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Abstract
Principal component analysis (PCA) and canonical correlation analysis (CCA) are
dimension-reduction techniques in which either a random vector is well approxi-
mated in a lower dimensional subspace or two random vectors from high dimensional
spaces are reduced to a new pair of low dimensional vectors after applying linear
transformations to each of them. In both techniques, the closeness between the higher
dimensional vector and the lower representations is under concern, measuring the
closeness through a robust function. Robust SM-estimation has been treated in the
context ofPCAandCCAshowing anoutstandingperformanceunder casewise contam-
ination, which encourages the study of asymptotic properties. We analyze consistency
and asymptotic normality for the SM-canonical vectors. As a by-product of the CCA
derivations, the asymptotics for PCA can also be obtained. A classical measure of
robustness as the influence function is analyzed, showing the usual performance of S-
estimation in different statistical models. The general ideas behind SM-estimation in
either PCAorCCAare specially tailored to the context of association, rendering robust
measures of association between random variables. By these means, a robust corre-
lation measure is derived and the connection with the association measure provided
by S-estimation for bivariate scatter is analyzed. On the other hand, we also propose
a second robust correlation measure which is reminiscent of depth-based procedures.
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Robust association
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1 Introduction

Principal component analysis (PCA) and canonical correlation analysis (CCA) are
two-dimensional reduction techniques of widespread use in statistics. For a random
vector z in the Euclidean space of dimension m, with positive definite covariance
matrixΣ , PCA looks for the spectral decomposition ofΣ , the eigenvectors t11, . . . , t

1
m

associated with the corresponding m-uple of eigenvalues (γ 1
1 , . . . , γ 1

m) in decreasing
order, γ 1

j ≥ γ 1
j+1 > 0, for all 1 ≤ j ≤ m − 1 that is,

Σ = T1Δ1
(
T1
)t =

m∑
i=1

γ 1
i t

1
i

(
t1i
)t

, (1)

where T1 ∈ R
m×m is an orthonormal matrix whose columns are t1j , j = 1, . . . , m

and Δ1 = diag
(
γ 1
1 , . . . , γ 1

m

)
. The variables

(
t11
)t

(z-Ez),…,
(
t1m
)t

(z-Ez) are usu-
ally referred as principal components. The eigenvalues and eigenvectors can be also
obtained through an optimization scheme (Seber 2004, p.181). On the other hand, the
principal components are the best linear predictors for z-Ez when looking for linear
combinations

∑p
k=1(a

t
k(z-Ez))ak based on an orthonormal set

{
a1, . . . , ap, . . . , am

}
,

p < m. Let z ∼ F , then the principal components solve the optimization problem

(μz,Vp) = arg min
μ∈Rm ,V

EF ‖(z − μ) -PV (z − μ)‖2

= arg min
μ∈Rm ,V

EF
∥∥PV ⊥ (z − μ)

∥∥2 , (2)

where PV stands for the orthogonal projection on a subspace V of dimension p < m,
V = 〈

a1,…,a p
〉
means that V is generated by the orthonormal set

{
a1,…,ap

}
and

V ⊥ = 〈
ap+1, . . . , am

〉
denotes the orthogonal complement of V . Then, (μz,Vp) for

(2) are given by μz = Ez, Vp =
〈
t11, . . . , t

1
p

〉
and PVp (z) =∑p

k=1(
(
t1k
)t

(z-Ez) )t1k .

Let us denote the subsetOr ,m = {A ∈ R
r×m : AAt = Ir

}
and p′ = m− p. Accord-

ing to (2), it is easy to see that

min
μ,V

EF ‖z − μ − PV (z − μ)‖2 = min
(D,a)∈B1

p′,m
EF ‖Dz − a‖2 (3)

with

B1
p′,m =

{
(D, a) : D ∈ Op′,m, a ∈ R

p′}
. (4)
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To downweight outlying observations in (3), Maronna (2005) defined SM-
estimators for principal vectors in PCA through the equations

σ 1(D, a) = min

{
s > 0 : EFχ

(‖Dz-a‖2
s

)
≤ δ

}
,

(D1
SM , a1SM ) = arg min

(D,a)∈B1
p′,m

σ 1(D, a), (5)

with χ : [0,∞) → [0, 1]. He also considered SL-estimators for principal vectors by
minimization of an L-scale rather than an M-scale as in (5).

CCA was proposed by Hotelling (1936) to determine the relationship between two
sets of variables obtained by transforming the vectors x and y into two vectors z and
w in lower dimensions, whose association has been greatly strengthened (see Das and
Sen 1998 for a very thorough account on CCA and their wide variety of applications).
In recent years, CCAhas also gained popularity as amethod for the analysis of genomic
data, since it has the potential to be apowerful tool for identifying relationships between
genotype and gene expression. It has also been used in geostatistical applications (see
Furrer and Genton 2011). CCA is closely related to multivariate regression when
the vectors x and y are not treated symmetrically (see Yohai and García Ben 1980).
Given the two random vectors x and y of dimensions p and q, respectively, the joint
covariance matrix is given by

Σ =
(

E(x − Ex)(x − Ex)t E(x − Ex)(y − Ey)t

E(y − Ey)(x − Ex)t E(y − Ey)(y − Ey)t

)
=
(

Σxx Σxy
Σyx Σyy

)
, (6)

det(Σxx) > 0 < det(Σyy), 0 < r = rank(Σxy) ≤ min(p, q) = s.

CCA seeks sets {α1, . . . ,αr } ⊂ R
p and

{
β1, . . . ,βr

} ⊂ R
q , respectively, to

yield uncorrelated standardized linear combinations of the variables in x and the
variables in y that are maximally correlated with each other. We can define the
canonical vectors α j ,β j , j = 1, . . . , r (except for the signs) as solutions to an
optimization problem (Seber 2004, p. 258). Suppose we take unit length vectors
(a,b) ∈ R

p × R
q such that V ar(atx) = 1 = V ar(bty) and Corr(bt y, β t

jy) = 0 =
Corr(at x, αt

jx), j = 1, 2, . . . , k − 1, where V ar and Corr stand for the variance
and the correlation operators for random variables. With this constraint, we choose
(αk,βk) to yield the maximum squared correlation between atx and bty. If ρk stands
for the positive correlation between αt

kx and β t
ky (the k-th canonical correlation), then

ρ2
k = (

Corr(αt
kx,β t

ky)
)2 and one gets a decreasing sequence of squared canonical

correlations, ρ2
1 ≥ · · · ≥ ρ2

r . αk and βk will be unique (apart from signs) if the
canonical correlations are distinct. It is well known that the optimization problem is
equivalent to solving the eigensystem

Σ−1
xx ΣxyΣ

−1
yy Σyxαk = ρ2

k αk, k = 1, . . . , r (7)
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Σ−1
yy ΣyxΣ

−1
xx Σxyβk = ρ2

k βk, k = 1, . . . , r , (8)

which makes the search computationally more tractable. Classical estimators are
obtained by replacing in (7) and (8) by the sample covariance matrix. A robust
counterpart of (7) and (8) can be easily performed by solving the linear system, for
k = 1, . . . , r ,

Σ (R) =
(

Σ
(R)
xx Σ

(R)
xy

Σ
(R)
yx Σ

(R)
yy

)
,

Σ
(R)−1

xx Σ
(R)
xy Σ

(R)−1
yy Σ

(R)
yx α

(R)
k =

(
ρ

(R)
k

)2
α

(R)
k ,

Σ
(R)−1

yy Σ
(R)
yx Σ

(R)−1

xx Σ
(R)
xy β

(R)
k =

(
ρ

(R)
k

)2
β

(R)
k ,

(9)

with Σ (R) a robust dispersion estimator.
The canonical variables z = (αt

1(x − Ex), . . . , αt
r (x − Ex))t and w =

(β t
1(y- Ey),…, β t

r (y − Ey))t are also the best linear combinations to predict each
other by making the mean squared loss EF ‖z-w‖2 as small as possible (see Seber
2004, p. 260), since they solve the optimization problem

(
AC ,BC ,μx,μy

) = argmin(
Ā,B̄,μ,ν

)
∈C

EF

∥∥∥ Ā (x − μ) − B̄(y − ν)

∥∥∥
2

(10)

with

C =
{(

Ā, B̄,μ, ν
)

: Ā ∈ R
r×p, B̄ ∈ R

r×q ,μ ∈ R
p, ν ∈ R

q , ĀΣxx Ā
t = Ir = B̄Σyy B̄

t
}

,

(11)

Ir an r × r identity matrix, μx = Ex and μy = Ey. The subscript C stands for
Classical.

Adrover andDonato (2015) introducedSM-estimators for canonical vectors inCCA
as follows. Given the matrices Ā ∈ R

r×p and B̄ ∈ R
r×q , let us take A = ĀΣ

1/2
xx ,

B = B̄Σ
1/2
yy , with Σxx and Σyy given in (6), D = (A −B

) ∈ R
r×m, m = p + q and

the random vector z = (xtΣ
−1/2
xx , ytΣ

−1/2
yy )t . By reformulating (10) and (11) for the

standardized vectors Σ
−1/2
xx x and Σ

−1/2
yy y, we have

min(
Ā,B̄,μ,ν

)
∈C

EF

∥∥∥ Āx − B̄ y − ( Āμ − B̄ν)

∥∥∥
2 = min

(D,a)∈B0
r ,m

EF ‖Dz − a‖2 (12)

withB0
r ,m = {(D, a) : a ∈ R

r ,D = (A −B
) ∈ R

r×m,A ∈ Or ,p,B ∈ Or ,q
}
.

Since the covariance matrix for the standardized random vector z is given by

M =
(

Ip Σ
−1/2
xx ΣxyΣ

−1/2
yy

Σ
−1/2
yy ΣyxΣ

−1/2
xx Iq

)
, (13)
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to evaluate the “largeness”of the “residuals”
∥∥Ax̃ − B ỹ − a

∥∥2 , an M-scale σ =
σ(A,B, a) is computed implicitly through

σ(A,B, a) = min

{
σ > 0 : EFχ

(∥∥Ax̃ − B ỹ − a
∥∥2

σ

)
≤ δ

}
, (14)

with χ : [0,∞) → [0, 1], Σ (R)
xx and Σ

(R)
yy robust dispersion estimators for Σxx and

Σyy, respectively, x̃ =
(
Σ

(R)
xx

)−1/2
x, ỹ =

(
Σ

(R)
yy

)−1/2
y and

((
A −B

)
, a
)∈B0

r ,m .

Then, the robust standardized SM-canonical vectors are defined through the equation

(
Ao

SM ,Bo
SM , ao

SM

) = arg min
(A,B,a)∈B0

r ,m

σ(A,B, a), (15)

and the final SM-canonical vectors are defined as

ASM = Ao
SM

(
Σ (R)

xx

)−1/2
, BSM = Bo

SM

(
Σ (R)

yy

)−1/2
.

Ifwehave a randomsample z1, . . . , zn and F = Fn stands for the empirical distribution
function based on z1, . . . , zn , the sample version of the estimates is simply obtained
by replacing the population expectation by the empirical expectation, that is, σ̂ is the

robust scale based on the sample given in (14) and
(
Â

o
SM , B̂

o
SM , âo

SM

)
the solutions

to (15) using σ̂ , that is

(
Â

o
SM , B̂

o
SM , âo

SM

)
= arg min

(A,B,a)∈B0
r ,m

σ̂ (A,B, a), (16)

ÂSM = Â
o
SM

(
Σ̂

(R)

xx

)−1/2
, B̂SM = B̂

o
SM

(
Σ̂

(R)

yy

)−1/2
. (17)

The algorithm to compute the SM-estimators is easily derived from the fact that
we have a constrained minimization and the Lagrange multipliers method applies
(Adrover and Donato 2015). In the context of sparsity, (10) was also considered by
Wilms and Croux (2015) as well as a robust proposal in Wilms and Croux (2016).

The outstanding robust performance of (5) and (15) suggests the study of asymp-
totic properties. Li and Chen (1985) dealt with a robust procedure by considering a
robust dispersion S rather than the V ar operator in the optimization scheme for PCA,
Cui et al. (2003) obtained the asymptotic distribution of the procedure, and Croux and
Ruiz-Gazen (2005) tackled the problem of influence function. Draǎković et al. (2019)
deals with the derivation of the asymptotic behavior for robust PCA in the context of
complex elliptically symmetric distributions based on the spectral decomposition of
theMaronna’smonotonemultivariate dispersion estimator (Maronna 1976), extending
previous results (Tyler 1981; Boente 1987; Croux and Haesbroeck 2000). Croux et al.
(2017) considered trimmed estimators in the PCA context (in special the SL-estimator
given in Maronna 2005 is also included) studying theoretical properties such as con-
sistency, influence function and breakdown point. ten Berge (1979) and Lemma 3 in
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Adrover and Donato (2015) explored the close relationship between PCA and CCA
which is given by the fact that the principal vectors ofM defined in (13) comprise the
transformed canonical vectors of Σ . Thus, asymptotics and influence function for the
SM-estimator given by Maronna (2005) in the context of PCA is easily derived from
the arguments used in the CCA case included in this paper and therefore omitted.

Anderson (1999) derived the asymptotic distribution for the canonical correlation
and the canonical vectors when sampling is from the normal distribution. Taskinen
et al. (2006) stated asymptotic properties for CCA based on robust estimators of the
covariance matrix as in (9). Alfons et al. (2017) treated asymptotic properties for
projection pursuit estimators (see Branco et al. 2005), asymptotic distribution and
influence function.

In Sect. 2, we establish the consistency under elliptical distributions for the SM-
estimators given in (16) and (17). In Sect. 3, the asymptotic distribution is derived for
the SM-estimators and Sect. 4 analyzes the influence function (IF) for the proposal. In
Sect. 5, we revise the concept of association between random variables by analyzing
some proposals for robust correlation measures which exploit the concept of residual
smallness as in (2) and (10). In Sect. 6, we include some concluding remarks. Some
relevant proofs are deferred to the “Appendix”.

2 Consistency of SM-estimators for CCA

In themultivariate location anddispersionmodel (MLDM),wehave anm -dimensional
random vector z = (z1, . . . , zm)t with distribution Fμ,Σ (B) = F0

(
Σ−1/2(B − μ)

)
,

where F0 is a known distribution in Rm , B is a Borel set in Rm, μ ∈ R
m and Σ ∈ Sm,

the set of m ×m positive definite matrices. An important case is the family of elliptical
distributions. The elliptical model allows for a great variety of distributions which
comprises the majority of the distributions used in practice, not only the multivariate
normal distribution but also distributions without finite moments. We say that an m-
dimensional random vector has an elliptical distribution if it has a density of the form

f (z,μ0,Σ0) = 1

(detΣ0)1/2
f0((z − μ0)

tΣ−1
0 (z − μ0)), (18)

where f0 : R+ → R
+ (it is denoted by z ∼ Em(μ0,Σ0)). If z ∼ Em(0, I), then

atz has the same distribution for all a ∈ Sm−1 = {a ∈ R
m:||a||=1}. In case of having

z=(xt , yt )t ∼ Em(μ0,Σ0), with the location and dispersion parameters partitioned
as

μ0 =
(

μ0,x
μ0,y

)
and Σ0 =

(
Σ0,xx Σ0,xy
Σ0,yx Σ0,yy

)

respectively, then x ∼ Em(μ0,x,Σ0,xx) and y ∼ Em(μ0,y,Σ0,yy). Let us now take the

random vector z0 = (xtΣ
−1/2
0,xx , ytΣ

−1/2
0,yy )t , then z0 ∼ Em(μ̃0, M0), with the location
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and dispersion parameters partitioned as

μ̃0 =
(

μ0,xΣ
−1/2
0,xx ,

μ0,yΣ
−1/2
0,yy ,

)
and M0 =

(
Ip Σ

−1/2
0,xx Σ0,xyΣ

−1/2
0,yy

Σ
−1/2
0,yy Σ0,yxΣ

−1/2
0,xx Iq

)
.

If z ∼ Em(μ0,Σ0) has finite second moments, then Ez = μ0, the covariance matrix
Σ andΣ0 are equal up to a constant, that is,Σ = cΣ0 for some positive constant c, and
M0 = MwithMgiven in (13). For the sake of simplicity,wewill only keep the notation
M for either M or M0 since they coincide in case of having finite second moments.
From now on, we will use the symbols either Σxx and Σyy to refer to the multivariate
dispersion parameters at the elliptical model. The possibility of considering a general
elliptical distribution rather than a multivariate normal distribution let deal with a
broader scenario for modeling.

Let us take the spectral decomposition for M, M = ∑p+q
i=1 γ 0

i t
0
i

(
t0i
)t
, with

eigenvalues γ 0
1 ≥ · · · ≥ γ 0

p+q ≥ 0 and eigenvectors
{
t0j
}p+q

j=1
,
(
t0i
)t
t0j =

δi j , 1 ≤ i, j ≤ p + q, with δi j the Kronecker delta. Then, M = P0Γ 0Pt
0, with

Γ 0 = diag
(
γ 0
1 , γ 0

2 , . . . , γ 0
p+q

)
and P0 an orthogonal matrix whose columns are

t01, . . . , t
0
p+q . Take v

0
i ∈ R

p and w0
i ∈ R

q , i = 1, . . . , p + q, as t0i = ((v0i )
t , (w0

i )
t )t .

Then, let us call

Ao =
⎛
⎝ v0p+q−r+1∥∥∥v0p+q−r+1

∥∥∥
, . . . ,

v0p+q∥∥v0p+q

∥∥

⎞
⎠

t

∈ R
r×p,

Bo =
⎛
⎝ w0

p+q−r+1∥∥∥w0
p+q−r+1

∥∥∥
, . . . ,

w0
p+q∥∥w0
p+q

∥∥

⎞
⎠

t

∈ R
r×q ,

ao = AoΣ
−1/2
xx μx − BoΣ

−1/2
yy μy,

σo = σ(Ao,Bo, ao).

A zero (r × s)-matrix is a matrix all of whose entries are zero and we denote it
as 0r×s . Given square matrices Ni ∈ R

pi ×pi , i = 1, . . . , k, set the matrix N =
diag(N1, . . . ,Nk) ∈ R

∑k
i=1 pi ×∑k

i=1 pi whose entries off the blocks N1, . . . ,Nk are

zero.
{
f(s)1 , . . . , f(s)s

}
stands for the canonical basis in Rs .

If w ∈ R
m and Lm stands for the set of distributions of w denoted by L (w), we

call a multivariate location and dispersion functional to an application (T,S):Lm →
R

m × R
m×m such that (i) S(L (w)) ∈ Sm, (ii) it is affine equivariant, i.e., given a

nonsingular matrixG ∈ R
m×m and a vector b ∈ R

m,T(L (Gw+b)) =GT(L (w))+
b, S(L (Gw + b)) = GS(L (w))Gt .

Let us take location and dispersion functionals (T, S) such that (Tx, Sx) =
(T(L (x)), S(L (x))) and (Ty, Sy) = (T(L (y)), S(L (y))), respectively. Take xc =
x-Tx, x̄ = S−1/2

x xc, yc = y − Ty, ȳ = S−1/2
y yc and zc = z-Tz.
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The functional (T,S) for the location and dispersion parameters at MLDM is said
to be Fisher consistent if T(Fμ,Σ ) = μ and S(Fμ,Σ ) = Σ . Adrover and Donato
(2015) gave the definition of a Fisher consistent CCA functional, and they showed the
Fisher consistency of the SM-estimator for CCA. For this purpose, Fisher consistent
functionals for Σxx and Σyy are required.

In order to deal with SM-estimators well defined as well as consistent and asymp-
totically normal, some conditions are required:

C0 M has eigenvalues (γ 0
1 , . . . , γ 0

m) ∈ Γ , with

Γ = {(γ1, . . . , γp+q) : γ1 > · · · > γr+1 ≥ · · · ≥ γp+q−r > · · · > γp+q ≥ 0
}
.

C1 χ (·) is nondecreasing.
C2 χ(x) is left continuous for x > 0.
C3 χ(0) = 0.
C4 χ is continuous in 0.
C5 limx→∞ χ(x) = 1.
C6 There exists c0 ∈ (0,∞) such that χ(x) < 1 if 0 ≤ x < c0.
C7 χ(x) = 1 for c0 < x < ∞, c0 as in (C6).

In order to obtain the asymptotic behavior of the estimates, it is also assumed the
following conditions regarding the model density f0 as well as the parameters Σxx
and Σyy, which are estimated before the SM-procedure applies.

C8 f0 is nonincreasing, and there exist ξ ≤ ∞ such that f0(x) > 0 if x < ξ and
f0(x) = 0 if x > ξ.

C9 Let ξ be as in C8. The functions f0(.) and χ (.) have at least a common point
of strict monotonicity, that is, there exists d < ξ and a nondegenerate interval
I such that d ∈ I and for all u, v ∈ I with u < d < v it holds that χ(u) <

χ(d) < χ(v) and f0(u) > f0(d) > f0(v).
C10 Let ξ and d be as in C8 and C9 and Γ as in C0. Let {λ1, . . . , λr } ⊂ Γ such

that λ j ≥ λ j+1 and Λ = diag (λ1, . . . , λr , 0, . . . , 0). Let σ(Λ) be such that

∫
χ
(
wtΛw/σ(Λ)

)
f0
(
wtw

)
dw=δ

and σ0 = minΛ {σ(Λ)}, then dσ0/γ
0
m−1 < ξ.

C11 a. Let z1, . . . , zn be a random sample in R
m from an elliptical distribution with

density (18). Then,
{
Σ̂

(R)

xx

}∞
n=p+1

⊆ Sp and
{
Σ̂

(R)

yy

}∞
n=q+1

⊆ Sq based on

z1, . . . , zn are consistent estimators to Σxx and Σyy, respectively.
C11 b. If (xt , yt )t ∼ F with density (18), then the multivariate dispersion functionals

Σ
(R)
xx (F) = Σxx and Σ

(R)
yy (F) = Σyy.

C0 allows for a simpler way of presenting the consistency because of having
eigenspaces of dimension 1. The conditions C1–C7 regarding to the loss function χ

are similar to the ones considered in the robust literature for redescending estimators
(see Davies 1987; Maronna 2005; Maronna et al. 2019). C1 keeps the monotonicity
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displayed by the square loss function in the classical case, letting larger residuals have
larger weights. C2 allows for the minimum rather than the infimum in the definition
of M-scale given in (5). C3 stands for the fact that a zero residual has zero weight.
C4 stands for the intuitive fact that residuals coming smaller and smaller cannot have
positive weights above a threshold while C3 holds. C5 summarizes the fact of getting
a bounded χ , which is instrumental to get robust estimators able to cope with a large
proportion of outlying observations. C6 and C7 are required for technical reasons to
derive the consistency. C8, C9 and C10 are crucial for the Fisher-consistency: they
prevent from having other parameters different from the elliptical model parameters
yielding the minimum in (15). C11 stands for the consistency and Fisher consistency
for the preliminary estimators and functionals corresponding to the parameters Σxx
and Σyy. The limitations regarding the loss function χ are not relevant to the practice,
since they do not impose restrictions on the data distribution. The loss function affects
the asymptotic properties as well as the robustness properties that the estimators will
possess.

Next, a useful concept in the robustness literature is included, whose fulfillment is
required to ensure that (12) can be solved properly. We say that a sample {z1, . . . , zn}
is in r-general position if any linear manifold Zn = {z ∈ R

m : Cz=a} with (C, a) ∈
B1

r ,m has at most m − r + 1 points from the sample.

Lemma 1 Let z1, . . . , zn be a random sample inRm from an elliptical distribution with
density (18). Let us suppose that conditions C1-C7 hold. If the sample {z1, . . . , zn} is
in r-general position and m − r + 1 < n(1 − δ), then (12) has at least one solution
with probability 1.

To show the consistency of a sequence of SM-estimators, Theorem 4.2, p. 665 of
Rao (1962) is required. A useful generalization of this result is as follows.

Lemma 2 Let z1, . . . , zn be a random sample in R
m from an elliptical distribution F

with density (18). Let us suppose that conditions C1–C7 hold. Let Sm,o ⊂ R
m×m be

the set of nonnegative symmetric matrices and Fn stands for the empirical distribution
function based on the sample z1, . . . , zn. Then, it holds that

P

⎛
⎜⎜⎜⎜⎝

lim
n→∞ sup

G∈Sm,o
μ∈Rm

σ∈(0,∞)

∣∣∣∣EFn χ

(
(z − μ)t G (z − μ)

σ

)
− EFχ

(
(z − μ)t G (z − μ)

σ

)∣∣∣∣ = 0

⎞
⎟⎟⎟⎟⎠

= 1.

In what follows, let Σ̂
(R)

xx and Σ̂
(R)

yy be consistent estimators to Σxx and Σyy,
respectively. The Fisher consistency, the existence of the estimator for random samples
and Lemma 2 entail the consistency of the SM-estimators, and it is omitted.

Theorem 1 Let z1, . . . , zn be a random sample in R
m from an elliptical distribution F

with density (18). Suppose that conditions C0-C11a. hold and m −r +1 < n (1 − δ) .

Let
(
Â

o
SM , B̂

o
SM , âo

SM

)
be solutions of (16), then

lim
n→∞

(
Â

o
SM , B̂

o
SM , âo

SM

)
= (Ao, Bo, ao) a. s.,
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lim
n→∞

(
Â

o
SM

[
Σ̂

(R)

xx

]−1/2
, B̂

o
SM

[
Σ̂

(R)

yy

]−1/2
, âo

SM

)
=
(
AoΣ

−1/2
xx ,BoΣ

−1/2
yy , ao

)
a. s.

Proof It is deferred to the “Appendix”. 
�
The previous theorem has shown the consistency of the vectors minimizing the

M-scale. To derive the asymptotic behavior of the SM-estimators, we consider the
critical points obtained from the constraint minimization

h(A,B, a,Θ,Ξ) = σ(A,B, a) + tr(AAtΞ t ) + tr(BBtΘ t ) − tr(Θ t ) − tr(Ξ t )

(19)

with Θ,Ξ ∈ R
r×r . Thus, we take a Lagrangian whose set of critical points contain

the critical points of h(A,B, a,Θ,Ξ) in (19), that is, we consider

σ(D, a)+tr(DDtΛt ) − tr
(
Λt) ,D = 1√

2

(
A −B

) ∈ B1
r ,m,Λ ∈ R

r×r . (20)

Let us introduce some notation for the covariance matrices later used in the derivation
of asymptotics. Set the parameters Σ̃=diag

(
Ξ−1/2,Θ−1/2) with Ξ∈Sp and Θ ∈

Sq . Let us take the functionals Σ̃(H) = diag

([
Σ

(R)
xx (H)

]−1/2
,
[
Σ

(R)
yy (H)

]−1/2
)

and Σ̃ε = Σ̃(Fε). Consider the estimators ̂̃Σ = Σ̃(Fn), Σ
(R)
xx (Fn) = Σ̂

(R)

xx and

Σ
(R)
yy (Fn) = Σ̂

(R)

yy . If we are dealing with Fisher consistent functionals, we have that

Σ̃(F) = Σ̃o = diag
(
Σ

−1/2
xx ,Σ

−1/2
yy

)
.

Take z̃ = (̃xt , ỹt
)t , by deriving (20) we get the equivalent system,

1

n

n∑
i=1

χ ′
(∥∥Dz̃i − a

∥∥2
σ

)
(
Dz̃i − a

) = 0r ,

[
Im − DtD

] 1
n

n∑
i=1

χ ′
(∥∥Dz̃i − a

∥∥2
σ

)
z̃i
(
Dz̃i − a

)t = 0m×r .

(21)

In case of having a sequence of consistent estimators initializing an iterative procedure
to come up with a sequence of critical points solving (21), we can ensure that the
sequence of critical points is also consistent in the CCA context. This is a result also
available for some robust regression methods, and the proof is similar to that of those
procedures [see, for instance, Theorem 3.2 in Yohai (1987), Theorem 4.1 in Yohai and
Zamar (1988)].

Proposition 1 Let z1, . . . , zn be a random sample in R
m from an elliptical distribu-

tion F with density (18). Suppose that conditions C0-C10 hold, moreover χ is twice
differentiable and concave in [0, c0] , c0 given in C6. If m − r + 1 < n (1 − δ) ,(
Â

(0)
o , B̂

(0)
o , â(0)

)
is a sequence of consistent estimators for (Ao,Bo, ao) and the

solutions of (21)
(
Â

o
, B̂

o
, âo
)

verify that σ̂
(
Â

o
, B̂

o
, âo
)

≤ σ̂
(
Â

(0)
o , B̂

(0)
o , â(0)

)
,

then limn→∞
(
Â

o
, B̂

o
, âo
)

= (Ao,Bo, ao) almost surely.
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3 Asymptotic behavior of SM-estimators for CCA

3.1 Notation

To deal with the asymptotic behavior of the SM-estimators, let us introduce some
notation. The parameters in our setting are taken from the sets

G = Or ,p × Or ,q × R
r × Sp × Sq × (0,∞),

G = R
r×m × R

r × Sp × Sq × (0,∞),
(22)

The asymptotic distribution of SM-estimators and its influence curve, which is a
useful tool to evaluate the behavior under infinitesimal contaminations, need to be
established over some set of distributions. LetD be the set of distributions onRm , and
Gn stands for the empirical distribution function based on n points inRm . CallFn the
subset of such distributions. Thus, let as define the following subsets of distributions,

E = {F ∈ D : F is elliptical} ,

Cε(E ,F1) = {G ∈ D : G = (1 − ε)F + εδz, F ∈ E ,δz ∈ F1, z ∈ R
m} , ε ∈ [0, 1] .

Let H be a subset of D such that E ∪ Fn ∪ Cε (E ,F1)⊂ H . Then, the SM-
functional θ̃ :H →G is defined as

θ̃(H) = (Ao
SM (H),Bo

SM (H), ao
SM (H),Σ (R)

xx (H),Σ (R)
yy (H), σo(H)).

If vec : Rm×r → R
mr stands for the operator which vectorizes a matrix by stacking

the columns on top of each other, we establish some useful notation corresponding

to parameters. Set θ̃ = (A,B,a,Ξ ,Θ, σ ) and θ =
([

vec
(
Dt
)]t

, at
)t
. The SM-

estimators turn out to be D̂SM = 1√
2

(
Â

o
SM −B̂

o
SM

)
and θ̂ = θ̃(Fn) = ( Â

o
SM ,

B̂
o
SM ,âSM , Σ̂

(R)

xx ,Σ̂
(R)

yy , σ̂
)
, with Fn ∈ Fn . Let us now denote some functionals,

DSM (·) = 1/
√
2
(
Ao

SM (·) −Bo
SM (·) ), Dε = DSM (Fε), θ̃(Fε) = θ̃ε, with Fε ∈

Cε (E ,F1), θ̃o = (
Ao,Bo,ao,Σxx,Σyy, σo

)
and Do = 1√

2

(
Ao −Bo

)
. Take θo =([

vec
(
Dt

o

)]t
, at

o

)t
, θ SM =

([
vec

(
Dt

SM (·))]t , at
SM (·)

)t
.

If D∗ = DΣ̃, set θ∗ =
({

vec
[(
D∗)t]}t

, at
)t

. If D̂
∗
SM = D̂SM

̂̃Σ , set

θ̂ SM =
([

vec
(
D̂

t
SM

)]t
, ât

SM

)t

(23)

θ̂
∗
SM =

({
vec

[(
D̂

∗
SM

)t
]}t

, ât
SM

)t

, (24)

v̂SM,k =
(
ÂSM

)t
f(r)
k and ŵSM,k =

(
B̂SM

)t
f(r)
k , for k = 1, . . . , r . (25)
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If D∗
o = DoΣ̃o, put θ∗

o =
({

vec
[(
D∗

o

)t]}t
, at

o

)t

, vk =
(
Σ

−1/2
xx At

o

)
f(r)
k , and wk =

(
Σ

−1/2
yy Bt

o

)
f(r)
k , k = 1, . . . , r . Then, we can rewrite (21) in the following way,

1

n

n∑
i=1

χ ′
(∥∥D∗zi − a

∥∥2
σ

) (
D∗zi − a

) = 0r ,

̂̃Σ−1
[
̂̃Σ2 − (D∗)t D∗

]
1

n

n∑
i=1

χ ′
(∥∥D∗zi − a

∥∥2
σ

)
zi
(
D∗zi − a

)t = 0m×r .

Then, let us take the functions φ1 : R
m × G → R

rm, φ2 : R
m × G → R

r ,

φ̄1 : Rm × Ḡ → R
rm, φ̄2 : Rm × Ḡ → R

r and φ̄ : Rm × Ḡ → R
r(m+1) as follows,

φ1

(
z, θ̃
)

= χ ′

⎛
⎜⎝

∥∥∥DΣ̃z − a
∥∥∥
2

σ

⎞
⎟⎠ vec

[(
Im − DtD

)
Σ̃z
(
DΣ̃z − a

)t
]

φ2

(
z, θ̃
)

= χ ′

⎛
⎜⎝

∥∥∥DΣ̃z − a
∥∥∥
2

σ

⎞
⎟⎠
(
DΣ̃z − a

)
, φ =

(
φ1
φ2

)
, (26)

φ̄1
(
z,D∗,a,σ

) = χ ′
(∥∥D∗z − a

∥∥2
σ

)
vec

[
Σ̃

−1
(
Σ̃

2 − (D∗)t D∗) z (D∗z − a
)t]

φ̄2
(
z,D∗,a,σ

) = χ ′
(∥∥D∗z − a

∥∥2
σ

) (
D∗z − a

)
, φ̄ =

(
φ̄1

φ̄2

)

The corresponding expected values and covariance matrices are denoted by

Φ1 : G → R
r , Φ2 : G → R

rm and Φ : G → R
r(m+1)

Φ̄1 : Ḡ → R
r , Φ̄2 : Ḡ → R

rm and Φ̄ : Ḡ → R
r(m+1)

Φh

(
θ̃
)

= EF

(
φh

(
z, θ̃
))

, h = 1, 2;Φ
(
θ̃
)

= EFφ
(
z, θ̃
)

=
(
Φ t

1

(
θ̃
)

, Φ t
2

(
θ̃
))t

Φ̄h

(
θ̃
)

= EF

(
φ̄h

(
z, θ̃
))

, h = 1, 2; Φ̄
(
θ̃
)

= EF φ̄
(
z, θ̃
)

=
(
Φ̄ t

1

(
θ̃
)

, Φ̄ t
2

(
θ̃
))t

V (θ̃) = EFφ
(
z, θ̃
) (

φ
(
z, θ̃
))t

and Vo = V (θ̃o).

3.2 Conditions, asymptotic normality and variances

To deal with the asymptotic behavior of SM-estimators, let us introduce some extra
conditions.
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C12 χ : [0,∞) → [0, 1] is twice continuously differentiable.
C13 EF

[‖z‖8] < ∞.

C14 Φ : R
r(m+1) → R

r(m+1) and Φ̄ : R
r(m+1) → R

r(m+1) are continuously
differentiable and the matrices

Ω = ∂Φ (θ)

∂θ

(
θ̃o

)
∈ R

r(m+1)×r(m+1) and Ω∗ = ∂Φ̄
(
θ∗)

∂θ∗
(
θ̃o

)
∈ R

r(m+1)×r(m+1)

are nonsingular.

The usual way to derive the asymptotic normality of an estimator obtained as zero

of a equation, 0 = 1
n

∑n
i=1 φ

(
zi , θ̂

)
is to consider a Taylor expansion of the form

Φ
(
θ̃
)

= Φ
(
θ̃o

)
+ ∂Φ (θ)

∂θ

(
θ̃o

)
(θ − θo) + R

(
θ̃
)

(θ − θo) , (27)

where R
(
θ̃
)

→ 0 as θ̃ → θ̃o. After some manipulations, by summing up and

subtracting some terms, we come up with an expression of the form

0 = Φ(θ̂) − Φ(θ̃o) + Zn + Wn, (28)

where
√

nZn converges in distribution to a multivariate normal distribution with 0
mean and covariance matrix Eφφt and Wn = oP

(
1/

√
n
)
by arguments from the

empirical processes theory. C13 is a restrictive condition on the model to obtain that
the functions given in (26) belong to a Euclidean class (Pakes and Pollard 1989) and
obtain the behavior ofWn . By joining (27) and (28), we get the asymptotic distribution

of
√

n
(
θ̂ SM − θo

)
. This brief account for the asymptotic normality makes clearer the

need for conditionsC12 andC14.KudraszowandMaronna (2010, 2011) used a similar
approach to derive the asymptotic distribution of MM-estimators for the multivariate
regression model.

If F is elliptically countered with density (18), let us call ro (z) = D∗
oz-ao, C =

∑
1≤i,k≤r

[
f(r)
i

(
f(r)
k

)t ⊗ ti ttk

]
, Λo = diag

(
γ 0
1 , . . . , γ 0

r

)
, Pr = Im − Dt

oDo. Then,

under C12 and C14, Ω and Ω∗ turn out to be

Ω =
(

Ω11 Ω12
Ω21 Ω22

)
and Ω∗

o =

⎛
⎜⎜⎝

Ω11

(
Ir ⊗

(
Σ̃o

)−1
)

Ω12

Ω21

(
Ir ⊗

(
Σ̃o

)−1
)

Ω22

⎞
⎟⎟⎠ , (29)

with Ω11 ∈ R
rm×rm , Ω12 ∈ R

rm×r , Ω21 ∈ R
r×rm and Ω22 ∈ R

r×r . Take the matrix

Ψ (z) = 2

σo
χ ′′
(

‖ro (z)‖2
σo

)
ro (z) rt

o (z) + χ ′
(

‖ro (z)‖2
σo

)
Ir .
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Thus, we get

Ω11 = (Ir ⊗ Pr ) EF

[
Ψ (z) ⊗

(
Σ̃oz

) (
Σ̃oz

)t
]

− (Λo ⊗ Im) (Irm + C) ,

Ω22 = −EFΨ (z),

Ω12 = − (Ir ⊗ Pr ) EF

[
Ψ (z) ⊗

(
Σ̃oz

)]
,

Ω21 = EF

[
Ψ (z) ⊗

(
Σ̃oz

)t
]

.

The matrix Vo = EFφ
(
z, θ̃o

) (
φ
(
z, θ̃o

))t
turns out to be Vo =

(
V11 V12
V21 V22

)
,

with V11 ∈ R
rm×rm , V12 ∈ R

rm×r and V22 ∈ R
r×r , that is,

V11 = EF

{[
χ ′
(

‖ro (z)‖2
σo

)
ro (z) rt

o (z)

]
⊗
[
Pr

(
Σ̃oz

) (
Σ̃oz

)t
Pr

]}
,

V22 = EF

[
χ ′
(

‖ro (z)‖2
σo

)
ro (z) rt

o (z)

]
,

V12 = EF

{[
χ ′
(

‖ro (z)‖2
σo

)
ro (z) rt

o (z)

]
⊗
[
Pr

(
Σ̃oz

)]}
.

Thederivation of the asymptotic behavior of theSM-estimator is basedon the empirical
processes theory (see Pakes and Pollard 1989) and the following theorem establishes
the convergence in distribution for the SM-estimators.

Theorem 2 Let z1, . . . , zn be a random sample in R
m from an elliptical distribution F

with density (18), location parameter μ0 and dispersion parameter Σ0. Suppose that

conditions C0-C14 hold. If θ̂ SM as in (23), θ̂
∗
SM as in (24), v̂SM,k and ŵSM,k as in

(25) are sequences of SM-estimators and
D→ stands for convergence in distribution,

then it holds that

(i)
√

n
(
θ̂ SM − θo

)
D→ Nr(m+1) ( 0,V), where the asymptotic covariance matrix is

given by V = Ω−1VoΩ
−t ,

(ii)
√

n
(
θ̂

∗
SM − θ∗

o

)
D→ Nr(m+1)

(
0,V∗), with the asymptotic covariance matrix

given by V∗ = (Ω∗)−1 V o
(
Ω∗)−t

,

(iii)
√

n
(
v̂SM,k − vk

) D→ Np

(
0,V∗

α,k

)
and

√
n
(
ŵSM,k − wk

) D→ Nq

(
0,V∗

β,k

)
, for

k = 1, . . . , r , with

V∗
α,k =

p∑
i, j=1

f(p)
j f(m)t

(k−1)m+ jV
∗f(m)

(k−1)m+i

(
f(p)
i

)t
,
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V∗
β,k =

q∑
i, j=1

f(q)
j f(m)t

km−q+ jV
∗f(m)

km−q+i

(
f(q)
i

)t
.

(iv) If Ω22 is a nonsingular matrix, then

V∗
α,k = Σ

−1/2
xx Vα,kΣ

−1/2
xx , with Vα,k =

p∑
i, j=1

f(p)
j

(
f(m)
(k−1)m+ j

)t
Vf(m)

(k−1)m+i

(
f(p)
i

)t

V∗
β,k = Σ

−1/2
yy Vβ,kΣ

−1/2
yy , with Vβ,k =

q∑
i, j=1

f(q)
j

(
f(m)
km−q+ j

)t
Vf(m)

km−q+i

(
f(q)
i

)t
.

Proof It is deferred to the “Appendix”. 
�
Remark 1 The asymptotics for the SM-estimators in the PCA case given in (5) derive
in a similar manner to that of (i) in Theorem 2.

3.3 Asymptotic relative efficiency in the Gaussian case

In order to assess the loss of efficiency under normality, the asymptotic covariance of
the SM-estimators is compared with that of the maximum likelihood estimator under
normality. Let v̂SM,k and ŵSM,k be the k-th canonical vectors as in (25) and v̂C,k

and ŵC,k the classical estimators obtained by solving (7) and (8) with the population
covariances replaced by the empirical ones. Let V∗

α,k (F) and V∗,C
α,k (F) be the asymp-

totic variances of v̂SM,k and v̂C,k when the underlying distribution is F (V∗
β,k (F)

and V∗,C
β,k (F) for ŵSM,k and ŵC,k , respectively). V

∗,C
α,k (F) can be derived from the

asymptotic distribution for SM-estimators stated above by taking χ as the identity
function. Then, a measure of asymptotic relative efficiency is given by

ARE
(
v̂SM,k, F

) =
trace

(
V∗,C

α,k (F)
)

trace
(
V∗

α,k (F)
) , ARE

(
ŵSM,k, F

) =
trace

(
V∗,C

β,k (F)
)

trace
(
V∗

β,k (F)
) .

To illustrate the behavior of the SM-estimators with respect to the classical esti-
mator, we take F = N4 (0,Σ), with the partitioned matrix Σ given in (6) and
Σxx = Σyy = I2,Σxy = diag (0.9, 0.5) . Since Σxx = Σyy = I2, we have that
Ω = Ω∗ and V∗ = V. Thus, the efficiency for SM-estimators for canonical vectors
coincides with that of the standardized SM-estimators.

Table 1 displays the asymptotic relative efficiency of v̂SM,k and ŵSM,k for different
values of δ in the grid G = {0.5, 0.45, 0.4, 0.35, 0.3}. The larger the parameter δ, the
smaller the relative efficiency, since the parameter δ is related to the robustness of the
estimator whose breakdown point increases with δ (Adrover and Donato 2015). The
second canonical vector seems to be much more affected by the trade-off between
high breakdown point and efficiency.
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Table 1 Asymptotic relative
efficiency for the SM-estimators
of canonical vectors as function
of the parameter δ

δ 0.50 0.45 0.40 0.35 0.30

ARE
(
v̂SM,1, F

)
0.734 0.807 0.871 0.926 0.973

ARE
(
ŵSM,1, F

)
0.734 0.807 0.870 0.925 0.970

ARE
(
v̂SM,2, F

)
0.236 0.398 0.580 0.772 0.965

ARE
(
ŵSM,2, F

)
0.236 0.398 0.579 0.771 0.963

4 Robustness measures: qualitative robustness and influence
function

4.1 Qualitative robustness

The qualitative robustness was introduced by Hampel (1971) and the concept captures
the desirable fact that a robust estimator based on random samples from close distri-
butions should induce close distributions either for any sample size. More precisely,
a sequence of estimators {Tn}∞n=1 is qualitatively robust in the probability measure
F if and only if ∀ε > 0∃ δ > 0 and ∀G,∀n, it holds that dP R (F, G) < δ �⇒
dP R (LF (Tn) ,LG (Tn)) < ε, where dP R stands for the Prohorov distance between
probability measures and LF (Tn) is the distribution induced by Tn as the random
sample comes from F .

A related concept is the continuity of estimators. Hampel (1971) proves that esti-
mators {Tn}∞n=1 obtained from a continuous functional on the class of empirical
distributions Fn are qualitatively robust. A sequence of estimators {Tn}∞n=1 is con-
tinuous in the probability measure F if and only if for all ε > 0 there exists δ > 0
such that there exists no and for all n, m ≥ no it holds that Fn ∈ Fn , Fm ∈ Fm ,
dP R (F, Fn) < δ, dP R (F, Fm) < δ �⇒ |T (Fn) − T (Fm)| < ε.

Then, we proceed similarly to the proof for Theorem 1 to derive the continuity of
the SM-functionals.

Theorem 3 Let z=
(
xt , yt

)t ∈ R
m be from an elliptical distribution with density (18).

Suppose that conditions C0-C10 hold. Let us take any sequence of distributions
{Fn}∞n=1 such that Fn weakly converges to F. Assume that the dispersion function-

als Σ
(R)
xx and Σ

(R)
yy are continuous in F . Let (Ao

SM ,Bo
SM , ao

SM ) be the SM functional for
CCA defined in (15). Therefore, it holds that limn→∞(Ao

SM (Fn),Bo
SM (Fn), ao

SM (Fn)) =
(Ao

SM (F), Bo
SM (F), ao

SM (F)).

4.2 Influence functions

To quantify the effect of contamination in the estimators andmake comparisons among
different proposals, the IF measures the rate of change because of infinitesimal effect
provided by point masses, that is, for every z0 ∈ R

m , m ≥ 1, we have

I F(z0, T , F) = lim
ε→0+

T ((1 − ε)F + εδz0) − T (F)

ε
= ∂

∂ε
T (Fε)

∣∣∣∣
ε=0

,
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with Fε = (1 − ε)F + εδz0 and δz0 is a point mass distribution at z0.
Adrover and Donato (2015) treated two different versions for a robust canonical

correlation. ThematrixM =∑p+q
i=1 γ 0

i t
0
i

(
t0i
)t
in (13) has its eigenvalues in decreasing

order. The k − th canonical correlation is given by ρ2
k = (γ 0

m−k+1 − 1
)2

. To construct
the SM-functional for the square of the k − th canonical correlation, we take

r(z,H ) =

∥∥∥DSM (H) Σ̃ (H) z-aSM

∥∥∥
2

σ (H)
, μ̃ (H) =

EH

[
χ ′ (r(z,H )) Σ̃ (H) z

]

EH [χ ′ (r(z,H ))]
,

Given R = EH

[
χ ′ (r(z,H ))

(
Σ̃ (H) z − μ̃ (H)

) (
Σ̃ (H) z − μ̃ (H)

)t
]
, we call

M0
xy the matrix obtained after pre- and post-multiplying R by

(
Ip 0p×q

)
and(

0q×p Iq
)t . Set

M0 (H) =
(

Ip M0
xy (H)(

M0
xy (H)

)t
Iq

)
,

and take
{
γ 0

j (H) , t0SM, j (H)
}m

j=1
the eigenvalues and eigenvectors of the functional

M0 (H), that is, M0 (H) t0SM,m−k+1 (H) = γ 0
m−k+1 (H) t0SM,m−k+1 (H) . The SM-

k − th canonical correlation is given by ρ2
SM,k (H) = (

γ 0
m−k+1 (H) − 1

)2
, k =

1, . . . , r .

Another concept for measuring the association between canonical variates was
given by Branco et al. (2005). Given

(
xt , yt

)t ∼ H and
(
vt

k(H)x ,wt
k(H)y

) ∼ Hk , let

us take a robust bivariate dispersion functionalΣ (R) (Hk)whose i, j entry isσ (R)
i j (Hk),

1 ≤ i, j ≤ 2. Thus, a robust correlation functional is easily obtained fromΣ (R) (Hk),

ρ2
C,k (Hk) =

(
σ

(R)
12

)2
/

[(
σ

(R)
11

)2
(Hk)

(
σ

(R)
22

)2
(Hk)

]
. (30)

Let us define some quantities related to the derivation of the IF. Given z0 =(
xt
0, y

t
0

)t ∈ R
p+q and ‖ro(z)‖ ∼ F̃ if z ∼ F, let σ be an M-scale functional based on

‖ro(z)‖ defined in (5) and (14) with influence function I F S = I F
(
‖ro(z0)‖ , σ, F̃

)
.

Let Σ̃ ∈ R
m×m be a functional with I F D = I F

(
z0, vec

(
Σ̃
)

, F
)
. Put

O(Σ̃o,Do, ao, z) =
((

vec
(
Σ̃o

))t (
Dt

oDo ⊗ zzt)− (vec
(
zat

oDo
))t)

,

ξo = EF

[
χ ′ (‖ro(z)‖2 /σo

)
‖ro(z)‖2

]
,
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and

T1 = EF

[
χ ′′ (‖ro(z)‖2 /σo

)
‖ro(z)‖2

(
ro(z) ⊗ Pr Σ̃oz

)]
(I F S),

T2 = 2EF

[
χ ′′ (‖ro(z)‖2 /σo

) (
ro(z) ⊗ Pr Σ̃oz

)
O(Σ̃o,Do, ao, z)

]
(I F D),

T3 = EF

[
χ ′ (‖ro(z)‖2 /σo

) [(
zt ⊗ Do

)
(I F D)

]⊗
(
Pr Σ̃oz

)]
,

T4 = EF

[
χ ′ (‖ro(z)‖2 /σo

) (
ro(z) ⊗ (zt ⊗ Im

))
(I F D)

]
,

T5 = χ ′ (‖ro(z0)‖2 /σo

) (
ro(z0) ⊗ Pr Σ̃oz0

)
,

T1,0 = EF

[
χ ′′ (‖ro(z)‖2 /σo

)
‖ro(z)‖2 ro( z)

]
,

T2,0 = 2EF

[
χ ′′ (‖ro(z)‖2 /σo

)
ro(z)O(Σ̃o,Do, ao, z)

]
,

T3,0 = EF

[
χ ′ (‖ro(z)‖2 /σo

) (
zt ⊗ Do

)]
,

T4,0 = χ ′ (‖ro(z0)‖2 /σo

)
ro(z0).

Then, we can establish the following result for the influence function.

Theorem 4 Let z1, . . . , zn be a random sample in R
m, m = p + q, from an elliptical

distribution F with density (18), location parameter μ0 and dispersion parameter
Σ0. Suppose that conditions C0-C14 hold and the functionals Σ

(R)
xx and Σ

(R)
yy are

Fisher-consistent. Let Ω ∈ R
r(m+1)×r(m+1) be the invertible matrix defined in (29).

Then,

(i) If Tv = − 1
σ 2

o
T1 + 2

ξo
(T2 + σo (T3 + T4)) + T5 and Ta = 1

σo
T1,0 I F S −

1
ξo

(
T2,0+ σoT3,0

)
(I F D) − T4,0, we get I F (z0, θ SM , F) = Ω−1T (z0, F) ,

with T (z0, F) = (Tt
v,T

t
a
)t

.

(ii) The IF for ρ2
SM,k is I F

(
z0, ρ2

SM,k, F
)

= 2
(
γ 0

k − 1
) (
t0k
)t

I F
(
z0,M0, F

)
t0k ,

k = 1, . . . , r .

(iii) Let (x0, y0) =
((
v0k
)t
x0,
(
w0

k

)t
y0
)

,
((
v0k
)t
x,
(
w0

k

)t
y
)

∼ F̃k for
(
xt , yt

)t ∼
F. Take the functionals vkand wk corresponding to the k−canonical vector
such that there exist their IF, I FVk = I F

((
x0, y0

)
, vk, F

)
and I FWk =

I F
((
x0, y0

)
,wk, F

)
, respectively. Let gi+ j−1 (L (x,y) , v,w) =

(
σ

(R)
i j

)2
(
L
(
vtx,wty

))
, 1 ≤ i ≤ j ≤ 2 such that there exist gl,k,v = ∂gl

∂v

(
F̃k, v0k,w

0
k

)

and gl,k,w = ∂gl
∂w

(
F̃k, v0k,w

0
k

)
. Then, the IF of ρ2

C,k is given by

I F
((
x0, y0

)
, ρ2

C,k , F)
)

= 1

g2
1

(
F̃k , v0k ,w

0
k

)
g2
3

(
F̃k , v0k ,w

0
k

)
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×1

2

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

∑
1≤i, j,l≤3

i �= j,i �=l,, j �=l

(−1)i+ j gi

(
F̃k , v0k ,w

0
k

)
g j

(
F̃k , v0k ,w

0
k

)
I F
(
(x0, y0) , gl , F̃k

)
⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

∑
1≤i, j,l≤3

i �= j,i �=l,, j �=l

(−1)i+ j gi

(
F̃k , v0k ,w

0
k

)
g j

(
F̃k , v0k ,w

0
k

)
gl,k,v

⎤
⎥⎥⎦ I FVk

+

⎡
⎢⎢⎣

∑
1≤i, j,l≤3

i �= j,i �=l,, j �=l

(−1)i+ j gi

(
F̃k , v0k ,w

0
k

)
g j

(
F̃k , v0k ,w

0
k

)
gl,k,w

⎤
⎥⎥⎦ I FWk

⎫
⎪⎪⎬
⎪⎪⎭

.

Proof It is deferred to the “Appendix”. 
�

4.3 Discussion

The term T5 through the vector Pr Σ̃oz0 is the only one affected by the contaminated
point z0 = (

x0, y0
)
, yielding unbounded IF which coincides with the usual behav-

ior for S−estimation. This term displays that the worst scenario for the IF yielding
unboundedness is given by outliers living in the subspace orthogonal to the subspace
generated by the eigenvectors of M under the elliptical model. It is worth noting that
even Σ

(R)
xx and Σ

(R)
yy with bounded IF do not guarantee bounded IF for the CCA

functionals. We next display some pictures to show the behavior of the IF under two
point mass contaminations. Let us consider a vector z = (

xt , yt
)t ∼ N4 (μ,Σ) with

μ = (0.5, 1, 1.5, 2)t , Σxx = Σyy = I2,Σxy = diag (0.9, 0.5). To ease the computa-
tion, the covariancematricesΣ xx andΣyy are assumed to be known and therefore they
are not estimated from the data. The eigenvectors associated with the largest eigenval-

ues are t01 =
(
1/

√
2, 0,−1/

√
2, 0
)t

and t02 =
(
0,−1/

√
2, 0, 1/

√
2
)t

, and the point

mass is taken either z0 = (x01, x02, 0, 0) or z0 = (x01, 0, y01, 0) . The plots display
unstandardized influence functions to depict the behavior under point masses contam-
ination, (x01, x02) vs

∥∥I F
(
z0,wSM,1, F

)∥∥ and (x01, x02)vs
∥∥I F

(
z0,wC,1, F

)∥∥, with
wC,1 and wSM,1 the classical estimator and the SM-estimator, respectively, for the
first canonical vector associated with the random vector y.

5 Robust proposals for measuring association

The classical scenario for CCA involves the correlation as a measure for the maximal
association between the linear combinations of two random vectors, and the correla-
tion between those linear combinations is called the canonical correlation. (30) is a
robust correlation functional to measure association obtained from a bivariate robust
dispersion estimator. A special case arises from the S-estimators defined by Davies
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Fig. 1 The plot (x01, x02) vs
∥∥I F

(
z0,wC,1, F

)∥∥ (above on the left) and the plot (x01, x02) vs∥∥I F
(
z0,wSM,1, F

)∥∥ (above on the right) correspond to the IF for the classical and SM estimators for
the first canonical vector associated with the vector y and z0 = (x01, x02, 0, 0). The plot (x01, y01) vs∥∥I F

(
z0,wC,1, F

)∥∥ (below on the left) and the plot (x01, y01) vs
∥∥I F

(
z0,wSM,1, F

)∥∥ (below on the
right) correspond to the IF for the classical and SM estimators for the first canonical vector associated with
the vector y and z0 = (x01, 0, x02, 0)

(1987) for multivariate location and scatter (μ,Σ) ∈ R
p × Op. Given the set

D =
{
(μ,Σ) ∈ R

p × Op : Eχ
[
(x − μ)t Σ−1 (x − μ)

]
≤ δ
}

,

S-estimators are defined as the solutions
(
μ̂, Σ̂

)
= argminD det (Σ). This formula-

tion is equivalent to take the M-scale s (μ,Σ) =min
{
s > 0 : Eχ

[
(x − μ)t Σ−1

(
x−

μ
)
/s
]≤ δ, det (Σ) = 1

}
, (μ∗,Σ∗) = argmin s (μ,Σ) , andΣ = [s (μ∗,Σ∗)]1/p

Σ∗.
If p = 2, let μ̂, σ̂11 and σ̂22 be preliminary estimates for the location and dispersion
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parameters μ, σ11 and σ22. Set ̂̃Σ =
(

σ̂11 0
0 σ̂22

)
and take the standardized vector

x̃ = ̂̃Σ(x − μ̂). Then, we might estimate the correlation parameter as

b∗ = arg min s (b) , (31)

with s(b) defined as

s (b) = min

{
s > 0 : Eχ

(
x̃tΣ−1 x̃

s

)
≤ δ,Σ = 1(

1 − b2
)1/2

(
1 b
b 1

)}
.

We next motivate this robust measure of association b∗ by giving another point
of view closely related to that of closeness between two random variables, which
is behind the proposals (5) and (15). We also discuss another robust procedure for
robust correlation. We later analyze the usual properties that a measure of association
is usually required for both procedures.

5.1 Motivating the robust correlation b∗ and association properties

Let us suppose that we have two random variables X and Y with distribution func-
tions FX and FY , respectively. Let T (.) and S(.) be two equivariant estimators for
location and dispersion which allow us to take the standardized random variables
U = (X − T (FX ))/S(FX ) and V = (Y − T (FY ))/S(FY ). In case of having finite
second moments, and taking T as the expected value and S as the standard deviation,
when considering either the objective function E(U − λV )2 or E(V − λU )2 one
obtains λ̂ = E(U V ) = ρ, the Pearson correlation between U and V , as a global
minimizer. A measure of association ν must be symmetric, that is, it should verify
that ν(U , V ) = ν (V , U ) , which entails to consider E

[
(U − λV )2 + (V − λU )2

]
as objective function. The argument in the expected value is a quadratic form with
eigenvalues (1 − λ)2 and (1 + λ)2 associated with the eigenvectors 2−1/2 (1, 1)t and
2−1/2 (1,−1)t , respectively, that is,

(U − λV )2 + (V − λU )2 = (1 − λ)2
(

U + V√
2

)2

+ (1 + λ)2
(

U − V√
2

)2

(32)

The variables Z = (U + V )/
√
2 and W = (U − V )/

√
2 are uncorrelated,

V ar(Z) = 1 + ρ, V ar(W ) = 1 − ρ, with ρ = E(U V ). The minimization of
the objective function E

[
(1 − λ)2 Z2 + (1 + λ)2 W 2

]
suggests to consider a more

general expression, by taking any pair of uncorrelated zero mean random variables
Z and W such that their joint distribution is parametrized by η ∈ C ⊂ R, that is,
Eη Z = 0 = EηW , Eη (Z W ) = 0, V arη(Z) = z(η), V arη(W ) = w(η). Given
functions a : C → R and b : C → R, we proceed similarly to (10) and (11), coming
up with a new pair of variables αZ and βW “as close as possible”, that is, we look for
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λ̂ such that

Eη(a(λ̂)Z − b(λ̂)W )2 ≤ Eη(a(λ)Z − b(λ)W )2 for all λ, η ∈ C ⊂ R (33)

subject to

0 < V arη(a(η)Z) = V arη(b(η)W ). (34)

We want to derive which smooth functions a and b should be chosen to make the
underlying parameter η the value in which the minimum is obtained. The objective
function subject to the constraint (34) to be minimized is Eη(a(λ)Z − b(λ)W )2 =
a2(λ)z(η) + b2(λ)w(η). If h(λ) = a2(λ) and g(λ) = b2(λ) are differentiable, the
critical points solve the equation h′(λ)z(η) + g′(λ)w(η) = 0. In order to make the
true parameter η a critical point of the function Eη(a(λ)Z − b(λ)W )2, it must hold
that h′(η)z(η) = −g′(η)w(η), which let us say that g(η) = C ′ (z(η)/w(η))1/2 and
h(η) = C ′ (w(η)/z(η))1/2 with C ′ > 0. Observe that the function (a(λ)Z − b(λ)W )2

has one term which is independent of λ which entails to consider the quadratic form

q(λ) = h(λ)Z2 + g(λ)W 2

=
(

w(λ)

z(λ)

)1/2 (U + V√
2

)2

+
(

z(λ)

w(λ)

)1/2 (U − V√
2

)2

. (35)

Let χ be verifying the conditions C1, C2, C3 and C5. If 0 < δ < 1 and φ(λ) =
(w(λ)/z(λ))1/2 = θ , we can define an M-scale to evaluate the largeness of q(λ)

through the equation

s(θ) = min

⎧⎪⎨
⎪⎩

s > 0 : Eχ

⎛
⎜⎝

θ
(

U+V√
2

)2 + θ−1
(

U−V√
2

)2

s

⎞
⎟⎠ ≤ δ

⎫⎪⎬
⎪⎭

, (36)

and the estimator is defined to be θ̂ = argminθ∈φ(C) s(θ). If the functionφ is invertible,
the estimator for λ is given by λ̂ = φ−1(θ̂). Then, going back to Z and W , with z(η) =
1+η andw(η) = 1−η,we have that the correlation parameter η is estimated through
the quadratic form q(λ) = 2−1

[
λ1 (U + V )2 + λ2 (U − V )2

]
with eigenvalues λ1 =

((1 − λ)/(1 + λ))1/2 and λ2 = ((1 + λ)/(1 − λ))1/2. Then, the M-scale in (36) can
be defined as

s(λ) = min

{
s > 0 : Eχ

(
q(λ)

s

)
≤ δ

}
, λ ∈ (−1, 1). (37)

Put s(1) = lim infλ↑1− s(λ) and s(−1) = lim infλ↓−1+ s(λ). Then, we define the
SM-estimator for correlation as

λ̂ = arg min
λ∈[−1,1]

s(λ). (38)
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If we use an M-scale based on the quadratic form given in (32), similarly to (37) and

(38), we obtain that the solution is λ̂ = 1−
√

1−ρ2

ρ
1(0,1) (ρ) + 1+

√
1−ρ2

ρ
1(−1,0) (ρ)

when (X , Y ) is elliptically distributed with correlation ρ, and ρ is obtained as ρ =
2λ̂/(1 + λ̂2).

It is easily seen that (38) and (31) yield the same estimation.

Lemma 3 Let λ̂ be as in (38). Then, λ̂ = b∗.
Proof It is deferred to the “Appendix”. 
�

Since the eigenvalues of the quadratic form (32) do not follow (35), ρ is obtained
after transforming λ̂. Next Lemma will show that the estimator (38) has the usual
properties required for an association estimator, except for the cases λ̂ = −1 or λ̂ = 1
which entail that the random variables X and Y are linearly related with a probability
greater than or equal to 1 − δ.

Lemma 4 Let λ̂ be as in (38). Then, (i) the estimator is location and scale invari-
ant. (ii) λ̂ ∈ [−1, 1] . (iii) If λ̂ = 1, then P (X = aY + b) ≥ 1 − δ, with
a = S(FX )/S(FY ) and b = −(S(FX )T (FY ))/S(FY ) + T (FX ). (respectively, if
λ̂ = −1, then P (X = cY + d) ≥ 1 − δ, with c = −S(FX )/S(FY ) and d =
S(FX )T (FY )/S(FY ) + T (FX ). (iv) If (X , Y ) is elliptically distributed with corre-
lation ρ, then λ̂ = ρ.

Proof It is deferred to the “Appendix”. 
�

5.2 A“depth-based” correlationmeasure and association properties

The quadratic form (32) can be used to derive another robust procedure to detect ρ

consistently which is reminiscent of depth-based procedures (see Adrover et al. 2002).
We can pin a residual against adversaries as follows. Let us take a measure of how
badly λ performs compared with another fit using θ with lower residuals, that is,
p(λ) = maxθ P

(
(U − θV )2 + (V − θU )2 < (U − λV )2 + (V − λU )2

)
. Finally,

the parameter with the best worst performance is chosen as, λ̂ = argminλ p(λ).

It is easy to see that the maximum in p(λ) is obtained when θ = λ and

p(λ) = max
(

P
(
(2U V )/(U 2 + V 2) < λ

)
, P
(
(2U V )/(U 2 + V 2) > λ

))
.

Then, the minimum occurs if λ̂ = med
(
(2U V )/(U 2 + V 2)

)
.

The following lemma shows the properties that λ̂ possesses as an association mea-
sure.

Lemma 5 Let λ̂ = med
(

2U V
U2+V 2

)
. Then, (i) The estimator is location and scale

invariant. (ii) λ̂ ∈ [−1, 1] . (iii) If λ̂ = 1, then P (X = aY + b) ≥ 0.5, with
a = S(FX )/S(FY ) and b = −aT (FY ) + T (FX ) (respectively, if λ̂ = −1, then
P (X = cY + d) ≥ 0.5, with c = −S(FX )/S(FY ) and d = (−cT (FY )) + T (FX ).
(iv) If (X , Y ) is elliptically distributed with correlation ρ, then λ̂ = ρ.

Proof It is deferred to the “Appendix”. 
�
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6 Concluding remarks

Maronna (2005) shows the remarkable prediction behavior of SM-estimation for PCA
compared to some other robust procedures. Adrover and Donato (2015) also conclude
in a similar way in the CCA context, by considering either mean squared error or
relative prediction error as performance measures under contamination scenarios. By
these means, SM-estimation deserved to be thoroughly analyzed, studying its asymp-
totic properties as consistency and asymptotic normality. Adrover and Donato (2015)
specially highlighted the relationship between PCA and CCA (see also ten Berge
1979). Therefore, the derivation of these asymptotic properties of the estimators for
both procedures as well as the IF is totally similar. We also considered robust proper-
ties such as qualitative robustness and influence function and the unbounded influence,
which is a usual behavior of the S-estimation for other models, is also shown. In the
end, we turned our attention to a basic problem, the robust association or correlation.
We reasoned similarly to that of SM-estimation in the CCA, and we come up with a
robust correlation measure, which is totally related to S-estimation for bivariate dis-
persion. We also discuss another consistent robust correlation by using an approach
for regression depth from Adrover et al. (2002). The usual properties for correlation
are discussed.

Acknowledgements We would like to thank two anonymous referees and the Associate Editor for their
comments and suggestions that have resulted in a much improved paper.

Appendix

Proof of Theorem 1 Let G be as in (22), Ξo = Σxx, Γ o = Σyy and the sets

Eη =
{

(A,B, a,Ξ ,Γ ) ∈ Or ,p × Or ,q × R
r × Sp × Sq :

‖A − Ao‖ < η, ‖B − Bo‖ < η, ‖Ξ − Ξo‖ < η, ‖Γ − Γ o‖ < η

}

Ẽη =
{

(A,B, a,Ξ ,Γ ) ∈ Or ,p × Or ,q × R
r × Sp × Sq :

‖Ξ − Ξo‖ < η, ‖Γ − Γ o‖ < η

}
.

The function gP(A,B, a,Ξ ,Γ , σ ) = EP

(
AΞ−1/2x−BΓ −1/2y

σ

)
is continuous in G for

P = F . Given ε > 0, by using Theorem 1 in Adrover and Donato (2015), we get that
there exist η > 0 and 0 < η̃ < δ

inf Ẽη,σ<σo−ε
gF (A,B, a,Ξ ,Γ , σ ) > δ + η̃/2

supEη,σ>σo+ε gF (A,B, a,Ξ ,Γ , σ ) < δ − η̃/2.

Then, if (A,B, a,Ξ ,Γ ) ∈ Eη, there exists n0(ε) such that the M-scale σ̂ ∈ [σo −
ε, σo + ε] for all n > no(ε). If (A,B, a,Ξ ,Γ ) /∈ Eη, there exists η > 0 and M > 0
such that for all n > n1(ε) and Fn ∈ Fn , it holds that

inf
a∈([−M,M])c,Ec

η,σ∈[σo−ε,σo+ε]
gFn (A,B, a,Ξ ,Γ , σ ) > δ + η̃/2.
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Consequently, we can conclude that the SM- estimators in (15) belong to a closed
bounded set. Moreover, limn→∞ σ̂ = σo. Therefore, the Fisher consistency given
in Theorem 1 in Adrover and Donato (2015) let us conclude that any convergent
subsequent should converge to (Ao,Bo, ao) and the consistency follows.

The following technical lemma is needed to prove the asymptotic normality.

Lemma A.1 Let z1, . . . , zn be a random sample in R
m from an elliptical distribution

F with density (18), location parameter μ0 and dispersion parameter Σ0. Suppose
that conditions C0-C14 hold. Let G be as in (22). Let φ1 and φ2 be defined as in
(26). Then, there exists a function θ̃ : H → G and a bounded set C ⊂ G such

that θ̃o is an interior point of θ̃ (C ) and the sets F1i =
{
φ1i

(
z,θ̃ (ξ )

)
: ξ ∈ C

}
, i =

1, . . . , rm and F2k =
{
φ2k

(
z,θ̃ (ξ )

)
: ξ ∈ C

}
, k = 1, . . . , r are Euclidean classes

with envelopes F1i , i = 1, . . . , m and F2k, k = 1, . . . , r , such that EF (F1i )
2 < ∞

and EF (F2k)
2 < ∞.

Proof of Theorem 2(i) Given θ̃o, Lemma A.1 says that φ1i

(
z,θ̃o

)
∈ F1i , i =

1, . . . , mr and φ2k

(
z,θ̃o

)
∈ F2k , k = 1, . . . , r . Moreover, since Theorem 1 ensures

the consistency of θ̂ =
(
Â

o
SM , B̂

o
SM , âSM ,Σ̂

(R)

xx , Σ̂
(R)

yy , σ̂
)
to θ̃o, given ε0 > 0 we can

find n0 such that for any n ≥ n0, it holds that P
(
φ1i

(
z, θ̂
)

∈ F1i , φ2k

(
z, θ̂
)

∈
F2k) > 1− ε0 for all i ∈ {1, . . . , mr} and k ∈ {1, . . . , r}. GivenF a Euclidean class
and δ > 0, set [δ] = {( f1, f2) ∈ F × F : ∫ ( f1 − f2)2d P < δ2

}
. Given a sequence

of independent identically distributed random variables ξ1, . . . , ξn such that ξ1 ∼ P ,
set

νn( f ) = 1√
n

[
n∑

i=1

(
f (ξi ) −

∫
f d P

)]
, f ∈ F .

Given ε > 0 andη > 0, Lemma2.16 of Pakes andPollard (1989), C12 andC13 say that

there exist δ > 0 and n1 ∈ N such that, for all n ≥ n1,
(
φ1 j

(
z, θ̂
)

, φ1 j

(
z, θ̃o

))
∈

[δ] and lim sup
n→∞

P
{
sup[δ]

∣∣∣νn

(
φ1 j

(
·, θ̂
))

− νn

(
φ1 j

(
·, θ̃o

))∣∣∣ > η
}

< ε. Then, we

can conclude that

νn

(
φ j

(
·, θ̂
))

− νn

(
φ j

(
·, θ̃o

))
= oP (1) , j = 1, 2,

νn

(
φ
(
·, θ̂
))

− νn

(
φ
(
·, θ̃o

))
= oP (1).

Since Φ
(
θ̃o

)
= 0, by summing up and subtracting some terms we have

0 = 1

n

n∑
i=1

φ
(
zi , θ̂

)
− Φ

(
θ̃o

)
= Φ

(
θ̂
)

− Φ
(
θ̃o

)
+ 1√

n
νn

(
φ
(
·, θ̂
))
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= Φ
(
θ̂
)

− Φ
(
θ̃o

)
+ 1√

n
νn

(
φ
(
·, θ̃o

))
+ 1√

n

[
νn

(
φ
(
·, θ̂
))

− νn

(
φ
(
·, θ̃o

))]
.

By C14 and (27), it holds that − 1√
n
νn

(
φ
(
·, θ̃o

))
= [Ω + oP (1)]

(
θ̂ SM − θo

)
+

oP
(
1/

√
n
)
, and by the Central Limit Theorem we have that νn

(
φ
(
·, θ̃o

))
D→

Nr(m+1) (0,V). Since Ω is invertible, we obtain that
√

n
(
θ̂ SM − θo

)
D→ Nr(m+1)(

0,Ω−1Vo
(
Ω−1)t) . Straightforward computation let us conclude the explicit form

of the asymptotic dispersion matrix and the proof follows. (ii) follows closely from
(i). (iii) follows from the fact that v̂SM,k and ŵSM,k are subvectors of θ̂

∗
SM given in

(ii). (iv) gives a simpler form of the asymptotic covariance matrix obtained in (iii) in

case of having a non-singular matrix of derivatives ∂Φ2(θ)
∂a

(
θ̃o

)
. 
�

Proof of Theorem 4 Given Fε = (1 − ε) F + εδz0 , we have to look for the SM-

functionals defined as g
(
D, Σ̃ε, a, σε

)
= EFεχ

(∥∥∥DΣ̃εz-a
∥∥∥2

σε(D,a)

)
= δ. Then, we look

for a restricted minimum D ∈ Or ,m , t1, . . . , tr are the rows of D and the Lagrangian
can be expressed as

L
(
t1, . . . , tr , a,Σ̃ε, η11, . . . , ηrr

)

= σε (D, a) −
r∑

j=1

η j j

(
ttj t j − 1

)
−

∑
1≤ j<k≤r

η jkttkt j ,

where t1,ε, . . . , tr ,ε, aε are critical points for L . The proof follows closely to that of
Theorem 1 in Croux and Ruiz-Gazen (2005). 
�
Proof of Lemma 3 The eigenvectors (1, 1) and (1,−1) of Σ̃ correspond to the eigenval-
ues ((1 − b)/(1 + b))1/2 and ((1 + b)/(1 − b))1/2, respectively. Then, the quadratic
forms in both definitions coincide and λ̂ = b∗. 
�
Proof of Lemma 4 (i) and (ii) are easily derived. (iii) λ̂ = 1 implies that s(1) ≤ s(λ)

for all λ ∈ [−1, 1]. Let q(λ) be as in (35). Since 0 = lims→∞ Eχ (q(λ)/s) ≤ δ,

this implies that s(λ) < ∞ and s(1) < ∞. Thus, δ ≥ limλ→1− Eχ (q (λ) /s(λ)) and
P(U = V ) ≥ 1−δ which says that P (X = aY + b) ≥ 1−δ, with a = S(FX )/S(FY )

and b = −aT (FY ) + T (FX ). In case that λ̂ = −1, we get P(U = −V ) ≥ 1− δ, and
P (X = cY + d) ≥ 1− δ, with c = −S(FX )/S(FY ) and d = S(FX )T (FY )/S(FY )+
T (FX ). Thus, (iii) is proved. (iv) In case of having (X , Y ) elliptically distributed with
correlation ρ, Lemma 3 let us affirm that λ̂ = ρ. 
�
Proof of Lemma 5 (i) is easily derived and (iii) follows as in Lemma 4 (iii). (ii) Since
(U ± V )2 ≥ 0, then −(U 2 + V 2) ≤ U V ≤ (U 2 + V 2) and |2U V /(U 2 + V 2)| ≤ 1.
Therefore, med(2U V /(U 2+V 2)) ∈ [−1, 1]. (iv) In case of having (X , Y ) elliptically
distributedwith correlation ρ, (U , V ) is elliptically distributedwith density f (u, v) =
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1/K f0((u2 + 2ρuv + v2)/
√
1 − ρ2)) and K = π(1−ρ2)−1/2(F0(∞)− F0(0)) with

F0 a primitive of f0. To see that Pc = P
(
2U V /(U 2 + V 2) ≤ ρ

) = 0.5, we perform
some change of variables to get that

Pc = 2−1(1 − ρ2)−1/2

K

∫
I(−∞,ρ)

(
z2 − w2 + ρ(z2 + w2)

z2 + w2 + ρ(z2 − w2)

)
f0
(

z2 + w2
)
dzdw.

Using spherical coordinates, 1 + ρ cos 2θ ≥ 0 and the fact that cos 2θ+ρ
1+ρ cos 2θ ≤ ρ if and

only if and cos 2θ ≤ 0, then we have

Pc = 2−1(1 − ρ2)−1/2

K

∫ 2π

0

∫ ∞

0
I(−∞,ρ)

(
cos 2θ + ρ

1 + ρ cos 2θ

)
r f0
(
r2
)
drdθ

= 2−1(1 − ρ2)−1/2

K

∫ 2π

0

∫ ∞

0
I[π/4,3π/4]∪[5π/4,7π/4] (θ) r f0

(
r2
)
drdθ

= 2−1π(1 − ρ2)−1/2

K

∫ ∞

0
r f0
(
r2
)
drdθ = π(1 − ρ2)−1/2

2K
(F0(∞) − F0(0)) = 1

2
,

which shows that λ̂ = ρ and the result follows. 
�
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