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Abstract
This article introduces a new version of first-order binomial autoregressive (BAR(1))
processwith zero-and-one inflatedbinomialmarginals using the idea of hiddenMarkov
models, which contains the BAR(1) and other existing processes as special cases.
Stochastic properties of the new model are investigated and model parameters are
estimated by the probability-based, quasi-maximum likelihood, maximum likelihood
and Bayesian methods. A binomial one-inflation index is constructed and further
utilized to develop a method to test whether zero and/or one inflation with respect
to a BAR(1) model. We also give the asymptotic distribution of the corresponding
test statistics under the null hypothesis. Applications to rainy-days and assaults-on-
officers counts are conducted, which shows that the proposed model can accurately
capture zero-inflation, one-inflation and overdispersion characteristics of the data. The
predictive distributions are employed to identify the occurrence of anomalies and then
establish early warning system of risk.

Keywords BAR(1) process · Bayesian inference · Bounded count time series ·
One-inflation · Test · Zero-inflation

Mathematics Subject Classification 62M10 · 62F10 · 62F12

1 Introduction

During the last decade, modeling and analysis of count time series with a bounded
support have become a popular topic with a large quantity of articles in fields like epi-
demiology, social sciences, economics, life sciences and others. The most commonly
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Analysis of zero-and-one inflated bounded count time… 35

used approach to model this kind of data is using the first-order binomial autore-
gressive (BAR(1)) process proposed by McKenzie (1985). The BAR(1) model was
constructed by using the binomial thinning operator, which was proposed by Steutel

and Van Harn (1979) and defined as α ◦ X =
∑X

i=1
Bi , where {Bi } is an independent

and identically distributed (i.i.d.) Bernoulli(α) random sequence independent of X .
Based on this operator, the definition of the BAR(1) model is given below.

Definition 1 The BAR(1) process {Xt } is defined by the recursion

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1) with X0 ∼ B(n, p), (1.1)

where n ∈ N, β := p(1 − ρ), α := β + ρ, p ∈ (0, 1) and ρ ∈(
max

{
− p

1 − p
,−1 − p

p

}
, 1

)
. All thinnings are performed independently of each

other, and the thinnings at time t are independent of (Xs)s<t .

TheBAR(1)model is a homogeneousMarkov chainwithh-step transition probabilities

P(Xt = j |Xt−h = i)

=
min{i, j}∑

m=max{0,i+ j−n}

(
i

m

)(
n − i

j − m

)
αm
h (1 − αh)

i−mβ
j−m
h (1 − βh)

n−i− j+m,

(1.2)

where βh = p(1 − ρh) and αh = βh + ρh .
During the past ten years, the interest in the BAR(1) process has significantly

increased and research on this model has gained plentiful and substantial harvest.
For example, Scotto et al. (2014) and Ristić and Popović (2019) investigated different
types of bivariate BAR(1) processes.Weiß and Pollett (2014) introduced a class of den-
sity dependent BAR(1) process, where the thinning probabilities depend on the current
observations. Kim andWeiß (2015) consideredmodeling of bounded count time series
with overdispersion via proposing a random coefficient BAR(1) process. Möller et al.
(2016) proposed types of self-exciting threshold BAR(1) models. Kang et al. (2020;
2021) introduced an extended version of BAR(1) model and a mixture BAR(1) model
based on the generalized binomial thinning operator and mixing Pegram and bino-
mial thinning operators, respectively. For some other meaningful contributions on the
BAR(1) process, we refer to Cui and Lund (2010), Weiß (2009a, b), (2013), Weiß and
Pollett (2012), Weiß and Kim (2013a, b, 2015), Kim and Weiß (2015), Yang et al.
(2017) and Chen et al. (2021), among others.

In the context of count data with an unbounded support, the concept of zero inflation
(excess zeros) is that the proportion of 0’s of a model is greater than the proportion
of 0’s of the corresponding Poisson model. Zero-inflation phenomenon is frequently
encountered in a great number of fields, such as econometrics, manufacturing defects,
medical consultations, sexual behavior and so on (see Ridout et al. 1998). Research on
modeling zero inflation is vitally necessary and important. As pointed out by Zuur et al.
(2009,Chapter 11), ignoring zero inflation can have at least two consequences: first, the
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estimated parameters and standard errorsmay be biased; second, the excessive number
of zeros can cause overdispersion. Moreover, Perumean-Chaney et al. (2013) pointed
out that when zero inflation in the data was ignored, the estimation results were poor
and some potentially significant statistical findingsweremissing, themisspecifications
caused by the ignorance of zero inflationmay even lead to erroneous conclusions about
the data and bring uncertainty to research and applications. In the context of count time
series, modeling of zero inflation has also attracted the attention of researchers. On
one hand, Zhu (2012) proposed zero-inflated Poisson and negative binomial integer-
valued generalized autoregressive conditional heteroscedastic (INGARCH) models.
Jazi et al. (2012) introduced a first-order integer-valued autoregressive (INAR(1))
process based on binomial thinning operator with zero-inflated Poisson innovations. Li
et al. (2015) proposed a mixed INAR(1) process with zero-inflated generalized power
series innovations. These articles give a solution to modeling of zero-inflated count
time series with an unbounded support. On the other hand, there are only a few articles
about modeling and testing bounded count time series containing a large number of
zeros. Möller et al. (2018) developed four extensions of the BAR(1) model, which can
accommodate a broad variety of zero patterns. Kim et al. (2018) proposed statistics
to evaluate the number of zeros and the dispersion with respect to a binomial model.
Besides, Möller et al. (2020) introduced a state-dependent zero-inflation mechanism
for count distributions with an unbounded or bounded support.

However, a count time series data set that contains a great number of zeros along
with a large number of ones can also arise in practice. For example, most car owners
will claim zero or one time in an insurance period since more than one claims can lead
to higher premiums in the next insurance period; one may be infected by seasonal flu
for at most one time in a quarter due to the existence of antibodies over a period of
time.Research onmodeling of zero-and-one inflated count time series is still extremely
infrequent and there are only a few articles to concentrate on the relevant issue till now.
Maiti et al. (2018) constructed a new mixture INAR(1) process for modeling count
time series data, in particular data consisting of many zeros and ones. Qi et al. (2019)
and Mohammadi et al. (2022) presented binomial thinning INAR(1) processes with
zero-and-one inflated Poisson and zero-and-one inflated Poisson–Lindley innovations,
respectively. The above three articles considered modeling of zero-and-one inflated
unbounded count time series.

While it is also a vitally necessary and significant issue to come up with a solution
tomodeling of bounded count time series with a large number of zeros and ones, to our
best knowledge, there is only one article that studies the relevant issue till now. Liu et al.
(2022) proposed a zero-one-inflated bounded Poisson model with an autoregressive
feedbackmechanism in intensity to fit the normalcy-dominant ordinal time series. This
article concentrates on the establishment of statistical model from a new perspective,
so as to achieve the purpose of enriching themethod for handling zero-and-one inflated
bounded count time series. For this, the concept of hidden Markov model is utilized
to help us construct a new version of extended BAR(1) model with zero-and-one
inflated binomial marginal distribution. Furthermore, a binomial one-inflation index
is presented and further employed to construct test statistics to evaluate the number
of ones with respect to a binomial model. To illustrate the significance, it is necessary
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to explain the contribution of this article, especially when our work is compared with
Liu et al. (2022). This issue can be discussed based on the following perspectives:

(i) The model proposed by Liu et al. (2022) is constructed based on the zero-one-
inflated bounded Poisson distribution and INGARCH framework. But it is well
known that the binomial distribution and BAR(1) process are almost the most
commonly used models to deal with bounded count data. Hence, constructing
the extended BAR(1) model to fit the zero-and-one inflated bounded count time
series is a natural issue.

(ii) Liu et al. (2022) proposed the zero-one-inflated bounded Poisson INGARCH
model to better analyze normalcy-dominant ordinal data, rather than the zero-
and-one inflated bounded count time series. As we mentioned before, this article
concentrates on modeling of the zero-and-one inflated bounded count time series
via a different modeling framework.

(iii) Another motivation is that the proposed model is flexible and it is a novel exten-
sion of the binomial modeling framework, and the BAR(1) and RZ-BAR(1) (see
Möller et al. 2018) models are special cases of our model. Moreover, the pro-
posed model not only has an attractive potential for modeling and analyzing
bounded count time series with excess zeros and ones, but also can be practical
in other situations when the observed process indicates some characteristics such
as overdispersion and bimodal.

The rest contents of this article are organized as follows. In Sect. 2, the newmodel is
introduced and some probabilistic and statistical properties are investigated. In Sect. 3,
probability-based, quasi-maximum likelihood, maximum likelihood and Bayesian
methods are employed to estimate the model parameters. Section 4 studies the bino-
mial one-inflation index and the relevant test problem is addressed. In Sect. 5, we
apply the proposed model to two rainy-days counts and an assaults-on-officers counts.
The article ends with a conclusion section and has online supplementary materials.

2 A BAR-hiddenMarkovmodel

To model zero-and-one inflated count time series with a bounded support, a direct
approach is to construct a modified and generalized version of the BAR(1) process.
Suppose that {Xt } is the underlying but unobservable BAR(1) process, it is natural
to generate additional zeros and ones via randomly replacing some of the Xt by
zeros or ones. Formally, at each time t , a uniform random variable St is realized,
independently of the previous {Xm}m<t and {Sm}m<t .Wedefine the observable process
{Yt }, satisfying Yt := 0 if 0 ≤ St < φ0, Yt := 1 if φ0 ≤ St < φ0 + φ1 and Yt := Xt if
φ2 < St ≤ 1, with 0 ≤ φ0, φ1, φ2 ≤ 1, φ0 + φ1 + φ2 = 1. It can be seen that {Xt ,Yt }
constitutes a hidden Markov model (see Zucchini et al. 2009) with BAR(1) kernel
{Xt } being the Markov chain of hidden states. From another point of view, some of
the original counts {Xt } are masked by a zero or a one, but the underlying BAR(1)
process is not affected by them. The masking by zeros and ones is accomplished
totally at random by the i.i.d. uniform random sequence {St }. The above approach
for generating zeros and ones is based on the idea of generating missing values {St }
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completely at random. Hence, the BAR-hidden Markov model can also be viewed as
the BAR(1) process with zeros and ones at random. Now, we are ready to give the
definition of our model based on the above analysis.

Definition 2 The BAR-hidden Markov model {Yt }t≥1 can be written as follows:

Yt =
⎧
⎨

⎩

0, with probability φ0,

1, with probability φ1,

Xt , with probability φ2,

(2.1)

where 0 ≤ φ0, φ1, φ2 ≤ 1, φ0 + φ1 + φ2 = 1 and {Xt } is the BAR(1) model defined
in Eq. (1.1). We call the new process as the first-order zero-and-one inflated binomial
autoregressive (ZOIBAR(1)) process.

Remark 1 The ZOIBAR(1) model given in Eq. (2.1) can be rewritten as

Yt = 0 · I{0≤St<φ0} + 1 · I{φ0≤St<φ0+φ1} + Xt · I{1−φ2≤St≤1}, t = 1, 2, . . . ,

where {St } is an i.i.d. uniform(0,1) random sequence and {Xt } is the BAR(1) model.

Remark 2 Some special cases of the ZOIBAR(1) process defined in Eq. (2.1) are:

(i) the classical BAR(1) process proposed by McKenzie (1985) if φ0 = φ1 = 0;
(ii) the BAR(1) process with zeros at random (RZ-BAR(1) process) proposed by

Möller et al. (2018) if φ1 = 0;
(iii) the i.i.d. Bernoulli random sequence with P(Yt = 0) = 1 − P(Yt = 1) =

1 − φ1 = φ0 if φ2 = 0.

From Definition 2, the BAR(1) kernel {Xt } obviously is a Markov chain. However,
the same conclusion cannot be generalized to the process {Yt } since some of the Yt are
randomly masked by zeros and ones. Given the t th kernel count Xt , the corresponding
observation Yt is not only generated by Xt , but it also depends on the generating
of St . We give an example to illustrate this statement in supplementary materials.
Furthermore, the distribution of Yt given Xt can be given as follows:

P(Yt = yt |Xt = xt ) = φ0I{yt=0} + φ1I{yt=1} + φ2I{yt=xt }.

Now, we turn to concentrate on the statistical properties of the ZOIBAR(1) model.
We first give the probability mass function (p.m.f.) of the marginal distribution of the
ZOIBAR(1) model as follows:

P(Yt = k) =
⎧
⎨

⎩

φ0 + φ2(1 − p)n, k = 0,
φ1 + φ2np(1 − p)n−1, k = 1,
φ2

(n
k

)
pk(1 − p)n−k, k = 2, 3, . . . , n.

It can be easily seen that the marginal distribution of the ZOIBAR(1) model is a
zero-and-one inflated binomial distribution. From the marginal distribution of the
ZOIBAR(1) model, the mean and variance can be easily obtained by
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Analysis of zero-and-one inflated bounded count time… 39

E(Yt ) = φ1 + φ2np, Var(Yt ) = (φ1 + φ2np)[1 − (φ1 + φ2np)] + n(n − 1)φ2 p
2.

The following proposition gives the autocovariance function and autocorrelation
function at lag h for the ZOIBAR(1) process. The corresponding proof is provided by
Supplement S5.

Proposition 1 The autocovariance function and autocorrelation function at lag h for
the ZOIBAR(1) model are given by

Cov(Yt ,Yt+h) =
{

(φ1 + φ2np)[1 − (φ1 + φ2np)] + n(n − 1)φ2 p2, h = 0,
ρhφ2

2np(1 − p), h = 1, 2, . . . ,

and

ρ(h) := Corr(Yt ,Yt+h)

=
⎧
⎨

⎩

1, h = 0,

ρh φ2
2np(1 − p)

(φ1 + φ2np)[1 − (φ1 + φ2np)] + n(n − 1)φ2 p2
, h = 1, 2, . . . .

This proposition implies that the autocorrelation function of the process decays
exponentially to 0 as h → ∞. This characteristic is similar to that of the BAR(1)
process. Furthermore, we have shown that the marginal mean of {Yt } and the autoco-
variance function between Yt+h and Yt do not rely on the time index t . So it can be
concluded that the ZOIBAR(1) model is covariance (weakly) stationary. Furthermore,
we can give the partial autocorrelation function based on the autocorrelation function
in Proposition 1.

Remark 3 Denote ρpart(h) := ahh as the hth-order partial autocorrelation for the
ZOIBAR(1)model.According toBox et al. (1994), the ahj follow the recursive scheme

ah+1,h+1 = ρ(h + 1) − ∑h
i=1 ahi · ρ(h + 1 − i)

1 − ∑h
i=1 ahi · ρ(i)

, h ∈ N0

ah+1, j = ahj − ah+1,h+1 · ah,h− j+1, j = 1, . . . , h,

where ρ(·) is given in Proposition 1. Based on the above recursive scheme, the first-
order and second-order partial autocorrelations for the ZOIBAR(1) model are

ρpart(1) = ρ(1), ρpart(2) = ρ(2) − ρ2(1)

1 − ρ2(1)
.

The high-order partial autocorrelation for the ZOIBAR(1) model can also be given in
the similar way.

Now, we are ready to introduce the binomial index of dispersion, Id , which is a
useful metric to quantify the dispersion behavior of a count random variable X with a
finite range {0, 1, . . . , n}. The binomial index of dispersion Id is defined as
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Id = nσ 2

μ(n − μ)
= 1 + n(σ 2 − μ) + μ2

μ(n − μ)
∈ (0,∞),

where μ and σ 2 are the mean and variance of the random variable X , respectively.
A finite range count random variable is said to have overdispersion if Id > 1, it is
equidispersed if Id = 1, and it is underdispersed if Id < 1. From the mean and
variance formulae, we can calculate the binomial dispersion index of the ZOIBAR(1)
process as follows:

Id = 1 + (n − 1)[φ2n2 p2 − (φ1 + φ2np)2]
(φ1 + φ2np)[n − (φ1 + φ2np)] .

The ability of the ZOIBAR(1) model to explain zero inflation is an important topic
in our work. It is worth emphasizing that relying entirely on the 0’s proportion, wemay
determine the extent of zero inflation in a misleading way, especially if we ignore the
meanof data. To illustrate this statement,we consider a count time series data set,which
represents monthly counts of car beats in Pittsburgh (among n = 42 such car beats)
that had at least one police offense report of prostitution in that month. The data consist
of T = 96 observations, starting from January 1990 and ending in December 1997.
Figure S1 and Table S1, respectively, show the sample path, histogram and descriptive
statistics for the prostitution series.Azero frequencyof 63.5%may leadpractitioners to
firmly believe that the empirical degree of zero inflation is quitemoderate.However,we
can also observe themean of the series is 0.5313, which is relatively small. By a simple
calculation, a binomial random variable X with mean X̄ = 0.5313 and n = 42 gives
a zero probability of 0.5846, which is a little smaller than 63.5%. Hence, declaring
the degree of zero inflation of this series is “quite moderate” may be unconvincing.
To quantify and assess the zero-inflation behavior more precisely, Kim et al. (2018)
introduced binomial zero-inflation index and sample binomial zero-inflation index for
a count random variable X with a finite range {0, 1, . . . , n} as follows:

z0 = p0

(
1 − μ

n

)−n

∈ (0,∞), ẑ0 = p̂0

(
1 − X̄

n

)−n

,

where p0 and μ are the zero probability and mean of the random variable X , p̂0 =
1
T

∑T
t=1 I{Xt=0} and X̄ = 1

T

∑T
t=1 Xt . If X is binomially distributed, then z0 = 1 and

ẑ0 should be close to 1. If z0 > 1, naturally, X is said to show zero inflationwith respect
to the binomial distribution. Table S1 shows that the sample zero-inflation index for
the prostitution series is ẑ0 = 1.0845, which is close to 1. So we cannot conclude that
the concerned series is zero-inflated based on this aspect. As a summary, zero-inflation
index is the more reasonable assessment criterion rather than 0’s proportion.

The binomial zero-inflation index gives us a powerful tool to measure the zero
pattern departure from the binomial model. Hence, we can calculate the binomial
zero-inflation index of the ZOIBAR(1) process as follows:

z0 = [φ0 + φ2(1 − p)n]
(
1 − φ1 + φ2np

n

)−n

.
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From the above equation, we find that z0 increases as φ0 increases when φ1, φ2, n and
p are fixed.

The following proposition gives the h-step transition probabilities for the
ZOIBAR(1) process and the corresponding proof is provided by Supplement S5.

Proposition 2 Let P(h)
i j := P(Yt = j |Yt−h = i), then the h-step transition probabili-

ties for the ZOIBAR(1) model are given by

P(h)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ2P(Xt = j |Xt−h = i), i, j ≥ 2,

φi
P(Yt = j)

P(Yt−h = i)
+ φ2

P(Xt−h = i)[φ j + φ2P(Xt = j |Xt−h = i)]
P(Yt−h = i)

, 0 ≤ i, j ≤ 1,

φi P(Yt = j) + φ2
2 P(Xt−h = i)P(Xt = j |Xt−h = i)

P(Yt−h = i)
, i ≤ 1, j ≥ 2,

φ j + φ2P(Xt = j |Xt−h = i), i ≥ 2, j ≤ 1,

where {Xt } is the BAR(1) process and P(Xt = j |Xt−h = i) is given by Eq. (1.2).

Remark 4 As suggested by a referee, it should be pointed out that the maximum
likelihood estimation for the ZOIBAR(1) model can not be implemented based on
Proposition 2. The reason is that the ZOIBAR(1) process {Yt } is not a Markov chain.
To be specific, we have

P(Yt = yt |Yt−h = yt−h) 	= P(Yt = yt |Yt−h = yt−h, · · · ,Y1 = y1),

i.e., Yt will not only depend on Yt−h , but also depends on Yt−k (h ≤ k ≤ t − 1).
However, we still investigate the h-step transition probabilities in Proposition 2 based
on the following considerations:

(i) The h-step transition probabilities can help us implement the quasi-likelihood
estimation for the ZOIBAR(1) model (see Sect. 3.2).

(ii) The h-step transition probability is an important statistical property for the
BAR(1) model. Since the ZOIBAR(1) model is a generalization of the BAR(1)
model, it is a straightforward idea to investigate the h-step transition probability
for the ZOIBAR(1) model.

From the h-step transition probabilities, we can obtain the conditional h-stepmoments
of the ZOIBAR(1) model

E(Yt |Yt−h) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ1 + φ2
φ0np + φ2(1 − p)nnβh

φ0 + φ2(1 − p)n
, Yt−h = 0,

φ1 + φ2
φ1np + φ2np(1 − p)n−1(nβh + ρh)

φ1 + φ2np(1 − p)n−1 , Yt−h = 1,

φ1 + φ2(ρ
hYt−h + nβh), Yt−h ≥ 2,

(2.2)

123



42 Y. Kang et al.

and E(Y 2
t |Yt−h)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ1 + φ2
φ0[np(1 − p) + n2 p2] + φ2(1 − p)n[nβh(1 − βh) + n2β2

h ]
φ0 + φ2(1 − p)n

, Yt−h = 0,

φ1 + φ2
φ1[np(1 − p) + n2 p2] + φ2np(1 − p)n−1[(n − 1)βh(1 + nβh + 2ρh) + αh]

φ1 + φ2np(1 − p)n−1 ,

Yt−h = 1,
φ1 + φ2[ρh(1 − ρh)(1 − 2p)Yt−h + nβh(1 − βh) + (ρhYt−h + nβh)2], Yt−h ≥ 2.

It can be shown that the joint probability generating function of Yt−1 and Yt is

�Yt−1,Yt (u, v)

= φ2
0 + φ0φ1(u + v) + φ2

1uv + φ0φ2[(1 − p + pu)n + (1 − p + pv)n]
+ φ1φ2[u(1 − p + pv)n + v(1 − p + pu)n]
+ φ2

2 [(1 − p)(1 − β) + p(1 − p)(1 − ρ)(u + v) + p(p − pρ + ρ)uv]n,

which shows that �Yt−1,Yt (u, v) is symmetric in u and v, so the proposed process is
time reversible (see Schweer 2015).

3 Estimation procedure

Suppose that {Yt } are observations from the ZOIBAR(1)model defined inDefinition 2.
Our task is to estimate the unknown parameters λ = (p, ρ, φ0, φ1)


 from a sample
Y = (Y1,Y2, . . . ,YT ). The parameter n is assumed to be known. Four different estima-
tors, namely probability-based estimator (PBE), quasi-maximum likelihood estimator
(QMLE), maximum likelihood estimator (MLE) and Bayesian estimator (BE), are
considered.

3.1 Probability-based estimation

The PBE of the parameters p, φ0, φ1 can be obtained from the fact that

P(Yt = 0) = φ0 + φ2(1 − p)n (or P(Yt = 1) = φ1 + φ2np(1 − p)n−1),

P(Yt = k) = φ2

(
n

k

)
pk(1 − p)n−k, k = 2, 3, ....

The probability pk := P(Yt = k) can be estimated by using the statistics

p̂k := 1

T

T∑

t=1

I{Yt=k}, k = 0, 1, 2, . . . , n.
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Therefore, the PBE of the parameters p, φ0, φ1 can be given by

p̂PB = (k + 1) p̂k+1

(k + 1) p̂k+1 + (n − k) p̂k
, φ̂2,PB = p̂k�(k + 1)�(n − k + 1)

p̂kPB(1 − p̂kPB)n−k�(n + 1)
,

φ̂0,PB = p̂0 − φ̂2,PB(1 − p̂PB)n (or φ̂1,PB = p̂1 − φ̂2,PBn p̂PB(1 − p̂PB)n−1),

(3.1)

where k = 2, 3, . . . , n − 1. We can also obtain the PBE for ρ by taking advantage
of P(h)

i j given in Proposition 2. However, it is too complex to derived the closed-form
estimator ρ̂PB . So we turn to moment (MM) estimation and obtain the following
corresponding estimator:

ρ̂MM =
∑T−1

t=1 (Yt − Ȳ )(Yt+1 − Ȳ )

(T − 1)φ̂2
2,PBn p̂PB(1 − p̂PB)

, with Ȳ =
∑T

t=1 Yt
T

.

It is worthmentioning that the selection of k value in Eq. (3.1) is an unavoidable and
crucial problem. The reason is that an unappropriate selection of k value may lead to
the result that the estimators tend to infinity under some parameter combinations. For
example, when we set large values of n, φ0 and φ1 and small value of p in simulation,
it is very likely to happen that big numbers are absent in random numbers. Under this
circumstance, assuming k = n − 1 may fail to produce available estimators. For the
convenience of practitioners in practice, we propose a simple method to select k based
on the following two steps: (i) let S = {s : p̂s > 0, p̂s+1 > 0, s = 2, 3, . . . , n − 1};
(ii) then k = argmax

s∈S
p̂s .

3.2 Quasi-maximum likelihood estimation

In order to obtain the maximum likelihood estimates of the ZOIBAR(1) process, we
must maximize the log-likelihood function

	(λ) = log P(Y1 = y1,Y2 = y2, . . . ,YT = yT )

= log[P(Y1 = y1)P(Y2 = y2|Y1 = y1)P(Y3 = y3|Y1 = y1,Y2 = y2)

· · · P(YT = yT |Y1 = y1, · · · YT−1 = yT−1)],

where 0 < p < 1, max

{
−1 − p

p
,− p

1 − p

}
< ρ < 1, 0 ≤ φ0, φ1, φ2 ≤ 1 and

φ0+φ1+φ2 = 1. However, it is not straightforward to give the closed-form expression
for

P(Yt = yt |Y1 = y1, · · · ,Yt−1 = yt−1), t ∈ {2, 3, . . . , T }.

For this, we followMaiti et al. (2018) and employ one-step quasi-maximum likelihood
approach, which relies on the approximation
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P(Yt = yt |Yt−1 = yt−1)≈ P(Yt = yt |Y1 = y1, . . . ,Yt−1 = yt−1), t ∈ {2, 3, . . . , T }

to simplify the computation. Then, the QMLE can be obtained by maximizing the
following logarithmic quasi-likelihood function:

	∗(λ) = log P(Y1 = y1) +
T∑

t=2

log P(Yt = yt |Yt−1 = yt−1),

rather thanmaximizing the actual logarithmic likelihood function. The transition prob-
abilities P(Yt = yt |Yt−1 = yt−1), t ∈ {2, . . . , T } are given by Proposition 2. It is
natural to notice that no closed-form expressions for the QMLE can be found, so the
use of numerical procedure is inevitable.

3.3 Maximum likelihood estimation

The key to implement the MLE method is to give the likelihood function. The
ZOIBAR(1) process is a stationary HMM, where the hidden process {Xt } is the
BAR(1) model. The BAR(1) model has the stationary binomial marginal distribution
B(n, p) and its transition probabilities are given by Eq. (1.2). Following Zucchini et al.
(2009),wedenote the corresponding transitionmatrix by� = (γi+1, j+1)i, j=0,...,n with
γi+1, j+1 = P(Xt+1 = j |Xt = i) and �k is obtained from � by replacing ρ by ρk .
We also denote the stationary marginal distribution of {Xt } by δ = (δ1,k+1)k=0,...,n
with δ1,k+1 = P(Xt = k). The diagonal matrices P(y) := diag

(
P(Yt = y|Xt =

0), . . . , P(Yt = y|Xt = n)
) ∈ [0, 1](n+1)×(n+1). Using the results and notations from

Zucchini et al. (2009), we obtain

α1 = δP(y1), αt = αt−1�P(yt ), for t = 2, . . . , T .

where αt is the vector of “forward probabilities" at time t , i.e., αt,x = P(Y1 =
y1, . . . ,Yt = yt , Xt = x) with x ∈ {0, 1, . . . , n}. Based on the above formulae, the
actual likelihood function can be given by

	(λ) = αT 1
.

3.4 Bayesian estimation

The likelihood inference might be the most commonly used approach in count time
series analysis to estimate the model parameters. However, this mainstream method
still encounters some difficulties in practice: (i) it is highly affected by the outliers;
(ii) the estimators rely on the appropriate selection of numerical optimization pro-
cedure and choice of initial values for numerically maximizing the (logarithmic)
likelihood function; (iii) it sometimes fails to outperform the moment method and
conditional least square method for short time series. As an extension to the clas-
sic likelihood method, the Bayesian analysis for time series of counts has attracted
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a lot of attention and some articles have arisen in the literature. In this section, our
interest is focused on estimating λ = (p, ρ, φ0, φ1)


 under Bayesian paradigm. As
we mentioned in Section 3.2, the actual likelihood function can be approximated by
the quasi-likelihood function. Hence, the Bayesian estimator can be derived based on
the quasi-likelihood function or actual likelihood function. Besides, the priors play
an important role and represent strong pre-experimental assumptions for the possible
values ofmodel parameters. Now,wewill pay attention to assign the appropriate priors
for the model parameters.

3.4.1 Prior for parameter p

Beta distribution is commonly used to play a role as the priors of the autoregressive
coefficients. Here, due to the constrain p ∈ (0, 1) for the ZOIBAR(1) model, we
assume that the prior of parameter p is Beta distribution given by

f1(p) = 1

B(a, b)
pa−1(1 − p)b−1, 0 < p < 1,

where B(a, b) = �(a)�(b)

�(a + b)
and a, b > 0.

3.4.2 Prior for parameter�

The Kumaraswamy distribution was introduced by Kumaraswamy (1980) for model-
ing double bounded random processes with a wide variety of applications, specially
in hydrology. Since the parameter ρ for our model is double bounded with ρ ∈(
max

{
− p

1 − p
,−1 − p

p

}
, 1

)
, so we assume that the prior of parameter ρ is

Kumaraswamy distribution given by

f2(ρ) = ϕδ

d − c

(
ρ − c

d − c

)ϕ−1[
1 −

(
ρ − c

d − c

)ϕ]δ−1

, c < ρ < d,

where c = max

{
− p

1 − p
,−1 − p

p

}
, d = 1 and δ, ϕ > 0.

3.4.3 Prior for parameters �0 and�1

Dirichlet distribution is a direct extension of Beta distribution and serves as a bridge
between distributions. Due to the characteristic of the values of φ0, φ1, φ2, a suitable
prior for φ0, φ1 is Dirichlet distribution, which is given below:

f3(φ0, φ1) = �(θ0 + θ1 + θ2)

�(θ0)�(θ1)�(θ2)
φ

θ0−1
0 φ

θ1−1
1 (1 − φ0 − φ1)

θ2−1,

φ0, φ1 ≥ 0, φ0 + φ1 < 1,
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where θ0, θ1, θ2 > 0.
Based on the priors of parameters p, ρ, φ0, φ1 given above, the prior π(λ) of our

model can be given as

π(λ) = ϕδ�(θ0 + θ1 + θ2)(ρ − c)ϕ−1φ
θ0−1
0 φ

θ1−1
1 pa−1(1 − p)b−1

B(a, b)�(θ0)�(θ1)�(θ2)(1 − c)ϕ(1 − φ0 − φ1)1−θ2

×
[
1 −

(
ρ − c

1 − c

)ϕ]δ−1

,

where 0 < p < 1, c < ρ < 1, φ0, φ1 ≥ 0, φ0 + φ1 < 1, a, b, δ, ϕ, θ0, θ1, θ2 > 0 and

c = max

{
−1 − p

p
,− p

1 − p

}
. Hence, the corresponding posterior distribution can

be written as

π(λ|Y) = π(λ)L(Y |λ)
∫ 1
0

∫ 1
c

∫ 1
0

∫ 1−φ1
0 π(λ)L(Y |λ)dφ0dφ1dρdp

, (3.2)

where L(Y |λ) is the quasi-likelihood function or actual likelihood function.
Finally, we consider the Bayesian inference under the square error loss function.

It is well known that the Bayesian estimation under the square error loss function is
the expectation of the posterior distribution. Therefore, the BE for parameter p can be
given by

p̂ =
∫ 1

0

∫ 1

c

∫ 1

0

∫ 1−φ1

0
pπ(λ|Y)dφ0dφ1dρdp,

where π(λ|Y) is the posterior distribution given in Eq. (3.2). The BE for parameter
ρ, φ0, φ1 can be given in a similar way.

3.5 Simulation study

The goal of the simulation study presented in this section is to examine the perfor-
mances of the PBE, QMLE, MLE and BE previously described and compare their
behaviors from the perspective of clean and contaminated data. The initial value
Y0 ∼ ZOIB(n, p, φ0, φ1). We generate data from the ZOIBAR(1) model and set
the sample sizes T = 50, 300, 1000 to reflect small (T = 50), moderate (T = 300)
and large (T = 1000) sample sizes. The true values of the parameters are selected as:

Model (A): (n, p, ρ, φ0, φ1) = (30, 0.5,−0.4, 0.2, 0.1);
Model (B): (n, p, ρ, φ0, φ1) = (30, 0.4,−0.1, 0.1, 0.2);
Model (C): (n, p, ρ, φ0, φ1) = (50, 0.5, 0.2, 0.1, 0.1);
Model (D): (n, p, ρ, φ0, φ1) = (50, 0.7, 0.1, 0.2, 0.2).

Note that we assume n is known. In simulations, we apply the mean absolute deviation
error (MADE) and standard error (SD) based on m = 1000 replications for each
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parameter combination to evaluate the performances of the proposed estimators. These
criteria are defined as follows:

MADE = 1

m

m∑

k=1

|ρ̂k − ρ|, SD = 1

m − 1

√√√√
m∑

k=1

(ρ̂k − ρ̄)2,

where ρ̂k is the estimator of ρ in the kth replication and ρ̄ = 1
m

∑m
k=1 ρ̂k . The hyper-

parameters in the prior distributions are assumed to be a = 3, b = 5, θ0 = 2, θ1 = 4,
θ2 = 6, ϕ = 1 and δ = 2. Figure S2 shows the sample paths andmarginal distributions
of Models (A)–(D). From Figure S2, we can see that the ZOIBAR(1) model not only
has the ability to capture zero-and-one inflation, but also can well explain the bimodal
characteristic. Table S2 lists some statistics of Models (A)-(D) including the mean,
variance, binomial dispersion index Id , zero probability p0 and one probability p1.

3.5.1 Performance without outliers

In this section, we compare performances of the estimators in two settings by using
the clean data, i.e., data in absence of outliers. On the one hand, as can be seen from
Table 1, the MADEs and SDs values of the four estimators are reduced if the sample
size T increases and this situation is identical to our expectation. Broadly speaking,
the MADEs and SDs for the BE are smaller than those for the QMLE and MLE when
the sample size is small (T = 50). As the sample size increases, the performances of
the BE, QMLE and MLE become competitive. The emergence of this phenomenon is
understandable since the effect of priors on parameters is negligible when the sample
size is prettily large. In addition, although the PBE fails to give satisfactory results
compared with the QMLE, MLE and BE, it still has an advantage in calculation.
To be specific, the PBE has the closed-form estimators and can help practitioners to
avoid the time-consuming approach since it does not need any numerical optimization
procedure.

On the other hand, we can always compute the estimates for (p, ρ, φ0, φ1) accord-
ing to the discussed methods in Sects. 3.1–3.4, but the obtained estimates did not
always satisfy the restrictions on (p, ρ, φ0, φ1). A pair of estimates ( p̂, ρ̂, φ̂0, φ̂1)

is classified as being admissible if it satisfies the conditions on (p, ρ, φ0, φ1) based
on the definition of the ZOIBAR(1) process. Thus, we further evaluate the proposed
approaches via referring the percentage of inadmissible estimates of eachmethod with
different sample sizes. The corresponding results have been reported in Table 2. For
the PBE, the percentages of inadmissible estimates are significantly affected by the
parameter combinations and sample sizes. An intuitional phenomenon is that the per-
centages of inadmissible estimates for the PBE increase if the parameters are close
to the boundary (see the cases for ρ = 0.1 and φ0 = φ1 = 0.1). Differently, it is
clear that the QMLE, MLE and BE almost always produces admissible estimates for
all parameter combinations even though the sample size is fairly small and param-
eters are close to the boundary. To illustrate this statement, we further consider the
extremely small sample size and find that the above three methods can always produce
admissible estimates even though T = 30, especially the Bayesian method. Based on
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Table 2 Percentages of admissible estimates

(n, p, ρ, φ0, φ1) Sample size PBE QMLE MLE BE

(30, 0.5,−0.4, 0.2, 0.1) 30 0.2860 0.9450 0.9500 0.9980

50 0.4560 0.9920 0.9920 1.0000

100 0.6630 1.0000 1.0000 1.0000

300 0.8700 1.0000 1.0000 1.0000

500 0.9320 1.0000 1.0000 1.0000

1000 0.9510 1.0000 1.0000 1.0000

(30, 0.4,−0.1, 0.1, 0.2) 30 0.3550 0.9140 0.9290 1.0000

50 0.5100 0.9900 0.9930 0.9970

100 0.7210 1.0000 1.0000 0.9990

300 0.9320 1.0000 1.0000 1.0000

500 0.9620 1.0000 1.0000 0.9990

1000 0.9860 1.0000 1.0000 1.0000

(50, 0.5, 0.2, 0.1, 0.1) 30 0.1590 0.9080 0.9080 1.0000

50 0.2790 0.9900 0.9900 1.0000

100 0.4510 1.0000 1.0000 1.0000

300 0.7730 1.0000 1.0000 1.0000

500 0.8770 1.0000 1.0000 1.0000

1000 0.9690 1.0000 1.0000 1.0000

(50, 0.7, 0.1, 0.2, 0.2) 30 0.0870 0.8720 0.8940 1.0000

50 0.1650 0.9810 0.9820 1.0000

100 0.2510 0.9900 0.9930 1.0000

300 0.3970 1.0000 1.0000 1.0000

500 0.4520 1.0000 1.0000 1.0000

1000 0.4980 1.0000 1.0000 1.0000

these discussions, we conclude that the BE is more reliable than the other methods
based on this aspect.

3.5.2 Performance with outliers

In this section, we compare performances of the estimators by using the contaminated
data. We consider additive outlier generating mechanisms with positive and negative
outliers, which can be given in details as follows:

Zt =
{
min{Yt + ζ, n}, t = τ1, τ2, . . . , τk,

Yt , otherwise,
(3.3)

and

Zt =
{
max{Yt − ζ, 0}, t = τ1, τ2, . . . , τk,

Yt , otherwise,
(3.4)
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where Zt is the contaminated observed value at specific time τi , i = 1, . . . , k, and ζ

is the size of outlier.
In this article, we consider cases of consecutive and isolated outliers and assume the

size and number of outliers are ζ = 2 and k = 3, 5, respectively. For the consecutive
outliers, we set τ1 = T /2 + 1 and illustrate this outliers generating mechanism as
follows: when the sample size is T = 50 and the number of outliers is k = 3, then we
will observe 3 consecutive outliers to occur at time t = 26, 27 and 28. Differently, the
outliers are added to the observed data in randomly chosen positions for the isolated
outliers.

Tables S3–S6 report theMADEs and SDs of the estimatorswith sample size T = 50
and the contaminated data generated from Eqs. (3.3)–(3.4), respectively. Comparing
Tables S3–S4 with Tables S5–S6, it can be seen that the consecutive and isolated out-
liers, positive and negative outliers have similar effect on the estimators. Meanwhile,
we find that the performances of the estimators become more worse as the number of
outliers increases, as expected. Additive outliers have been known to be specifically
harmful for the estimation of dependence parameters and this point has been verified
by the phenomenon that the accuracy of the QMLE, MLE and BE for parameter ρ has
been significantly reduced. Comparing the four estimation methods, we can see that
the BE still yields the smallest values of the MADEs and SDs in most situations.

3.5.3 Discussion

We have compared the proposed estimators based on different aspects. For the clean
data, the BE yields the smallest values of MADEs and SDs when the simple size is
small.Moreover, the BE can also give the biggest percentages of admissible estimators
in most cases. For the contaminated data, the BE also gives more robust performances
than other methods. In summary, we recommend the use of the Bayesian approach for
our model.

It must be pointed out that the quasi-likelihood function is used in Bayesian estima-
tion rather than the actual likelihood function. From Tables 1 and S3–S6, we can see
that the MLE and QMLE always give similar performances. To be specific, the quasi-
maximum likelihood andmaximum likelihoodmethods yield the same estimateswhen
we consider parameters p, φ0 and φ1. Based on the parameter ρ, the MADEs and SDs
values of the MLE are a little smaller than the QMLE when the sample size is small.
Hence, we conclude that the improvements, which can be accomplished by the MLE,
to the QMLE are extremely limited.Moreover, compared to the QMLE, theMLE need
more calculation and time costs. To illustrate this point, we give a simulation study in
Table S7, which shows the durations, MADEs and SDs of the MLE and QMLE. From
Table S7, we can see that the MLE need much more running time than the QMLE,
especially in the cases of large n values (n = 50 in Models (C) and (D)). Based on the
above discussions, the employment of the quasi-likelihood function in the Bayesian
estimation is a more reasonable option than the actual likelihood function. Besides, it
is worth noting that the time cost of the MLE is not sensitive about the sample size.
However, by comparing Models (A) and (B) with Models (C) and (D), the increase of
the parameter n value will greatly increase the calculation pressure and running time.
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As suggested by a referee, the scenario φ0 = φ1 = 0 is considered. We pointed
out in Remark 2 that the ZOIBAR(1) model will reduce to the BAR(1) model when
φ0 = φ1 = 0. Furthermore, φ0 = φ1 = 0 is the boundary of the parameter space for
the unknown parameters λ = (p, ρ, φ0, φ1)


. To investigate the performances of the
proposed in the case of φ0 = φ1 = 0, an addition simulation study is given in Table
S8. The parameter combinations are selected as:

Model (E1): (n, p, ρ, φ0, φ1) = (10, 0.5,−0.4, 0, 0);
Model (E2): (n, p, ρ, φ0, φ1) = (10, 0.7, 0.1, 0, 0).

From Table S8, we can see that the simulation results of the QMLE, MLE and BE
are still satisfactory. This phenomenon implies that the above three methods are still
effective even though we consider degradation forms of the ZOIBAR(1) model.

4 Testing for one inflation in BAR(1) model

Weiß and Pollett (2014) developed a test for detecting overdispersion via taking advan-
tage of the sample binomial dispersion index (without bias correction). Kim et al.
(2018) improved and generalized their results by deriving a novel test concerning
overdispersion and further proposed a zero-inflation index, which was employed to
test for detecting zero inflation. Moreover, the authors introduced a joint test for zero
inflation/deflation and overdispersion/underdispersion with respect to a BAR(1) pro-
cess. In this article, our goal is to focus on the following two perspectives:

(i) The first aim is to test the null hypothesis of a BAR(1) process against the alterna-
tive that the data exhibit more ones than implied by a BAR(1) model. To achieve
this objective, a binomial one-inflation index is constructed and further applied
to develop a method to test whether one inflated with respect to a BAR(1) model.

(ii) The second target is to generalize the interesting results in Kim et al. (2018)
via putting forward two new joint tests for zero inflation/deflation, one infla-
tion/deflation and overdispersion/underdispersion with respect to a BAR(1)
process.

4.1 Binomial one-inflation index

Aswe discussed in Sect. 2, in our opinion, it is unreasonable to determine one inflation
or one deflation entirely relying on the 1’s proportion since some other important
statistical properties should be necessarily considered, in particular the mean of the
data (similar discussion has been given in Sect. 2). Hence, we propose a (sample)
binomial one-inflation index to measure the departure from binomial model in the
following. Let X be an integer-valued randomvariablewith a finite range {0, 1, . . . , n},
then the binomial one-inflation index z1 and sample binomial one-inflation index ẑ1
can be defined as follows:

z1 = p1μ
−1

(
1 − μ

n

)1−n

∈ (0,∞), ẑ1 = p̂1 X̄
−1

(
1 − X̄

n

)1−n

,
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where p1 and μ are the one probability and mean of the random variable X , p̂1 =
1
T

∑T
t=1 I{Xt=1} and X̄ = 1

T

∑T
t=1 Xt . If X is binomially distributed, then z1 = 1

and ẑ1 should be close to 1. If z0 > 1, naturally, X is said to show one inflation with
respect to the binomial distribution. Thus, we can compute the binomial one-inflation
index for the ZOIBAR(1) process as follows:

z1 = φ1 + φ2np(1 − p)n−1

φ1 + φ2np

(
1 − φ1 + φ2np

n

)1−n

.

From the above equation, we find that z1 increases as the parameter φ1 increases when
the parameters φ2, n and p are fixed.

4.2 Asymptotic distribution of binomial indices

Our objective is to investigate the limiting behavior of the trivariate statistic, which
is composed of the sample binomial zero index, sample binomial index of dispersion
and sample binomial one index when the data-generating process (DGP) is a BAR(1)
process. For this purpose, we first consider the vector-valued process {Zt } defined by

Zt :=

⎛

⎜⎜⎝

I{Xt=0} − (1 − p)n

Xt − np
X2
t − np(np + 1 − p)

I{Xt=1} − np(1 − p)n−1

⎞

⎟⎟⎠ with E(Zt ) = 0, (4.1)

and we derive the asymptotic distribution of
1√
T

∑T
t=1 Zt in the following theorem.

Theorem 1 Let {Xt } be a BAR(1) process with n ≥ 2, with p0 = (1 − p)n and
p1 = np(1 − p)n−1, define {Zt } as in Eq. (4.1). Then,

1√
T

T∑

t=1

Zt
d−→N(0,�),

where the covariance matrix � has entries σi j (= σ j i ) with i, j = 1, 2, 3, 4, which
will be given in the proof.

Next theorem establishes the joint asymptotic normality of the indices by using
Theorem 1.

Theorem 2 Let {Xt } be a BAR(1) process with n ≥ 2. Then, we have

⎛

⎝
ẑ0 − 1
Îd − 1
ẑ1 − 1

⎞

⎠ d−→N(0,�
′
),

where the covariance matrix �
′
has entries σ

′
i j (= σ

′
j i ) with i, j = 1, 2, 3, which will

be given in the proof.
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The limiting behavior of ẑ0, Îd , ẑ1 shows that they are asymptotically unbiased
estimators of z0, Id , z1, respectively. However, if we compute ẑ0, Îd , ẑ1 from a time
series of finite length T , these estimators would be obviously biased. Therefore, it is
necessary and meaningful to propose a bias-corrected approximation to the mean of
z0, Id , z1 in the following theorem.

Theorem 3 Let {Xt } be a BAR(1) process with n ≥ 2. Then, the means of ẑ0, Îd , ẑ1
are asymptotically given by

E(ẑ0) ≈ 1 − (n − 1)p(1 + ρ)

2T (1 − p)(1 − ρ)
, E( Îd) ≈ 1 − (n − 1)(1 + ρ)

Tn(1 − ρ)
,

E(ẑ1) ≈ 1 − (n − 1)(np − 2)(1 + ρ)

2Tn(1 − p)(1 − ρ)
.

Theorem 3 can be applied to define (approximately) bias-corrected indices ẑ0;corr,
Îd;corr and ẑ1;corr as

ẑ0;corr = ẑ0 + (n − 1) p̂(1 + ρ̂)

2T (1 − p̂)(1 − ρ̂)
, Îd;corr = Îd + (n − 1)(1 + ρ̂)

Tn(1 − ρ̂)
,

ẑ1;corr = ẑ1 + (n − 1)(n p̂ − 2)(1 + ρ̂)

2Tn(1 − p̂)(1 − ρ̂)
,

where the estimates for p and ρ are recommended to use a plug-in approach, i.e.,

p̂ = X̄

n
, ρ̂ =

∑T−1
t=1 (Xt − X̄)(Xt+1 − X̄)

∑T
t=1(Xt − X̄)2

, with X̄ =
∑T

t=1 Xt

T
.

4.3 Tests based on binomial indices

As we discussed before, our first task is to test the null hypothesis of a BAR(1) process
against the alternative that the data exhibit more ones than implied by a BAR(1)
model. In other words, we are interested in testing H0 : x1, . . . , xT stem from BAR(1)
with p1 = μ(1 − μ/n)n−1 against the alternative hypothesis H1 : x1, . . . , xT with
p1 	= np(1− p)n−1. We can take advantage of the sample one-inflation index and its
corresponding bias-corrected version to propose the following two test statistics:

U1 = ẑ1 − 1√
σ

′
33/T

, U1;corr = ẑ1;corr − 1√
σ

′
33/T

.

Let qγ be the γ -quantile of the standard normal distribution, i.e., �(qγ ) = γ , where
γ ∈ (0, 1) and �(·) is the distribution function of the standard normal distribution.
We reject H0 at a significance level γ if the test statistics U1 and U1;corr violate the
two-sided critical values, i.e., U1,U1;corr /∈ (q γ

2
, q1− γ

2
). Alternatively, we can check

if the p value 2[1− �(|U1|)] and 2[1− �(|U1;corr|)] fall below the significance level
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γ . If a hypothetical value for σ̃33 is not available, we recommend to use a plug-in
approach, i.e., to replace p and ρ by their moment estimates in the formula for σ̃33
given by Theorem 2.

Now, we pay attention to accomplish the second target, which is testing H0 :
x1, . . . , xT stem from BAR(1) with nσ 2 = μ(n − μ) and/or p0 = (1 − μ/n)n

and/or p1 = μ(1 − μ/n)n−1 against the alternative hypothesis H1 : x1, . . . , xT
with nσ 2 	= μ(n − μ) and/or p0 	= (1 − p)n and/or p1 	= np(1 − p)n−1. Under

the null hypothesis, Ujoint := T ( Îjoint − I0)
(�̂
′
)−1( Îjoint − I0) and Ujoint;corr :=

T ( Îjoint;corr − I0)
(�̂
′
)−1( Îjoint;corr − I0) follow an asymptotic χ2-distribution with

3 degrees of freedom, with

Îjoint = (ẑ0, Îd , ẑ1)

, Îjoint;corr = (ẑ0;corr, Îd;corr, ẑ1;corr)
, I0 = (1, 1, 1)
,

and �̂
′
being the appropriate (plug-in) covariance matrix from Theorem 2. Based on

the two test statistics, we reject H0 at significance level γ if Ujoint ≥ χ2
3,1−γ and

Ujoint;corr ≥ χ2
3,1−γ , respectively, where χ2

3,1−γ denotes the (1 − γ )-quantile of the

χ2
3 -distribution.

4.4 Simulation study

In this section, some simulations are conducted to investigate the performances of
the four test methods. We select the significance level γ = 0.05, 0.1, sample size
T = 50, 100, 300, 1000 and each experiment is based on 10,000 replications.

4.4.1 Size study

For analyzing the empirical size, the following parameter combinations are considered:
(E1) (n, p, ρ) = (10, 0.15, 0.25), (E2) (n, p, ρ) = (10, 0.15, 0.5), (E3) (n, p, ρ) =
(10, 0.15, 0.75). As can be seen from Table 3, for the empirical sizes, all the test
statistics give the satisfactory performances and the empirical sizes for Models (E1)–
(E3) become more closer to the significant levels γ = 0.05, 0.1 as the sample size
increases. Comparing with the test statistics U1 and Ujoint, the bias-corrected test
statisticsU1;corr andUjoint;corr give better performances, especially for the small sample
size T = 50.

4.4.2 Power study

We consider the ZOIBAR(1) model with following parameter combinations to further
investigate the power of four test statistics under the alternative hypothesis:

(F1) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.25, 0, 0.1),

(F2) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.25, 0, 0.2),

(F3) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.25, 0, 0.3);
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(G1) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.5, 0, 0.1),

(G2) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.5, 0, 0.2),

(G3) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.5, 0, 0.3);

(H1) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.75, 0, 0.1),

(H2) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.75, 0, 0.2),

(H3) (n, p, ρ, φ0, φ1) = (10, 0.15, 0.75, 0, 0.3).

The rejection rates of the tests are reported in Table 4. It can be observed that the
rejection rates are increasing with the sample size and φ1. In each case, the rejection
rates ofU1 andU1;corr are larger thanUjoint andUjoint;corr. Reason for this phenomenon
is that the DGP is ZOIBAR(1) model with φ0 = 0 and different parameter values of ρ

andφ1 and the distinction betweenDGPand the correspondingBAR(1)model is the 1’s
proportion. U1 and U1;corr are constructed based on the binomial one-inflation index
and thus can give higher rejection rates. Ujoint and Ujoint;corr take the information of Id
and z0 into account but these two indices ofDGP and the correspondingBAR(1)model
are close. Hence, compared with U1 and U1;corr, the powers of Ujoint and Ujoint;corr are
reduced. These findings can also be corroborated by another power analysis, which is
given by power graphs in Figs. 1 and 2. There is an abnormal occurrence in Figs. 1 and
2. To be specific, when φ0 = 0.2, 0.3, the powers of U1;corr and Ujoint;corr decrease as
φ1 increases under the condition 0 < φ1 ≤ 0.2. This circumstance may be explained
by that φ0 = 0.2, 0.3 and 0 < φ1 ≤ 0.2 may effect the mean of the model and thus
lead to the result that the ẑ0, Îd and ẑ1 cannot well reflect the deviation between DGP
and the corresponding BAR(1) model.

5 Real data examples

In this section, three applications are conducted to illustrate the performance of the
ZOIBAR(1) process in explaining zero-inflation, one-inflation and overdispersion phe-
nomena. We compare our process with four extended BAR(1) models, which were
proposed by Möller et al. (2018) to handle zero inflation:

• BAR(1) model with zeros at random (RZ-BAR(1) model);
• BAR(1) model with innovational zeros (IZ-BAR(1) model);
• zero-inflated binomial thinning AR(1) model (ZIB-AR(1) model);
• BAR(1) model with zero threshold (ZT-BAR(1) model).

Moreover, we take the classical BAR(1) process as a benchmark due to its usefulness
and popularity in real-world applications. Although we pointed out the BE is the most
appropriate method for our model, for the purpose of fairness, the (quasi) conditional
maximum likelihood approach is employed for all the alternative models. We also
compute the following statistics of the fitted models: Akaike information criterion
(AIC), Bayesian information criterion (BIC), binomial dispersion index Id , binomial
zero-inflation index z0 and binomial one-inflation index z1.
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Table 5 Descriptive statistics for rainy-days counts in Germany

Mean Variance Id p0 z0 p1 z1

3.8371 3.6753 2.1198 0.0479 12.4623 0.0831 2.5437

5.1 Rainy-days counts in Germany

In this section, we consider the number of rainy-days per week at Hamburg-
Neuwiedenthal in Germany. The data were collected from January 1st, 2005 till
December 31th, 2010 by the German Weather Service (DWD =“Deutscher Wetter-
Dienst,” http://www.dwd.de/), where weeks are defined from Saturday to Friday. The
length of the data is 313 and the fixed upper limit is n = 7. This data set was also
investigated by Chen et al. (2020).

The sample path, histogram, ACF, PACF and summary statistics of the observations
are given in Figure S3 and Table 5. The binomial dispersion index Id of the data is
1.7084, which indicates that the data set is overdispersed. The zero frequency and
one frequency are, respectively, 0.0479 and 0.0831, which are close to zero. However,
as we discussed before, relying entirely on 0’s or 1’s proportion may mislead one
to determine zero inflation or one inflation and the corresponding indices are more
reasonable assessment criteria rather than 0’s or 1’s proportion. The sample binomial
zero-inflation and one-inflation indices are, respectively, 12.4623 and 2.5437, which
make us confirm that this data set is zero-inflated and one-inflated.

As can be seen from Table 6, the ZT-BAR(1) and BAR(1) models are not suitable
for this data set since they give the biggest values of AIC and BIC among alternative
models. Furthermore, the ZT-BAR(1) and BAR(1) processes are the only two models,
which fail to reflect the overdispersion feature of the counts. Although the IZ-BAR(1)
model yields the smaller values of AIC and BIC and captures the overdispersion char-
acteristic of the data, it cannot give the information about the zero and one patterns of
the data since it is complicated to derive a closed-form expression for the stationary
marginal distribution of the IZ-BAR(1) process. As a special case of our model, the
ZR-BAR(1) model can accurately explain zero inflation, but it gives the wrong infor-
mation that the data set is zero-deflated. Based on AIC and BIC, the ZIB-AR(1) and
ZOIBAR(1) processes are the most appropriate model to fit the data. However, the
ZIB-AR(1) model also encounters the difficulty that the information about zero and
one patterns are not easily obtained. Differently, the ZOIBAR(1) process can accu-
rately capture zero-inflation, one-inflation and overdispersion characteristics and gives
the smallest values of AIC and BIC. Hence, we recommend the use of the ZOIBAR(1)
process to fit the data set.

To further compare the above models, we consider their corresponding Pearson
residual analysis. The standardized Pearson residual is defined as

et = Xt − E(Yt |Yt−1)√
Var(Yt |Yt−1)

, t = 2, . . . , T .
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Table 6 Estimates of the parameters and statistics for rainy-days counts in Germany

Model Estimates AIC BIC Id z0 z1

ZOIBAR(1) p̂ = 0.6054 1310.4419 1325.4267 1.6420 11.9936 2.4473

ρ̂ = 0.0977

φ̂0 = 0.0463

φ̂1 = 0.0676

BAR(1) p̂ = 0.5483 1390.1823 1397.6747 1.0000 1.0000 1.0000

ρ̂ = 0.1323

ZR-BAR(1) p̂ = 0.0898 1346.245 1357.4836 1.3376 11.9574 0.7065

ρ̂ = 0.5721

ω̂ = 0.0857

IZ-BAR(1) p̂ = .04460 1341.0390 1352.2776 1.3430 – –

ρ̂ = 0.1075

φ̂ = 0.0447

ZI-BAR(1) α̂ = 0.6762 1311.6871 1326.6719 1.6390 – –

β̂ = 0.5768

ω̂α = 0.1139

ω̂β = 0.1731

ZT-BAR(1) α̂ = 0.5987 1382.3806 1393.6192 – – –

β̂ = 0.5006

β̂0 = 0.3619

Table 7 Properties of the
standardized Pearson residuals
for rainy-days counts in
Germany

Model Standardized Pearson residuals

Mean Variance ρ̂et (1) ρ̂e2t
(1)

ZOIBAR(1) 0.0043 1.2832 0.1294 0.0673

BAR(1) − 0.0027 2.0917 0.0458 0.0721

ZR-BAR(1) 0.0037 1.5721 0.1170 0.0813

IZ-BAR(1) − 0.0007 1.4243 0.0722 0.0597

ZIB-AR(1) 0.0120 0.4451 0.0447 − 0.1464

If the model is correctly specified, then the residuals should have zero mean, unit
variance, and no significant serial correlation in et and e2t . Table 7 shows the mean,
variance, ACF(1) of et (ρ̂et ) and ACF(1) of e2t (ρ̂e2t ). The above models all have
satisfactory performances when we consider the mean of the residuals. Based on the
variance of the residuals, although all alternative models give bigger variance values
than 1, the ZOIBAR(1) process gives the significantly better result than the other
models. So we conclude that the standardized Pearson residual supports the above
conclusion that the ZOIBAR(1) process is the most suitable one to fit this data set.
One may ask if there is correlation within the residuals since ρ̂et = 0.1294, which
is not close to 0. For this, Ljung–Box Q-test for the residuals and square of residuals
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shows that p values are equal to 0.3993 and 0.4077 based on 15 lags at the 5% level.
This situation suggests that there is no significant autocorrelation in the residuals and
square of residuals.

As pointed out by a referee, it is an important topic to discuss the actual meaning
of the parameter estimates for the ZOIBAR(1) model. In this case, on the one hand,
the hidden process {Xt } in Eq. (2.1) can be viewed as the number of rainy-days per
week without special circumstances. p̂ = 0.6054 shows that the probability of rain
for each day is 0.6054, which means that this area is rainy. ρ̂ = 0.0977 indicates that
the correlations of the number of rainy-days per week between two consecutive weeks
are weak, which reveals that the local weather is changeable and difficult to predict.
On the other hand, the observed process {Yt } in Eq. (2.1) is the real data of the number
of rainy-days per week. The difference between Xt and Yt is that Xt is masked by
the zero or one with probability φ̂0 + φ̂1 = 0.1139 due to some unusual changes in
the climate and these unusual changes can lead to the less rainfall. φ̂0 = 0.0463 and
φ̂1 = 0.0676 represent the probabilities of the zero and one times rainy-days per week
caused by unusual changes in the climate.

5.2 Rainy-days counts in Sweden

The second data set is the number of rainy-days per week at Stockholm in Sweden.
The data were obtained from the ECA&D website, http://www.ecad.eu and were
collected from January 1st, 2000 tillMarch 21th, 2008 by the GermanWeather Service
(DWD =“Deutscher WetterDienst”, http://www.dwd.de/), where weeks are defined
from Saturday to Friday. The length of the data is 480 and the fixed upper limit
is n = 7. The sample path, histogram, ACF, PACF and summary statistics of the
observations are given in Figure S4 and Table S9. The binomial dispersion index Id
of the data is 1.8746, which indicates that the data set is overdispersed. The sample
binomial zero index and one index are, respectively, 3.3525 and 1.7472, which seem
that this data set is zero-and-one inflated.

As can be seen from Table S10, the BAR(1) and ZR-BAR(1) processes are not
suitable for the data since they give the bigger AIC and BIC values than other models.
Moreover, the ZR-BAR(1) process overestimates the degree of zero inflation and gives
the wrong information that the data set is one-deflated. The IZ-BAR(1), ZIB-AR(1)
and ZT-BAR(1) models have the similar performances when we consider AIC and
BIC. The IZ-BAR(1) and ZIB-AR(1) models can also capture the overdispersion, but
the unobtained marginal distributions constrain their applications in explaining zero
inflation and one inflation. Similar to the first data set, the ZOIBAR(1) process still
can accurately capture zero-inflation, one-inflation and overdispersion characteristics
and gives the smallest values of AIC and BIC. The Pearson residual analysis also gives
the information that the ZOIBAR(1) process is the most appropriate model to fit this
data set (see Table S11).

The discussion about the actual meaning of the parameter estimates for the
ZOIBAR(1) model can be proceeded in the similar way as we did in Sect. 5.1. Again,
the hidden process {Xt } is the number of rainy-days per week without special circum-
stances. p̂ = 0.5551 shows that the probability of rain for each day is 0.5551, which

123

http://www.ecad.eu
http://www.dwd.de/


Analysis of zero-and-one inflated bounded count time… 65

means that this area is also rainy. ρ̂ = 0.2493 indicates that the correlations of the
number of rainy-days per week between two consecutive weeks are significant, which
implies that the local weather is easier to predict. We observe the real data of the num-
ber of rainy-days per week {Yt } by masking {Xt } with zero or one and the masking
probability is φ̂0 + φ̂1 = 0.1873, which reveals that the unusual climate changes in
Sweden are more commonly encountered than in Germany.

5.3 Assaults-on-officers counts

The third data set is collected from the file PghCarBeat.csv, which was downloaded
fromTheForecastingPrinciples site (http://www.forecastingprinciples.com).Thedata
set is collected for 42 different car beats and from January 1990 to June 2001. For
each month t , the value yt counts the number of car beats reported at least one case of
assaults-on-officers. Hence, the considered data set has finite range with fixed upper
limit n = 42 and the series contains 138 observations. The sample path, histogram,
ACF, PACF and summary statistics of the observations are given in Figure S5 and
Table S12. The binomial dispersion index Id of the data is 1.1490, which indicates
that the data set is overdispersed. The sample binomial zero index and one index
are, respectively, 0.9507 and 1.2008, which indicate that the considered data set is
zero-deflated but one-inflated.

The performances of the alternative models are reported in Table S13. Based on
AIC and BIC, the models are competitive and the BAR(1) process yields the smallest
BIC value. The reason is that BIC gives more severe penalty for the number of model
parameters. It can be observed that the parameter ω for the ZR-BAR(1) model equals
to 0, which indicates that the ZR-BAR(1) model reduces to the BAR(1) model in this
case. This is also well understood since this data set is zero-deflated, and thus the
zero-inflated binomial marginal distribution is just the opposite to what one wishes.
Except for the ZOIBAR(1) model, all the alternatives fail to capture zero deflation
and one inflation. Again, the ZOIBAR(1) model successfully capture zero deflation,
one inflation and overdispersion and the corresponding indices are prettily close to the
empirical values. During our study, we also tried to apply the ZIB-AR(1) model to fit
this data set but the workable results are unavailable. Thus, the relevant information is
not reported here. The Pearson residual analysis also supports the ZOIBAR(1) model
since its variance value of residuals is the closest to 1 among the alternatives. One may
ask if there is correlation within the square of residuals since ρ̂e2t

= −0.1218, which
is not close to 0. For this, Ljung–Box Q-test for the residuals and square of residuals
shows that p values are equal to 0.2097 and 0.9796 based on 15 lags at the 5% level.
This situation suggests that there is no significant autocorrelation in the residuals and
square of residuals.

Now we turn to discuss the actual meaning of the parameter estimates for the
ZOIBAR(1)model in the assaults-on-officers case.On the one hand, the hiddenprocess
{Xt } is the number of car beats reported at least one case of assaults-on-officers per
month during the period of normal state. p̂ = 0.0484 shows that the probability of
the appearance of assaults-on-officers for each car beat in a month is 0.0484, which is
close to zero and reflects that this area is in a state of harmony and stability. ρ̂ = 0.3013
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indicates that the correlations of the number of car beats reported at least one case of
assaults-on-officers permonth between two consecutivemonths are visibly significant.
This phenomenon can be interpreted by the fact that the improvement or deterioration
of social order changes gradually over time. Hence, the assaults-on-officers cases in a
month will certainly affect the assaults-on-officers cases in next month. On the other
hand, the observed process {Yt } is the real data of the number of car beats reported at
least one case of assaults-on-officers per month. The difference between Xt and Yt is
that Xt is masked by the zero or one with probability φ̂0 + φ̂1 = 0.4116 due to the
government management measures and these measures can lead to the social stability.
Based on φ̂0 + φ̂1 = 0.4116, we can guess that the local government attached great
importance to the security situation and the corresponding measures were frequently
adopted. φ̂0 = 0.1606 and φ̂1 = 0.2510 represent the probabilities of the zero and
one car beat reported at least one case of assaults-on-officers under the circumstances
of government management.

5.4 Prediction

Prediction problem is always a popular issue in time series analysis to check the
adequacy and predictability of the selected model. Three different prediction methods
will be discussed in the following:

First, we discuss the classicalmethod for predicting themodel. Conditional expecta-
tionmethod is the most common approach for constructing classical prediction in time
series models due to its optimal property of the mean squared error. The h-step ahead
predictor for Yt+h is Ŷt+h |Yt = E(Yt+h |Yt ), where E(Yt+h |Yt ) is given by Eq. (2.2).
In practice, the parameters p, ρ, φ0 andφ1 are replaced by their correspondingQMLE.

However, the conditional expectation method goes against the data coherence and
prediction coherence since the integer-valued predictors can hardly be produced.
Therefore, we call for an adaptive procedure which has the ability to produce integer-
valued predictors. Freeland and McCabe (2004) proposed a feasible approach which
uses the h-step-ahead predictive conditional distributions to predict the future value.
One can obtain the point prediction from the median or the mode of the predic-
tive distribution. This method has been employed by some researchers, see Möller
et al. (2016), Maiti and Biswas (2017) and Kang et al. (2021), among others. Fol-
lowing this path, we compute the h-step-ahead conditional distribution of Yt+h given
Y1 = y1, . . . ,Yt = yt , i.e., P(Yt+h = yt+h |Y1 = y1, . . . ,Yt = yt ) of the ZOIBAR(1)
process based on the HMM theory (see Zucchini et al. 2009, Section 5.3). Motivated
by the idea of the quasi-likelihood estimation, another alternative way is to calculate
the h-step-ahead quasi-conditional distribution, i.e., P(Yt+h = yt+h |Yt = yt ) based
on Proposition 2.

TheBayesianpredictionmethod is another approach to produce coherent predictors.
The future value is derived via using the h-step-ahead Bayesian predictive probability
function, which is based on the assumption that both Yt+h and unknown parameters
are random and given by
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Table 8 The MADEs of the h-step-ahead predictor for rainy-days counts in Germany

Predict step Conditional
expectation

Quasi-
conditional
distribution

Conditional
distribution

Bayesian prediction

h = 1 0.8934 1.0000 1.0000 1.0000

h = 2 1.8303 2.0000 2.0000 2.0000

h = 3 2.1764 2.0000 2.0000 2.0000

h = 4 0.8229 1.0000 1.0000 1.0000

h = 5 1.1772 1.0000 1.0000 1.0000

h = 6 1.1772 1.0000 1.0000 1.0000

P(Yt+h = yt+h |Y)

=
∫ 1

0

∫ 1

c

∫ 1

0

∫ 1−φ1

0
P(Yt+h = yt+h |Y ,λ)π(λ|Y)dφ0dφ1dρdp,

where yt+h ∈ {0, 1, . . . , n}, Y = (Y1, . . . ,YT )
 and the posterior distributionπ(λ|Y)

is given by Eq. (3.2). Also, we can obtain the point prediction from the median or the
mode of the h-step-ahead Bayesian predictive probability function.

To compare the above four prediction approaches, we evaluate the performances
in the above three data sets via MADE of out-of-sample prediction, where the last
h observations are excluded when estimating parameters for out-of-sample predic-
tion. The corresponding results are shown in Tables 8 and S15–S16 and h-step-ahead
predictive quasi-conditional distribution, h-step-ahead predictive conditional distribu-
tion and h-step-ahead Bayesian predictive conditional distribution of the considered
data sets are given in Figs. 3, 4, 5 and S6–S11. We can see that the h-step-ahead
predictive conditional distribution is similar to the h-step-ahead Bayesian predictive
conditional distribution, so the predictors produced by the twomethods are close. This
phenomenon is well understood since the only difference between predictive condi-
tional distribution and Bayesian predictive conditional distribution is the priors. It is
also easily observed that the conditional expectation prediction can produce more sta-
ble results and conditional distribution prediction and Bayesian prediction succeed in
giving better predictors than the conditional expectation prediction in some situations.
In general, we are more inclined to conditional distribution prediction and Bayesian
prediction. The reason is that these two methods not only can give us reliable pre-
dictors, but also have the ability to provide more information such as the predictive
distribution. The predictive distribution can help practitioners establish early warning
system of risk via utilizing the idea of Value-at-Risk (VaR, see Chen and Watanabe
2019). Take assaults-on-officers counts as an example, from Figures S9–S11, it is a
small probability event that the observation is larger than 2. Hence, if we once observe
the number of car beats reported at least one case of assaults-on-officers is larger than
2, it can be deduced that some events have caused unrest in social security and the
corresponding treatment measure should be adopted. The similar discussion can be
proceeded in the rainy-days counts case.
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6 Conclusion

This article proposes a hidden Markov model with zero-and-one inflated binomial
marginals to better analyze bounded counts with excess zeros and ones. The stochastic
properties of the new model are investigated and estimators of the model parameters
are derived by the probability-based, quasi-maximum likelihood,maximum likelihood
and Bayesian approaches. A binomial one-inflation index is constructed and further
utilized to develop a method to test whether zero-and-one inflated with respect to a
BAR(1) model. Three applications to the real-data examples are given to assess the
performance of our model.

However, more research is still needed for some aspects of the newmodel. The first
issue is that the estimation problem for the ZOIBAR(1) model should be treated in
more detail. For example, it would be interesting in applying the empirical likelihood
approach to the ZOIBAR(1) model and investigating the asymptotic behavior of the
estimators. Extensions to the ZOIBAR(1)model are the second issue. The construction
of high-order and multivariate ZOIBAR processes may be an interesting topic. The
third issue is that modeling for bounded counts with excess zeros and ones is still rare
and the corresponding Markov models are urgently needed. Relative research will be
devoted as future work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-022-00825-y.
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