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Abstract
This paper develops a groupwise dimension reduction-based adaptive-to-model test for
partially linear single-index models. The test behaves as a local smoothing test would
if the model were bivariate. The test statistic under the null hypothesis is asymptoti-
cally normally distributed. The test can detect local alternatives distinct from the null
hypothesis at the rate that existing local smoothing tests can achieve when the regres-
sion model contains bivariate covariates. Therefore, the curse of dimensionality is
largely alleviated. Numerical studies, including two real data examples, are conducted
to examine the finite sample performance of the proposed test.

Keywords Model checking · Partially linear single-index model · Group sufficient
dimension reduction · Adaptive-to-model

1 Introduction

Consider the following partially linear single-index model (PLSIM):

Y = β�X + g(α�Z) + ε, (1.1)

where Y is the scale response, W = (X�, Z�)� ∈ R
p1+p2 is the (p1 +

p2)−dimensional covariate, g(·) an unknown smooth functions, β and α are unknown
vectors of parameters, and ε is the error term such that E(ε|X , Z) = 0. For identifiabil-
ity, α satisfies ||α|| = 1. Typically, model (1.1) is a reasonable compromise between
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fully parametric and fully nonparametric modelling. The literature on PLSIM esti-
mation is enormous. For example, Carroll et al. (1997) first proposed a maximum
quasi-likelihood method to estimate the generalised PLSIM, Xia and Härdle (2006)
extended the minimum average variance estimation (MAVE) approach developed by
Xia et al. (2002), Zhu and Xue (2006) proposed empirical-likelihood-based inference
for the PLSIM,Wang et al. (2010) developed a two-step method to estimate the model,
Liang et al. (2010) proposed the semi-parametrically efficient profile least-squares esti-
mators of coefficients, and Lu et al. (2019) devised a method to consistently estimate
the biased PLSIM. Zhao et al. (2020) considered PLSIMs of panel data with errors
correlated in space and time and proposed a generalised F-type test method to check
index parameters. It is not all so easy to determine whether a real data set corresponds
to the given statistical formalisation. Therefore, it is crucial to perform a suitable and
efficient model checking before further statistical analysis.

Many efforts have been devoted to checking parametric models since the 1980s.
The two most popular methodologies in the literature are local and global smoothing
methods. Local smoothing methods are sensitive to high-frequency/oscillating alter-
native models in low-dimensional cases. However, they suffer from slow convergence
rates due to nonparametric estimation and thus are greatly affected by the curse of
dimensionality. For examples of local smoothing methods based on nonparametric
estimation, see Härdle and Mammen (1993), Zheng (1996), Fan and Li (1996), Dette
(1999), Fan et al. (2001), Fan andHuang (2001),Koul andNi (2004) andVanKeilegom
et al. (2008).

Globally smoothingmethods involve empirical process-based tests that are typically
functions of the averages of weighted sums of residuals. These tests converge to their
weak limits at the rate of n−1/2, which is the fastest possible rate at which they can
detect local alternatives at the fastest possible rate of n−1/2. Thus, they have theoretical
advantages over local smoothing tests. However, when the dimension is greater than 1,
the intractability of the limiting null distributions requires a resampling approximation
such as the wild bootstrap to determine critical values. Practical evidence shows that
these type of tests are less sensitive to oscillating alternatives models. For examples of
these methods, see Stute (1997), Stute et al. (1998), Zhu (2003), Khmaladze and Koul
(2004), and Stute et al. (2008). González Manteiga and Crujeiras (2013) provided a
comprehensive review of the studies in this domain.

A direct way to alleviate the curse of dimensionality is to project the high-
dimensional covariates onto one-dimensional spaces. Escanciano (2006) andLavergne
and Patilea (2008, 2012) proposed tests based on projected covariates. Zhu (2003) and
Stute et al. (2008) used residual processes to construct tests that can also be considered
dimension reduction types. These tests typically require Monte Carlo approxima-
tions to determine critical values (e.g. Escanciano 2006; Lavergne and Patilea 2008),
although some of them, such as that of Lavergne and Patilea (2012), are asymptoti-
cally distribution-free. All these tests use one-dimensional projections to overcome the
curse of dimensionality. However, the computational of the test statistics is a serious
burden. The computations become even more elaborate if we further need to use a re-
sampling approximation such as the bootstrap to determine critical values. Recently,
Guo et al. (2016) developed the innovative model-adaptive local smoothing method-
ology to test the specification of parametric single-index models, thus alleviating the
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dimensionality problem. Zhu et al. (2017), Tan et al. (2018), Tan and Zhu (2019),
Zhu et al. (2021) and Zhu et al. (2022) extended this strategy to use other parametric
dimension reduction models. Li et al. (2021) proposed an adaptive-to-model hybrid of
tests for parametric regression models, which fully inherits the merits of nonparamet-
ric estimation-based tests and empirical process-based tests and while avoiding their
shortcomings. However, few studies have considered model checking for PLSIMs
based on dimension reduction. In this paper, we construct a groupwise dimension
reduction-based adaptive-to-model test for PLSIMs, to mitigate the curse of dimen-
sionality. First, the groupwise dimension reduction method ensures that the proposed
test statistic is automatically adaptive to the underlying model under the respective
null and alternative hypotheses. It can thus alleviate the dimensionality problem, and
simultaneously achieve the omnibus property under the alternative hypothesis. Under
the null hypothesis, in probability, the test statistic only involves the bivariate covari-
ates β�X and α�Z . The null distribution of the proposed test statistic converges to
the limiting null distribution at a faster rate Op(nh), where h is being a bandwidth
converging to zero at a certain rate. Moreover, by fully utilising the information of
the low-dimensional null model, the proposed test can detect the local alternatives
distinct from the null hypothesis at a faster rate Op(n−1/2h−1/2) than the convergence
rate Op(n−1/2h−(p1+p2)/4) of existing local smoothing tests for parametric models,
where p1 + p2 is the dimension of the complete set (X , Z), for example, as in the
tests developed by Fan and Li (1996). Therefore, when the dimensions of X and Z are
large, the new test is superior to existing local smoothing tests in terms of significance
level maintenance and power enhancement.

The rest of the paper is organised as follows. In Sect. 2, we construct the test statistic.
Because growpwise sufficient dimension reduction techniques play a crucial role in
the proposed test, we also review groupwise least-squares (GLS) estimation. Section 3
discusses some asymptotic properties of the new test. Section 4 includes simulation
studies and the analyses for two real data sets. The regularity conditions and all of the
proofs of the theoretical results are presented in the Appendix.

2 Model-adaptive test construction

2.1 Basic construction

Aswe often have no knowledge of themodel structure under the alternative hypothesis,
the general alternative hypothesis takes the following form:

Y = m(X , Z) + ε, (2.1)

where m(X , Z) = E(Y |X , Z) with m(·, ·) being an unknown smoothing function.
For any p1 × p1 orthogonal matrix B1 and p2 × p2 orthogonal matrix B2, we have
m(X , Z) = m(B1B�

1 X , B2B�
2 Z) ≡: m̃(B�

1 X , B�
2 Z) with m̃(·, ·) = m(B1·, B2·) as

the function m is unknown. Therefore, any purely nonparametric regression model
(2.1) can be reformulated as the groupwise dimension reduction model:
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Y = m(B�
1 X , B�

2 Z) + ε, (2.2)

where B1 is a p1 × q1 matrix with q1 orthogonal columns and B2 is a p2 × q2 matrix
with q1 orthogonal columns, q1 and q2 are unknown numbers such that 1 ≤ q1 ≤ p1
and 1 ≤ q2 ≤ p2. For identifiability, we assume that the matrixes B1 and B2 satisfy
B�
1 B1 = Iq1 and B�

2 B2 = Iq2 . Based on this observation, we consider an alternative
model (2.2) that covers more model structures and is widely used in the sufficient
dimension reduction field. We reformulate the hypotheses as

H0 : E(Y |X , Z) = β�X + g(α�Z) for some β ∈ R
p1 , α ∈ R

p2 ,

H1 : E(Y |X , Z) = m(B�
1 X , B�

2 Z) �= β�X + g(α�Z) for any β ∈ R
p1 , α ∈ R

p2 .

The null and alternative models can then be unified. Under the null hypothesis, q1 = 1,
q2 = 1, B1 = β/||β||2 and B2 = α. ||A||2 denotes the L2-norm of a vector A
throughout this paper. Under the alternative hypothesis, q1 ≥ 1 and q2 ≥ 1. Therefore,
we can construct a test that is automatically adaptive to the null and alternative models
by consistently estimating q1, q2, B1 and B2 under the null and the alternative models,
respectively.

Let ε = Y − β�X − g(α�Z). Under the null hypothesis H0, B1 = κβ with
κ = 1/||β||2, and B2 = α. Thus, we have

E(ε|X , Z) = 0 ⇒ E(ε|X , Z) = E(ε|B�
1 X , B�

2 Z) = 0.

such that

E(εE(ε|B�
1 X , B�

2 Z) f (B�
1 X , B�

2 Z)) = E(E2(ε|B�
1 X , B�

2 Z) f (B�
1 X , B�

2 Z)) = 0,

where f (·)denotes thedensity functionof (B�
1 X , B�

2 Z).Under the alternative hypoth-
esis H1, as

E(Y |X , Z) = E(ε|B�
1 X , B�

2 Z) = m(B�
1 X , B�

2 Z) − β�X − g(α�Z) �= 0,

we have

E
[
εE(ε|B�

1 X , B�
2 Z)W (B�

1 X , B�
2 Z)

]
= E

[
E2(ε|B�

1 X , B�
2 Z)

]
> 0. (2.3)

The above argument implies that we can construct a consistent test based on the left
term in (2.3). The null hypothesis H0 is rejected for large values of the test statistic.

Let {(x1, z1, y1), · · · , (xn, zn, yn)} denote independent and identically distributed
(i.i.d.) samples. We estimate E(ε|B�

1 X , B�
2 Z) using the kernel estimate:

Ê(ε̂i |B1n
�xi , B2n

�zi ) =
1

n−1

∑n
j �=i Kh(B�

1nx j − B�
1nxi , B

�
2nz j − B�

2nzi )ε̂ j

1
n−1

∑n
j �=i Kh(B�

1nx j − B�
1nxi , B

�
2nz j − B�

2nzi )
,
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236 J. Liu et al.

where Kh = K (·/h)/hq̂1+q̂2 with K (·) being a (q̂1 + q̂2)-dimensional product kernel
function with univariate kernel function k(·) and h being a bandwidth, B1n and B2n are
estimates of B1 and B2 with estimated structural dimensions q̂1 and q̂2, respectively,
which we discuss in the next subsection. Here, ε̂i denotes the estimate of the residual
term εi , and ε̂i = yi − β̂�

1 xi − ĝ(α̂�zi ), where β̂�
1 , α̂ and ĝ(·) denote the estimators

of β, θ and g(·), respectively. More details are presented in the Appendix.
The density function f (B�

1nxi , B
�
2nzi ) for i = 1, 2, ..., n, can be estimated by the

following kernel form:

f̂i = 1

n − 1

n∑
j �=i

Kh(B
�
1nx j − B�

1nxi , B
�
2nz j − B�

2nzi ).

Therefore, a non-standardised test statistic is defined by

Sn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

ε̂i ε̂ j Kh(B
�
1nx j − B�

1nxi , B
�
2nz j − B�

2nzi ). (2.4)

Remark 2.1 The nonparametric kernel-based test in Zheng (1996) can also be extended
to check the PLSIM, and its test statistic can be defined as:

SZHn = 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h p1+p2
K̃

(
xi − x j

h
,
zi − z j

h

)
ε̂i ε̂ j , (2.5)

where K̃h = K̃ (·/h, ·/h)/h p1+p2 with K̃ (·) being a (p1 + p2)−dimensional kernel
function. There are two differences between the formulae (2.4) and (2.5). First, we
use Kh(·) in Sn instead of K̃h(·, ·) in TZH . We prove that under H0, q̂1 = q̂2 = 1,
B1n → β/||β||2 and B2n → α/||α||2 in probability, implying that our test reduces the
dimension p1 + p2 to 2. Under the alternative hypothesis, we show that B1n and B2n
are automatically consistently estimated. Second, it can be easily shown that for the
test statistic SZHn to have a finite limiting distribution under the null hypothesis, the
standardising constant must be nh(p1+p2)/2 to obtain nh(p1+p2)/2SZHn . We will see
that the standardising form nhSn has a finite limit under H0 and diverges to infinity
much faster than the typical rate nh(p1+p2)/2 of the test in Zheng (1996) under H1.
The results are presented in Sect. 3.

2.2 A review of groupwise least squares estimation

In general, matrices B1 and B2 are not identifiable. For any q1 × q1 orthogonal matrix
C1 and q2×q2 orthogonal matrixC2, as the σ -fields generated by the random variable

(B�
1 X , B�

2 Z) are equivalent to those generated by (B̃�
1 X , B̃�

2 Z) with B̃1 = B1 ×C1

and B̃2 = B2 × C2, we have

E(ε|B�
1 X , B�

2 Z) = E(ε|B̃�
1 X , B̃�

2 Z).

123



Specification testing of partially linear single-index… 237

However, it is sufficient to identify the spaces spanned by B1 and B2 whenwe construct
an adaptive-to-model test in Sect. 2.1. Groupwise dimension reduction (Li 2009) can
be used to identify the subspaces spanned by the column vectors of matrices B1 and
B2.

There are several groupwise dimension reduction approaches available in the lit-
erature. Li (2009) proposed a framework for grouped sufficient dimension reduction.
Motivated by the MAVEmethod in Xia et al. (2002), Li et al. (2010) proposed an esti-
mator to incorporate group information into dimension reduction. Guo et al. (2015)
developed groupwise dimension reduction based on the “direct sum envelope". Zhou
et al. (2016) discussed overlapped groupwise dimension reduction. Generally, these
methods are computationally demanding because the resulting estimators need to be
solved by an iterative procedure. This procedure involves iteratively estimating the
nonparametric and the parametric component. Zhu et al. (2021) proposed a GLS esti-
mation method for groupwise dimension reduction to avoid the iterative procedure.
Thus, we recommend the GLS method in Zhu et al. (2021) to estimate B1 and B2.

According to Zhu et al. (2021), GLS estimation proceeds as follows:

1. Consider some transformation functions of the response variable, f1(Y ), . . . , ft (Y )

satisfying E( fk(Y )) = 0, where t is a prespecified number, and the least-squares
estimates of regressing fk(Y ) on W = (X�, Z�)� is

βk = argmin
βk

E{ fk(Y ) − W�βk}2,

for k = 1, · · · , t . Then the target matrix M can be constructed as follows:

M = (M�
1 , M�

2 )� =
(

β1

1 + ||β1|| , . . . ,
βt

1 + ||βt ||
)

, (2.6)

where M1 and M2 are p1 × t and p2 × t matrixes, respectively.
2. Then MiM�

i is a pi × pi positive semi-definite matrix satisfying Span(MiM�
i ) =

Span(Bi ), for i = 1, 2.
3. When the observations {wi , yi }ni=1 are available, βk can be estimated by the least

squares estimates as:

βkn = argmin
βk

n∑
i=1

{
fk(yi ) − w�

i βk

}2
.

The target matrix M in (2.6) can be estimated by:

Mn = (M�
1n, M

�
2n)

� =
(

β1n

1 + ||β1n|| , . . . ,
βtn

1 + ||βtn||
)

.

When qi is given, an estimate Bin of Bi consists of the eigenvectors associated with
the qi largest eigenvalues of MiM�

i , for i = 1, 2. For more details, refer to Zhu
et al. (2021).
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2.3 Dimensionality estimation

As illustrated above, the two structure dimensions q1 and q2 are essential to estimating
matrices B1 and B2. We adopt the thresholding double ridge ratio criterion proposed
by Zhu et al. (2020). To address the special case qi = pi , we define some artificial
eigenvalues λ̂i(pi+1) = λ̂i(pi+2) = 0. Let

r̂i j = ŝ∗
i( j+1) + c2n

ŝ∗
i j + c2n

with ŝ∗
i j = λ̂i( j+1) + c1n

λ̂i j + c1n
− 1, (2.7)

where c1n and c2n are the two ridges converging to 0, and 0 ≤ λ̂i pi ≤ . . . ≤ λ̂i1 are
the eigenvalues of matrix MinM�

in/t . The dimension qi can be estimated by:

q̂i :=
{
0, if r̂i j > τ, for all 1 ≤ j ≤ pi ,
argmax1≤ j≤pi

{
j : r̂i j ≤ τ

}
, otherwise,

(2.8)

where 0 < τ < 1. Based on the rule of thumb in Zhu et al. (2020), we set τ = 0.5
to avoid overestimation with a large τ or underestimation with small τ . As the target
matrix here differs from that in Zhu et al. (2020), we recommend the ridge values
c1n = 0.4 log(n)/

√
n and c2n = 0.8 log(n)/

√
n, based on some numerical studies.

The following proposition presents the consistency of the estimators q̂k , for k =
1, 2.

Proposition 2.1 Under conditions A1 and A2 in the Appendix, assume that c1n → 0,
c2n → 0 and c1nc2nn → ∞. Then we have

lim
n→∞ P

(
q̂1 = q1, q̂2 = q2

) = 1.

3 Asymptotic properties

3.1 Limiting null distribution

First, we provide some notation. Let

s2 = 2
∫

K 2(u, v)dudvE{[Var(ε2|B�
1 X , B�

2 Z)]2 p(B�
1 X , B�

2 Z)}, (3.1)

and

ŝ2 = 2h2

n(n − 1)

n∑
i=1

n∑
j �=i

K 2
h (B

�
1nx j − B�

1nxi , B
�
2nz j − B�

2nzi )ε̂
2
i ε̂

2
j . (3.2)

Next, we state the result for the null limiting distribution.

123



Specification testing of partially linear single-index… 239

Theorem 3.1 Under H0 and the regularity conditions in the Appendix, we have

nhSn
d−→ N (0, s2).

Furthermore, s2 can be consistently estimated by ŝ2.

From Theorem 3.1, we have the standardised test statistic Tn :

Tn = nhSn/ŝ
d−→ N (0, 1).

3.2 Power study

To study how sensitive the new test statistic is against the alternative hypothesis, we
consider the following sequence of local alternative models:

H1n : Y = β�X + g(α�Z) + Cn f (B
�
1 X , B�

2 Z) + η, (3.3)

where the function f (·, ·) is continuous and differentiable and satisfies E[ f 2(B�
1

X , B�
2 Z)] < ∞, E(η|X , Z) = 0, and β and θ are the linear combination of the

columns of B1 and B2, respectively.

Lemma 3.1 Under the local alternative H1n in (3.3) with Cn = n−1/2h−1/2 and the
same conditions in Proposition 2.1 except that C2

n log n ≤ cn → 0, we have

lim
n→∞ P

(
q̂1 = q1, q̂2 = q2

) = 1.

Next, we state the results of the power performance of the test statistic.

Theorem 3.2 Under the regularity conditions in the Appendix, we have the following
results.

(i) Under H1n with a fixed Cn > 0

Tn/(nh)
P−→ Constant > 0.

(ii) Under the sequence of local alternative hypotheses H1n in (3.3), Tn has different
asymptotic properties based on the rates of Cn as follows.

(a) If q1 = q2 = 1 and Cn = n−1/2h−1/2,

Tn
d−→ N (u, 1),

where

u = E{ f 2(B�
1 X , B�

2 Z)pB1B2(B
�
1 X , B�

2 Z)}/s

with s2 defined by (3.1);
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(b) if q1 + q2 > 2, Cnn1/2h1/2 → c0 > 0 for some constant c0 or Cnn1/2h1/2 →
∞ and Cnn1/2h(q1+q2)/4 → 0, we have

Tn/h
(q1+q2−2)/2 d−→ N (0, 1);

(c) if q1 + q2 > 2 and, Cn = n−1/2h−(q1+q2)/4, we have

Tn/h
(q1+q2−2)/2 d−→ N (u, 1);

(d) if q1 = q2 = 1 andCnn1/2h1/2 → ∞, or q1+q2 > 2 andCnn1/2h(q1+q2)/4 →
∞, we have

Tn/(C
2
nnh)

P−→ u > 0.

4 Numerical studies

4.1 Simulations

In this subsection, we examine the finite-sample performance of the proposed test
using several numerical examples. Each experiment is repeated 1000 times to compute
the empirical sizes and powers at the significance level α = 0.05. The parametrical
vectors β and α are estimated using the MAVE method in Xia and Härdle (2006) (see
the Appendix). In some applications, the asymptotic normal approximation does not
work well in finite sample settings. Thus, re-sampling techniques are often used in
finite samples. We apply the wild bootstrap algorithm adopted by Guo et al. (2016).

Consider the bootstrap observations y∗
i = β̂T xi + g(α̂T zi )+ ε∗

i , where ε∗
i = ε̂i ×Ui .

{Ui }ni=1 can be chosen to be i.i.d. Bernoulli variates with

P

(
Ui = 1 − √

5

2

)
= 1 + √

5

2
√
5

, P

(
Ui = 1 + √

5

2

)
= 1 − 1 + √

5

2
√
5

.

Let T ∗
n be the bootstrap version of Tn , based on the bootstrap samples {(x1, z1, y∗

1 ),· · · , (xn, zn, y∗
n )}. The null hypothesis is rejected if Tn is larger than the corresponding

quantile of the bootstrap distribution of T ∗
n .

For our test, we select the kernel function K (·) to be Gaussian, and set the band-
widths as h1 = 0.8n−1/(1+4) and h = 0.8n−1/(q̂1+q̂2+4)with the estimated dimensions
q̂1 and q̂2 of B�

1n X and B�
2n Z , where h1 is used to estimate β, α and the function g(·)

and h is used to construct the test statistics.
As in Remark 2.1, we extend the test in Zheng (1996) to check the PLSIMs for

comparison and write the test statistic as T ZH
n . For the test in Zheng (1996), we

set the bandwidth as h = 1.5n−1/(4+p1+p2) and select the quartic kernel function
K (u) = 15

16

(
1 − u2

)2
, if |u| ≤ 1 and 0, otherwise. We compare the results of these

two test statistics computed from the 500 wild bootstrap samples.
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The observations {xi }ni=1 and {zi }ni=1 are generated i.i.d. from multivariate normal
distributions N (0p1 , �1) and N (0p2 , �2), respectively, and independent of the stan-
dard normal errors. Here, �1 = Ip1×p1 and �2 = Ip2×p2 . The sample sizes are set as
n = 200, 400 and the dimensions are p1 = p2 = 4, 8.

Example 1 Consider the model

Y = β�X + (α�Z + 1)2 + a(0.4β�X + 1)2 + ε,

where β and α are set using the following two cases:

• Case 1: β = (1, . . . , 1︸ ︷︷ ︸
p1/2

, 0, . . . , 0)�/
√
p1/2, and α = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

p2/2

)�/

√
p2/2;

• Case 2: β = (1, . . . , 1︸ ︷︷ ︸
p1

)/
√
p1, and α = (1, . . . , 1︸ ︷︷ ︸

p2

)/
√
p2.

The error term ε follows the standard normal distribution. In this example, a = 0 and
a �= 0 correspond to the null and the alternative hypothesis, respectively. The results
of the empirical sizes and powers are displayed in Table 1. From Table 1, we make
the following observations:

First, the proposed Tn can control the empirical sizes well. T ZH
n tends to be con-

servative, especially when p1 = p2 = 4, but when p1 = p2 = 8, the significance
level can be better maintained. Second, the empirical powers of the proposed test Tn
increase reasonably with larger a, and thus the test is significantly and uniformly more
powerful than T ZH

n . T ZH
n is invalid when detecting the alternative hypothesis with a

large dimension p1 = p2 = 8. For p1 = p2 = 4 and p1 = p2 = 8, the dimensions
of X and Z have less influence for Tn than they do for T ZH

n . Tn performs uniformly
better than T ZH

n in the above two cases.

Example 2 In this example, we examine the finite sample performance of the proposed
method under the following model:

Y = β�X + exp(α�Z) + 0.6(α�Z)2 + a(β�X)2 + ε,

where all parameter values are set to be the same as those in Example 1. a = 0 corre-
sponds to the null hypothetical model. The empirical sizes and powers are presented
in Table 2.

We observed that the power performances of Tn in Example 1 and Example 2 are
similar by comparing Tables 1, 2 and 3. The proposed test canmaintain the significance
level as well as in the previous example, and its power performs significantly and
uniformly better than that of the test in Zheng (1996).

Example 3 In this example, we examine the finite sample performance of the proposed
method under the model:

Y = β�X + 0.9(α�Z)3 + a(X1 + 0.5X2
2) + ε,
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Table 1 Empirical sizes and powers of the tests for Example 1

Tn T ZH
n

p1 = p2 = 4 p1 = p2 = 8 p1 = p2 = 4 p1 = p2 = 8

a n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

Case 1 0 0.041 0.054 0.051 0.057 0.099 0.081 0.061 0.053

0.2 0.214 0.495 0.263 0.522 0.101 0.080 0.060 0.050

0.4 0.770 0.979 0.751 0.983 0.095 0.118 0.068 0.051

0.6 0.987 1.000 0.978 1.000 0.149 0.192 0.065 0.069

0.8 1.000 1.000 0.999 1.000 0.191 0.255 0.045 0.057

1 1.000 1.000 1.000 1.000 0.237 0.315 0.072 0.080

Case 2 0 0.039 0.046 0.044 0.052 0.095 0.079 0.057 0.067

0.2 0.200 0.490 0.238 0.495 0.100 0.086 0.058 0.069

0.4 0.747 0.985 0.768 0.984 0.097 0.110 0.055 0.069

0.6 0.984 1.000 0.977 1.000 0.152 0.190 0.060 0.062

0.8 1.000 1.000 1.000 1.000 0.206 0.270 0.064 0.058

1 1.000 1.000 1.000 1.000 0.205 0.331 0.074 0.080

Table 2 Empirical sizes and powers of the tests for Example 2

Tn T ZH
n

p1 = p2 = 4 p1 = p2 = 8 p1 = p2 = 4 p1 = p2 = 8

a n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

Case 1 0 0.035 0.045 0.040 0.047 0.098 0.077 0.055 0.046

0.2 0.194 0.633 0.121 0.513 0.093 0.086 0.061 0.048

0.4 0.756 0.989 0.514 0.955 0.121 0.160 0.056 0.036

0.6 0.909 1.000 0.758 0.987 0.195 0.261 0.058 0.058

0.8 0.933 0.998 0.799 0.993 0.271 0.434 0.063 0.051

1 1.000 1.000 0.824 1.000 0.370 0.584 0.066 0.045

Case 2 0 0.031 0.044 0.041 0.048 0.078 0.068 0.059 0.050

0.2 0.199 0.604 0.117 0.464 0.084 0.099 0.048 0.054

0.4 0.699 0.994 0.461 0.952 0.137 0.175 0.045 0.041

0.6 0.900 1.000 0.752 0.993 0.196 0.295 0.056 0.045

0.8 0.938 0.999 0.792 0.997 0.283 0.441 0.045 0.044

1 0.942 0.997 0.839 0.995 0.358 0.583 0.063 0.065

where Xi and Zi denote the i−th components of X and Z , respectively. All parameters
values are the same as those used in Example 1. The related results are displayed in
Table 3.

FromTable 3, both tests still control the sizewell.When p1 = p2 = 4, the empirical
powers of Tn increase faster than those of T ZH

n as a increase. For T ZH
n , the empirical

sizes and powers are close to the significance level α = 0.05 when p1 = p2 = 8.
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Table 3 Empirical sizes and powers of the tests for Example 3

Tn T ZH
n

p1 = p2 = 4 p1 = p2 = 8 p1 = p2 = 4 p1 = p2 = 8

a n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

Case 1 0 0.036 0.046 0.037 0.055 0.077 0.073 0.027 0.030

0.2 0.157 0.470 0.100 0.254 0.080 0.092 0.039 0.027

0.4 0.699 0.975 0.444 0.874 0.095 0.132 0.041 0.041

0.6 0.962 1.000 0.837 0.996 0.138 0.226 0.033 0.039

0.8 0.996 1.000 0.983 1.000 0.222 0.366 0.028 0.037

1 1.000 1.000 0.996 1.000 0.270 0.464 0.048 0.045

Case 2 0 0.041 0.054 0.043 0.055 0.074 0.072 0.033 0.032

0.2 0.086 0.298 0.080 0.470 0.082 0.090 0.035 0.037

0.4 0.435 0.856 0.292 0.666 0.080 0.117 0.037 0.038

0.6 0.854 1.000 0.667 0.968 0.134 0.189 0.039 0.049

0.8 0.987 0.998 0.938 0.999 0.179 0.306 0.036 0.038

1 0.998 1.000 0.986 1.000 0.222 0.411 0.043 0.047

Tn is significantly better than T ZH
n at detecting the alternative hypothesis because

dimension reduction mitigates the curse of dimensionality.

Example 4 To examine the stability of powers against the structure dimension, we
consider a more complex model with higher structure dimensions q1 and q2:

Y = β�X + sin(α�Z) + 2α�Z + a(X3
1 + 0.3X2

2 + exp(X3) + |X4|
+0.2Z2

1 + Z2
2 + cos(Z3) + Z3

4)/4 + ε,

where Xi and Zi denote the i−th components of X and Z , respectively. All parameters
values are the same as those used in Example 1. a = 0 corresponds to the null
hypothetical model. Under the alternative hypotheses, the structural dimensions q1
and q2 of the alternative models are equal to 4. The results are presented in Table 4.

We observe that the performances of empirical powers and sizes in Example 4 and
Examples 1–3 are similar by comparing Table 4 and Tables 1, 2 and 3. The empirical
sizes of the two tests are close to the significance level. However, the proposed test has
significantly higher power than T ZH

n , especially when p1 = p2 = 8. We also find that
the structural dimensions have a negligible effect on the empirical sizes and powers
of our test.
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Table 4 Empirical sizes and powers of the tests for Example 4

Tn T ZH
n

p1 = p2 = 4 p1 = p2 = 8 p1 = p2 = 4 p1 = p2 = 8

a n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

Case 1 0 0.041 0.046 0.044 0.054 0.109 0.108 0.082 0.071

0.2 0.087 0.191 0.133 0.267 0.110 0.102 0.091 0.095

0.4 0.308 0.573 0.399 0.741 0.107 0.116 0.065 0.086

0.6 0.617 0.946 0.712 0.965 0.132 0.148 0.077 0.072

0.8 0.832 0.990 0.888 0.998 0.163 0.214 0.060 0.087

1 0.930 1.000 0.965 1.000 0.166 0.259 0.061 0.096

Case 2 0 0.044 0.057 0.042 0.053 0.115 0.079 0.073 0.057

0.2 0.127 0.256 0.111 0.188 0.118 0.087 0.078 0.069

0.4 0.430 0.759 0.288 0.567 0.106 0.117 0.067 0.082

0.6 0.727 0.976 0.566 0.881 0.123 0.164 0.082 0.067

0.8 0.918 1.000 0.794 0.981 0.155 0.187 0.068 0.068

1 0.971 1.000 0.899 0.998 0.157 0.280 0.064 0.080

4.2 Real data analysis

4.2.1 Body fat data

We now apply the proposed method to the analysis of the body fat data, which can
be found at http://lib.stat.cmu.edu/datasets/bodyfat. Chen et al. (2016) analysed this
dataset, which provides estimates of the percentage of body fat determined by under-
water weighing and various body circumference measurements. The dataset contains
251 samples with 14 attributes. Consistent with Chen et al. (2016), we select the
following 12 attributes: height4/weight2, age, and circumferences of 10 body parts,
namely, neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, and wrist.
We set the knee, ankle, and forearm circumferences as X = (X1, X2, X3). The other
predictors are set as Z = (Z1, Z2, · · · , Z9). The response variable is the logarithm of
the percentage of body fat (Y ). We delete one observations in which the percentage of
body fat is equal to 0.

The value of the test statistic is Tn = 18.2261 and the p−value is approximately
0. Therefore, there is enough evidence to reject the null hypothesis at the significance
level α = 0.05. The residual plot of the PLSIM fitted against β̂�X and α̂�Z in Fig. 1
shows a linear relationship between β̂�X and the residuals.

4.2.2 Auto MPG

This data set is obtained from the Machine Learning Repository at the University of
California-Irvine (http://archive.ics.uci.edu/ml/datasets/Auto+MPG). Xia (2007) and
Guo et al. (2016) analysed this data set. It has 406 samples and 8 attributes. The
predictors are cylinders, engine displacement, horsepower, vehicle weight, time to
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Fig. 1 Plot of the residuals against the linear part and single-indexing direction in the body fat data

Fig. 2 Plot of the residuals against the single-index direction in the Auto MPG data

accelerate from 0 to 60 mph, model year, and the origin of the car. Miles per gallon
(Y ) is the response variable. Consistent with Xia (2007), we set cylinders, engine
displacement, horsepower, vehicle weight, time to accelerate from 0 to 60 mph, and
model year as Z1, Z2, · · · , Z6. X1 = 1 if a car is from America, and 0 otherwise.
X2 = 1 if a car is from Europe and 0 otherwise.

The value of the proposed test statistic is Tn = −1.1447, and the p-value is 0.2523.
Hence, the null hypothesis should be accepted at the significance level α = 0.05. We
plot the residual plot against the single-indexing direction in Fig. 2, and the plot shows
no pattern. Thus, it is reasonable to fit this dataset based on the PLSIM.
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5 Appendix

5.1 Brief review of theminimum average variance estimation of the PLSIM

As stated previously, the proposed test procedure needs to estimate the parameter
vectors β and α and the function g. Therefore, we briefly review the MAVE approach
developed by Xia and Härdle (2006) to estimate the PLSIM. The basic algorithm is
based on the minimum average variance:

(β, α) = argmin
β,α

E
[
Y − β�X − g

(
α�Z

)]2

subject to ||α|| = 1. A two-step iterative algorithm to estimate the PLSIM. Given
(β, θ), we have:

(
a j

d j

)
=

{
n∑

i=1

wi j

(
1

z�i jα

)(
1

z�i jα

)T
}−1 n∑

i=1

wi j

(
1

z�i jα

)(
yi − β�zi

)
.

Given
(
a j , d j

)
, we have:

(
β̂

α̂

)
=

⎧⎨
⎩

n∑
j=1

G
(
α�z j

)
In

(
z j
) n∑
i=1

wi j

(
Xi

d j zi j

)(
xi

d j zi j

)T
⎫⎬
⎭

−1

×
n∑
j=1

G
(
α�z j

)
In

(
Z j

) n∑
i=1

wi j

(
xi

d j Zi j

) (
yi − a j

)
,

where zi j = zi −z j ,wi j , for i, j = 1, 2, · · · , n, are someweights with
∑n

i=1 wi j = 1,
and G(·) is another weight function that controls the contribution of (X j , Z j ,Y j ) to
the estimation of β and θ . The function g can be estimated using the following kernel
estimate:

ĝ(B2n
�zi ) =

1
n−1

∑n
j �=i Qh1(B

�
2nz j − B�

2nzi )(yi − β̂�xi )
1

n−1

∑n
j �=i Qh1(B

�
2nz j − B�

2nzi )
,

where Qh1 = K (·/h1)/h1 with Q(·) being some univariate kernel function.
In our numerical studies, the MAVE method is implemented by using the first

column vector of B1n and B2n as the initial estimators for β and α and setting the
maximum number of iterations to 100. More details can be found in Xia and Härdle
(2006).
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5.2 Regularity conditions

A1 Let W = (X , Z). Assume that E(W |B�W ) is a linear function of B�W with
the columns of B ∈ R

p×q being any basis of the central space SY |W , where
p = p1 + p2 and q denotes the dimension of SY |W .

A2 fi (Y )’s satisfy E[ fi (Y )] = 0 and E[ f 2i (Y )] < ∞ for i = 1, · · · , t and the
coverage condition holds, namely, the target matrix M defined in (2.6) is such
that Span(M) = SY |W . Additionally, the second moment of W exists.

A3 The density function pB1,B2(·, ·) of (B�
1 X , B�

2 Z) is continuous with a bounded
first-order derivative and satisfies, on its support C1,

0 < inf
(B�

1 x,B�
2 z)∈C2

pB1,B2(B
�
1 x, B�

2 z) ≤ sup
(B�

1 x,B�
2 z)∈C2

pB1,B2(B
�
1 x, B�

2 z) < ∞.

A4 The function g(·) is η−order partially differentiable for some positive integer η,
and the ηth partially derivative of g(·) is bounded.

A5 The kernel function Q(·) is symmetric and second-order continuously differen-
tiable, and satisfies

∫
ui Q(u)du = δi0, (i = 0, 1, . . . , η − 1),

Q(u) = O((1 + |u|η+1+γ )−1), some γ > 0,

where δi j is the Kronecker delta with η given in Condition A4.
A6 The kernel function K (·) is a bounded, symmetric kernel function. It is first order

continuously differentiable and satisfies
∫
K (u)du = 1.

A7 n → ∞, h1 → 0, h → 0,

1) under the null or local alternative hypotheses with Cn = n−1/2h−1/2, nh1 →
∞, nh2 → ∞ and nh2η1 h → 0;

2) under the global alternative hypothesis, nh1 → ∞, nhq1+q2 → ∞ and
nh2η1 h(q1+q2)/2 → 0,

where η is given in Condition A6.

Remark 5.1 Conditions A1 andA2 are necessary for obtaining consistent estimators of
matrixes B1 and B2. The linearity condition A1 holds when W follows an elliptically
contoured distribution, see Li (1991), and it is mild in high-dimensional scenarios
(see Hall and Li 1993). The coverage condition Span(M) = SY |W in Condition A2 in
the literature is widely adopted to overcome technical issues, see Wu and Li (2011).
Conditions A3, A4, A5 and A6 are widely used in the literature for nonparametric
estimation. The four conditions ensure that the test is well-behaved, see Fan and Li
(1996) and Zheng (1996). It is worth pointing out that Condition A5 pertaining to the
higher-order kernel plays a critical role in bias reduction, see Robinson (1988) and Fan
and Li (1996). We use different bandwidths h1 and h to estimate the function ĝ(·) and
construct the test statistic Tn , because they involve the various covariates under the
alternative hypothesis. This phenomenon has been discussed in several studies. For
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example Stute and Zhu (2005) stated that the optimal bandwidth for estimation should
be different from that for test statistic construction. For more details on Conditions
A3-A7 refer to Fan and Li (1996), Zhu and Zhu (2018) and Zhu et al. (2021).

5.3 The proofs of the theoretical results

Proof of Proposition 2.1. Employing the same justification procedure to that for The-
orem 2.1 in Zhu et al. (2020), we can get the results. Then we omit the detail here.

Proof of Theorem 3.1. Define the events A1n = {Tn ≤ c} for any constant c and
A2n = {q̂1 = 1, q̂2 = 1}. Proposition 2.1 shows that under the null hypothesis,
limn→∞ P(A2n) = 1, where P(A) denotes the probability that event A happens.
Then we have limn→∞ P(A2n) = limn→∞ P(A1n ∩ A2n). This result ensures that
under the null hypothesis, in an asymptotic sense we only need to consider the prop-
erties of the test statistic on the event that q̂1 = 1 and q̂2 = 1.

For notation simplicity, define KB1n B2ni j = K ((B�
1 xi − B�

1 x j )/h, (B�
2 zi −

B�
2 z j )/h), K 1

B1B2i j
= ∂K (B�

1 (xi−x j )/h,B�
1 (zi−z j )/h)

∂(B�
1 (xi−x j )/h)

, K 1
B1B2i j

=
∂K (B�

1 (xi−x j )/h,B�
1 (zi−z j )/h)

∂(B�
2 (zi−z j )/h)

, gi = g(θ�zi ), ĝi = ĝ(θ̂�zi ), εi = yi − β�
1 x j − gi ,

ε̂i = yi − β̂�
1 x j − ĝi , pi = pB2(B

�
2 zi ) and p̂i = p̂B2n (B

�
2nzi ), ỹi = yi − β�xi .

Throughout the proof of this theorem, Ei (·) = E(·|B�
1 xi , B�

2 wi ).
Noted that ε̂i = yi −β̂�

1 xi − ĝ(α̂�zi ) = εi +[β�xi −β̂�xi ]+[g(α�zi )− ĝ(α̂�zi )].
We then decompose the term Sn as

Sn = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni jεiε j

+ 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j [β�

1 xi − β̂�
1 xi ][β�

1 x j − β̂�
1 x j ]

+ 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j [gi − ĝi ][g j − ĝ j ]

+ 2

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j [β�xi − β̂�xi ]ε j

+ 2

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j [gi − ĝi ]ε j

+ 2

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j [β�xi − β̂�xi ][g j − ĝ j ]

≡: S1n + S2n + S3n + 2S4n + 2S5n + 2S6n . (5.1)
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We now prove that both the terms nhSn and nhS1n have the same limiting null
distribution, nhS2n = op(1), nhS3n = op(1), nhS4n = op(1), nhS5n = op(1) and
nhS6n = op(1).

Consider the term S1n . The first order Taylor expansion for S1n with respect to B1
and B2 yields

S1n =: S11n + S12n + S13n,

where S11n and S12n have the following forms:

S11n = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1B2i jεiε j ,

S12n = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h3
K 1

B̃1 B̃2i j
(B1n − B1)

�(xi − x j )εiε j ,

S13n = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h3
K 1

B̃1 B̃2i j
(B2n − B2)

�(zi − z j )εiε j ,

with B̃1 = {B̃1i j }p1×q1 , B̃1i j ∈ [min{B1i j , B1ni j },max{B1i j , B1ni j }], B1 =
{B1i j }p1×q1 and B1n = {B1ni j }p1×q1 . Due to the facts that ||B1n − B1|| = Op(1/

√
n)

and the kernel function K (·) has a continuous and bounded first-order derivative, we
infer that replacing B̃1 by B1 does not influence the convergence rates of S12n and S13n .
Similarly, we can infer that replacing B̃2 by B2 does not influence the convergence
rates of S12n and S13n .

It is obvious that S11n is an U−statistic with the kernel as:

H(vi , v j ) = 1

h2
KB1B2i jεiε j ,

where vi = (xi , zi , yi ). Under null hypothesis, as E[H(vi , v j )|v j ] = 0, S11n is a
degenerate U -statistic. Under Conditions A3–A7, adapting the similar arguments as
that for Lemma 3.3 in Zheng (1996), we can obtain

nhS11n
d−→ N (0, s2).

We now prove that the second term nhS12n and nhS13n tend to zero. As K (·) is
spherically symmetric, the term S12n can be rewritten as anU -statistic with the kernel:

H(vi , v j ) = 1

h3
K 1

B1B2i j (B1n − B1)
�(xi − x j )εiε j

+ 1

h3
K 1

B1B2i j (B1n − B1)
�(x j − xi )εiε j .
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It is obvious that E[H(vi , v j )|vi ] = 0. Thus, the term S12n is a degenerateU−statistic.
Applying the arguments used for handling the term S11n , together with ||B1n − B1|| =
Op(1/

√
n), it yields that nhS12n = op(1). Similarly, we can get that nhS13n = op(1).

Therefore, together with the results about S11n , S12n and S13n , we have

nhS1n
d−→ N (0, s2).

Now we turn to prove that nhS2n = op(1). Note that

S2n = (β1 − β̂1)
� 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h2
KB1n B2ni j (xi − xi )(x j − x j )

�(β1 − β̂1)

≡: (β1 − β̂1)
� S̃2n(β1 − β̂1).

Due to the fact S̃2n is a U−statistic, it is easy to conclude that S̃2n = Op(1). Because
β1 − β̂1 = Op(1/

√
n) and h → 0, we get nhS2n = Op(h) = op(1).

Consider the term S3n that can be written as:

S3n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

h2
KB1n B2ni j

p̂i
pi

p̂ j

p j
[ĝi − gi (u)][ĝ j − g j ]

+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

h2
KB1n B2ni j

[
p̂i − pi

pi

p̂ j − p j

p j
− 2

( p̂i − pi ) p̂ j

pi p j

]

[ĝi − gi (u)][ĝ j − g j ]
=: S̃3n + op(S̃3n).

Substituting the kernel estimators ĝi and p̂i into S̃3n , we have

S̃3n = 1

n(n − 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

1

h2
1

h21

1

pi p j
KB1n B2ni j QB2nil QB2n jk

[yl − β̂�xl − gi ][yk − β̂�xk − g j ].

Due to the facts B1n − B1 = Op(1/
√
n), B2n − B2 = Op(1/

√
n) and βn − β =

Op(1/
√
n), adapting the similar statement for dealing with the term S1n , we can infer

that replacing B1n , B2n and β̂ by B1, B2 and β respectively does not influence the
convergence rates of S̃3n , namely,

S̃3n = S̃31n + op(S̃31n),
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where

S̃31n = 1

n(n − 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

1

h2
1

h21

1

pi p j
KB1B2i j QB2il QB2 jk

[ỹl − gi ][ỹk − g j ].

Following the similar idea of justifying Proposition A.1 in Fan and Li (1996), we will
show nhS̃31n = op(1) by proving that E(S̃231n) = o(n−2h−2). However, it is difficult
and tedious to directly calculate E(S̃231n) since it contains eight summations. We first
show E(S̃31n) = o(n−1h−1). Then we use this result and a symmetry argument to
show E(S̃231n) = o(n−2h−2).

Decompose E(S̃31n) with two terms with two subsets of subscripts as:

A1 = {i, j, l, k are all different from each other};
A2 = {i, j, l, k take no more than three different values}.

Then S̃31n can be decomposed as S̃31n = S̃311n + S̃312n , where the summation indices
of S̃311n and S̃312n are associated with A1 and A2, respectively.

Under the assumption that nh2η1 h = o(1), by applying Lemma B.1, Lemmas 2 and
3 in Robinson (1988), we have

E(S̃311n) = 1

hh21
E

(
KB1B213E1

{
1

p1
QB112[g2 − g1]

}

E3

{
1

p3
QB134[g4 − g3]

})

≤ C
h2η1
hq1

E
[
DF (B�

2 z1, u)DF (B�
2 z3, u)KB1B213

]

= O(h2η1 ) = o(n−1h−1).

Next we consider subset A2. It can be divided into three groups: case (I) l = k;
case (II) l = j ; case (III) k = i . Then S̃312n can be further decomposed as S̃312n =
S̃3121n + S̃3122n + S̃3123n associated with the above three sub-events. For S̃3121n with
the sub-event (I),

E(S̃3121n) = 1

n(n − 1)3

n∑
i=1

n∑
j �=i

n∑
k �=i,k �= j

1

hh21
E

(
1

pi p j
KB1B2i j QB2ik QB2 jk

×[gk − gi ][gk − g j ]
)

.

By applying Lemma B.1, Lemmas 2 and 3 in Robinson (1988) and Fubini’s theorem,
we have
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E(S̃3121n) = n(n − 1)(n − 2)

n(n − 1)3hh21
E

(
1

p1 p2
KB1B212QB213QB223[g3 − g1][g3 − g2]

)

= (n − 2)

(n − 1)2hh21
E

(
1

p1 p2
KB1B212E1

{[g3 − g1]QB213
}
QB223[g3 − g2]

)

= O(n−1hη
1h

−1) = o(n−1h−1).

The same argument can be applied to the terms E(S̃3122n) and E(S̃3123n) to obtain
the upper bound o(n−1h−1). Hence, altogether we have E(S̃31n) = E(S̃311n) +
E(S̃312n) = o(n−1h−1).

Now we consider E(S̃231n) by using the similar decomposition of E(S̃31n) although
it is much more complicated. Note that

E(S̃231n) = E

{
1

n3(n − 1)

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

1

hh21

1

pi p j
KB1B2i j QB2il QB2 jk

[gl − gi ][gk − g j ]
}2

= 1

n6(n − 1)2
1

h2h41

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

n∑
i ′=1

n∑
j ′ �=i ′

n∑
l ′ �=i ′

n∑
k′ �= j ′

E

({
1

pi p j
KB1B2i j QB2il QB2 jk[gl − gi ][gk − g j ]

}

{
1

pi ′ p j ′
KB1B2i ′ j ′QB2i ′l ′QB2 j ′k′ [gl ′ − gi ′ ][gk′ − g j ′ ]

})

=: L A1 + L A2 + L A3,

where the summation indices of L A1, L A2 and L A3 respectively associated with three
subsets of subscripts B1, B2 and B3 as:

B1 = {i, j, l, k are all different from i ′, j ′, l ′, k′ };
B2 = {exactly one index from i, j, l, k equals one of subscripts i ′, j ′, l ′, k′};
B3 = {the eight summation indices i, j, l, k, i ′, j ′, l ′, k′ take no more than six
different values}.

With B1, the sums in L A1 with i, j, l, k and i ′, j ′, l ′, k′ are independent of each
others. Thus L A1 is equal to the square of E(S̃21n). Hence we can obtain that L A1 =
o(n−2h−q1). Next we consider L A2 with the subset B2. By symmetry, we only need
to compute three cases: case (I) i = i ′; case (II) i = l ′; case (III) l = l ′, and L A2 can
be further decomposed as L A2 = L A21 + L A22 + L A23 associated with the above
three subsets.
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Under case (I),

L A21

= 1

n2(n − 1)6h2h41

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

E

[
1

pi p j
KB1B2i j QB2il QB2 jk [gl − gi ][gk − g j ]

n∑
j ′ �=i

n∑
l ′ �=i

n∑
k′ �= j

1

pi p j ′
KB1B2i j ′ QB2il ′ QB2 j ′k′ [gl ′ − gi ][gk′ − g j ′ ]

]
.

Via an application of the Fubini’s theorem and Lemma B.1, Lemmas 2 and 3 in
Robinson (1988), we have

L A21

= 1

nh2h41
E

[
1

p1 p2
KB1B212QB213QB224[g3 − g1][g4 − g2]

1

p1 p5
KB1B215QB216QB257[g6 − g1][g7 − g5]

]

= 1

nh2h41
E

(
1

p1 p2
E1

{[g3 − g1]QB213
}
E2

{[g4 − g2]QB224
}

1

p1 p5
E1

{[g6 − g1]QB216
}
E5

{[g7 − g5]QB257
}
KB1B212KB1B215

)

≤ h4η1
nh2

E

[
1

p1 p2 p1 p5
KB1B212DF (B�

2 z1)DF (B�
2 z2)D(B�

2 z1)D(B�
2 z5)KB1B215

]

= O(h4η1 n−1) = o(n−2h−2).

In case (II),

L A22

= 1

n2(n − 1)6h2h41

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �= j

E

(
1

pi p j
KB1B2i j QB2il QB2 jk [gl − gi ][gk − g j ]

n∑
i ′ �=i

n∑
j ′ �=i ′

n∑
k′ �= j ′

1

pi ′ p j ′
KB1B2i ′ j ′ QB2i ′i QB2 j ′k′ [gi − gi ′ ][gk′ − g j ′ ]

)
.

The application of Fubini’s theorem and Lemma B.1, Lemmas 2 and 3 in Robinson
(1988) again yields

L A22

= 1

nh2h41
E

(
1

p1 p2
KB1B212QB213QB224[g3 − g1][g4 − g2]

1

p5 p6
KB1B256QB215QB267[g1 − g5][g7 − g6]

)

= 1

nh2h41
E

(
KB1B212

1

p1 p2
E1

{[g3 − g1(u1)]QB213
}
E2

{[g4 − g2QB224
}
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1

p5 p6
KB1B256[g1 − g5]QB215E6

{[g7 − g6]QB267
})

≤ h3η1
nh2

E

[
1

p1 p2 p1 p5
KB1B212DF (B�

2 z1)DF (B�
2 z2)

[g1 − g5]QB215DF (B�
2 z6)KB1B256

]

= O(h3η1 n−1) = o(n−2h−2).

For case (III), the similar argument as above for case (II) can be used to justify L A23 =
o(n−2h−q1). Altogether, we have L A2 = o(n−2h−q1).

Last, consider the sum L A3 with the subsetB3 inwhich the eight summation indices
i, j, l, k, i ′, j ′, l ′, k′ take no more than six different values. As it is easy to show that
L A3 = o(n−2h−2) by the similar arguments used above, we then omit the detail.
Altogether, we conclude that E(S̃231n) = o(n−2h−2). The application of Chebyshiev’s
inequality implies S̃31n = op(n−1h−1).

Using the similar process as those for the term S̃31n , under Conditions A3−A7 in
Appendix, we can justify that the terms S̃321n , S̃322n and S̃323n have the following
converging rates:

E(||S̃321n||2) = O(max{h2η1 , h2η1 n−1, hη
1n

−1}) = o(n−1h−1);
E(||S̃2322n||2) = O(max{h2η1 , h2η1 n−1, hη

1n
−1}) = o(n−1h−1);

E(||S̃2323n||2) = O(max{h4η1 , h4η1 n−1, h3η1 n−1}) = o(n−1h−1).

To save the space, we omit somemore detailed deductions. The Chebyshiev’s inequal-
ity yields that

S̃321n = op(n
−1/2h−1); S̃322n = op(n

−1/2h−1); S̃323n = op(n
−1/2h−1).

As ||B1n − B1|| = Op(n−1/2), together with the above convergence rates, we have
S̃32n = op(n−1h−1). Combining the convergence rates of S̃31n and S̃32n , we conclude
S̃3n = op(n−1h−q1/2).

Now we discuss the convergence rate of the term S5n . Note that

S5n = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h
KB1n B2ni jεi [ĝ j − g j ] p̂ j

p j

+ 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h
KB1n B2ni jεi [ĝ j − g j ]

(
p̂ j − p j

p j

)

=: S̃5n + op(S̃5n).
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Substituting the kernel estimators ĝ j and p̂ j into S̃5n , we have

S̃5n = 1

n(n − 1)2

n∑
i=1

n∑
j �=i

n∑
k �= j

1

hh1

1

p j
KB1n B2ni jεi QB2n jk[gk − g j ].

Adopting the similar process for dealing with the term S1n and S3n , we can infer
that replacing B1n , B2n and β̂ by B1, B2 and β respectively does not influence the
convergence rates of S̃3n , namely,

S̃5n = S̃51n + op(S̃51n),

where

S̃51n = 1

n(n − 1)2

n∑
i=1

n∑
j �=i

n∑
k �= j

1

hh1

1

p j
KB1B2i jεi QB2 jk[ỹk − g j ].

As E[εi |xi , zi ] = 0, Fubini’s theorem and the properties of conditional expectation
yield E(S̃51n) = 0. We then consider the second order moment of S̃51n as:

E(S̃251n)

= E

{
1

n(n − 1)2

n∑
i=1

n∑
j �=i

n∑
k �= j

1

hh1

1

p j
KB1B2i jεi QB2 jk[ỹk − g j ]

}2

= E

{
1

n2(n − 1)4
1

h2h21

n∑
i=1

n∑
i �= j

n∑
k �= j

n∑
i ′=1

n∑
i ′ �= j ′

n∑
k′ �= j ′

1

p j p j ′
KB1B2i j KB1B2i ′ j ′QB2 jk QB2 j ′k′εi [ỹk − g j ]εi ′ [ỹk′ − g j ′ ]

}

= E

{
1

n2(n − 1)4
1

h2h21

n∑
i=1

n∑
i �= j

n∑
k �= j

n∑
i ′=1

n∑
i ′ �= j ′

n∑
k′ �= j ′

1

p j p j ′
KB1B2i j QB2 jk KB1B2i ′ j ′QB2 j ′k′εi [gk − g j ]εi ′ [gk′ − g j ′ ]

}
+ o(n−2h−2).

Note that E[εiεi ′ |wi , wi ′ ] �= 0 if and only if i = i ′. Fubini’s theorem and the Lemma
B.1, Lemmas 2 and 3 in Robinson (1988) altogether yields:

E(S̃251n)

= 1

nh2h21
E

{
1

p2 p4
KB1B212QB223KB1B214QB245E[ε21 |w1][g3 − g2][g5 − g4]

}

= 1

nh2h21
E

(
1

p2 p4
KB1B212KB1B214E[ε21 |w1]
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E2
{
QB123[g3 − g2]

}
E4

{
QB145[g5 − g4]

})

≤ h2η1
nh2

E

[
1

p2 p4
KB1B212KB1B214DF (B�

2 z2)DF (B�
2 z4)

]

= O(h2η1 n−1) = o(n−2h−1).

The Chebyshiev’s inequality implies that S̃51n = op(n−1h−1). Thus S5n =
op(n−1h−1).

Using the similar statement to deal with the terms S1n , S2n and S5n , we can conclude
that S4n = op(n−1h−1) and S6n = op(n−1h−1).

To sum up, together with all the results about the terms Sin for i = 1, · · · , 6, we
conclude that

nhSn
d−→ N (0, s2).

To complete the proof of this theorem, we justify the consistency of s2n to s2, where
s2n is

s2n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

h2
K 2

B1n B2ni j ε̂
2
i ε̂

2
j .

Under the null hypothesis, since B1n , B2n and ĝ are uniformly consistent to B1, B2
and g, respectively, some elementary computations yield an asymptotic presentation:

s2n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

h2
K 2

B1B2i jε
2
i ε

2
j + op(1) =: s̃2n + op(1).

It is clear that s̃2n is an U−statistic with kernel:

H(wi , yi , w j , y j ) = 1

h2
K 2

B1B2i jε
2
i ε

2
j .

We can easily show that the condition of lemma 3.1 of Zheng (1996) is satisfied. Based
on U -statistic theory, it is easy to justify s̃2n = E(s̃2n ) + o(1), where

E(s̃2n ) = s2 + o(1)

= 2
∫

K 2(u, v)dudvE{[Var(ε2|B�
1 X , B�

2 Z)]2 p(B�
1 X , B�

2 Z)} + o(1).

The more details can be found in Fan and Li (1996) and Zheng (1996). ��
Proof of Theorem 3.2. Here we use the similar notations as those in Theorem 3.1 of
the main body. Define KB1n B2ni j = K ((B�

1 xi − B�
1 x j )/h, (B�

2 zi − B�
2 z j )/h), gi =

g(θ�zi ), ĝi = ĝ(θ̂�zi ), εi = yi − β�
1 x j − gi , ε̂i = yi − β̂�

1 x j − ĝi , pi = pB2(B
�
2 zi )
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and p̂i = p̂B2n (B
�
2nzi ), ỹi = yi − β�xi . Throughout the proof of this theorem,

Ei (·) = E(·|B�
1 xi , B�

2 zi ). Define the events A1n = {Tn ≤ c} for any constant c and
A2n = {q̂1 = q1, q̂2 = q2}. Proposition 2.1 and Lemma 3.1 purport that under the
global and local alternative hypothesis, we have limn→∞ P(A2n) = limn→∞ P(A1n∩
A2n). This result ensures that under the global and local alternative hypotheses, in an
asymptotic sense it is only needed to consider the events q̂1 = q1 and q̂2 = q2.

Proof of Part (I). Under Conditions A1 and A2 in Appendix, due to the facts
||B1n−B1|| = Op(1/

√
n) and ||B2n−B2|| = Op(1/

√
n), ĝ is an uniformly consistent

estimator of g, see Fan and Gijbels (1996). It is easy to prove that under the global
alternative hypothesis, we have

Sn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1n B2ni j ε̂i ε̂ j

= 1

n(n − 1)

n∑
i=1

∑
i �= j

1

hq1+q2
KB1B2i jεiε j + op(1),

where εi = yi − β�
0 xi − g(α�

0 zi ) with (β0, α0) = argminβ,α E[Y − {β�X +
g(α�Z)}]2. It is obvious that the term

1

n(n − 1)

n∑
i=1

n∑
i �= j

1

h

q1+q2
KB1B2i jεiε j

is an U−statistic with the kernel 1
hq1+q2

KB1B2i jεiε j .
Using the element properties of U−statistic and Fubini’s theorem, we have

Sn = E

{
1

hq1+q2
KB1B212ε1ε2

}
+ op(1)

= E{ f 2(B�
1 X , B�

2 Z)pB1B2(B
�
1 X , B�

2 Z)} + op(1) > 0,

where pB1B2 stands for the density function of (B�
1 X , B�

2 Z).
Additionally, applying the same argument as that in the justification of Theorem3.1,

we can prove that in probability s2n converges to some positive value which may be
different from s2 in Theorem 3.1. Thus, altogether, we have

Tn/(nh)
p−→ Constant > 0.

Proof Part (II): As the description as the proof of Part (I) in this theorem, here it is
also only needed to consider the events q̂1 = q1 and q̂2 = q2 in an asymptotic sense.
Under the local alternative hypotheses H1n , using the similar statement as that used
to justify Theorem 3.1, we can conclude that:

Sn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1n B2ni j ε̂i ε̂ j

=: Qn + op(Qn),
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where

Qn = 1

n(n − 1)

n∑
i=1

n∑
i �= j

1

hq1+q2
KB1B2i jεiε j ,

with εi = yi −β�
0 xi + g(α�

0 zi ). Let εi = yi −β�
0 xi − g(α�

0 zi )−Cn f (B�
1 xi , B�

2 zi ).
Then we have εi = εi + Cn f (B�

1 xi , B�
2 zi ) and E[εi |wi ] = 0. Furthermore, Qn is

decomposed as:

Qn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1B2i j [εi + Cn f (B

�
1 xi , B

�
2 zi )]

[ε j + Cn f (B
�
1 x j , B

�
2 z j )]

=: Q1n + CnQ2n + C2
n Q3n,

where Q1n , Q2n and Q3n have the following forms as:

Q1n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1B2i jεiε j ;

Q2n = 2

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1B2i j f (B

�
1 xi , B

�
2 zi )ε j ;

Q3n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

1

hq1+q2
KB1B2i j f (B

�
1 xi , B

�
2 zi ) f (B

�
1 x j , B

�
2 z j ).

Again following the similar argument to that in the justification of Theorem 3.1, we

can easily obtain that nh
q1+q2

2 Q1n
d−→ N (0, s2) and thus Q1n = Op(n−1h− q1+q2

2 ).

Then we consider the term Q2n . In fact, Q2n can be written asU−statistic with the
kernel:

Hn(ti , t j ) = 1

hq1+q2
KB1B2i j { f (B�

1 xi , B
�
2 zi )ε j + f (B�

1 x j , B
�
2 z j )}εi },

where ti = (xi , zi , yi ). Since E[ε j |xi , zi ] = 0, then E[H(ti , t j )] = 0. To use the
properties of a non-degenerate U-statistic (Serfling 1980), it is essential to prove
E[H2(ti , t j )] = o(n). Note that

E[H2
n (ti , t j )] ≤ 4E[ 1

hq1+q2
KB1B2i j f (B

�
1 xi , B

�
2 zi )ε j ]2

= 4

hq1+q2
E[ 1

hq1+q2
KB1B212 f

2(B�
1 x1, B

�
2 z1)E(ε22|B�

1 x2, B
�
2 z2)].
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By the application of Fubini’s theorem and the change of the original variables to be
v1 = (B�

1 x2 − B�
1 x1)/h and v2 = (B�

2 z2 − B�
2 z1)/h yield

E[H2
n (ti , t j )] = 4

hq1+q2

∫

Rq1+q2
K (v)dvE[ f 2(B�

1 x1, B
�
2 z1)

E(ε22|B�
1 x2, B

�
2 z2)] + o

(
1

hq1+q2

)

= O

(
1

hq1+q2

)
= o(n).

We now turn to discuss the conditional expectation of Hn(ti , t j ). By Fubini’s theorem,
it is easy to calculate rn(ti ) = E{Hn(ti , t j )|ti } to be

rn(ti ) = 1

hq1+q2
E{KB1B2i j f (B

�
1 x j , B

�
2 z j )εi |ti }

= εi

∫

Rq1

∫

Rq2
K (v1, v2) f (B

�
1 xi − hv1, B

�
2 zi − hv2)

pB1B2(B
�
1 xi − hv1, B

�
2 zi − hv2)dv1dv2du

= εi f (B
�
1 xi , B

�
2 zi )pB1B2(B

�
1 xi , B

�
2 zi ) + ln(ti )

=: m(ti ) + ln(ti ).

Let Q̃2n denote the “projection" of the statistic Q2n as:

Q̃2n = 1

n

n∑
i=1

rn(ti ) = 1

n

n∑
i=1

m(ti ) + 1

n

n∑
i=1

ln(ti )

=: Q21n + Q22n .

Central-limit theorem yields that
√
nQ21n = Op(1). As the functions g(·, ·) and

pB1B2(·, ·) satisfy the Lipschitz condition, we have E{l2n(ti )} = O(h2) → 0. Note
that E{ln(ti )} = 0. We can conclude that

√
nQ22n = op(1). Therefore, altogether,

Q2n = Op(1/
√
n). Under the local alternative hypothesis, CnQ2n = Op(Cn/

√
n).

Finally consider the term C2
n Q3n . It is obvious that Q3n is also anU−statistic with

the kernel:

Hn(ti , t j ) = 1

hq1+q2
KB1B2i j f (B

�
1 xi , B

�
2 zi ) f (B

�
1 x j , B

�
2 z j )

with ti = (xi , zi , yi ). Using the element characteristic of U−statistic, we have

Q3n = E(Hn(ti , t j )) + op(1)

= 1

hq1+q2
E[KB1B2i j f (B

�
1 xi , B

�
2 zi ) f (B

�
1 x j , B

�
2 z j )] + op(1).
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Again, we can derive that E{Hn(ti , t j )} = μ1 + o(1) with

μ1 = E{ f 2(B�
1 X , B�

2 Z)pB1B2(B
�
1 X , B�

2 Z)}.

Therefore,wehaveQ3n = μ1+op(1). The above equation impliesC2
n Q3n = Op(C2

n ).
Altogether, we have

Q1n = Op(n
−1h− q1+q2

2 ); CnQ2n = Op(Cn/
√
n); C2

n Q3n = Op(C
2
n ).

Additionally, following the similar arguments for proving Theorem 3.1, s2n
p−→ s2.

Therefore, we have the following conclusions.
If q1 = q2 = 1 and Cn = n−1/2h−1/2, Q1n and Q3n are the leading terms of Qn ,

which yields that

Tn
d−→ N (u, 1),

where u = E{ f 2(B�
1 X , B�

2 Z)pB1B2(B
�
1 X , B�

2 Z)}/s.
If q1 = q2 = 1 and Cnn1/2h1/2 → ∞, Q3n is the leading term of Qn . This implies

that

Tn/(C
2
nnh)

P−→ u > 0.

If q1 +q2 > 2, if Cnn1/2h1/2 → c0 > 0 for some constant c0 or Cnn1/2h1/2 → ∞
and Cnn1/2h(q1+q2)/4 → 0, Q1n is the leading term of Qn , then we have

Tn/h
(q1+q2−2)/2 d−→ N (0, 1).

If q1 + q2 > 2, if Cn = n−1/2h−(q1+q2)/4, Q1n and Q3n are the leading terms of
Qn , thus, we have

Tn/h
(q1+q2−2)/2 d−→ N (u, 1).

If q1 + q2 > 2 and Cnn1/2h(q1+q2)/4 → ∞, Q3n is the leading term of Qn . This
implies that

Tn/(C
2
nnh)

P−→ u > 0.

The proof is finished. ��
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