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Abstract
Theproduct partitionmodel (PPM) iswidely used for detectingmultiple change points.
Because changes in different parameters may occur at different times, the PPM fails
to identify which parameters experienced the changes. To solve this limitation, we
introduce a multipartition model to detect multiple change points occurring in several
parameters. It assumes that changes experienced by each parameter generate a different
randompartition along the time axis,which facilitates identifying those parameters that
changed and the time when they do so. We apply our model to detect multiple change
points in Normal means and variances. Simulations and data illustrations show that
the proposedmodel is competitive and enriches the analysis of change point problems.
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1 Introduction

Change point identification is not a new problem; it plays an important role in many
different fields, including finance, genetics, public health, and historical environmental
measurements. It serves a range of purposes such as improving forecasts or identifying
events that produced the changes, thus guiding future decisions and policies definition.
The main goals when addressing multiple change point problems are to estimate num-
ber and positions of the changes. Estimation of structural parameters within clusters
is also typically of interest.

Classical methods to identify change points include sequential hypothesis tests,
threshold and hiddenMarkovmodels, supervised and unsupervised algorithms among
others. Discussions about classical methods for this analysis can be found in Chen and
Gupta (2000), Horváth and Rice (2014), Niu et al. (2016), Aminikhanghahi and Cook
(2017), Tartakovsky et al. (2020), Truong et al. (2020), Yu and Cheng (2022), Chen
et al. (2021), Ogunniran et al. (2021), and in references therein. These works provide
a survey of some classic results in the area, also including some recent methodologies.
Nevertheless, our focus is on Bayesian approaches for change point detection.

There is awide range ofBayesianmodels to handle identification ofmultiple change
points. Because this task is a particular case of cluster analysis where only contiguous
clusters are possible, approaching this problem by way of the product partition model
(PPM), introduced by Hartigan (1990), is appealing. The PPMwas first applied in this
context byBarry andHartigan (1992),who consider that change points define a random
partition ρ. They also explored theoretical aspects of PPMs under this setting. Barry
and Hartigan (1993) applied PPMs to the mean of a sequence of Normal variables with
unknown constant variance. Simulation-based methods for inference in these models
are developed in, e.g., Barry and Hartigan (1993). PPM extensions to detect changes
in several parameters are found in Loschi and Cruz (2005).

Multiple change point problems have been addressed through many different
methodologies. Chib (1998) formulated these in terms of a latent discrete state variable
that evolves according to a discrete-time Markov process and indicates the regime of
each particular observation. Fearnhead (2006) presents efficient recursions to calcu-
late the posterior probabilities of different numbers of change points and the posterior
mean of the structural parameters, obtaining exact solutions. Fearnhead and Liu (2007)
proposed an on-line algorithm for the exact filtering of multiple change point prob-
lems. Fearnhead and Rigaill (2019) presented a penalized cost approach that exhibits
robustness to the presence of outliers under a bi-weight loss function. Martínez and
Mena (2014) proposed a new prior model to ρ, assuming cohesion functions given
by a suitable modification of an exchangeable partition probability function derived
from Pitman’s sampling formula. García and Gutiérrez-Peña (2019) proposed a non-
parametric PPM extension that assumes a random measure to model data within each
cluster. This flexible approach for the sampling distribution also allows for correlation
within regime observations. Correlated observations within clusters are also consid-
ered by Monteiro et al. (2011) and Wyse et al. (2011). A dependence structure among
the regimes is considered in the models introduced by Fearnhead and Liu (2011) and
Ferreira et al. (2014) where the across-cluster correlation is introduced through the

123



Multipartition model for multiple change point identification 761

prior for structural parameters. The case of multivariate sequences was studied in
Nyamundanda et al. (2015), Jin et al. (2022) and Quinlan et al. (2022).

One advantage of PPM is that it allows inferring the change point positions in
a probabilistic way, avoiding ad-hoc alternatives such as an analysis via sequential
hypothesis test comparing the structural parameters of contiguous clusters. Despite
being a competitive model, if applied to sampling models involving two or more
parameters, the PPM fails to identify the parameter or subset of parameters associated
to the change. In financial data, for instance, despite the long list of works linking
volatility and mean return, the analysis presented in Loschi and Cruz (2005) shows
that some events may produce changes in volatility but not in its mean return. The
usual PPM would be capable of detecting that a change occurred but determining
which of volatility and/or mean return was responsible for the change requires extra
effort. A similar situation would be observed in cases where interest is on identifying
multiple changes in multiparametric models as well as in multivariate ones. Under the
PPM structure, we only obtain the posterior distribution of the random partition, that
indicates when the structural changes occurred. However, one ormore parameters may
experience changes, and changes in different parameters may occur asynchronously.
This is a long-standing limitation of the PPM. Recently, Peluso et al. (2019) proposed
a semiparametric model for the case of several structural parameters. Extending the
Chib (1998) model, they assume a specific latent Markovian discrete state variable
for each structural parameter, allowing to identify which parameter experienced the
change. One challengewhen implementing thismethod is the need to precisely specify
a priori the maximum number of changes to be experienced by each parameter. This
requires precise prior knowledge about all events that may produce those changes and
the specific parameter(s) being correspondingly affected. This is no simple task in
general. Although innovative, the inferences for structural parameters obtained from
fitting this model are indeed influenced by different specifications for the maximum
number of change points.

To overcome this problem, we propose a model where the maximum number of
changes in each parameter has no prior constraints. Our approach for tackling this
problem differs from that in Peluso et al. (2019) in the prior construction. Our main
contribution is the introduction of a multipartition model to detect multiple changes
in sequential data (Sect. 2). We refer to it as the Bayesian multipartition change
point model (BMCP). The proposed model assumes that different parameters may
change at different and unknown times and also experience an unknown number of
change points. BMCP is a natural generalization of Barry and Hartigan (1992)’s PPM,
assuming different and independent random partitions for each structural parameter
in the model. Changes in different parameters are independently driven by different
Markovian processes imposing different product distributions for each partition. The
posterior distributions for these partitions allowus to identify the instantswhenchanges
occurred and the parameter(s) involved. As the random partition is not an Euclidean
vector, a great challenge in random partition models is to explore the corresponding
posterior distributions. Another contribution of this work is thus the derivation of a
computationally efficient algorithm to sample from the joint posterior of parameters
and partitions (Sect. 2.1). In Sect. 3we offer a detailed discussion for the special case of
change points in means and/or variances in normal data, extending Barry and Hartigan
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(1993) and Loschi and Cruz (2005). To evaluate the BMCP performance, we carried
out a Monte Carlo simulation study (Sect. 3.2). BMCP is compared to the models
introduced by Barry and Hartigan (1993), Loschi and Cruz (2005) and Peluso et al.
(2019). We apply BMCP to the analysis of a data set in finance (Sect. 4) and another
in genetics (Sect. S.5 of the online supplementary material). Additional comparisons
between BMCP and other models are provided in the online supplementary material.
A final discussion is presented in Sect. 5.

2 Model definition

The original PPM (Barry and Hartigan 1992, 1993) for the identification of multiple
change points is constructed following two main premises: (i) the behavior of the
series experiences changes occurring at random instants that partition the time axis
accordingly, and (ii) conditional on the positions of these changes and on structural
parameters, observations belonging to different clusters are independent and those
inside the same cluster are independent and identically distributed (iid). These ideas
were previously applied to identify changes inmultiple parameters (mean andvariance,
for instance) assuming they change synchronously. In the following, we extend this
idea to identify changes in multiple parameters that may be asynchronous. In our
proposal, separate partitions of the time axis are considered, one for each parameter.

Consider a sequence of n random variables X = (X1, . . . , Xn). Let θ1, . . . , θd be
sequences of d unknown structural parameters where the sequence related to the kth
parameter is θk = (θk,1, . . . , θk,n) for k = 1, . . . , d. Let f (Xi |θ1,i , . . . , θd,i ) represent
the sampling distribution of Xi , parametrized by θ1,i , . . . , θd,i , for i = 1, . . . , n, and
assume that X1, . . . , Xn are conditionally independent given θ1, . . . , θd . Suppose
that each θk , k = 1, . . . , d, is affected by an unknown number Nk of changes, that
occur at unknown positions of the sequence. Let ρk represent the random partition
that splits the set of indexes I = {1, . . . , n} of θk into contiguous clusters induced by
those changes. Consequently, the values in θk are divided into Bk = Nk + 1 unknown
contiguous clusters. Partition ρk may be defined by ρk = {τk,0, τk,1, . . . , τk,bk }, where
0 = τk,0 < τk,1 < · · · < τk,bk = n, denote the contiguous clusters endpoints of
Sk, jk = {τk, jk−1 + 1, . . . , τk, jk }, jk = 1, . . . , bk , k = 1, . . . , d. Each partition ρk is
alternatively defined by its corresponding set of clusters {Sk,1, . . . , Sk,bk }. The first
element of each cluster Sk, jk is called a change point of θk .

Given ρk = {Sk,1, . . . , Sk,bk }, we assume that all observations belonging to cluster
Sk, jk share the same value for the kth structural parameter. Let θ�

k,1, . . . , θ
�
k,bk

represent
the cluster-specific parameters related to partition ρk , such that θk,i = θ�

k, jk
for all

i ∈ Sk, jk .We assume a priori that changes in different parameters occur independently,
so that the d random partitions ρ1, . . . , ρd are independent. To simplify notation, we
may consider S jk and θ�

jk
to be reduced representations of Sk, jk and θ�

k, jk
, respectively,

since index k is already specified in the index jk . Based on the previous definitions, the

vector θk can be written as θk =∑bk
jk=1

(
θ�
jk
1{1 ∈ S jk }, . . . , θ�

jk
1{n ∈ S jk }

)
, where

1{A} denotes the indicator function of event A.
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θ1,1 θ1,2 θ1,3 θ1,4 θ1,5 θ1,6 θ1,7 θ1,8 θ1,9 θ1,10 θ1,11 θ1,12 θ1,13 θ1,14 θ1,15 θ1,16

θ2,1 θ2,2 θ2,3 θ2,4 θ2,5 θ2,6 θ2,7 θ2,8 θ2,9 θ2,10 θ2,11 θ2,12 θ2,13 θ2,14 θ2,15 θ2,16

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

Θ�
1 Θ�

1 Θ�
1 Θ�

1 Θ�
2 Θ�

2 Θ�
2 Θ�

2 Θ�
3 Θ�

3 Θ�
3 Θ�

3 Θ�
4 Θ�

4 Θ�
4 Θ�

4

ρ� ={τ�
0 , τ�

1 , τ�
2 , τ�

3 , τ�
4 }={0, 4, 8, 12, 16}

θ1,1 θ1,2 θ1,3 θ1,4 θ1,5 θ1,6 θ1,7 θ1,8 θ1,9 θ1,10 θ1,11 θ1,12 θ1,13 θ1,14 θ1,15 θ1,16

ρ1 ={τ1,0, τ1,1, τ1,2, τ1,3}={0, 4, 14, 16}

θ2,1 θ2,2 θ2,3 θ2,4 θ2,5 θ2,6 θ2,7 θ2,8 θ2,9 θ2,10 θ2,11 θ2,12 θ2,13 θ2,14 θ2,15 θ2,16

ρ2 ={τ2,0, τ2,1, τ2,2}={0, 8, 16}

Fig. 1 Graphical representation of the proposed model with two structural parameters.
Alternative representations for the partitions are given by ρ1 = {S1,1, S1,2, S1,3} =
{{1, . . . , 4}, {5, . . . , 12}, {13, . . . , 16}}, ρ2 = {S2,1, S2,2} = {{1, . . . , 8}, {9, . . . , 16}} and ρ� =
{S�

1, S�
2, S�

3, S�
4}={{1, . . . , 4}, {5, . . . , 8}, {9, . . . , 12}, {13, . . . , 16}}

Figure 1graphically depicts the relationships between the randomobjects in the pro-
posed model when d = 2. The conditional dependence between objects is represented
by arrows that link them.

The combined partition ρ� is defined below in (4). In this example, we have b1 = 3,
b2 = 2 and the resulting number of clusters in the combined partition ρ� is b� = 4. All
parameters inside the continuous-line box have the same value corresponding to the
related cluster-specific parameter, for example, θ1,1 = θ1,2 = θ1,3 = θ1,4 = θ�

1,1,
where θ�

1,1 represents the parameter related to cluster j1 = 1 of partition ρ1.
We also have the objects ��

1, ��
2, ��

3 and ��
4 representing the pairs of cluster-

specific parameters ��
1 = (θ�

1,1, θ
�
2,1), ��

2 = (θ�
1,2, θ

�
2,1), ��

3 = (θ�
1,2, θ

�
2,2) and

��
4 = (θ�

1,3, θ
�
2,2).

By the independence assumption among the random partitions, we have

P(ρ1={S1,1, . . . , S1,b1}, . . . , ρd={Sd,1, . . . , Sd,bd})=
d∏

k=1

P(ρk={Sk,1, . . . , Sk,bk}). (1)

Following Hartigan (1990), for each ρk we assume the product distribution

P(ρk = {Sk,1, . . . , Sk,bk }) =
bk∏

jk=1

c(S jk )

⎡

⎢
⎣
∑

ρk∈P

∏

S�k ∈ρk

c(S�k )

⎤

⎥
⎦

−1

, (2)
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where P represents the set of all possible partitions of I into contiguous blocks and
the cohesions c(S jk ) are positive numbers measuring how strongly we believe the
components of θk in S jk are to co-cluster a priori.

It is important to point out that the product form for the prior on ρk arises naturally
under a Markovian structure assumption for the sequence of change points occurring
in θk (Barry and Hartigan 1992). Indeed, if the sequence of endpoints τk,0, . . . , τk,bk
at the kth structural parameter is a realization of a Markov chain {Z�, � ∈ N} in which
Z� = τk,0 = 0 if � = 0 and, for � > 0, Z� assumes values in the set {Z�−1 +1, . . . , n}
if Z�−1 �= n and Z� = τk,bk = n if Z�−1 = n, then the prior for ρk is given by

P(ρk ={τk,0, . . . , τk,bk})= P(Zbk =τk,bk |Zbk−1=τk,bk−1) · · · P(Z1=τk,1|Z0=τk,0),

considering that P(Z0 = τk,0) = 1. In this case, the cohesions define the one-step
transition probabilities on such a Markov chain. However, model (2) is more gen-
eral and may accommodate different dependence structures among change points, as
determined by the choice of c(S jk ).

Given ρ1, . . . , ρd , we assume that (i) the d sequences of structural parameters
θ1, . . . , θd are independent and (ii) the cluster-specific parameters θ�

k,1, . . . , θ
�
k,bk

related to each sequence k = 1, . . . , d are independent. Under these assumptions,
the joint prior distribution of θ1, . . . , θd given ρ1, . . . , ρd is

f (θ1, . . . , θd | ρ1, . . . , ρd ) =
d∏

k=1

bk∏

jk=1

f (θ�
jk

), (3)

where f (θ�
jk
) is the prior distribution for the cluster-specific parameter θ�

jk
.

In the PPM by Barry and Hartigan (1992), the partition indirectly induces the
clusterization of the sequence of variables X = (X1, . . . , Xn) by imposing that obser-
vations with indexes belonging to the same cluster are identically distributed. It also
assumes independence across clusters. In the proposed model, as the change points
in the sequences of parameters θ1, . . . , θd are realizations of independent processes,
the corresponding random partitions do not necessarily induce the same number of
clusters, and even if such numbers coincide, the clusters may be distinct across the
various parameters. However, the partitions ρ1, . . . , ρd will induce a unique com-
bined partition ρ� in X = (X1, . . . , Xn). By combining the ordered sequence of
endpoints from of all d partitions, we will obtain an ordered sequence of endpoints
0 = τ �

0 < τ�
1 < · · · < τ�

b� = n belonging to I that splits X into contiguous sets of iid
variables. Thus, the combined partition ρ� is defined as

ρ� = {τ�
0 , τ �

1 , . . . , τ �
b� } = ∪d

k=1 ρk , 0 = τ�
0 < τ�

1 < · · · < τ�
b� = n. (4)

Alternatively, ρ� may be represented by the clusters {S�
1, . . . , S

�
b�}, where

S�
j = {τ �

j−1 + 1, . . . , τ �
j }, j = 1, . . . , b�. Then, given ρ1, . . . , ρd , each nonempty

subset S j1 ∩ · · · ∩ S jd , for jk = 1, . . . , bk and k = 1, . . . , d , specifies one of the clus-
ters S�

j ∈ ρ�, such that S�
j = S j1 ∩ · · · ∩ S jd . Thus the observations whose indexes

belong to S�
j share the same structural parameters.
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Denote by X S�
j
the subsequence of observations indexed by S�

j . Assume that, given
(θ, ρ) = (θ1, . . . , θd , ρ1, . . . , ρd), X S�

1
, . . . , X S�

b�
are independent and that, for all

i ∈ S�
j , Xi are iid variables with conditional marginal density f (Xi |θ�

j1
, . . . , θ�

jd
),

where j1, . . . , jd are the indexes defining S�
j . The likelihood function is then given by

f (X|θ , ρ) =
b�
∏

j=1

∏

i∈S�
j

f (Xi | θ�
j1

, . . . , θ�
jd

). (5)

Considering likelihood (5) and prior specifications (3) and (2), the joint posterior
distribution for (θ , ρ) is given by

f (θ , ρ | X) ∝ f (X|θ , ρ)

d∏

k=1

bk∏

jk=1

f (θ�
jk

)c(S jk ). (6)

Note that the model defined by the likelihood (5) and prior (3) and (2) assumes
the following dependence structure on X . Given ρ1, . . . , ρd , the prior for θ1, . . . , θd
imposes (i) a conditional dependence structure among observations belonging to clus-
ters with at least one cluster parameter in common; and (ii) as in the PPM by Barry and
Hartigan (1992), conditional independence among observations belonging to clusters
having no common parameters.

To the best of our knowledge, the only model that allows for separate identification
of change points in different structural parameters is that introduced by Peluso et al.
(2019). Next we briefly discuss the main differences between both approaches.

Our proposed model rests on separate partition processes for each parameter com-
ponent, while Peluso et al. (2019) extend Chib (1998)’s approach, constructing a prior
that allows indirect determination of change point locations. Concretely, they intro-
duce a specific latent Markovian discrete state variable for each structural parameter,
allowing them to detect which one experienced the change. They also requires that the
maximum number of change points in each parameter is a priori a known value mk ,
k = 1, . . . , d, thatmayequal themaximumnumber of possible changesn−1.Tomodel
uncertainty about the change points in the kth parameter, a random discrete vector of
states Ek = (εk,1, . . . , εk,n) is defined such that εk,i = �, � = 1, . . . ,mk + 1, if the
structural parameter k at time i belongs to the �th cluster. An uni-directional Markov
process then models the uncertainty about state variables εk,1, . . . , εk,n . Change point
positions are thus obtained by identifying cluster components. Fixing the maximum
number of changes at a known value mk ≤ n − 1 implies assuming a null probability
for realizations of the process with more than mk change points, which requires that
reliable prior information about mk should be available. Instead our proposal (2) does
not require such a pre-specified maximum. Another important issue is that the results
from the model by Peluso et al. (2019) turn out to be very sensitive to the choice of
mk (see Sect. S.4 in the online supplementary material).
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2.1 Sampling from the posteriors in the proposedmodel

The posterior distribution in (6) is intractable and some computational proceduresmust
be used to approximate it. We propose a partially collapsed Gibbs sampler (Van Dyk
and Park 2008) based on a blocking strategy to sample from the joint posterior dis-
tribution of partitions ρ = {ρ1, . . . , ρd} and parameters θ = {θ1, . . . , θd}. In a more
general context, let δ be the set of hyperparameters indexing the prior distribution
of (θ , ρ). Denote by θ (−�) the set θ without vector θ� and ρ(−�) the set ρ without
partition ρ�, and let the vector θk,(−i) = (θk,1, . . . , θk,i−1, θk,i+1, . . . , θk,n), i.e. θk
without coordinate i . Assuming that the proposed model holds, and also that given a
partition ρk , θk,i belongs to cluster Sk,J , the full conditional posterior distributions for
ρk , θk and δ are, respectively,

P(ρk = {Sk,1, . . . , Sk,bk }|ρ(−k), θ , δ, X) ∝ f (X|θ , ρ)

bk∏

jk=1

f (θ�
jk

)c(S jk );

f (θk,i |ρ, θ (−k), θk,(−i), δ, X) ∝ f (θ�
k,J ) f (X|θ , ρ);

f (δ|ρ, θ , X) ∝ f (δ)
d∏

k=1

bk∏

jk=1

f (θ�
jk

)c(S jk ).

Because ρ1, . . . , ρd are supported on discrete spaces, a major challenge in the
proposed multipartition model is to handle their posterior distributions. To sample
from the full conditional distributions of ρ1, . . . , ρd , we adapt the method in Barry and
Hartigan (1993) to our multipartition model. Each random partition ρk is represented
by a fixed dimension random vector Uk = (Uk,1, . . . ,Uk,n−1) where each coordinate
Uk,i indicates whether or not a change point occurred at position i+1 of the parameter
vector θk , that is,Uk,i = 1 if θk,i = θk,i+1 andUk,i = 0, otherwise. The pseudo-code
to sample from the joint posterior distribution f (θ, ρ, δ|X) is given in Algorithm
1, where θ

(t)
(−k) = (θ

(t)
1 , . . . , θ

(t)
k−1, θ

(t−1)
k+1 , . . . , θ

(t−1)
d ) denotes the imputed values of

the parameter vectors {θ1, . . . , θd} at iteration t without the parameter vector θk and
U (t)

k,(−i) = (U (t)
k,1, . . . ,U

(t)
k,i−1,U

(t−1)
k,i+1, . . . ,U

(t−1)
k,n−1) denotes the imputed value of Uk

at iteration t with the i th coordinate removed.
Samples from the posterior distribution of each partition ρk , k = 1, . . . , d, are

obtained by sampling from the full conditional distribution of Uk . In the t th iteration,
these samples are obtained considering the following ratio:

R(t)
k,i =

P(Uk,i = 1 | U(t)
k,(−i), θ

(t)
(−k), δ, X)

P(Uk,i = 0 | U(t)
k,(−i), θ

(t)
(−k), δ, X)

. (7)

The partitions in the numerator and denominator of (7) only differ at position i . Assume
that the partition in the numerator is (Uk,1, . . . ,Uk,i−1,Uk,i = 1,Uk,i+1, . . . ,Uk,n−1)

and that a cluster Sk,J contains the i th element of I . The partition in the denominator
splits Sk,J creating two new clusters. Although all the other clusters are shared by both
partitions, these two partitions induce a different number of distinct θk coordinates
in the numerator and denominator of (7). In fact, for one of these terms the number
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Algorithm 1 Sample from f (θ , ρ, δ | X)

Input: X

Initialize: δ(0), θ
(0)
1 , . . . , θ

(0)
d ,U(0)

1 , . . . ,U(0)
d (all Uk,i may be initialized as 0)

1: for t = 1 to T sample
2: δ(t) ∼ f (δ | U(t−1)

1 , . . . ,U(t−1)
d , θ

(t−1)
1 , . . . , θ

(t−1)
d , X)

3: for k = 1 to d sample
4: for i = 1 to n sample
5: U (t)

k,i ∼ p(Uk,i | U(t)
k,(−i), θ

(t)
(−k), δ

(t), X)

6: end for
7: for jk = 1 to bk sample
8: θ

�(t)
jk

∼ f (θ�
jk

| U(t)
k , θ

(t)
(−k), δ

(t), X)

9: end for

10: θ
(t)
k ←

bk∑

jk=1

(θ
�(t)
jk

1{1 ∈ S jk }, . . . , θ�(t)
jk

1{n ∈ S jk })

11: end for
12: end for

of distinct parameter values θk,i in θk differs from the configuration in θ
(t−1)
k . Thus,

sampling from the posterior of each ρk requires that all components θk,i must be
integrated out in (7), so that both probabilities in the numerator and denominator
are not conditional to θk . Conjugacy facilitates obtaining such integrals analytically;
otherwise additional procedures such as numerical integration are needed.

Under the proposed model assumptions, the probabilities in (7) are

p(Uk,i | Uk,(−i), θ (−k), δ, X) ∝
bk∏

jk=1

f (X S jk
|θ (−k))c(S jk ), (8)

where the likelihood function restricted to cluster S jk is given by

f (X S jk
|θ (−k)) =

∫ ( ∏

i∈S jk
f (X S jk

|θ�
jk

, θ (−k),i )

)

f (θ�
jk

) dθ�
jk

, (9)

and θ (−k),i represents {θ1,i , . . . , θd,i } with θk,i removed. Parameter θk,i is represented
in (9) by θ�

jk
since by definition θk,i = θ�

jk
for all i ∈ S jk . For all i ∈ S jk , the new

sample value for coordinate Uk,i is U
(t)
k,i = 1

{
u

1−u ≤ R(t)
k,i

}
, where u is a draw from

the uniform distribution in (0,1) and

R(t)
k,i =

f (X S jk
| θ (−k))c(S jk )

f (X
S(1)
jk

| θ (−k))c(S
(1)
jk

) f (X
S(2)
jk

| θ (−k))c(S
(2)
jk

)
, (10)

where S(1)
jk

={τk, jk−1+1, τk, jk−1+2, . . . , i−1, i} and S(2)
jk

={i+1, i+2, . . . , τk, jk −
1, τk, jk } are the two clusters generated by dividing cluster S jk in the case of Uk,i = 0.
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3 The BMCPmodel for normal data

Themodel developed in the previous section is now applied to identify change points in
themeans and variances of normally distributed data. Consider the sequence of random
variables X = (X1, . . . , Xn) and the sequences of unknown structural parameters
μ = (μ1, . . . , μn) and σ = (σ 2

1 , . . . , σ 2
n ). Following the general discussion in Sect. 2

we assume that Xi |μ, σ
ind∼ N (μi , σ

2
i ), i = 1, . . . , n. In addition, change points in μ

and σ are assumed to occur independently, at unknown and possibly different instants.
Let ρ1 and ρ2 be the random partitions of I that induce contiguous clusters inμ and σ ,
respectively. Denote byμ�

j1
the commonmean into the cluster S j1 , j1 = 1, . . . , b1, and

let σ 2�
j2

be the common variance for observations into the cluster S j2 , j2 = 1, . . . , b2.

Let n jk = #S jk for k = 1, 2 and n�
j = #S�

j where S�
j = S j1 ∩ S j2 . Also, let XS�

j
=

∑
i∈S�

j
Xi/n�

j , for j = 1, . . . , b�.

Given ρ1 and ρ2, assume that (i) the observations Xi for i ∈ S�
j = S j1 ∩ S j2 are

iid with Xi |μ�
j1
, σ 2�

j2

i id∼ N (μ�
j1
, σ 2�

j2
) and (ii) observations in different clusters are

independent. Under these assumptions, the likelihood function is given by

f (X|μ, σ , ρ1, ρ2) =
b1∏

j1=1

∏

{ j2|S�
j �=∅}

(
1

2πσ 2�
j2

)n�
j /2

exp

⎧
⎪⎨

⎪⎩
−
∑

i∈S�
j

(Xi − μ�
j1

)2

2σ 2�
j2

⎫
⎪⎬

⎪⎭
, (11)

where { j2 | S�
j �= ∅} denotes the set of values j2 for which S�

j �= ∅. The double product
in (11) is equivalent to the single product

∏b�

j=1 over ρ� in (5) when d = 2 or to its

permuted form
∏b2

j2=1

∏
j1|S�

j �=∅. In fact, the likelihood function in (11) is the product
of n Normal densities in which the means μi and the variances σ 2

i are piecewise
constant within the intervals defined by the partitions ρ1 and ρ2, respectively.

Given ρ1 and ρ2, we assume independence of μ and σ , and that the parameters in
different clusters are also independent, with prior distributions

μ�
j1

i id∼ N (μ0, σ
2
0 ), j1=1,..., b1, and σ 2�

j2

i id∼ IG(a/2, d/2), j2=1,..., b2. (12)

For the random partitions ρ1 and ρ2, we assume the independent product partition
distributions given in (2). The cohesion proposed by Yao (1984) is considered to
quantify how strongly we believe the components of μ and σ are to co-cluster a
priori. The Yao’s cohesion is indexed by a parameter that represents the probability of
a change in the structural parameter to occur at any instant. In addition to allowing for
the possibility that μ and σ change at different times, our prior construction permits
these parameters to have different numbers of changes. This is achieved by considering
separate probabilities p1 and p2 of a change in the mean and variance, respectively.
By assuming p1 and p2 to be independent and continuously distributed, as formalized
in (15) below, we are not restricting the model to link positions or number of change
points in mean and variance. In fact, it immediately follows that the prior probability
that p1 differs from p2 is 1. Thus, to model prior uncertainty about ρk , k = 1, 2, we
assume the cohesions
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c(S jk ) =
{

(1 − pk )
n jk

−1 pk if jk = 1, 2, . . . , bk − 1,

(1 − pk )
n jk

−1 if jk = bk .
(13)

Therefore, given pk , the prior distribution for ρk will depend only on the number of
clusters bk in the partition ρk and it is given by

P(ρk = {τk,0, τk,1, . . . , τk,bk } | pk ) = (pk )
bk−1(1 − pk )

n−bk . (14)

To complete the model specification, we assume a priori that

pk
ind∼ Beta(αk , βk ), k = 1, 2. (15)

The joint posterior and the full conditionals of the parameters of the BMCP model
for Normal data, to be considered in Algorithm 1, are described in Sect. S.1 of the
online supplementary material.

3.1 On the prior for the number of change points

Assuming the prior distributions for ρk are defined as given by (14) and (15), the
number Nk of change points in the kth parameter, related to ρk , has an induced
Beta-Binomial(n − 1, αk, βk) prior distribution

P(Nk = ν) =
(
n − 1

ν

)
(αk + βk )(αk + ν)(n − 1 + βk − ν)

(αk )(βk )(αk + βk + n − 1)
,

for ν = 0, 1, . . . , n − 1. Thus, mean and variance are given, respectively, by

E(Nk ) = (n − 1)
αk

αk + βk
and Var(Nk ) = (n − 1)

αkβk (αk + βk + n − 1)

(αk + βk )
2(αk + βk + 1)

.

If αk = βk , we assume a priori that around 50% of the observations expe-
rienced a change. Considering αk = βk = 1 implies the prior assumption that
Nk ∼ U {0, 1, . . . , n − 1}. If αk → 0 and βk → 0 then the Beta-Binomial distribution
assigns significant probability mass to the extreme values Nk = 0 and Nk = (n − 1)
and negligible probability to the other values. Although this prior choice for Nk is
highly informative, favoring the extremes of the interval [0, 1], it behaves very much
like Jeffreys’ non-informative prior for Binomial models.

In practice, the prior information available about events that may produce change
points is rather weak. Thus, a convenient strategy is to consider the moments of Nk

instead of specifying a prior for pk . Noting that assuming E(Nk) = ν implies that
βk = αk Q, where Q = (n − 1 − ν)/ν, we get

Var(Nk ) = ν

(
Q

1 + Q

)(
αk (1 + Q) + n − 1

αk (1 + Q) + 1

)

.
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The derivative of Var(Nk) w.r.t αk is given by [νQ(2− n)][αk(1+ Q)+ 1]−2, that is
negative for n ≥ 3, and limαk→∞ Var(Nk) = ν(n−1− ν)/(n−1). These results are
useful to guide our prior choices for αk and βk . Indeed, we obtain prior distributions
for Nk with large variances by eliciting lower values for αk .

Conditional to p1 and p2, the number of changes N � in ρ� has a
Binomial(n − 1, p�) distribution, where p� = 1 −∏2

k=1(1 − pk). Therefore, the
expectation and the variance of N �, respectively, are

E(N�) = (n − 1)

⎛

⎝1 −
2∏

k=1

βk

αk + βk

⎞

⎠ ,

Var(N�) = (n − 1)
2∏

k=1

βk

αk + βk
− (n − 1)2

2∏

k=1

(
βk

αk + βk

)2

+ (n2 − 3n + 2)
2∏

k=1

((
βk

αk + βk

)2
+ αkβk

(αk + βk )
2(αk + βk + 1)

)

.

3.2 Monte Carlo simulation study

We ran a Monte Carlo simulation study to evaluate the performance of the proposed
BMCP model when identifying multiple change points in Normal means and vari-
ances.We compare (Sect. 3.2.1) the proposed BMCPwith the models DPM19 (Peluso
et al. 2019), LCIA05 (Loschi and Cruz 2005) and BH93 (Barry and Hartigan 1993).
Simulation studies for different scenarios can be found in Sect. S.2 of the online sup-
plementary material. We also provide a sensitivity analysis of BMCP to prior choices
for ρ1 and ρ2 (Sect. 3.2.2).

3.2.1 Comparing BMCP with models DPM19, LCIA05 and BH93

For normally distributed data applications, the DPM19 model identifies changes in μ

and σ separately through two random discrete state vectors indicating the regime of
each parameter at every instant. We refer to these state vectors by E1 and E2, respec-
tively.We consider theDPM19 prior specifications exactly as proposed by Peluso et al.
(2019): a Beta(1, 1) prior distribution for the time-dependent probability of regime
change; for the regime parameters, we assume Dirichlet process prior distributions

with concentration parameters M1
D= M2 ∼ Ga(0.05, 0.0001) and base distribu-

tions N (μ0, σ
2
0 ) for the regime means and IG(a, d) for the regime variances, where

(μ0, σ
2
0 , a, d) = (0, 1, 1, 1). Also following Peluso et al. (2019), we fix the maximum

number of changesm1 andm2 as the true number of changes in μ and σ , respectively.
This is a highly informative choice as discussed in Sect. 2.

BH93 and LCIA05 models consider a single partition ρ to identify the changes.
BH93 is proposed to identify changes only in the mean, under constant vari-

ance. It assumes that Xi |μi , σ
2 ind∼ N (μi , σ

2), i = 1, . . . , n, and that, a priori,

μ�
j
i id∼ N (μ0, σ

2
0 /n j ), where n j = #S j , j = 1, . . . , b. We consider the same prior

specifications proposed in Barry and Hartigan (1993) for σ 2, μ0 and σ 2
0 . LCIA05
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identifies changes in μ or σ , but does not specify which parameter has changed.
To analyze the data using LCIA05 the following prior distributions for the clus-

ter parameters are assumed: μ�
j |σ 2�

j
i id∼ N (m, vσ 2�

j ) and σ 2�
j

i id∼ IG(a/2, d/2) with
(m, v, a, d) = (0, 2, 0.1, 2.1). In the simulation study, the changes estimated by the
LCIA05 and BH93 models should be compared to the true ρ� and ρ1 of the proposed
model, respectively.

For theBMCPmodel, we assume the prior distributions given in (12), with hyperpa-
rameters (μ0, σ

2
0 , a, d) = (0, 100, 0.1, 2.1), which is a reasonably flat prior for both

μ�
j1
and σ 2�

j2
. For all the partition models (BH93, LCIA05 and BMCP), we consider

the Yao’s cohesion to model the prior uncertainty about the random partitions. The
Beta(1, 1) is assumed as the prior distributions for parameters p1 and p2 in BMCP
and for parameter p in the LCIA05. In BH93, we assume p ∼ U (0, 0.05).

We consider 400 data sequences of size n = 300, in which four changes in
the mean and one change in the variance occur at different times, inducing a
total of six clusters. Changes in the mean and variance are given by the partitions
ρ1 = {0, 60, 120, 180, 240, 300} and ρ2 = {0, 150, 300}, respectively, and the clus-
ter parameters are μ� = (0, 2, 4, 2, 0) and σ � = (1, 4). For each data set, samples
of the posterior distribution are obtained through the proposed MCMC scheme. In
the case of the BMCP, LCIA05 and BH93 models, 20, 000 samples were generated
after a warm-up period of 30, 000 iterations. These models were implemented in C++
language and integrated to R through the Rcpp package (Eddelbuettel 2013). For the
DPM19 model, 2, 000 samples were generated after a warm-up period of 3, 000 iter-
ations. Algorithm convergence is assessed by resorting to standard diagnostics, such
as those discussed in Gelman and Rubin (1992). The specification of small values for
m1 and m2 considerably reduces the parameter spaces of the DPM19 model, when
compared to the parameter space of the PPM-basedmodels. Therefore, a small number
of iterations is required for the DPM19 sampling procedure. The R code of BMCP
and DPM19 models are available at https://github.com/rcpedroso/bmcp and https://
github.com/stefanopel/DPM-change-point, respectively.

Figure2shows the average of the 400 posterior means (product estimates) for the
μi ’s (Fig. 2a–d) and the σ 2

i ’s (Fig. 2e–h) and the 5% and 95% quantiles of such esti-
mates at each instant i = 1, . . . , 300 for all models. The simulation truth is indicated
by gray solid lines, while the black dots represent the posteriormeans. The fourmodels
provide reasonable estimates for the means. These estimates are more biased around
the true changes and it is more evident after instant 150, when the variance experiences
an increase. For all the models the estimates for the means become less accurate after
the change in the variance. However, in the LCIA05 and BH93 models the loss of
accuracy is more severe. The BMCP model provides the most accurate estimates for
the means (Fig. 2a) and for the variances (Fig. 2e).

As shown in Fig. 2g, the product estimates for the variance provided by model
LCIA05 are clearly affected by changes in the mean. For example, the product esti-
mates for the variance present a noticeable change at position 120, indicating the
presence of a change point in this parameter and position, but such change does not
truly exist. A similar but less evident bias can be seen in Fig. 2f. BMCP and DPM19
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Average of the product estimates (black dots) for the means (a–d) and variances (e–h) in each
instant and the 5% and 95% quantiles of such estimates based on the Monte Carlo replications, under
BMCP, DPM19, LCIA05 and BH93. The solid gray horizontal lines indicate the true mean and variance.
The vertical gray dotted and dashed lines are the true endpoints in μ and σ , respectively
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Fig. 3 Estimated posterior densities for parameters μ150 and μ250 (a), σ 2
150 and σ 2

250 (b) and p1 and p2
(c) under the BMCP model, for one simulated data set

have similar performance but DPM19 produced more biased estimates in the third
cluster for the means and for the variance between observations 100 and 150.

Regarding inference for means and variances, it is important to mention that, for all
models, the posterior distributions for means (resp., variances) tend to be symmetric
(resp., asymmetric) and unimodal for those time points inside (i.e. not at the border
of) clusters. See examples of this in Fig. 3 . However, the boundary effect for both
parameters can be clearly seen at change point times or at positions close to these. In
those cases, the corresponding posterior distributions exhibit bimodal behavior, as also
illustrated in Fig. 3a and b. Specifically, Fig. 3a and b, respectively, show the posterior
densities of the mean and variance at positions 150, the true endpoint of the variance,
and 240, one of the true endpoints of the mean, under the BMCP model for one data
set randomly selected among the 400 we generated. Also, Fig. 3c shows the estimated
posterior densities of p1 and p2 disclosing that p1 is higher than p2. The differences
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Table 1 Top posterior modes of ρ1 and ρ2 (BMCP), E1 and E2 (DPM19) and ρ (LCIA05, BH93) estimated
for each of the 400 data sets

BMCP Mo(ρ1|X) #
{0, 60, 120, 180, 240, 300} 10
{0, 60, 120, 179, 240, 300} 5
{0, 60, 120, 179, 241, 300} 5

BMCP Mo(ρ2|X) #
{0, 150, 300} 88
{0, 151, 300} 58
{0, 152, 300} 41

LCIA05 Mo(ρ|X) #
{0, 60, 120, 180, 240, 300} 6
{0, 60, 120, 179, 241, 300} 5
{0, 60, 120, 150, 241, 300} 4

DPM19 Mo(E1|X) #
{0, 60, 120, 180, 240, 300} 16
{0, 60, 120, 181, 240, 300} 7
{0, 60, 240, 300} 7

DPM19 Mo(E2|X) #
{0, 150, 300} 93
{0, 151, 300} 51
{0, 152, 300} 38

BH93 Mo(ρ|X) #
{0, 60, 120, 180, 240, 300} 13
{0, 60, 120, 180, 239, 300} 5
{0, 60, 120, 179, 240, 300} 4

between these posterior distributions were to be expected due to more changes in the
mean than in the variance.

Table 1 shows the partitions that were more frequently pointed out as the most
probable ones among the 400 posterior modes obtained from the repeated simulations,
for both structural parameters. Table 1 shows competitive performances between the
BMCP and DPM19 models to identify the true partitions in the data. The LCIA05
model does not identify the variance change in the reported partitions. Under the
LCIA05 model the most likely partitions under the posteriori, in the sense of being
most frequently selected in our Monte Carlo study, indicate the occurrence of only
the four changes in the mean. Under the BMCP and DPM19 models, the estimated
partitions that differ from the true ρ1 or ρ2 are very close to the true ones, in the
sense that differences occur only by one or two elements or positions. Assuming the
BMCP and DPM19, for the majority of the data sets, the most likely partitions for the
variance correctly indicate the existence of one change point. Not all of these partitions
precisely identify its correct position, but even so, they indicate an instant that is not
far from the true change point. For instance, by fitting the BMCP, the partition was
correctly estimated for 22% of the samples and the estimated partition indicates that a
change occurred one instant (resp., two instants) after the true change point for 14.5%
(10.25%) of the samples.

Due to the high dimension of the space of random partitions (2n−1 different
elements), the posterior distribution tends to be too flat in many situations. This com-
plicates inference related to the exact location of change points. In this context, the
method proposed by Loschi and Cruz (2005) is a good auxiliary tool to this effect. For
each parameter k, we obtain this probability for instant i , by summing the posterior
probability in (2) for all partitions ρk that identified i as a change. Figure4displays
the average of the 400 posterior probabilities obtained for instant i = 1, . . . , 300 for
each model.

These probabilities at the true change points are, on average, greater than at other
instants. BMCP and DPM19 models indicate, with similar accuracy, the instants at
which the changes took place for both, mean and variance. Unlike what is observed
under the other models, the BH93 model probabilities tend to be greater than zero for
all instants after the change in the variance.

Figure5 shows the frequency at which a value b = 1, . . . , n, was estimated as
the number of changes in each structural parameter, for all models. We estimate the
number of changes as the corresponding posterior mode. Figure5 shows that for more
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Fig. 4 Average of the posterior probabilities of each instant to be an endpoint (black dots) for each partition
and the 5% and 95% quantiles range of such probabilities based on theMonte Carlo replications, for BMCP,
DPM19, LCIA05 and BH93
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Fig. 5 Counts distribution of the posterior modes of the number of changes, estimated in each of the 400
replications, for BMCP, LCIA05, DPM19 and BH93

than 85% of the data sets, both BMCP and DPM19 models correctly estimate the
number of changes in the mean as well as in the variance. LCIA05 underestimated
the true number of changes (N=5) by one in most of the data sets (Fig. 5c). BH93
overestimated the number of mean changes for almost all data sets, reflecting the
expected poor performance of this model due to its constant variance assumption
(Fig. 5f).

In summary, the results of this study show that BMCP achieves the goal of iden-
tifying changes in the mean and variance separately, providing better results than
LCIA05 and BH93. When compared to DPM19, BMCP provides highly competitive
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Table 2 Hyperparameters for
the prior distributions of p1 and
p2

Models α1 β1 E(N1) α2 β2 E(N2)

B1 0.10 0.10 149.5 0.10 0.10 149.5

B2 0.50 0.50 149.5 0.50 0.50 149.5

B3 1.00 73.75 4.0 1.00 298.00 1.0

B4 5.00 368.75 4.0 5.00 1490.00 1.0

results. Considering that DPM19 requires the maximum number of change points in
each parameter to be previously specified, which is not required by BMCP, together
with the fact that we favor DPM19 by setting these values equal to the true number of
changes, our results show that BMCP is a competitivemodel for change point analysis.
BMCP provides very accurate estimates for the structural parameters as well as for the
number and positions of the change points, effectively overcoming the DMP19 per-
formance. Additional simulation study results evaluating different change positions
and the sensitivity of the BMCP and DPM19 models to hyperparameter specifications
can be found in the accompanying online supplementary material.

3.2.2 Sensitivity analysis to the priors of�1 and�2

Our goal in this section is to evaluate the effect of different prior specifications for the
random partitions ρ1 and ρ2 in the posterior inference obtained by fitting the BMCP.
Two flat priors for ρk are elicited choosing αk = βk close to zero for k = 1, 2, a priori,
overestimating the number of change points in both structural parameters. Two other
prior distributions are considered, setting αk and βk such that the expected number of
changes is a priori equal to the true one, following the theoretical framework discussed
in Sect. 3.1. These prior specifications are presented in Table 2.

Using the same prior specifications for the structural parameters μ�
j1
and σ�

j2
con-

sidered in Sect. 3.2.1, we estimate BMCP for the same 400 data sets considered in that
section (Scenario 1) and also for 400 replications of a modified scenario in which the
changes occurred at the same positions but the cluster-specific means and variances in
different clusters are closer, given by μ� = (0, 1, 2, 1, 0) and σ � = (1, 2) (Scenario
2).

Our results indicate no remarkable difference in the posterior inferences for the
Scenario 1. A slightly different posterior inference is observed only for the number of
clusters in both the mean and the variance as shown in Fig. 6.

Figure6 shows the frequency at which a value b, b = 1, . . . , n, was estimated as the
posterior mode of N1 and N2 under Scenario 1, considering the prior specifications for
p1 and p2 given in Table 2. In this scenario, we found the prior specifications for p1 and
p2 to have no effect on the posterior probabilities of each instant to be an endpoint for
both mean and variance. The same conclusions are obtained when analyzing the case
of μ and σ . These results are similar to those reported in Sect. 3.2.1, when adopting
a uniform prior on both p1 and p2. Figure7displays these results for the case of the
prior specification B1. Results for the prior specification B2, B3 and B4 are similar.

For Scenario 1, the sensitivity analysis empirically shows that our proposed BMCP
was robust to different prior specifications for p1 and p2. However, it is important
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Fig. 6 Count distributions of the posterior modes for the number of changes in the mean N1 (a–d) and in the
variance N2 (e–h), estimated for each of the 400 replications in Scenario 1 for all four prior specifications
for ρ1 and ρ2

(a) (b) (c) (d)

Fig. 7 Average of the product estimates (a and b, black dots) in each instant and for the posterior probabilities
of each instant to be an endpoint (c and d, black dots) for the means (a and c) and variances (b and d)
and the 5% and 95% quantiles of such estimates based on the 400 Monte Carlo replications, Scenario 1
and Model B1. The true means (a) and variances (b) are indicated by the solid gray horizontal lines. The
vertical gray dotted and dashed lines indicate the true endpoints in ρ1 and ρ2, respectively

to mention that for this scenario, the means and variances are substantially different
across clusters, favoring the correct identification of such changes. When the cluster-
specific parameters have closer values (Scenario 2), the prior distributions for ρ1 and
ρ2 play a more important role in the posterior inference obtained by fitting BMCP.
Figure8shows that BMCP has better performance when more informative priors for
ρ1 and ρ2 are assumed. The selected prior distributions have shown higher influence
over the posterior inferences related to the variance (see Fig. 9 ). For instance, the
number N2 of changes in the variance is more precisely estimated if Model B4 is
fitted, and the product estimates for the variance are less precise when Model B1 is
assumed. Posterior inference about the means were less sensitive to these different
prior specifications.

Although our sensitivity analysis has shown a relative robustness of BMCP to the
prior specifications, this statement may not be valid for other simulated scenarios or
even for real data applications. In practical situations, this type of analysis may be
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Fig. 8 Count distributions of the posterior modes for the number of changes in the mean N1 (a–d) and in the
variance N2 (e–h), estimated for each of the 400 replications in Scenario 2 for all four prior specifications
for ρ1 and ρ2
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Fig. 9 Average of the product estimates (a and b, black dots) in each instant and for the posterior probabilities
of each instant to be an endpoint (c and d, black dots) for the means (left) and variances (right) and the 5%
and 95% quantiles of such estimates based on the 400 Monte Carlo replications, Scenario 2 and Models
B1 -B4. The true means (a) and variances (b) are indicated by the solid gray horizontal lines. The vertical
gray dotted and dashed lines indicate the true endpoints in ρ1 and ρ2, respectively

useful to evaluate how sensitive the results are to small variations of hyperparameters
around those values that reflect our true prior knowledge about parameters. We should
take more care about the prior specification if, for our data, the model shows great
sensitivity to the prior choice.Adiscussion about this topic in the context of the original
PPM may be found in Loschi et al. (2005) and Loschi and Cruz (2005). The impact
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 Parameter estimates (black dots) and 90% highest posterior density intervals (dashed lines) for the
means (a–d) and variances (e–h) under BMCP, DPM19, LCIA05 and BH93, US ex-post Real Interest Rate
dataset. The black solid lines represent the observed data (a–d) and the moving sample variance calculated
over ranges of length 5 (e–h). The vertical dotted and dashed lines are the changes in μ and σ , respectively,
according to the most likely partitions ρ1 and ρ2 as estimated by the BMCP model

of (hyper)parameter choices in several other change point models was also recently
discussed by Van den Burg and Williams (2020).

4 Case study: US ex-post real interest rate

We now illustrate our BMCP by analyzing a financial dataset; the case of a genetic
dataset can be found in Sect. S.5 of the online supplementary material.

We apply BMCP, DPM19, LCIA05 and BH93 to analyze the time series of US ex-
post real interest rates, available in the R package bcp (Erdman and Emerson 2007).
The data, displayed in Fig. 10 , correspond to the sequence of n = 103 quarterly
treasury bill rates deflated by the Consumer Price Index (CPI) inflation rate, denoted
by X , from the first quarter of 1961 to the third quarter of 1986. The presence of
regime changes in this data was previously analyzed by Garcia and Perron (1996) and
Bai and Perron (2003).

We assume that at quarterly i , Xi |μi , σ
2
i ∼ N (μi , σ

2
i ), i = 1, . . . , 103. For all

models, the prior specifications are those considered in the simulation study. To fit
DPM19we fixed the maximum number of changes for both parameters inm1 = m2 =
10. This number was motivated by results reported in Garcia and Perron (1996) and
Bai and Perron (2003), which indicate up to three changes in the mean and one change
in the variance. Different m1 and m2 choices were analyzed, showing that DPM19
is truly sensitive to such specifications (see Sect. S.4 of the online supplementary
material). For this dataset, assuming m1 and m2 around the time series size, DPM19
showed to be ineffective for identifying possible changes, pointing out most of the
instants as change points with high probability. The MCMC runs took 26, 715, 11
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Fig. 11 Posterior distribution for the number of changes, BMCP (a, b), LCIA05 (c), DPM19 (d, e) and
BH93 (f), for the case study

and 14 seconds to run 50, 000 iterations under BMCP, DPM19, LCIA05 and BH93,
respectively. We discarded the first 30, 000 iterations as warm-up period.

Figure10 shows parameter estimates for means and variances along time. The
vertical lines indicate the posteriormodes of ρ1 (dotted line) and ρ2 (dashed line) under
BMCP. All models provided similar point estimates for the means, except DPM19 for
which posterior means after instant 79 were below the data. Besides, under DPM19,
there is more posterior uncertainty about the means as the HPD intervals have a broad
range. All models indicate strong changes in the mean occurring around quarters 47
and 79. The product estimates for the means under BH93 are less smooth after quarter
51, the instant at which both models, BMCP and DPM19 detected a change point in
the variance. A similar behavior for the mean estimates under BH93 was observed in
clusters with higher variance in our simulation study. The estimates for the variance
under BMCP, DPM19 and LCIA05 indicate a change around quarter 51. The LCIA05
model also indicates that the variance changes after the second mean change. Under
this model, the product estimates for the variance are affected by the two changes
in the mean, similar to what is observed in the simulation study (Sect. 3.2), where
the mean and the variance change at different times. As for the posterior estimates
of the means, DPM19 also presents the highest posterior uncertainty for the variance
estimates. The posterior modes of the number of changes (Fig. 11) under BMCP and
DPM19 indicated two changes in the mean. For the variance, these models provided
strongly different estimates. While BMCP indicated only one change in the variance,
DPM19 detected ten changes, which is the maximum number of changes assumed a
priori to fit this model. The BMCP and DPM19 indicate quarters 47, 76 and 79 as
change points in the mean (Fig. 12a and d) and quarter 51 as a change point in the
variance (Fig. 12b and e), with posterior probabilities much higher than other quarters.
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Fig. 12 Posterior probabilities that each instant is an endpoint (black bullets) under BMCP (a, b), LCIA05
(c), DPM19 (d, e), and BH93 (f), for the case study. The vertical dotted and dashed lines are the changes
in μ and σ , respectively, given by the most likely partitions ρ1 and ρ2 estimated by the BMCP

Table 3 Top most likely ρ1 and ρ2 (BMCP), E1 and E2 (DPM19) and ρ (LCIA05, BH93) based on the
posterior probabilities, for the case study

BMCP p(ρ1|X)
{0, 47, 79, 103} 0.1441
{0, 47, 76, 103} 0.0602

BMCP p(ρ2|X)
{0, 51, 103} 0.2054
{0, 50, 103} 0.1038

LCIA05 p(ρ|X)
{0, 47, 79, 103} 0.2005
{0, 47, 76, 103} 0.1262

DPM19 p(E1|X)
{0, 47, 76, 103} 0.1141
{0, 47, 79, 103} 0.0656

DPM19 p(E2|X)
{0, 82, 103} 0.0005
{0, 51, 103} 0.0004

BH93 p(ρ|X)
{0, 47, 76, 82, 87, 103} 0.0309
{0, 47, 76, 82, 88, 103} 0.0296

Although not identical, the posterior inference results for partitions are similar; see
Table 3. Under BMCP, the posterior most likely partitions for the mean and variance
are ρ1 = {0, 47, 79, 103} and ρ2 = {0, 51, 103}, respectively. With higher posterior
probabilities, quarters 47, 76 and 79 are also pointed out as change points by LCIA05
(Fig. 12c) and quarters 47, 76 and 82 are indicated as change points in the mean by
BH93 (Fig. 12f). The posterior for ρ under LCIA05 model only detects the changes
that the proposed model indicates as change points in the mean (see Table 3 and
Fig. 12c).

Garcia and Perron (1996) analyzed these data by fitting an autoregressive time
series model, coupled with a sequential test strategy to infer about the number of
change points. Their null hypothesis, which assumes that the number of changes is
a predetermined value B, is compared with the alternative hypothesis of a higher
number B + 1 of changes for, successively, B = 0, 1, . . . . Although BMCP and
DPM19 consider a simpler dependence model inside clusters, estimates provided by
bothmodels are similar to those reported inGarcia and Perron (1996), without the need
to resort to any kind of sequential process. Considering a Markov switching model,
Garcia and Perron (1996) concluded that a better fit for these data is obtained if three
different means and two different variances are considered. Changes in the mean were
identified in 1972/3 and 1980/1, that is, quarters 47 and 77, and the means of the
three corresponding clusters were estimated as 1.4, −1.8 and 5.5. These estimates are
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comparable to those obtained with BMCP. The median squared difference between
estimates provided by these two models is 0.016.

The estimates for the two different varianceswere not reported byGarcia and Perron
(1996), but they also found that the 2nd and3rd clusters share the samevariance,which
is different from that in the 1st cluster. This finding agrees with results obtained fitting
BMCP and DPM19 which pointed to a unique change in the variance right after the
first change in the mean. Results presented by Bai and Perron (2003) differ from those
by BMCP and Garcia and Perron (1996), who detected one more change point in the
mean at quarter 24. Notice that BMCP (Fig. 12a) and DPM19 (Fig. 12d) also point out
instant 24 as a change point with higher probability (0.065 for BMCP and 0.081 for
DPM19) than its neighboring instants.

5 Conclusions

One of the greatest limitations of traditional PPMs when used to deal with multiple
change point identification is its inability to determine which structural parameter
experienced each change. We proposed a multipartition model, BMCP, that provides
a reasonable answer to this issue, allowing us to identify the positions and num-
ber of changes that occurred, as well as which parameters have changed along the
observed data sequence. We illustrated the applicability of BMCP by considering the
case of means and variances of Normal data. In random partition models, it is usually
challenging to sample from the posterior distribution of partitions. We proposed for
BMCP an efficient partially collapsed Gibbs sampler based on a blocking strategy,
which facilitates simulation from the joint posterior distribution of parameters and
partitions.

The simulation studies showed that BMCP is an efficient approach to identify when
and which parameters changed along the sequence. Its performance is as good as that
of the original PPM (Barry and Hartigan 1993) when only the mean changes over the
time. BMCP is also competitive when compared to the model by Peluso et al. (2019),
providing better or similar results even considering less prior information about the
true number of changes.

Despite its good performance, some aspects of the proposed model require deeper
analysis. Firstly, we need to evaluate the computational effort inmore complexmodels.
Although we do not consider conjugate prior distributions for structural parame-
ters, our prior choice (12) produced known closed form distributions that facilitate
computational aspects of our model. Other prior specifications can lead to unknown
distributions for cluster structural parameters, which may increase the posterior simu-
lation cost. Other point that needs a deeper study is that the proposed model assumes
independence among the partitions, which may be unrealistic in many practical sit-
uations. To obtain a more general model some type of correlation among partitions
should be considered. These are both interesting topics for future research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-023-00851-4.
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