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Abstract
In partially linear single-index models, there are two different covariate matrices in
the model for the linear part and nonlinear part. All covariate information needs to
be divided into two parts before the model can be fitted. In contrast, in the extended
partially linear single-index models, all the covariate variables are included in one
matrix, which is contained in both the linear part and nonlinear part of the model. We
propose local smoothing estimators for the model parameters and unknown function
with computationally efficient and accurate computationmethodologies and obtain the
asymptotic properties of the model parameter estimators. We also employ the LASSO
penalty to obtain penalized estimators with consistency and oracle property in order
to carry out estimation and variable selection simultaneously. Then we develop a lin-
ear hypothesis test for the model parameters. Furthermore, we extend the proposed
methodology to the increasing dimensional settings under certain assumptions. Sim-
ulation studies are presented that support our analytic results. In addition, a real data
analysis is provided for illustration.

Keywords LASSO · Local smoothing estimator · Partially linear single-index
model · Variable selection

Mathematics Subject Classification 62G05 · 62F03 · 62J07

1 Introduction

Regression models are powerful tools for the analysis of the relationship between a
response variable and some covariates. Inmany simple cases, a linearmodel E(y|x) =
xT β can be used to fit the data, where x is the covariate vector and y is the response.
However, the linear assumption may be violated in some cases and the relationship
between the response and the covariates can be better explained via a link function g:
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Inferences for extended partially linear single-index models 603

E(y|x) = g(xT β). This single-index model has been proposed and studied in detail
(see Ichimura 1993; Horowitz and Härdle 1996). However, sometimes neither of these
two models is able to sufficiently represent the relationship between the response and
covariates. Carroll et al. (1997) introduced the partially linear single-index model
(PLSIM), which is a combination of the linear model and single-index model, and is
defined by

y = zT β + g(xT θ) + e, (1)

where y is the response, x and z are covariates with dimensions p and q, respectively,
θ and β are p-dimensional and q-dimensional vectors of parameters, g is the unknown
link function, and e is the randomerror. Different estimation and testingmethodologies
have been proposed for model selection and estimations of the parameters and the link
function; see Yu and Ruppert (2002), Xia et al. (2002), Liang and Wang (2005), Xia
and Härdle (2006), and Liang et al. (2010) for more details. The partially linear single-
index models have also been generalized for analysis of data with more complicated
correlation structure, such as longitudinal data, which arewidely studied inmany fields
such as epidemiology and biology. See, for example, Wang et al. (2005), Li and Hsing
(2010), Chen et al. (2015), Cai andWang (2019a), Cai andWang (2019b), andCai et al.
(2020). However, none of these works consider extended partially linear single-index
model (EPLSIM) defined in Eq. (2). In particular, in Cai and Wang (2019b), methods
for the generalized PLSIM (GPLSIM) were proposed, which are especially useful for
a discrete (such as binary) response variable and are not applicable to EPLSIM.

There are mainly two challenges when applying the existing works on PLSIM to
EPLSIM. Firstly, EPLSIM is more general compared with PLSIM and requires more
regularity assumptions on the covariates. For example, when dealing with longitu-
dinal data, the correlation structure is more complicated compared with i.i.d. cases.
Therefore, many desired properties obtained on PLSIM might not be achievable on
EPLSIM based on the existing approaches.

Another challenge is that EPLSIM has higher computational complexity. If they are
applied to EPLSIM, the existingmethodologies on PLSIMmight lead to unreasonably
high computational costs, or even become infeasible in some cases. Therefore, better
methodologies need to be carried out specifically for EPLSIM.

In practice, the covariates in the PLSIM (1) are usually manually divided into two
parts before themodel is fitted to the data: One part becomes the covariates of the linear
form z, and the other becomes the covariates of the single-index form x . However,
this procedure may result in a misspecification of the model: some covariate variables
of x should actually belong to z, while some covariate variables of z should actually
belong to x . The model selection methods for model (1) are not able to detect the
misspecification after x and z are specified. This problem can be solved by using
EPLSIM, which was firstly introduced in Xia et al. (1999) and has the form

y = xT β + g(xT θ) + e. (2)

Here x denotes all the covariates in the model, and it appears in both the linear part and
the single-index part of the model. The extended partially linear single-index model
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(2) is an extension of the PLSIM (1) and is able to prevent themisspecification problem
mentioned above. While model (2) may still be misspecified (for example, the true
model is an additive model with more than three terms), it has a quite broad form and
can be applied to more complex types of data.

Since x appears both in the linear part and the single-index part, it is natural to
first consider the identifiability of the model parameters before deriving estimation
methodologies. Xia et al. (1999) and Lin and Kulasekera (2007) have proposed and
investigated the identifiability problemof extendedpartially linear single-indexmodels
and obtained the regularity conditions that ensure the identifiability. Xia et al. (1999)
also proposed a simple kernel estimation for estimating the model parameters, which
is similar to the estimation for the parameters of partially linear single-index models
(1). Since the dimension of the parameters of extended partially linear single-index
models is much larger than the dimension of the parameters of partially linear single-
index models, similar estimation methods would be less computationally efficient for
extended partially linear single-index models. Recently, Dong et al. (2016) introduced
a new estimation method based on orthogonal series expansion. We propose the local
linear smoothing estimators for the estimation of extended partially linear single-index
models and introduce the profile estimating procedure of the estimation. We show that
the solution to the optimization of the profile objective function is unique and can
be expressed as linear forms, which leads to fast and accurate computations for the
parameter estimation.

Although extended partially linear single-index models (2) eliminate the possibil-
ity of the model misspecification discussed above, the number of model parameters
becomes larger since all covariate variables appear twice. Therefore, it is of importance
to conduct variable selection to prevent model overfitting, which may lead to biased or
inefficient estimators and predictions.We propose the penalized local linear smoothing
estimation for extended partially linear single-index models with the use of penalty
functions, such as the least absolute shrinkage and selection operator (LASSO). The
estimators defined by the approach have several advantages [see Chapters 2 and 3 of
Fan and Gijbels (1996)], and the variable selection procedure is automatically com-
pleted during the estimation procedure. As shown in the empirical study in Sect. 6,
when themodel parameters contain a substantial number of zeros (sparsity), the penal-
ized estimators have better performance compared with the non-penalized estimators,
even if the sample size is large. Therefore, in practice, estimating the parameters using
the penalized estimators is always recommended when some covariates are known to
be redundant.

After studying the estimation procedure of themodel parameters, hypothesis testing
for the linear constraints of the parameters is also considered. Based on the difference
between the minimum values of the objective function in the null space and in the
alternative space, a chi-squared type of test statistic is proposed for this type of linear
hypotheses.

In increasing dimensional settings where p is not fixed but increases as the sample
size n increases, some estimation methodologies are available in the existing litera-
ture for single-index models or partially linear single-index models. See, for example,
Radchenko (2015) about LASSO estimators of increasing dimensional single-index
models, Wang et al. (2012) about estimation in increasing dimensional single-index
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models with non-convex penalties, and Ma and Zhu (2013) about estimation of het-
eroscedastic partially linear single-index models. These approaches provide efficient
and robust estimation for single-index models or partially linear single-index mod-
els, but none of them consider the estimation problem for the EPLSIM in increasing
dimensional settings. In this paper, we will investigate the properties of the proposed
penalized estimators when the models have increasing dimensional covariates.

Our main contributions in this paper are several folds. We propose local linear
smoothing estimators for extended partially linear single-index models and provide
very computationally efficient ways to compute the estimators. Moreover, we propose
penalized local linear smoothing estimators to estimate the parameters with sparsity
and to conduct variable selection simultaneously, which is more efficient when the
model parameters contain sparsity. In addition, we introduce a chi-squared test statistic
for general linear hypothesis testings for the parameters in this setting. Furthermore,
we extend the proposed methodology to the increasing dimensional settings under
certain assumptions and show the consistency of the penalized estimators.

In principle, all the results obtained in this manuscript should be applicable to
PLSIM.One can estimate themodel parameters under the constraints that some entries
are equal to zero, and then the EPLSIM is essentially equivalent to PLSIM. However,
we do not recommend doing that since EPLSIM has much higher dimensions and
leads to more computational complexity. If one is able to identify and separate the
covariates in the linear part and nonlinear part of the model, one should always use
PLSIM instead of EPLSIM.

The rest of this paper consists of the following sections. In Sect. 2, we propose
the local linear smoothing estimating methodology for estimating β, θ , and the link
function g(·). Then we discuss the uniqueness of the solution of the optimization prob-
lem resulting from the estimation procedure, and derive the large sample theory for
the estimators. In Sect. 3, we introduce the penalized local smoothing estimators and
show the asymptotic properties of the proposed penalized estimators. In Sect. 4, we
provide a test statistic for the linear hypothesis testings for the model parameters. In
Sect. 5, we derive the asymptotic properties of the penalized estimators in the increas-
ing dimensional settings with p being allowed to go to infinity with certain constraints.
In Sect. 6, several numerical studies are conducted to assess the performance of the
proposed methods. In Sect. 7, the EPLSIM is fitted to a publicly available data set
about concrete slump test. Section 8 gives some additional remarks and concludes
the paper. All the technical proofs of the main results are given in the supplementary
material.

2 Local smoothing estimators

Formally, an extended partially linear single-index model with independent and iden-
tically distributed covariates and errors can be expressed as

yi = xT
i β0 + g(xT

i θ0) + ei , i = 1, 2, . . . , n, (3)
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where β0 and θ0 are the true model parameters, (xi , ei )’s are independent and iden-
tically distributed pairs of covariates and errors, and xi and ei are independent. For
identifiability, we assume θ0 has unit L2 norm, namely ‖θ0‖ = 1, the first element of
θ0 is positive and θ0 is orthogonal to β0, namely βT

0 θ0 = 0 [see Lin and Kulasekera
(2007) for more details].

The nonparametric link function g(u) and its derivative g′(u) are estimated by local
smoothing estimation as

(
ĝ(u|β, θ), ĝ′(u|β, θ)

)=argmin
a,b

n∑

i=1

{
yi − xT

i β − a − b
(

xT
i θ − u

)}2
Kh

(
xT

i θ − u
)
,

where Kh
(
xT

i θ − u
) = K

((
xT

i θ − u
)
/h

)
/h with a symmetric kernel function K (·)

and bandwidth h. By basic calculations, ĝ(u|β, θ) can be expressed as [see Chen et al.
(2015) for similar results for partially linear single-index models]

ĝ(u|β, θ) =
n∑

i=1

si (u|θ)
(

yi − xT
i β

)
,

which may be abbreviated as ĝ(u) when no confusion arises, where si (u|θ) depends
on the kernel function and the observed data but is independent of β [see Eqs. (8) and
(9)]. Explicitly,

si (u|θ) =
(∑n

j=1 K j t2j

)
Ki −

(∑n
j=1 K j t j

)
Ki ti

(∑n
j=1 K j

) (∑n
j=1 K j t2j

)
−

(∑n
j=1 K j t j

)2 , i = 1, 2, . . . , n,

where t j = xT
j θ − u and K j = Kh

(
t j

)
.

Then the local smoothing estimators (LSE) of β0 and θ0 can be computed through

(
β̂, θ̂1

)
= argmin

β,θ

G(β, θ) = argmin
β,θ

n∑

i=1

{
yi − xT

i β − ĝ(xT
i θ |β, θ)

}2
, (4)

with restriction β̂T θ̂1 = 0. The estimate can be done in two steps with profiling. The
first step is to fix θ and calculate

β̂θ = argmin
βT θ=0

G(β, θ). (5)

Then the estimator θ̂1 is

θ̂1 = argmin
θ

n∑

i=1

{
yi − xT

i β̂θ − ĝ(xT
i θ |β̂θ , θ)

}2 = argmin
θ

G(β̂θ , θ). (6)
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Note that this is equivalent to optimizing (β, θ) in terms of β and θ simultaneously,
but is easier to compute. Finally, we standardize θ̂1 and get the estimator of θ by

θ̂ = θ̂1/||θ̂1||. (7)

The asymptotic properties of the LSE are of great interest.We present the following
regularity conditions to show the asymptotic normality and consistency of the LSE.
We say that C is an inner compact subset of A if C is compact and there exists an open
set B such that C ⊂ B ⊂ A.
Regularity Assumptions:

Assumption 1 The density of xT θ , fθ (·), is positive, bounded away from 0
and three times continuously differentiable in U , an inner compact subset of{

xT θ : θ ∈ Θ, x ∈ X
}
, where Θ is the compact parameter space of θ and X is

the compact support of x .

Assumption 2 For any θ ∈ Θ , the second derivative of the function ρx (u|θ) =
E

(
x |xT θ = u

)
with respect to u is bounded and continuous.

Assumption 3 The link function g(·) is three times continuously differentiable and
g′′(·) �≡ 0 on an open subinterval in U .

Assumption 4 The third derivatives of g(xT θ) and fθ (x) with respect to x are uni-
formly Lipschitz continuous over Θ ⊂ R

p for all x ∈ X .

Assumption 5 The kernel function K (·) is a symmetric, bounded and continuously
differentiable probability density function. Furthermore, K (·) is positive on the whole
real line, R, and

∫
R

|v|i (K (v)) j dx < ∞ (i, j = 1, 2).

Assumption 6 The variance of e, σ 2, is positive, and E(|e|γ ) < ∞ for some γ ≥ 3.

Assumption 7 The bandwidth h satisfies nh6 → 0 and nh3+3/(γ−1)/ log n → ∞ as
n → ∞.

Assumptions 1, 2, and 4 are standard regularity assumptions for covariates x in
PLSIM [see Liang et al. (2010) for more details]. Assumption 3 ensures the identifia-
bility of the parameters in PLSIM and EPLSIM. Assumption 5 is for the consistency
of the kernel estimators, and Assumptions 6 and 7 ensure the asymptotic properties of
the estimators.

One key question is whether Eq. (5) has a solution and if so, whether the solution is
unique. Theorem 1 shows that there exists a unique solution to Eq. (5), and provides
an computationally efficient way to calculate the solution. The following definitions
are necessary for the introduction of Theorem 1.

Denote the covariates matrix X = (x1, x2, . . . , xn)T and the response vector Y =
(y1, y2, . . . , yn)T , and let C (X) be the column space of X . Define T = Xθ and n × n
matrix Dθ with entries

(Dθ )i j =
(∑n

s=1 Kist2is
)

Ki j − (∑n
s=1 Kistis

)
Ki j ti j

(∑n
s=1 Kis

) (∑n
s=1 Kist2is

) − (∑n
s=1 Kistis

)2 , i, j = 1, 2, . . . , n, (8)
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where

ti j = t j − ti = xT
j θ − xT

i θ, Ki j = Kh
(
ti j

)
, i, j = 1, 2, . . . , n.

When T = Xθ �= c1n for any c ∈ R, where 1n = (1, 1, . . . , 1)T ∈ R
n , by the

Cauchy–Schwarz inequality, we have

(
n∑

s=1

Kis

) (
n∑

s=1

Kist2is

)

−
(

n∑

s=1

Kistis

)2

> 0.

Then for any Z = (z1, z2, . . . , zn)T ∈ R
n and i = 1, 2, . . . , n, the optimization

problem

(
âi , b̂i

)
= argmin

ai ,bi ∈R

n∑

j=1

(
z j − ai − bi ti j

)2
Ki j ,

has unique solution âi which can be expressed as âi = ∑n
j=1 (Dθ )i j z j . When Z =

Y − Xβ, we have

ĝ(xT
i θ) =

n∑

j=1

(Dθ )i j

(
y j − xT

j β
)

. (9)

Let X̃θ = (In − Dθ ) X and Ỹθ = (In − Dθ ) Y , where In is the n × n identity matrix.
Assume θ �= 0. Besides, let B+ be the Moore–Penrose inverse of any matrix B. The
following theorem gives an explicit simple expression of the estimators and provides
an computationally efficient way to calculate them.

Theorem 1 Suppose n > p ≥ 2, 1n /∈ C (X), rank(X) = p, and K (·) > 0. Then the
optimization problem in (5) has a unique solution expressed as

β̂θ =
(

X̃ T
θ X̃θ

)+
X̃ T

θ Ỹθ =
(

X̃ T
θ X̃θ + θθT

)−1
X̃ T

θ Ỹθ . (10)

Remark: Equation (10) provides two different methods for calculating β̂θ when θ is
fixed. The latter equation implies that the solution β̂θ can be obtained by solving a
linear system, which is computationally efficient and accurate. However, to solve the
linear system

(
X̃ T

θ X̃θ + θθT
)

β = X̃ T
θ Ỹθ (11)

in any software such as R the coefficient matrix should be nonsingular. This requires
K (·) to be strictly positive on the whole real line R. Many functions with good prop-
erties satisfy this condition, such as the standard normal density φ(·), but they would
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tend to 0 quickly. For instance, φ(v) would be close to 0 when |v| > 3. Consequently,
when the sample size is not large enough and h is relative small, many entries of Dθ

defined in (8) would be very close to 0. This would cause computational issues since it
might make the coefficient matrix in (11) close to singular. Therefore, in these cases,
though calculating the Moore–Penrose inverse numerically might be computationally
inefficient and lead to larger computational errors, we need to use it in order to get rid
of singularity issues.

The following theorem shows the asymptotic normality of the LSE. The proof of
the theorem is given in the supplementary material.

Theorem 2 Suppose that the regularity Assumptions 1–7 are satisfied. Then we have

n
1
2

(
β̂ − β0

θ̂ − θ0

)
d→ N (0, σ 2Γ +)

as n → ∞, where

Γ = E
(
ΛΛT

)
, Λ =

({
x − ρx (xT θ0)

}T
,
[
g′(xT θ0)

{
x − ρx (xT θ0)

}]T
)T

.

The LSE are well-defined and have an computationally efficient way to compute
based on the discussion above. An estimating procedure based on kernel smoothing
was introduced in Xia et al. (1999). This kernel smoothing estimator (KSE) has an
objective function similar to Eq. (4), with ĝ based on kernel smoothing estimation.
Therefore, by profiling one can also obtain the profile estimator β̃θ for each fixed θ , as
shown in Equation (3.2) of Xia et al. (1999). However, this profile estimator is obtained
by optimizing the objective function without the constraint βT θ = 0, which implies
that the profile KSE β̃θ is not guaranteed to be orthogonal to θ . Therefore, due to
identifiability issues, β̃θ might not be close to the true value β0, even if θ is very close
to θ0. This issue is indicated by the simulation results presented in Sect. 6. To resolve
this issue, we add the condition βT θ = 0 when optimizing the objective function Sn

proposed in Xia et al. (1999) and implement the method of the Lagrange multipliers to
compute the estimators. The performance of this Lagrange kernel smoothing estimator
(LKSE) is also assessed as shown in Sect. 6.

3 Penalized local smoothing estimators

In a real-world problem, the true model is usually unknown and either overfitting or
underfitting of the model could happen, especially when the number of parameters
is relatively large but not sufficient observations are available. Therefore, in these
cases, we would like to estimate the parameters and conduct a variable selection
simultaneously. This motivates us to use the penalized local smoothing estimators
(PLSE) to perform the data analyses. In this section, we propose the PLSE with
the implementation of the LASSO penalty to carry out variable selection as well as

parameter estimation. The penalized estimators
(
β̂λ1 , θ̂λ2

)
are defined as
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(
β̂λ1 , θ̃λ2

)
= argmin

βT θ=0
G p(β, θ)

= argmin
βT θ=0

{
1

2
G(β, θ) + nλ1 ‖β‖1 + nλ2 ‖θ‖1

}
,

θ̂λ2 = θ̃λ2/||θ̃λ2 ||,
where G(β, θ) is defined in Eq. (4), λ1 and λ2 are the tuning parameters of β and θ ,
respectively, ‖β‖1 = ∑p

j=1 |β j |, and ‖θ‖1 = ∑p
k=1 |θk |. Let S and T denote the sets

of the subscripts of the nonzero elements of β0 and θ0 respectively. For any l ∈ R
p

and A = {i1, i2, . . . , i|A|} ⊂ {1, 2, . . . , p}, let lA = (li1, li2 , . . . , li|A|) be the vector
containing elements of l with subscripts in A and Ac = {1, 2, . . . , p} \ A. Similarly,
let X A be the matrix containing columns of X corresponding to the elements in A.

The following theorem shows the asymptotic efficiency of the penalized estimators
as well as their oracle property (the zero elements of the true parameters are correctly
estimated as zero when the sample size is sufficiently large), which enables us to
conduct the estimation and variable selection simultaneously.

Theorem 3 Suppose that the regularity Assumptions 1–7 are satisfied and that λi → 0,
n1/2λi → ∞ for i = 1, 2. Then we have
(a) P(β̂λ1Sc = 0 and θ̂λ2T c = 0) → 1 as n → ∞;
(b)

n
1
2

(
β̂λ1S − β0S

θ̂λ2T − θ0T

)
d→ N (0, σ 2Γ +

r ),

where

Γr = E(ΛrΛ
T
r ),Λr =

({
xS −ρxS (xT θ0)

}T
,
[
g′(xT θ0)

{
xT −ρxT (xT θ0)

}]T
)T

.

In practice, the tuning parameters, λ1 and λ2, can be chosen via cross-validation.
Other methods, such as the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC), can also be applied to determine λ1 and λ2 (see Liang et al.
(2010) for more details). For the bandwidth h, one can use some adaptive methods
such as the Lepski procedure to determine its value. However, in the simulation stud-
ies, we found that the value of h does not have a noticeable impact on the estimation
efficiency as long as the values are in a reasonable range (see the table for MSEs in
the supplementary material). We believe that choosing h via cross-validation is good
enough in our case and it can help reduce the computational burden.

To select the values of h and λ j via a K -fold cross-validation, the data set is
randomly divided into K folds. For a specific value of (h, λ1, λ2) and each fold k, the
parameters and the nonparametric function are estimated based on the data with the
kth fold removed, and predictions of the response values of the kth fold are performed
based on the estimation. Then the mean of the K MSEs is obtained for each value
of (h, λ1, λ2) and the optimal value of the tuning parameters can be obtained by
minimizing the mean MSE.
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Inferences for extended partially linear single-index models 611

If the distribution of X is close to a degenerated distribution, the proposed method
might have bad performance and could lead to numerical issues in practice. Theo-
retically, we assume that xi are independent and identically distributed so that when
n → ∞, and the sign of the derivative of the objective function with respect to a single
parameter is controlled by the tuning parameters. Therefore, as long as the model is
identifiable (i.e., X has a full rank distribution), we have the oracle property when p
is fixed and n → ∞.

4 Hypothesis testing

Consider the general linear hypothesis

H0 : Wξ = 0 versus H1 : Wξ �= 0, (12)

where ξ = (βT , θT )T and W is a m × 2p full rank matrix. Let Ω0 and Ω1 be the
parameter spaces of H0 and H1, respectively. Define

G(H0) = inf
ξ∈Ω0

G(ξ), G(H1) = inf
ξ∈Ω1

G(ξ),

and the test statistic

V = n {G(H0) − G(H1)}
G(H1)

. (13)

Then we have the following theorem for testing the hypotheses in (12).

Theorem 4 Suppose that the regularity Assumptions 1–7 are satisfied. We have:
(a) under H0 in (12), V → χ2

m in distribution;
(b) under H1 in (12), the test is consistent;
(c) under the local alternative of n1/2Wξ → d for some m dimensional d �= 0, V
converges in distribution to a noncentral chi-squared distribution with m degrees of
freedom and noncentrality parameter

ψ = σ−2dT (WΓ +W T )−1d,

where Γ is defined in Theorem 2.

5 Increasing dimensional settings

In this section, we consider the PLSE of EPLSIM with covariate dimension p → ∞.
Recall that x is the p-dimensional covariate vector and we assume E(x) = 0 for
simplicity. let Cov(x) = E(xxT ) be the covariance matrix of x . In additional to the
regularity assumptionsmentioned in Section 2, we introduce the following assumption
to ensure the consistency of the PLSE as p → ∞:
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612 Z. Chen, S. Wang

Assumption 8 The largest eigenvalue (spectra radius) ofCov(x), denotedbyγ (Cov(x)),
is bounded for all p: supp γ (Cov(x)) < ∞.

This is a standard and widely used regularity assumption for LASSO estimators in
linear models. See, for example, Huang et al. (2008) and Zhang and Huang (2008)
for more details. Let c jk denote the ( j, k)-th element of Cov(x), which is just the
covariance of the j th and kth element of x . Then by the Gershgorin Circle Theorem,
a sufficient condition for Assumption 8 is:

Assumption 8’. The covariance function Cov(x) satisfies sup j
∑∞

k=1 |c jk | < ∞.
If the elements of x are (weakly) stationary and c jk = c| j−k|, the regularity assump-

tion above is equivalent to
∑∞

s=0 |cs | < ∞.
Note that when Assumption 8 or 8’ is satisfied, we have xT θ = Op(1) since the

parameter space is compact and

sup
p

E(

∥∥∥xT θ

∥∥∥
2

2
) ≤ sup

p
γ (Cov(x)) · sup

θ

‖θ‖2 < ∞.

Similarly, we have xT β = Op(1). Since the penalized objective function G p(β, θ)

does not possess convexity, it is difficult to show the usual convergence rate,
Op(

√
log p/n), of the penalized estimators, as presented in many existing methods

of LASSO estimators for linear models (see, e.g., Chapter 11 of Hastie et al. (2015)).
However, based on equation (5), we can still prove the consistency of the PLSE at a
slower convergence rate as shown in the following theorem.

Theorem 5 Suppose that the regularity Assumptions 1–8 are satisfied. In addition,
assume that p log p/n → 0, λi → 0, n1/2λi → ∞, and λi = op

(√
log p/n

)
for

i = 1, 2. Then we have:
(a)

(
β̂ − β0

θ̂ − θ0

)
= Op

(√
p log p

n

)

;

(b) For each fixed k = 1, 2, . . . , if β0k = 0 or θ0k = 0, then P(β̂k = 0) → 1 or
P(θ̂k = 0) → 1 as n → ∞.

Note that we only propose an effective computational procedure for non-penalized
estimators since the solution has a linear expression. When the number of parameters
is moderate, conducting the linear hypothesis testing with non-penalized estimation
is more efficient compared with that with penalized estimation.

6 Simulation study

In this section, we evaluate our proposed methods empirically, and compare themwith
the method introduced in Xia et al. (1999) via simulation. We provide five examples
here. The first example is from Xia et al. (1999), where the number of the parameters

123



Inferences for extended partially linear single-index models 613

is relatively small. In the second example, the number of the parameters is relatively
large, where the penalized estimators are expected to have better performance. The
third example is about hypothesis testings in extended partially linear single-index
models. The fourth example is about penalized estimation in models with increasing
dimensional covariates. In the fifth example, the covariates in the linear and nonpara-
metric parts of the predictors are disjoint.

Note that Assumption 1 holds for all of the examples since we essentially let u vary
in an inner compact subset of

{
xT θ : θ ∈ Θ, x ∈ X

}
when we carry out discrete

computations. For instance, in R for computations of normally distributed covariates,
u ∈ [−1032, 1032], which is a compact subset of R. Assumption 8 also holds for all
of the examples since the elements of x in these examples are either moving average
series or independent series.

Example 1 We firstly considered the example shown in Xia et al. (1999), which can
be written as

yi = 0.3xi + 0.4xi−1 + exp
{
−2 (0.8xi − 0.6xi−1)

2
}

+ 0.1ei ,

where

xi = 0.8xi−1 + εi + 0.5εi−1, ei , εi ∼ N (0, 1),

and all ei , εi are independent of each other. The model above can also be expressed
as

yi = β1xi + β2xi−1 + exp
{
−2 (xi cosα − xi−1 sin α)2

}
+ 0.1ei , (14)

where β1 = 0.3, β2 = 0.4, and α = arcsin(0.6) = 0.6435.

Five different methods were used in this example: the KSE introduced in Xia et al.
(1999), the LKSE and the LSE described in Sect. 2, the penalized kernel smoothing
estimators (PKSE) and the PLSE proposed in Sect. 3. Although penalized estimation
was not discussed in Xia et al. (1999), for comparison purposes, we could simply add
the LASSO penalty to the objective function of their KSE to obtain the PKSE. We
simulated 500 independent data sets with sample size n = 50, n = 100, and n = 200.
The estimation procedure of the KSE is the same as shown in Xia et al. (1999). For
the LSE, it is expected that h is determined by cross-validation for each simulated
data set. However, due to a substantial computational burden, for each n, we firstly
ran the simulation with a wide range of h (say h ranges from 0.01 to 1) but with a
small number of replications (50 for each value of h). We observed that the MSE
started increasing noticeably when h was less than 0.1 or greater than 0.3. We then
fixed h ∈ [0.1, 0.3], ran 500 replications, and calculated the mean squared error of
the parameters. Then hn was obtained by minimizing the mean squared error. After h
was determined, the tuning parameters λ1 and λ2 were determined in a similar way.
All optimizations were done in R via the nloptr() function from the nloptr package
(Johnson (2020)).
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Table 1 Simulation results for model (14)

n 50 100 200

Parameters Methods Bias RMSE Bias RMSE Bias RMSE

β1 KSE −0.0040 0.3045 0.0090 0.3094 0.0171 0.3056

LKSE 0.0004 0.0068 −0.0001 0.0040 0.0000 0.0021

LSE −0.0008 0.0054 −0.0005 0.0033 −0.0002 0.0020

PKSE −0.0010 0.0154 −0.0009 0.0071 −0.0007 0.0035

PLSE −0.0024 0.0087 −0.0014 0.0048 −0.0009 0.0029

β2 KSE 0.0030 0.2284 −0.0067 0.2322 −0.0130 0.2291

LKSE −0.0006 0.0072 0.0001 0.0042 −0.0001 0.0025

LSE 0.0003 0.0059 0.0003 0.0037 0.0000 0.0023

PKSE −0.0010 0.0122 0.0002 0.0063 −0.0006 0.0033

PLSE −0.0003 0.0069 0.0005 0.0044 −0.0005 0.0027

α KSE 0.0014 0.0121 −0.0005 0.0066 0.0002 0.0039

LKSE 0.0013 0.0120 −0.0003 0.0065 0.0001 0.0039

LSE −0.0016 0.0087 −0.0011 0.0054 −0.0003 0.0034

PKSE −0.0005 0.0337 −0.0017 0.0161 −0.0005 0.0078

PLSE −0.0036 0.0171 −0.0028 0.0099 −0.0009 0.0059

For each value of the sample size n, 500 replications were simulated to compute the bias and RMSE

Table 1 shows the bias and the square root of mean squared error (RMSE) for
the five methods obtained in our simulations. Although the KSE and the LKSE for
α have similar performance, the LKSE for β is significantly better than the KSE
of β in terms of bias and mean squared error. Furthermore, while the biases of the
LSE and LKSE are similar with both of them being nearly negligible relative to the
RMSE, the RMSE of the LSE is noticeably smaller than the RMSE of the LKSE,
especially when the sample size n is relatively small. In addition, both penalized
estimators have worse performance compared with the two non-penalized estimators,
even for a relatively small sample size. The main reason is that the parameters are not
sparse here.Moreover, for sample size n = 200, we compared the computation time of
calculating theLSEusing andwithout usingTheorem1.About 42%of the computation
time had been reduced by applying the results of Theorem 1, which implies that
the calculation methods provided by Theorem 1 have successfully accelerated the
estimating procedure.

We assume i.i.d. in all the theorems and proofs for simplicity, although the results
might still hold for more complicated correlation structures. Example 1 includes an
ARM A(1, 1) process which violates the i.i.d. assumption, but we still include it here
since itwas used inXia et al. (1999)whenEPLSIMwasfirstly introduced. In this exam-
ple, we examined the robustness of the proposed approach in a model misspecified
case. In addition, this allows us to compare our methods with the method introduced
by Xia et al. (1999). The empirical results suggest that the asymptotic properties might
still hold even if the correlation structure is more complicated.
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Table 2 Simulation results for model (15)

n 50 100 200

Parameters Methods RMSE C I RMSE C I RMSE C I

β KSE 0.5492 0.91 0 0.5183 1.34 0 0.4314 1.94 0

LKSE 0.1158 1.01 0 0.0630 1.67 0 0.0427 2.31 0

LSE 0.1171 1.11 0 0.0676 1.77 0 0.0412 2.44 0

PKSE 0.0436 2.03 0 0.0278 2.53 0 0.0170 2.82 0

PLSE 0.0280 2.51 0 0.0199 2.75 0 0.0132 2.89 0

θ KSE 0.0906 0.66 0 0.0602 0.87 0 0.0402 1.19 0

LKSE 0.0951 0.60 0 0.0578 0.92 0 0.0391 1.20 0

LSE 0.0984 0.52 0 0.0583 0.85 0 0.0354 1.22 0

PKSE 0.0196 2.75 0 0.0137 2.77 0 0.0059 2.97 0

PLSE 0.0057 2.99 0 0.0048 2.98 0 0.0029 3.00 0

C, the average number of the true zero parameters that were correctly set to zero (less than 0.01); I, the
average number of the truly nonzero parameters that were incorrectly set to zero. For each value of the
sample size n, 500 replications were simulated to compute the RMSE, C and I

Example 2 Wenowconsider an extended partially linear single-indexmodelwithmore
parameters, which is model (3) with link function and parameters

g(u) =
(
1 + u2

)−1
, β0 = (2,−1, 0, 0, 0), θ0 = (1, 2, 0, 0, 0)/

√
5, (15)

and the covariates and random errors are independent and identically distributed as

xi j ∼ N (0, 1), ei ∼ N (0, 0.12).

We simulated 500 independent data sets with sample sizes n = 50, n = 100,
and n = 200 from this model. Since the sample size is relatively small and the
model parameters are sparse, the penalized estimators are expected to have better
performance.

Table 2 shows the RMSE, the average number of the true zero parameters that were
correctly set to zero and the average number of the truly nonzero parameters that were
incorrectly set to zero for the fivemethods obtained in our simulations.Again, forβ, the
mean squared error of the LKSE is significantly smaller than themean squared error of
the KSE. This implies that the implementation of the method of Lagrange multipliers
has led to huge improvement in performance of the KSE. Besides, the results in
Table 2 also indicate that while the LKSE and the LSE have similar performance,
the penalized estimators have much better performance compared with the estimators
without penalty. Although the computation was heavy, we also tried to simulate a
small number of replications for n = 400, and the results are similar to those for
n = 200. Therefore, we can conclude that even if the sample size is relatively large,
the penalized estimators are more preferable as long as the model contains sparsity. In
addition, Table 2 also indicates that PLSE perform significantly better than the PKSE,
especially when the sample size is relatively small (n = 50 and n = 100).
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Fig. 1 The power function (or
type I error when c = 0) versus
c for sample size n = 50
(dotted), n = 100 (dashed), and
n = 200 (solid). The nominal
level is equal to 0.05 (horizontal
dot-dash). For each value of the
sample size n, 300 replications
were simulated

Example 3 To investigate the performance of the test statistic V described in Sect. 4,
we consider model (3) with link function and parameters

g(u) = 3u2, β0 = (2,−3, c, c), θ0 = (3, 2, 0, 0)/
√
13,

where c ranges from 0 to 0.6 with increment 0.05. The covariates and random errors
are independent and identically distributed as

xi j ∼ U (0, 1), ei ∼ N (0, 0.12).

For each value of c, we simulated 300 independent data sets with sample sizes n = 50,
n = 100, and n = 200 from the model, and considered the following null and
alternative hypotheses:

H0 : β3 = β4 = 0 versus H1 : β3 = β4 = c > 0

with the nominal level equal to 0.05. The power function (or type I error when c = 0)
versus c is plotted in Fig. 1.

Figure 1 shows that when c = 0, the type I error of the test is equal to 0.05,
0.06, and 0.05 for n = 50, n = 100, and n = 200, respectively, which is close to
the nominal level apart from its standard errors. Also, Fig. 1 implies that the power
function increases quite fast as c increases. Overall, V leads to a powerful test whose
size is also well controlled.

Example 4 Consider model (15) but in the increasing dimensional setting with p =⌊
0.85 ∗ √

n
⌋
, where �·� is the floor function. Thus, for n = 50, 100, 200, p = 6, 8, 12,

respectively. We simulated 500 independent data sets for each value of (n, p), and the
results for PKSE and PLSE are shown in Table 3.
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Table 3 Simulation results for model (15) with increasing dimensional settings

(n, p) (50, 6) (100, 8) (200, 12)

Methods RMSE AC AI RMSE AC AI RMSE AC AI

β PKSE 0.0303 0.81 0 0.0205 0.95 0 0.0139 0.98 0

PLSE 0.0256 0.88 0 0.0167 0.97 0 0.0126 0.99 0

θ PKSE 0.0065 1.00 0 0.0039 1.00 0 0.0033 1.00 0

PLSE 0.0059 1.00 0 0.0032 1.00 0 0.0031 1.00 0

AC, the average number of the true zero parameters that were correctly set to zero (less than 0.01) divided
by the number of true zero parameters; AI, the average number of the truly nonzero parameters that were
incorrectly set to zero divided by the number of true nonzero parameters. For each value of the sample size
n, 500 replications were simulated to compute the RMSE, MC and MI

The results in Table 3 indicate that for both methods, the RMSE and the average
number of the true zero parameters that were correctly set to zero divided by the
number of true zero parameters (AC) increase as (n, p) increases. In this example,
PLSE continues to perform better compared with PKSE, especially when the sample
size n is relatively small.

The normal Q-Q plots of β̂1 and θ̂1 for different values of n and p are shown in
Figure 2. The results imply that the distributions of the estimators are not close to
normal when the sample size is relatively small or even moderate. The distributions
of the estimators are either converging to normal distributions slowly or even not
converging to normal distributions. This is an interesting question for further research.

Example 5 We now consider model (15) with different values of the parameters listed
as follows:

β0 = (0, 0, 1), θ0 = (3, 1, 0)/
√
10. (16)

Note that in this scenario, the sets of indices of non-zero elements of β0 and θ0 are
disjoint, and thus this is indeed a PLSIM. We simulated 200 independent data sets
with sample sizes n = 50, n = 100, and n = 200 from this model. We treated the
model as a PLSIM (3 parameters) and an EPLSIM (6 parameters), and estimated the
parameters using KSE, LSE, PKSE, and PLSE. The results are shown in Table 4.

As shown in Table 4, the estimation is more accurate when the model is treated
as a PLSIM. The RMSEs of KSE(NE) and LSE(NE) are smaller than the RMSEs of
LKSE(ET), LSE(ET), PKSE(ET), and PLSE(ET) since the dimension of the parameter
space is twice as large when the model is treated as an EPLSIM. As expected, in
this scenario, PKSE and PLSE are naturally no longer the best methods in this non-
extended PLSIM since there are very few number of parameters. However, they still
perform reasonably well when the sample size is sufficiently large. More generally,
this example illustrates a price to be paid for employing an unnecessarily complex
model when a simpler model is known to be valid.

Finally, note that we did not include the method proposed by Dong et al. (2016).
Their method is based on orthogonal series expansion in L2(R), whose performance
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Fig. 2 Normal Q-Q plots of β̂1 and θ̂1 for different values of n and p

Table 4 Simulation results for model (15) with parameters shown in (16)

n 50 100 200

Parameters Methods Bias RMSE Bias RMSE Bias RMSE

β KSE(NE) 0.0008 0.0196 0.0008 0.0116 0.0011 0.0077

LSE(NE) 0.0010 0.0165 0.0016 0.0107 0.0001 0.0074

LKSE(ET) −0.0055 0.0621 −0.0011 0.0349 −0.0004 0.0243

LSE(ET) 0.0003 0.0562 0.0017 0.0306 0.0007 0.0216

PKSE(ET) −0.0245 0.0551 −0.0070 0.0262 −0.0022 0.0135

PLSE(ET) −0.0138 0.0222 −0.0059 0.0141 −0.0023 0.0115

θ KSE(NE) −0.0008 0.0485 −0.0022 0.0280 −0.0005 0.0190

LSE(NE) −0.0004 0.0388 −0.0002 0.0246 0.0006 0.0168

LKSE(ET) −0.0003 0.0665 0.0009 0.0403 0.0008 0.0292

LSE(ET) −0.0057 0.0660 −0.0026 0.0371 −0.0004 0.0256

PKSE(ET) 0.0243 0.0796 0.0097 0.0414 0.0061 0.0222

PLSE(ET) 0.0105 0.0487 0.0047 0.0396 0.0017 0.0200

KSE(NE), LSE(NE) with the model treated as PLSIM (non-extended); LKSE(ET), LSE(ET), PKSE(ET),
and PLSE(ET) with the model treated as EPLSIM (extended). For each value of the sample size n, 200
replications were simulated to compute the bias and RMSE
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Fig. 3 The value of ĝ(u) versus
u obtained from the concrete
slump test data set

highly depends on the similarity between the nonparametric function and the orthogo-
nal basis they choose. We are able to show some simulations results where our method
easily outperforms their method (saywe choose the No. 100 function of the orthogonal
basis) and vice versa.

7 Real data application

We applied the proposed methods to analyze a publicly available data set of concrete
slump test data, which was firstly introduced and analyzed in Yeh (2007) [see Yeh
(2006) and Yeh (2007) for more related information]. The high-performance concrete
is highly complex, and thus it is very difficult to model its behavior using available
information. In this data set, there are 7 input covariates: cement (kg/m3), blast furnace
slag (kg/m3), fly ash (kg/m3), water (kg/m3), superplasticizer (kg/m3), coarse aggre-
gate (kg/m3), and fine aggregate (kg/m3), and 3 output variables: concrete slump (cm),
concrete flow (cm) and 28-day compressive strength (mpa). We focused on modeling
the concrete slump using all the 7 available input covariates. The data set contains
103 observations and a multiple linear regression model yields an R2 value of 0.32.
Some further exploratory analysis indicates strong nonlinear relationships between
the concrete slump and the covariate variables, which leads to the use of nonlinear
models for predictions and simulations of concrete slump (Yeh 2008, 2009).

The local smoothing estimation, Lagrange kernel smoothing estimation and their
penalized versions were applied to the analysis of the data set after the covariates were
standardized. For the penalized local smoothing estimation, we firstly performed a 10-
fold cross-validation to the data set to select the bandwidth and the tuning parameters.
Then we computed the estimates of the parameters with the tuning parameters and
obtained
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θ̂ = (0.152, 0.558, 0.031,−0.722,−0.166,−0.302,−0.158)T ,

β̂ = (10.817, 12.927, 12.570, 6.056, 0.032, 11.407, 8.975)T .

The results indicate that the third element of θ̂ and the fifth element of β̂ are effectively
zero. We also performed a hypothesis test to test for θ j = 0 or β j = 0 based on
the proposed method. The obtained p-values associated with β5, θ3, and θ7 are less
than 0.05 (see the supplementary material for the exact p-values). Therefore, the
nonparametric part of themodelmight not depend on the third covariate (fly ash), while
the linear part of the model might not depend on the fifth covariate (superplasticizer).

Figure 3 shows the estimate of the link function ĝ(u) with −2 ≤ u ≤ 2 obtained
from the penalized local smoothing estimation. The function drops rapidly when
u > 0.5. These estimates of parameters and the link function yields an R2 value
equal to 0.82, while the R2 values obtained by using the local smoothing estimation,
Lagrange kernel smoothing estimation and penalized kernel smoothing estimation are
0.57, 0.44, and 0.47, respectively. The R2 value of the penalized kernel smoothing
estimation is much smaller than the R2 value of the penalized local smoothing esti-
mation. This, together with the results of the simulations shown in Sect. 6, implies
that the penalized local smoothing estimation has better performance and is more
robust, especially for real world problems when no prior information of the model
parameters is available. Overall, the local smoothing estimation method has the best
performance among all the estimation methods, while the other three methods also
lead to substantial improvements compared with the simple linear model approach.

8 Discussion

In this paper, we considered the EPLSIM (3), which are more flexible compared with
the PLSIM (1). However, extended partially linear single-index models often have
more parameters, making it more difficult to estimate the parameters. We proposed
the LSE in Sect. 2 for parameter estimation, and introduced the chi-squared test statis-
tic in Sect. 4 for testing general linear hypotheses. Furthermore, for data sets with too
many covariates (which lead to sparse parameters), we proposed the PLSE in Sect. 3
for conducting parameter estimation and variable selection simultaneously, and stud-
ied its properties in the increasing dimensional setting with certain constraints. The
uniqueness and linear expressions of the solution to the optimization of the profile
objective function are shown in Sect. 2, resulting in fast and accurate computations for
the solution. In addition, the performance of the KSE introduced in Xia et al. (1999)
can be improved by implementing the method of Lagrange multipliers to calculate the
profile estimator. Besides, asymptotic properties of the proposed estimators and test
statistic were also introduced and discussed in detail.

Simulation studies were presented in Sect. 6 to assess the performance of the pro-
posed estimators and test statistic. We compared the five estimation methods for a
model containing a small number of parameters introduced in Xia et al. (1999), and
for amodel containingmore parameters. The simulation results indicate that the LKSE
have much better performance compared with the KSE, especially for β. Besides, the
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results of the first example implies the LSE perform better than the LKSE, and the
results of the second example implies the PLSE perform better than the PKSE. The
results also indicate that the penalized estimators would generally outperform the non-
penalized estimators when the model contains sparsity. For the test statistic V defined
in (13), the simulation results show that it is powerful with good size control.

An interesting real-world data set of concrete slump test data was analyzed in
Sect. 7. We fitted the EPLSIM to the data and used introduced methods to estimate
the parameters and the link function. The estimated link function ĝ(u) shown in Fig. 3
has a special pattern, which might result from some characteristic of the data. The
fitted R2 was more than doubled to 0.82 from 0.32 by fitting the EPLSIM with PLSE
instead of a multiple linear regression model.

As a future research problem, it would be interesting to study the EPLSIM with
more complicated correlation structure. For instance, the covariates could be time
series with auto correlation, or the measurements are taken from different subjects
over time as in longitudinal data.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-022-00845-8.
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