mod-
els. According to this model, if a series of k successive shocks with magnitudes are
between d1 and d2 (d1 < d2) or a single shock with a magnitude greater than d2, the
system fails. On the whole, the focus of these studies is only due to external shocks
without considering the internal wear. However, system failures can be induced by
also internal degradation even if any external shocks do not occur (fatigue, erosion
and wear). Therefore, taking into account internal degradation is more realistic in the
real-life systems.

Shockmodel reliability and optimal replacement strategies have piqued attention in
reliability engineering and operational research. To find the ideal replacement cycle,
Tabriz et al. (2016) proposed age-based replacement models were exposed to shocks
and failure rates. Eryilmaz (2017) calculated the mean residual lifetime and optimal
replacement time of a system under a specific class of shock events usingmatrix-based
techniques. When the system’s failure mechanism varies during operation, Zhao et al.
(2018) studied the best replacement strategies using a mixed shock model. Li et al.
(2018) presented a model of reliability for phased-mission systems that are subject to
random shocks. Huang et al. (2019) performed research on coherent systems that were
subject to both internal and external shocks. Zarezadeh and Asadi (2019) examined
the reliability and preventive maintenance of coherent systems whose components are
subject to breakdown due to a range of external shocks. The reliability and optimal
replacement policy for a k-out-of-n system vulnerable to shocks were investigated by
Eryilmaz and Devrim (2019).

For modelling times between shocks, phase-type distributions are acceptable and
helpful. Because of their mathematical tractability, they can produce fascinating and
useful results. Some processes, e.g., close phase-type distributions, are useful in reli-
ability analysis Assaf and Levikson (1982). Montoro-Cazorla et al. (2009), Segovia
and Labeau (2013) and Montoro-Cazorla et al. (2007) studied the reliability of shock
models using the phase-type distributions. Neuts and Meier (1981) utilized phase-
type distributions to model the reliability of systems with two components. When
the time intervals between shocks follow a phase-type distribution, Eryilmaz (2017)
determined the system’s optimal replacement time and mean residual life.

In this study, we define and investigate an extended version of the mixed shock
model, which combines an extreme shock model with a run shock model previously
investigated by Eryilmaz and Tekin (2019) without consideration of internal wear.
According to this newmodel, the system has three failure conditions. The system fails
if either k1 consecutive shocks whose magnitude is between the predefined threshold
values d1 and d2 (d1 < d2) or the occurrence of k2 consecutive shocks whose magni-
tude is above the threshold value d2 or the internal wear degradation occurs, whichever
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occurs first. Clearly, for k2 = 1, we have a typical mixed shock model of extreme and
run shock model studied by Eryilmaz and Tekin (2019). Similarly, when d2 → ∞,
the new model can be considered a usual run shock model. Therefore, this study is
a more realistic and general form of the previous ones. In the suggested setting, the
number of shocks that cause the system to fail, as well as the time between shocks, is
assumed to have phase-type distributions with closure properties.

The following is a description of the current article’s structure. In Sect. 2, we estab-
lish the model and provide some properties of phase-type distributions that will be
relevant in our process. The generalized mixed shock model is used to calculate the
system’s dependability and mean time to failure in Sect. 3. The mean residual life
(MRL) computations for the proposed model are shown in Sect. 4. In Sect. 5, we look
at the challenge of determining the best replacement time. Finally, in Sect. 6, we offer
numerical results that are intended to illuminate.

2 Model description

Consider a system subject to a sequence of shockswith a randommagnitude D1, D2, ...

over time.LetT1 denote thewaiting time for thefirst shock andTi denote the interarrival
time between (i − 1)th and i th shocks, i ≥ 2. Assume that the interarrival time Ti
between (i − 1)th and i th shocks, the corresponding magnitude Di are independent
for all i . Let us consider two fixed critical values d1 and d2 such that d1 < d2. The
conventional run shock model suggests that the system will fail if k critical shocks
occur in a row. However, in the present setup, the system fails upon k1 consecutive
shocks, having a magnitude between d1 and d2 or k2 consecutive shocks of size at least
d2 or occurrence of the internal wear degradation. If we create a random variable N to
represent the amount of shocks required to bring the system down, we may describe
the system’s lifespan due to external shocks as

S =
N∑

i=1

Ti

in the current model. Figure1 shows a hypothetical implementation of the failure
process to help to understand the suggested model.

According to Fig. 1, the system breaks after the fourth shock for k1 = 3 or k2 = 2,
and the lifespan of the system is S = T1 + T2 + T3 + T4. If k1 = 4 and k2 = 2, the
seventh shock causes the system to collapse, at which point the system’s lifespan due
to external shocks is S = T1 + · · · + T7. Two run shock models are combined in this
mixed shock model. The interval between consecutive shocks T1, T2, ... is considered
to be a continuous phase-type with a common cumulative distribution function

F(t) = P(Ti ≤ t) = 1 − α exp (At) e′, (1)

for i = 1, 2, ... where e = (1, ..., 1)1×m . α is a substochastic vector of order m, all
elements of the row vector α = (α1, ..., αm) are nonnegative, and αe′ ≤ 1. A is a
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Fig. 1 A possible realization of the model

subgenerator of order m, i.e., A is an m ×m nonsingular matrix such that all diagonal
elements are negative, and all off-diagonal elements are nonnegative. All row sums
are nonpositive. We will use the notation T ∼ PHc(α,A) to show that the random
variable T has a continuous phase-type distribution of order m, with a PH-generator
A and a substochastic vector α.

The expected value of T can be calculated from

E(T ) = −
(
αA−1e′) . (2)

Tomodel the distribution of shock interarrival times, a lot of researchers use phase-type
distributions. For more information and properties about the phase-type distribution,
see Huang et al. (2019), Segovia and Labeau (2013), Neuts andMeier (1981), Cui and
Wu (2019), He (2006) and Perez-Ocon and Segovia (2009).
In an absorbing Markov chain, a discrete phase-type distribution is the distribution of
the time to absorption. The probability mass function (PMF) of the discrete phase-type
random variable N is represented by:

P {N = n} = aQn−1u′,

for n ∈ N, where Q = (qi j
)
m × m is a matrix that includes the transition probabil-

ities among the m transient states, and u′ = (I − Q) e′ is a vector that includes the
transition probabilities from transient states to the absorbing state, a = (a1, ..., am)

with
∑m

i=1
ai = 1, and I is the identity matrix. In addition, the matrixQmust satisfy

the condition that I − Q is nonsingular. To express that the random variable N has a
discrete phase-type distribution, we will use N ∼ PHd(a,Q). The expected value of
N can be computed by

E(N ) = a(I − Q)−1e′ (3)
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Lemma 1 Let p1 = P(d1 ≤ Di < d2) and p2 = P(Di ≥ d2) for i = 1, 2, ... then
N ∼ PHd(a,Q) with a = (1, 0..., 0),

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��������States
States

0 1 11 ... ... 11...1︸ ︷︷ ︸
k1−1

2 22 ... 22...2︸ ︷︷ ︸
k2−1

0 1 − p1 − p2 p1 0 ... ... 0 p2 0 ... 0
1 1 − p1 − p2 0 p1 0 ... 0 p2 0 ... 0

11
...

... 0 p1 0 p2
...

...
...

11...1︸ ︷︷ ︸
k1−1

0 p2

2 p1 0 ... ... 0 p2

22 p1 0 ... ... 0
. . . 0

...
...

...
...

... p2
22...2︸ ︷︷ ︸
k2−1

1 − p1 − p2 p1 0 ... 0 ... 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k1+k2−1)×(k1+k2−1)

(4)

and u = (I − Q) e′ where e = (1, ..., 1)1×(k1+k2−1).

Proof The random variable N can be described as the time to absorption of a Markov
chain based on a sequence of trials I1, I2, ... such that

Ii =
⎧
⎨

⎩

0, if Di < d1
1, if d1 ≤ Di < d2
2 if Di ≥ d2

.

The correspondingMarkov chain has (k1 + k2 − 1) transient states and four absorbing

states which are defined by

⎧
⎨

⎩0, 1, 11, ..., 11...1︸ ︷︷ ︸
k1−1

, 2, 22, ..., 22...2︸ ︷︷ ︸
k2−1

⎫
⎬

⎭ and

⎧
⎨

⎩11...1︸ ︷︷ ︸
k1

, 22...2︸ ︷︷ ︸
k2

, 11...1︸ ︷︷ ︸
k1−1

22...2︸ ︷︷ ︸
k2

, 22...2︸ ︷︷ ︸
k2−1

11...1︸ ︷︷ ︸
k1

⎫
⎬

⎭, respectively. More precisely,

transient states 0 ⇒ a shock of magnitude less than or equal to d1.
1 ⇒ a shock of magnitude between d1 and d2.

.

.

.
.
.
.

11 . . . 1︸ ︷︷ ︸
k1−1

⇒ k1 − 1 successive shocks with magnitudes between d1 and d2.

2 ⇒ a shock of magnitude greater than or equal to d2.
.
.
.

.

.

.

22 . . . 2︸ ︷︷ ︸
k2−1

⇒ k2 − 1 successive shocks with magnitudes greater than or equal to d2.
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absorbing states 11 . . . 1︸ ︷︷ ︸
k1

⇒ k1 successive shocks with magnitudes between d1 and d2.

22 . . . 2︸ ︷︷ ︸
k2

⇒ k2 successive shocks with magnitudes greater than

or equal to d2.
11 . . . 1︸ ︷︷ ︸
k1−1

22 . . . 2︸ ︷︷ ︸
k2

⇒ k1 − 1 successive shocks with magnitudes between d1 and d2,

and k2 successive shocks with magnitudes greater than or
equal to d2.

22 . . . 2︸ ︷︷ ︸
k2−1

11 . . . 1︸ ︷︷ ︸
k1

⇒ k2 − 1 successive shocks with magnitudes greater than or

equal to d2,
and k1 successive shocks with magnitudes between d1 and d2.

The proof is completed considering the probabilities between transient states and
phase-type representation. 
�

Corollary 2 Using Lemma 1 and (3)

E(N ) =

(∑k1

i=1
pi−1
1

)(∑k2

j=1
p j−1
2

)

pk11

(∑k2

j=1
p j−1
2

)
+ pk22

(∑k1

i=1
pi−1
1

) . (5)

The following proposition considers that the random variable N , which describes the
waiting time, has a discrete phase-type distribution. For the proof, we refer to He
(2006).

Proposition 3 Assume that T1, T2, . . . are independent and Ti ∼ PHc(α,A), i =
1, 2, ... and independently N ∼ PHd(a,Q). If α and a are stochastic vectors, i.e.
ae′ = 1 and αe′ = 1, then

S =
N∑

i=1

Ti ∼ PHc(α ⊗ a,A ⊗ I + (−Ae′)⊗Q), (6)

where ⊗ is the Kronecker product.

The next closure property will be used in the following section. For the proof, we refer
to He (2006).

Proposition 4 Let X ∼ PHc(α,A) and Y ∼ PHc(β,B) be two independent phase-
type random variables. Then

min(X ,Y ) ∼ PHc(α ⊗ β,A ⊗ I + I ⊗ B). (7)
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3 Reliability andmean time to failure of the system

According to the proposed model, the system will fail if either k1 successive shocks
with a strength between the predefined thresholds d1 and d2 (d1 < d2) or the occur-
rence of k2 successive shocks with a strength above the threshold d2 or internal wear
degradation occurs, whichever comes first. Thus, the system lifetime can be repre-
sented as:

R = min(S,W ) (8)

where W is the lifetime of the system due to internal wear degradation.
We assume that the interarrival time Ti between (i − 1)th and i th shocks, the corre-
spondingmagnitude Di are independent for all i . If Ti ∼ PHc(α,A), N ∼ PHd(a,Q)

andW ∼ PHc(ζ ,Z), then from (1),(6),(7) and (8) we can compute the survival func-
tion of R from

P(R > t) = (v ⊗ ζ ) exp ((Y ⊗ I + I ⊗ Z) t) e′, (9)

where Y = A ⊗ I + (−Ae′)⊗Q and v = α ⊗ a
Using (2), one can easily calculate the mean time to the system failure under the

proposed model from

E(R) = −
(
(v ⊗ ζ ) (Y ⊗ I + I ⊗ Z)−1 e′) . (10)

The following proposition will be helpful in the next section.

Proposition 5 If R ∼ PHc(α,A), then

(R − t |R > t) ∼ PHc(
α exp (At)

α exp (At) e′ ,A).

4 Mean residual lifetime

The mean residual life (MRL) function is vital in reliability and system analysis.
Assume that the system has a lifetime R, then the function E(R − t |R > t) is called
the system’s MRL function. In technical systems, the MRL function is an important
feature that characterizes the system’s lifetime distribution function. We refer to Lai
and Xie (2006) for more details and applications.

Since the system has a lifetime random variable R with a phase-type distribution,
from Proposition 5 and (2), the mean residual lifetime at time t can be calculated from:

E(R − t |R > t) =
−
(

(v ⊗ ζ ) exp ((Y ⊗ I + I ⊗ Z) t)

(v ⊗ ζ ) exp ((Y ⊗ I + I ⊗ Z) t) e′ (Y ⊗ I + I ⊗ Z)−1 e′
)

. (11)
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Phase-type distributions have been widely employed in numerous fields, including
reliability theory in the literature, due to the fact that the phase-type distribution is
closed under the influence of different operators and equations appear theoretically
tractable when compared to other distributions.

5 Optimal replacement time

It is also crucial to choose the best replacement time that reduces the long-term average
cost. The age replacement policy states that the system is replaced when it fails or
reaches the age of t , whichever comes first. Let c1 represent the cost of replacement
before failure and c2 represent the cost of replacement after failure. Since system
failure causes an additional cost, we assume that c1 < c2. Then, if a system has a
lifetime T , the mean cost rate is given by

C(t) = c1P(R > t) + c2P(R < t)

E(min(R, t))

= c2 + (c1 − c2)P(R > t)

E(min(R, t))
, (12)

where E(min(R, t)) denotes the mean time for replacement and is calculated as

E(min(R, t)) =
∫ t

0
P(R > u)du.

This section aims to find the t∗ that minimizes (12) when c1 and c2 are known. The
following proposition is related to calculating the mean time for a replacement under
the Phase-type distribution class.

Proposition 6 Let R denote the lifetime of the system having a continuous phase-type
distribution with the representation PHc(α,A); then, the mean time for replacement
E(min(R, t)) can be calculated as:

E(min(R, t)) = αA−1 exp(At)e′ − αA−1e′. (13)

See Appendix for the proof.
Using formula (12), the optimal value t∗, which minimizes the mean cost rate, can be
found numerically.

6 Numerical illustrations

As seen in Fig. 2, a timing belt is a component, designed with a precise hard tooth that
interlocks with the cogwheel of a crankshaft and the two camshafts, used in an internal
combustion engine to synchronize the movement of the crankshaft and camshafts. A
timing belt is often made of rubber with high tensile fibers in its structure and design.
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Fig. 2 Timing belt Auto and Inc (2023)

The entire belt is made of strong materials like molded polyurethane, neoprene, or
welded urethane of varying levels. Rubber degrades at higher temperatures and when
exposed to oil. Timing belt lifespan is compromised in hot, oil-leaking engines. Water
and antifreeze can also shorten the life of reinforcing cables.Because of their trapezoid-
shaped teeth, older timingbelts typically have ahigh rate ofwear.According toworking
principle of timing belt, exposing high degrees of temperatures or other materials such
as oil, antifreeze or even just water can be considered external shocks. Occurrence of
k1 consecutive of these kind of external shocks whose magnitude is between d1 and
d2 such that d1 < d2, or k2 consecutive shocks whose magnitude is above d2 may
cause the failure of the timing belt. On the other hand, the wear on the rubbing face
of the timing belt because of trapezoid-shaped teeth of crankshaft and camshafts may
also cause to break of the component without of occurrence. Therefore, the timing
belt may fail because of wear degradation and external shocks.

Consider a system that is exposed to shocks on a regular basis in a job. As men-
tioned before, in the proposedmodel, for d1 < d2,when there are k1 successive shocks
having magnitude between d1 and d2 or k2 consecutive shocks of size at least d2 or
internal wear degradation occurs, the system fails. In this section, with the help of
the methodology described in the previous sections, we will present the computation
of reliability, MTTF, MRL, and optimal replacement time for the system under the
proposed model. Assume that the system lifetime under internal wear degradation W
and the intervals between shocks T1, T2, ... follow a continuous phase-type Erlang dis-
tribution with parametersm and λ. The Erlang distribution has cumulative distribution
function (cdf)

F(t) = 1 − α exp(At)e′,
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t ≥ 0, where α = (0, ..., 1), and A =

⎡

⎢⎢⎢⎣

−λ 0 · · · 0
λ −λ 0
...

. . .
. . .

...

0 · · · λ −λ

⎤

⎥⎥⎥⎦

m×m

.

To illustrate,wefirst present a phase-type representation of the lifetimeof the system
under a generalized mixed shock model when k1 = 3 and k2 = 2 when the interarrival
times and the lifetime of the system due to internal wear degradation follow the Erlang
distributionwithm = 2 andλI AT = 1 andm = 2 andλIW D = 0.5, respectively. From
(4), the discrete phase-type random variable N , which represents the total amount of
shocks before the system fails, has phase-type representation N ∼ PHd(a,Q)where

Q =

⎡

⎢⎢⎣

1 − p1 − p2 p1 0 p2
1 − p1 − p2 0 p1 p2
1 − p1 − p2 0 0 p2
1 − p1 − p2 p1 0 0

⎤

⎥⎥⎦ ,

a = (1, 0, 0, 0) and u = (0, 0, p1, p2). To present system’s survival function in (9),
we need

v ⊗ ζ

where v = α ⊗ a,

v ⊗ ζ = (0, 0, 0, 0, 1, 0, 0, 0)⊗(0, 1)

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

and

Y ⊗ I + I ⊗ Z

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.5 0 0 0 0 0 0 0 1 − p1 − p2 0 p1 0 0 0 p2 0
0.5 −1.5 0 0 0 0 0 0 0 1 − p1 − p2 0 p1 0 0 0 p2
0 0 −1.5 0 0 0 0 0 1 − p1 − p2 0 0 0 p1 0 p2 0
0 0 0.5 −1.5 0 0 0 0 0 1 − p1 − p2 0 0 0 p1 0 p2
0 0 0 0 −1.5 0 0 0 1 − p1 − p2 0 0 0 0 0 p2 0
0 0 0 0 0.5 −1.5 0 0 0 1 − p1 − p2 0 0 0 0 0 p2
0 0 0 0 0 0 −1.5 0 1 − p1 − p2 0 p1 0 0 0 0 0
0 0 0 0 0 0 0.5 −1.5 0 1 − p1 − p2 0 p1 0 0 0 0
1 0 0 0 0 0 0 0 −1.5 0 0 0 p1 0 0 0
0 1 0 0 0 0 0 0 0.5 −1.5 0 0 0 p1 0 0
0 0 1 0 0 0 0 0 0 0 −1.5 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0.5 −1.5 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1.5 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0.5 −1.5 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1.5 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 −1.5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

whereY = A⊗I + (−Ae′)⊗Q. Therefore, the system’s survival function in (9) under
generalized mixed shock model with k1 = 3 and k2 = 2 is obtained as:
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Fig. 3 Under the generalized mixed shock model, the survival function of the systems

Table 1 MTTF of the system

p1 p2 k1 k2 E(R|λIW D = 0.5) E(R|λIW D = 1) E(R|λIW D = 1.5)

0.4 0.35 3 1 2.67568 1.66154 1.19324

2 3.66478 1.95455 1.32153

3 3.87832 1.98948 1.33146

4 3 3.93502 1.99499 1.33249

5 3.94674 1.99565 1.33257

6 3.94911 1.99572 1.33258

0.4 0.45 3 1 2.44032 1.58348 1.15791

2 3.5243 1.93126 1.31493

3 3.82988 1.985 1.33064

4 3 3.88557 1.99049 1.33167

5 3.89709 1.99115 1.33175

6 3.89942 1.99122 1.33176

0.55 0.45 3 1 2.39495 1.57699 1.15652

2 3.44149 1.92246 1.31326

3 3.73594 1.97586 1.32894

4 3 3.85332 1.98871 1.33146

5 3.88703 1.99083 1.33173

6 3.89645 1.99117 1.33175

P(R > t)
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) ×

exp

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-1.5 0 0 0 0 0 0 0 1 − p1 − p2 0 p1 0 0 0 p2 0
0.5 -1.5 0 0 0 0 0 0 0 1 − p1 − p2 0 p1 0 0 0 p2
0 0 -1.5 0 0 0 0 0 1 − p1 − p2 0 0 0 p1 0 p2 0
0 0 0.5 -1.5 0 0 0 0 0 1 − p1 − p2 0 0 0 p1 0 p2
0 0 0 0 -1.5 0 0 0 1 − p1 − p2 0 0 0 0 0 p2 0
0 0 0 0 0.5 -1.5 0 0 0 1 − p1 − p2 0 0 0 0 0 p2
0 0 0 0 0 0 -1.5 0 1 − p1 − p2 0 p1 0 0 0 0 0
0 0 0 0 0 0 0.5 -1.5 0 1 − p1 − p2 0 p1 0 0 0 0
1 0 0 0 0 0 0 0 -1.5 0 0 0 p1 0 0 0
0 1 0 0 0 0 0 0 0.5 -1.5 0 0 0 p1 0 0
0 0 1 0 0 0 0 0 0 0 -1.5 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0.5 -1.5 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 -1.5 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0.5 -1.5 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1.5 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 .5 -1.5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 4 Under the generalized mixed shock model, the MRL function of the systems

Table 2 Optimal replacement time and average cost rate

λIW D = 0.5 λIW D = 1 λIW D = 1.5
p1 p2 k1 k2 t∗ C(t∗) t∗ C(t∗) t∗ C(t∗)

0.4 0.35 3 1 0.6307 3.85258 0.5609 4.31928 0.5028 4.91322

2 0.6795 3.64393 0.6735 3.6514 0.6575 3.67481

3 0.6801 3.64327 0.68 3.64337 0.6789 3.64416

4 3 0.6801 3.64327 0.6801 3.64331 0.6796 3.64363

5 3 0.6801 3.64327 0.6801 3.64331 0.6796 3.64363

6 3 0.6801 3.64327 0.6801 3.64331 0.6796 3.64363

0.4 0.45 3 1 0.6183 3.91047 0.5345 4.4997 0.4669 5.24398

2 0.6791 3.64436 0.6694 3.65655 0.6453 3.69384

3 0.6801 3.64327 0.6799 3.64342 0.6783 3.64455

4 3 0.6801 3.64327 0.68 3.64336 0.6791 3.64403

5 3 0.6801 3.64327 0.68 3.64336 0.6791 3.64402

6 3 0.6801 3.64327 0.68 3.64336 0.6791 3.64402

InFig. 3,weplot the survival functionof the systemunder a generalizedmixed shock
model for different values of k1 and k2 when p1 = 0.4, p2 = 0.45 and λI AT = 1 for
interarrival times and λIW D = 0.5 for internal wear degradation.

As it is clear from the graphs, an increase in the values of k1 or k2 leads to an
increase in system reliability, as expected. Similarly, since the MRL and the MTTF of
the system formulae contain (14), one can easily obtain expressions for the MRL in
(11) and the MTTF in (10). For a set of parameter values and for λI AT = 1 in Table
1, we calculate the system’s MTTF using a generalized mixed shock model.

From Table 1, we can see that the MTTF of the system increases as the value of k1
or k2 increases and decreases as the probability of a shock with a magnitude between
the thresholds d1 and d2 or the probability of a shock greater than the threshold d2
(p2) or λIW D increases as expected. In Fig. 4, we plot the MRL function of the system
under the proposed model for different values of k1 and k2 for p1 = 0.45, p2 = 0.50,
and λI AT = 1 and λIW D = 0.001.
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Fig. 5 The long-run average cost functions under generalized mixed shock model for k1 = 3 and k2 =
1, 2, 3

The MRL function increases in both k1 and k2, as shown in Fig. 4. In Table 2, for
several values of the parameters under the generalized mixed shock model, we get
the best replacement time t∗ for minimizing (12) and also its average cost rates C(t∗)
using the equations (9) and (13) in (12).

From Table 2, it can be easily observed that an increase in the k2 value causes a
longer optimal replacement time and a lower mean cost rate. However, an increase in
p2 (probability that shockmagnitude is above the threshold value d2) or in λIW D leads
to a decrease in optimal replacement time and an increase in mean cost rate. Lastly,
to illustrate the shape of the cost function, in Figs. 5 and 6, we plot the mean cost rate
function using (12) under the proposed model for different values of the parameters.
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Fig. 6 The long-run average cost functions under generalized mixed shock model for k1 = 4, 5, 6 and
k2 = 3

From Figs. 5 and 6, it is clear that the graph of themean cost rate is always U-shaped
for different values of k1,k2 and p2.More precisely, aU-shape is a functionwith exactly
one turning point. When the process begins to increase, it does not decrease.

7 Summary and conclusions

We define and investigate an extended version of the mixed shock model in this study,
which combines the extreme and run shock models described by Eryilmaz and Tekin
(2019) without considering the internal wear. However, we include the internal wear
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degradation in the proposed model. Therefore, without occurrence of external shocks,
the system may also fail. The inclusion of internal wear makes the proposed model
more realistic. The interarrival time of the shocks was supposed to follow phase-
type distributions, which provided a number of benefits. In the proposed model, the
system’s lifetime was computed using a compound random variable and the closure
properties of phase-type distributions. We were also able to display mean time to
failure and mean residual lifetimes without having to take integration into account.
In addition, we examined the best replacement policy based on the mean cost rate
function minimization. As future work, we aim to include repairability in the model
and also derive other important reliability measures such as availability and rate of
occurrence of failures (ROCOF).
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Appendix

Proof of (13): Since continuous phase-type random variable R has representation
PHc(α,A) and from (1), we have

P(R > t) = α exp(At)e′ = α

( ∞∑

n=0

tn

n!A
n

)
e′

and

E(min(R, t)) =
∫ ∞

0
P(min(R, t) > u)du

=
∫ t

0
P(R > u)du

=
∫ t

0
α

( ∞∑

n=0

un

n! A
n

)
e′du

= α

(
A−1

∞∑

n=0

tn+1

(n + 1)!A
n+1

)
e′

= α

(
A−1

∞∑

n=−1

tn+1

(n + 1)!A
n+1 − I

)
e′
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= α
(
A−1(exp(At) − I)

)
e′

= αA−1 exp(At)e′ − αA−1e′.
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