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Abstract
We consider the change-point detection in a general class of time series models,
including multivariate continuous and integer- valued time series. We propose aWald-
type statistic based on the estimator performed by a general contrast function, which
can be constructed from the likelihood, a quasi-likelihood, a least squares method,
etc. Sufficient conditions are provided to ensure that the test statistic convergences
to a well-known distribution under the null hypothesis (of no change) and diverges
to infinity under the alternative, which establishes the consistency of the procedure.
Some examples of models are detailed to illustrate the scope of application of the
proposed change-point detection tool. The procedure is applied to simulated and real
data examples for numerical illustration.

Keywords Change-point · Multivariate time series · Minimum contrast estimation ·
Consistency · Causal processes · Integer-valued time series

Mathematics Subject Classification 62M10 · 62F05 · 62F12

1 Introduction

Since Page (1955), the change-point problem has been widely studied. Several
approaches and procedures have been developed for univariate and multivariate pro-
cesses with continuous or integer- valued variables.
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2 M. L. Diop, W. Kengne

Consider observations (Y1, . . . ,Yn), generated from a multivariate continuous or
integer-valued process Y = {Yt , t ∈ Z}. These observations depend on a parameter
θ∗ ∈ � ⊂ R

d (d ∈ N) which may change over time. More precisely, consider the
following test hypotheses:

H0: (Y1, . . . ,Yn) is a trajectory of the process Y = {Yt , t ∈ Z} which depends on
θ∗.

H1: There exists ((θ∗
1 , θ∗

2 ), t∗) ∈ �2 × {2, 3, . . . , n − 1} (with θ∗
1 �= θ∗

2 ) such that

(Y1, . . . ,Yt∗) is a trajectory of a process Y (1) = {Y (1)
t , t ∈ Z} that depends on

θ∗
1 and (Yt∗+1, . . . ,Yn) is a trajectory of a process Y (2) = {Y (2)

t , t ∈ Z} that
depends on θ∗

2 .

Note that under H1, (Y1, . . . ,Yn) is a trajectory of the process {(Y (1)
t )t≤t∗ , (Y

(2)
t )t>t∗}

which depends on θ∗
1 and θ∗

2 . In thewhole paper, it is assumed that� is a fixed compact
subset of Rd (d ∈ N).

This test for change-point detection is often addressed with a Wald-type statistic
based on the likelihood, quasi-likelihood, conditional least-squares or density power
divergence estimator. Likelihood estimate-based procedure has been proposed for
continuous and integer-valued time series; see, for instance, Lee and Lee (2004),
Kang and Lee (2014), Doukhan and Kengne (2015), Diop and Kengne (2017), Lee
et al. (2018). Several authors have pointed out some restrictions of these procedures
and proposed aWald-type statistic based on a quasi-likelihood estimators; see, among
others papers, Lee and Song (2008), Kengne (2012), Diop and Kengne (2021). Other
procedures have been developed with the (conditional) least-squares estimator (see,
for instance, Lee and Na 2005a; Kang and Lee 2009) or the density power divergence
estimator (see, among others, Lee and Na 2005b; Kang and Song 2015). Lee et al.
(2003) proposed a procedure for change-point detection in a large class of time series
models, but this procedure does not take into account the change-point alternative and
does not ensure the consistency in power. We refer also to the works of Qu and Perron
(2007) and Kim and Lee (2020) and the references therein, for some procedures for
change-point detection in multivariate regressions and systems, and to Franke et al.
(2012), Hudecová (2013), Fokianos et al. (2014), Hudecová et al. (2017), for other
procedures for change-point detection in time series of counts.

In this new contribution, we consider a multivariate continuous or integer-valued
process and deal with a general contrast, where the likelihood, quasi-likelihood, con-
ditional least-squares or density power divergence can be seen as a specific case.

Let ̂C
(

(Yt )t∈T , θ
)

be a contrast function defined for any segment T ⊂ {1, . . . , n}
and θ ∈ � by:

̂C
(

(Yt )t∈T , θ
) =

∑

t∈T
ϕ̂t (θ), (1)

where ϕ̂t depends on Y1, . . . ,Yt , and is such that the minimum contrast estimator
(MCE), computed on a segment T ⊂ {1, . . . , n} is given by
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A general procedure for change-point detection… 3

̂θ(T ) := argmin
θ∈�

(

̂C
(

(Yt )t∈T , θ
)

)

. (2)

See also Killick et al. (2012) for the use of a general cost/contrast function in a
context of the multiple change-points detection. In the sequel, we use the notation
̂C(T , θ) = ̂C

(

(Yt )t∈T , θ
)

and address the following issues.

(i) We propose a Wald-type statistic based on the MCE for testing H0 against H1.
The asymptotic studies under the null and the alternative hypotheses show that
the test has correct size asymptotically and is consistent in power. This test unifies
the treatment of a large class of models, including multivariate continuous and
count processes, and many existing results in the literature can be seen as specific
cases of the results obtained below.

(ii) Application to a large class of multivariate causal processes is carried out. We
provide sufficient conditions under which the asymptotic results of the change-
point detection hold.

(iii) A general class of multivariate integer-valued models is considered. In the case
where the conditional distribution belongs to the m-parameter exponential fam-
ily, we provide sufficient conditions that ensure the existence of a stationary and
ergodic τ -weakly dependent solution. The inference is carried out, and the con-
sistency and the asymptotic normality of the Poisson quasi maximum likelihood
estimator (PQMLE) are established. This inference question has been addressed
by Ahmad (2016) with the equation-by-equation PQMLE, Lee et al. (2018) for
bivariate Poisson INGARCHmodel,Cui et al. (2020) for flexible bivariate Poisson
integer-valued GARCH model, Fokianos et al. (2020) for linear and log-linear
multivariate Poisson autoregressive models. The model considered in Sect. 4
appears to be more general, and the conditions imposed for asymptotic studies
seem to be more straightforward. Also, we show that the asymptotic results of
the change-point detection hold for this class of models.

The paper is structured as follows. Section 2 contains the general assumptions and
the construction of the test statistic for change-point detection, as well as the main
asymptotic results under H0 and H1. Section 3 is devoted to the application of the
proposed change-point detection procedure to a general class of continuous-valued
processes. Section 4 focuses on a general class of observation-driven integer-valued
time series. In Sect. 5, we present some numerical results.

Section 6 contains the proofs of the main results.

2 General change-point detection procedure

2.1 Assumptions

Throughout the sequel, the following norms will be used:

– ‖x‖ :=∑p
i=1 |xi |for any x ∈ R

p (with p ∈ N);

123



4 M. L. Diop, W. Kengne

– ‖x‖ := max
1≤ j≤q

∑p
i=1 |xi, j |for any matrix x = (xi, j ) ∈ Mp,q(R);where

Mp,q(R)denotes the set of matrices of dimension p × qwith coefficients in R;
– ‖g‖K := supθ∈K (‖g(θ)‖)for any compact set K ⊆ �and function g : K −→

Mp,q(R);

– ‖Y‖r := E
(‖Y‖r )1/r for any random vector Ywith finite r−order moments.

Let Y = {Yt , t ∈ Z} be a multivariate continuous or integer- valued process
depending on a parameter θ∗ ∈ � and denote by Ft−1 = σ {Yt−1, . . .} the σ -field
generated by the whole past at time t − 1. In the sequel, we assume that ( jn)n≥1
and (kn)n≥1 are two integer-valued sequences such that jn ≤ kn , kn → ∞ and
kn − jn → ∞ as n → ∞, and use the notation T�,�′ = {�, � + 1, . . . , �′} for any
(�, �′) ∈ N

2 such as � ≤ �′. We consider a segment Tjn ,kn and set the following
assumptions for (Y , θ∗) under H0.

(A1): The process Y = {Yt , t ∈ Z} is assumed to be stationary and ergodic.
(A2): Assume that the MCÊθ(Tjn ,kn ) (defined in (2)) converges a.s. to θ∗.
(A3): For all t ∈ Tjn ,kn , the function θ → ϕ̂t (θ) (see (1)) is assumed to be continu-

ously differentiable on�, in addition, assume there exists a sequence of random
function (ϕt (·))t∈Z such that the mapping θ → ϕt (θ) is continuously differen-
tiable on � and for all θ ∈ �, the sequence (∂ϕt (θ)/∂θ)t∈Z is stationary and
ergodic, satisfying:

E

∥

∥

∥

∂

∂θ
ϕt (θ)

∥

∥

∥

2

�
< ∞; 1√

kn − jn

∑

t∈Tjn ,kn

∥

∥

∥

∂

∂θ
ϕ̂t (θ) − ∂

∂θ
ϕt (θ)

∥

∥

∥

�
= oP (1) and

1

kn − jn

∑

t∈Tjn ,kn

∥

∥

∥

∂

∂θ
ϕ̂t (θ)

∂

∂θT
ϕ̂t (θ) − ∂

∂θ
ϕt (θ)

∂

∂θT
ϕt (θ)

∥

∥

∥

�
= o(1) a.s.. (3)

Furthermore, assume that
(

∂
∂θ

ϕt (θ
∗),Ft

)

t∈Z is a stationary ergodic, square

integrable martingale difference sequence with covariance G = E

[

∂ϕ0(θ
∗)

∂θ
∂ϕ0(θ

∗)
∂θT

]

assumed to be positive definite.

(A4): For all t ∈ Tjn ,kn , the function θ → ϕ̂t (θ) is assumed to be 2 times continuously
differentiable on �, moreover, under the assumption (A3), assume that the
function θ → ∂ϕt (θ)

∂θ
is continuously differentiable on�, such that the sequence

(∂2ϕt (θ)/∂θ∂θT )t∈Z is stationary and ergodic, satisfying:

E

∥

∥

∥

∂2ϕt (θ)

∂θ∂θT

∥

∥

∥

�
< ∞,

1

kn − jn

∑

t∈Tjn ,kn

∥

∥

∥

∂2ϕ̂t (θ)

∂θ∂θT
− ∂2ϕt (θ)

∂θ∂θT

∥

∥

∥

�
= o(1) a.s.,

(4)

and the matrix F = E

[∂2ϕ0(θ
∗)

∂θ∂θT

]

assumed to be invertible.
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A general procedure for change-point detection… 5

The conditions (A1) and (A2) assume the stationarity of the process under H0
and ensure that the MCE computed on each segment converges to the parameter of
the stationary solution of the segment. Assumptions (A3) and (A4) allow to unify
the theory for any model that satisfies such conditions and ensures the asymptotic
normality of the MCE. More precisely, under (A1)–(A4), standard arguments can be
used to get,

√

kn − jn
(

̂θ(Tjn ,kn ) − θ∗) D−→
n→∞N (0,	−1) with 	 := FG−1F . (5)

The examples detailed in Sects. 3 and 4 show that the assumptions (A1)–(A4) hold
for many classical time series models.

Now, for any �, �′ ∈ N with � ≤ �′, define the matrices:

̂G(T�,�′) = 1

�′ − � + 1

∑

t∈T�,�′

∂

∂θ
ϕ̂t (̂θ(T�,�′))

∂

∂θT
ϕ̂t (̂θ(T�,�′)) and

̂F(T�,�′) = 1

�′ − � + 1

∑

t∈T�,�′

∂2

∂θ∂θT
ϕ̂t (̂θ(T�,�′)).

According to (A1)–(A4), ̂F(Tjn ,kn ) and ̂G(Tjn ,kn ) converges almost surely to F and
G, respectively. Indeed, for example,

‖̂F(Tjn ,kn ) − F‖ ≤ 1

kn − jn

∑

t∈Tjn ,kn

∥

∥

∥

∂2ϕ̂t (θ)

∂θ∂θT
− ∂2ϕt (θ)

∂θ∂θT

∥

∥

∥

�

+
∥

∥

∥

∑

t∈Tjn ,kn

1

kn − jn

∂2ϕt (̂θ(Tjn ,kn ))

∂θ∂θT
− E

[∂2ϕ0(θ
∗)

∂θ∂θT

]∥

∥

∥

= o(1) + o(1) = o(1) a.s..

The first term of the right-hand side of the above inequality is a.s. o(1) from (4)
and the second term is also a.s. o(1) sincêθ(Tjn ,kn )

a.s.−→ n → ∞θ∗ and by applying
the uniform law of large numbers to the sequence (∂2ϕt (θ)/∂θ∂θT )t∈Z. Under the
assumption (A3), similar arguments yield ‖̂G(Tjn ,kn ) − G‖ = o(1) a.s..

Therefore, ̂F(Tjn ,kn )
̂G(Tjn ,kn )

−1
̂F(Tjn ,kn ) is a consistent estimator of the covari-

ance matrix 	.

2.2 Change-point test and asymptotic results

We derive a retrospective test procedure based on the MCE of the parameter.
For all n ≥ 1, define the matrix ̂	(un) and the subset Tn by

̂	(un) = 1

2

[

̂F(T1,un )̂G(T1,un )
−1
̂F(T1,un )

+̂F(Tun+1,n)̂G(Tun+1,n)
−1
̂F(Tun+1,n)

]

and Tn = [vn, n − vn] ∩ N,
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6 M. L. Diop, W. Kengne

where (un, vn)n≥1 is a bivariate integer-valued sequence such that: (un, vn) = o(n)

andun, vn −→
n→∞+∞. Note that the asymptotic properties of̂	(un) are very important to

prove consistency of the procedure. Indeed, under H0, ̂	(un) is a consistent estimator
of the matrix	. Under the alternative and the classical Assumption B (see below), one
can show that the first component of ̂	(un) converges to the inverse of the covariance
matrix of the stationary model of the first regime and second component (even if
its consistency is not ensured) is positive semi-definite. This will play a key role in
proving the consistency under the alternative.

For any 1 < k < n, let us introduce

̂Qn,k = (k(n − k))2

n3
(

̂θ(T1,k) −̂θ(Tk+1,n)
)T
̂	(un)

(

̂θ(T1,k) −̂θ(Tk+1,n)
)

.

Therefore, consider the following test statistic:

̂Qn = max
k∈Tn

(

̂Qn,k
)

. (6)

The construction of this statistic follows the approach of Doukhan and Kengne (2015);
that is, ̂Qn,k evaluates a distance between ̂θ(T1,k) and ̂θ(Tk+1,n) for all k ∈ Tn . Let
us stress that for n large enough, ̂θ(T1,k) and ̂θ(Tk+1,n) are close to ̂θ(T1,n) which
converges to θ∗ under H0 (from the consistency of the MCE in Assumption (A2)).
The null hypothesis will thus be rejected if there exists a time k ∈ Tn such that the
distance between̂θ(T1,k) and̂θ(Tk+1,n) is too large.

The following theorem gives the asymptotic behavior of the test statistic under H0.

Theorem 1 Under H0 with θ∗ ∈ ◦
�, assume that (A1)–(A4) hold for (Y , θ∗). Then,

̂Qn
D−→

n→∞ sup
0≤τ≤1

‖Wd(τ )‖2 , (7)

where Wd is a d-dimensional Brownian bridge.

For a nominal level α ∈ (0, 1), the critical region of the test is then (̂Qn > cd,α),
where cd,α is the (1− α)-quantile of the distribution of sup

0≤τ≤1
‖Wd(τ )‖2. The critical

values cd,α can be easily obtained through aMonte Carlo simulation; see, for instance,
Lee et al. (2003).

Under the alternative hypothesis, we consider the following additional condition
for the break instant.
Assumption B: There exists τ ∗ ∈ (0, 1) such that t∗ = [nτ ∗],where [x]denotes the
integer part of x .

We obtain the following main result under H1.

Theorem 2 Under H1 with θ∗
1 and θ∗

2 belonging to
◦
�, assume that (A1)–(A4) hold for

(Y (1), θ∗
1 ) and (Y (2), θ∗

2 ). If Assumption B is satisfied, then

̂Qn
P−→

n→∞ + ∞. (8)
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A general procedure for change-point detection… 7

Note that under H1, Theorem 2 needs, in particular, the stationarity of the processes
Y (1) and Y (2), but the independence between these two processes is not needed.

In the next two sections, we will detail some examples of classes of multivariate
time series with a quasi-likelihood contrast function. We also show that under some
regularity conditions, the general assumptions required for Theorems 1 and 2 are
satisfied for these classes.

Let us stress that the scope of the proposed procedure is quite extensive and is not
only restricted to the examples below. This procedure can be applied for instance, for
change-point detection in models with exogenous covariates (see Diop and Kengne
2022a; Aknouche and Francq 2021), for integer-valued time series with negative
binomial quasi-likelihood contrast (see Aknouche et al. 2018) or with density power
divergence contrast (see Kim and Lee 2020), for general time series model with the
conditional least-squares contrast (see Klimko and Nelson 1978). In fact, one can
easily see in these papers that the assumptions (A1)–(A4) hold.

3 Application to a class of multidimensional causal processes

Let {Yt , t ∈ Z} be a multivariate time series of dimensionm ∈ N. For any T ⊆ Z and
θ ∈ �, consider the general class of causal processes defined by

ClassACT (Mθ , fθ ): A process {Yt , t ∈ T } belongs toACT (Mθ , fθ ) if it satisfies:

Yt = Mθ (Yt−1,Yt−2, . . .) · ξt + fθ (Yt−1,Yt−2, . . .) ∀t ∈ T , (9)

where Mθ (Yt−1,Yt−2, . . .) is a m × p random matrix having almost everywhere (a.e)
full rankm, fθ (Yt−1,Yt−2, . . .) is aRm-randomvector and (ξt )t∈Z is a sequence ofRp-
random vector with zero-mean, independent, identically distributed (i.i.d) satisfying

ξt = (ξ
(k)
t )1≤k≤p with E

[

ξ
(k)
0 ξ

(k′)
0

] = 0 for k �= k′ and E
[

ξ
(k)2

0

] = Var(ξ (k)
0 ) = 1 for

1 ≤ k ≤ p. Mθ (·) and fθ (·) are assumed to be known up to the parameter θ . This
class has been studied in Doukhan andWintenberger (2008), Bardet andWintenberger
(2009).

We would like to carry out the change-point test presented in Sect. 1 for the class
ACT (Mθ , fθ ). For this purpose, we assume that (Y1, . . . ,Yn) is a trajectory generated
from one or two processes satisfying (9).

For all t ∈ Z, denote byFt = σ(Ys, s ≤ t) the σ -field generated by the whole past
at time t . For any segment T ⊂ {1, . . . , n} and θ ∈ �, we define the contrast function
based on the conditional Gaussian quasi-log-likelihood given by (up to an additional
constant)

̂C(T , θ) = 1

2

∑

t∈T
ϕ̂t (θ) with

ϕ̂t (θ) = (Yt − ̂f tθ )T (̂Ht
θ )

−1(Yt − ̂f tθ ) + log(det(̂Ht
θ )), (10)

where ̂f tθ := fθ (Yt−1, . . . ,Y1, 0, . . .), ̂Mt
θ := Mθ (Yt−1, . . . ,Y1, 0, . . .), ̂Ht

θ :=
̂Mt

θ (
̂Mt

θ )
T .
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8 M. L. Diop, W. Kengne

Thus, the MCE computed on T is defined by

̂θ(T ) = argmin
θ∈�

(

̂C(T , θ)
)

. (11)

Let �θ be a generic symbol for any of the functions fθ , Mθ or Hθ = Mθ MT
θ and

K ⊆ � be a compact subset. To study the stability properties of the class (9), Bardet
and Wintenberger (2009) imposed the following classical Lipschitz-type conditions
on the function �θ .
Assumption Ai (�θ ,K) (i = 0, 1, 2): For any y ∈ (Rm)∞, the function θ → �θ(y)

is i times continuously differentiable on K with
∥

∥
∂ i�θ (0)

∂θ i

∥

∥

K < ∞, and there exists a

sequence of nonnegative real numbers (α
(i)
k (�θ ,K))k∈N satisfying:

∞
∑

k=1
α

(i)
k (�θ ,K) <

∞, for i = 0, 1, 2; such that for any x, y ∈ (Rm)∞,

∥

∥

∥

∂ i

∂θ i
�θ(x) − ∂ i

∂θ i
�θ(y)

∥

∥

∥

K
≤

∞
∑

k=1

α
(i)
k (�θ ,K)‖xk − yk‖,

where x, y, xk, yk are, respectively, replaced by xxT , yyT , xkxTk , yk y
T
k if �θ = Hθ .

For r ≥ 1, define the set

�(r) = {

θ ∈ R
d /A0( fθ , {θ}) and A0(Mθ , {θ}) hold with

∞
∑

k=1

{

α
(0)
k ( fθ , {θ}) + ‖ξ0‖rα(0)

k (Mθ , {θ}
}

< 1
}

⋃

{

θ ∈ R
d / fθ = 0 and A0(Hθ , {θ}) holds with ‖ξ0‖2r

∞
∑

k=1

α
(0)
k (Hθ , {θ}) < 1

}

.

The following regularity conditions are also considered in Bardet and Wintenberger
(2009) to assure the consistency and the asymptotic normality of̂θ(T1,n) under H0.
(AC.A0): For all θ ∈ � and some t ∈ Z,

(

f tθ∗ = f tθ and Ht
θ∗ = Ht

θ a.s.
)⇒ θ = θ∗.

(AC.A1): ∃H > 0 such that inf
θ∈�

det (Hθ (y)) ≥ H , for all y ∈ (Rm)∞.

(AC.A2): α
(i)
k ( fθ ,�) + α

(i)
k (Mθ ,�) + α

(i)
k (Hθ ,�) = O(k−γ ) for i = 0, 1, 2 and

some γ > 3/2.

(AC.A3): One of the families
( ∂ f 0

θ∗
∂θi

)

1≤i≤d or
( ∂H0

θ∗
∂θi

)

1≤i≤d is a.e linearly independent.
Under A0(�θ ,�) (for �θ = fθ , Mθ , Hθ ) with θ∗ ∈ � ∩ �(1), Bardet and

Wintenberger (2009) established the existence of a strictly stationary and ergodic
solution to the class ACZ(Mθ∗ , fθ∗), which shows that the assumption (A1) holds.
Under H0, if A0( fθ ,�), A0(Mθ ,�) (or A0(Hθ ,�)) and (AC.A0)–(AC.A2) hold
with θ∗ ∈ � ∩ �(2), then ̂θ(Tjn ,kn )

a.s.−→ n → ∞θ∗ (from Theorem 1 of Bardet and
Wintenberger 2009). Therefore, (A2) is satisfied.
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A general procedure for change-point detection… 9

Let us define

ϕt (θ) := (Yt − f tθ )T (Ht
θ )

−1(Yt − f tθ ) + log(det(Ht
θ )) (12)

with f tθ := fθ (Yt−1, . . .), Mt
θ := Mθ (Yt−1, . . .) and Ht

θ := Mt
θ (M

t
θ )

T .
Now, consider the change-point test presented in Section, where the observations

(Y1, . . . ,Yn) depend on θ∗ under H0 and on (θ∗
1 ,θ

∗
2 ) under H1. Under H0, Ai ( fθ ,�),

Ai (Mθ ,�) (orAi (Mθ ,�)) for i = 0, 1, 2 and (AC.A0)–(AC.A3)with θ∗ ∈ ◦
�∩�(4),

Bardet and Wintenberger (2009) have proved that̂θ(Tjn ,kn ) is asymptotically normal.
Then, using the sequence of functions (ϕt (·))t∈Z defined in (12), one can see that
the assumptions (A3) and (A4) also hold. For the condition (3) and those imposed
on the sequence ( ∂

∂θ
ϕt (θ

∗),Ft )t∈Z in (A3), see the proof of their Theorem 2 and the
arguments in the proof of Lemma2 (ii). Thus, under the null hypothesis, all the required
assumptions (A1)–(A4) are verified for (Y , θ∗), which assures that Theorem 1 applies
to this class of models. Note that, by the same arguments, one can also see that these
assumptions hold for (Y (1), θ∗

1 ) and (Y (2), θ∗
2 ) under H1. Therefore, Theorem 2 also

applies to this class.
Themodels V AR(1) considered in (20) and (22) are examples of processes belong-

ing to the class ACT (Mθ , fθ ). Such examples have been studied; see, for instance,
Dvořák and Prášková (2013) and Kirch et al. (2015). But, the models (20) and (22)
below are quite general, since the matrix Mθ is part of the parameters of the model
and a change might occur in this matrix.

4 Inference and application in general multivariate count process

4.1 Model formulation and inference

Consider a multivariate count time series {Yt = (Yt,1, . . . , Yt,m)T , t ∈ Z} with value
in N

m
0 (with m ∈ N, N0 = N ∪ {0}) and denote by Ft−1 = σ {Yt−1, . . .} the σ -field

generated by the whole past at time t − 1. For any T ⊆ Z and θ ∈ �, define the class
of multivariate observation-driven integer-valued time series given by
Class MODT ( fθ ): The multivariate count process Y = {Yt , t ∈ T } belongs to
MODT ( fθ ) if it satisfies:

E(Yt |Ft−1) = fθ (Yt−1,Yt−2, . . .) ∀t ∈ T , (13)

where fθ (·) is a measurable multivariate function with nonnegative components,
assumed to be known up to the parameter θ .

In this section, it is assumed that any {Yt , t ∈ Z} belonging to MODT ( fθ ) is a
stationary and ergodic process (i.e., the condition (A1) imposed for the change-point
detection holds) satisfying:

∃C > 0, ε > 0, such that ∀t ∈ Z, ‖Yt‖1+ε < C . (14)
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10 M. L. Diop, W. Kengne

Proposition 1provides sufficient conditions for the existence of a stationary and ergodic
solutionof (13)when the conditional distributionbelongs to am-parameter exponential
family. The condition (14) is a classical assumption which ensures that the process
{Yt , t ∈ T } has moments of order slightly greater than 1 (see, for instance, Ahmad
and Francq 2016).

Let (Y1, . . . ,Yn) be observations generated from MODZ( fθ∗) with θ∗ ∈ �. The
conditional Poisson quasi-log-likelihood computed on {1, . . . , n} is given by (up to a
constant)

Ln(θ) :=
n
∑

t=1

�t (θ) with �t (θ) =
m
∑

i=1

(

Yt,i log λt,i (θ) − λt,i (θ)
)

,

where λt (θ) := (λt,1(θ), . . . , λt,m(θ)
) = fθ (Yt−1,Yt−2, . . .). An approximated con-

ditional quasi-log-likelihood is given by

̂Ln(θ) :=
n
∑

t=1

̂�t (θ) with ̂�t (θ) =
m
∑

i=1

(

Yt,i loĝλt,i (θ) −̂λt,i (θ)
)

,

wherêλt (θ) := (

̂λt,1(θ), . . . ,̂λt,m(θ)
)T = fθ (Yt−1, . . . ,Y1, 0, . . .). Therefore, the

Poisson quasi-maximum likelihood estimator (QMLE) of θ∗ is defined by

̂θn := argmax
θ∈�

(

̂Ln(θ)
)

.

Note that under the assumption of independence among components and conditionally
Poisson distributed, this Poisson QMLE is equivalent to the maximum likelihood esti-
mator. Let us highlight that we deal with an arbitrary dependence among components
and arbitrary conditional distribution; that is, the distribution of the components could
differ from each other.

For a process {Yt , t ∈ Z} belonging toMODZ( fθ∗), we set the following assump-
tions in order to establish the consistency and the asymptotic normality of the Poisson
QMLE.
Assumption Ai (�) (i = 0, 1, 2): For any y ∈ (

N
m
0

)∞, the function θ → fθ (y)
is i times continuously differentiable on � with

∥

∥∂ i fθ (0)/∂θ i
∥

∥

�
< ∞, and there

exists a sequence of nonnegative real numbers (α
(i)
k )k≥1 satisfying

∑∞
k=1 α

(0)
k < 1 (or

∑∞
k=1 α

(i)
k < ∞ for i = 1, 2); such that for any y, y′ ∈ (Nm

0

)∞,

∥

∥

∥

∂ i fθ (y)

∂θ i
− ∂ i fθ (y′)

∂θ i

∥

∥

∥

�
≤

∞
∑

k=1

α
(i)
k ‖yk − y′

k‖.

(MOD.A0): For all θ ∈ �,
(

fθ∗(Yt−1,Yt−2, . . .)
a.s.= fθ (Yt−1,Yt−2, . . .) for some t ∈

Z
) ⇒ θ∗ = θ ; moreover, ∃c > 0 such that fθ (y) ≥ c1m componentwise, for all

θ ∈ �, y ∈ (Nm
0

)∞, where 1Tm = (1, . . . , 1) is a vector of dimension m.

123



A general procedure for change-point detection… 11

(MOD.A1): θ∗ is an interior point of � ⊂ R
d .

(MOD.A2): The family
(

∂λt (θ
∗)

∂θi

)

1≤i≤d is a.e. linearly independent.
Proposition 1 establishes the existence of a stationary and ergodic solution of the

model (13) for the m-parameter exponential family conditional distribution. Consider
a m-dimensional process {Yt , t ∈ Z} satisfying

Yt |Ft−1 ∼ p(y|ηt ) with λt (θ) := E(Yt |Ft−1) = fθ (Yt−1,Yt−2, . . .) (15)

where p(·|·) is a multivariate discrete distribution belonging to them-parameter expo-
nential family; that is

p(y|η) = exp{ηT y − A(η)}h(y), y ∈ N
m
0

where η is the natural parameter (i.e., ηt is the natural parameter of the distribution of
Yt |Ft−1) and A(η),h(y) are known functions. It is assumed that the functionη → A(η)

is twice continuously differentiable on the natural parameter space; therefore, the
mean and variance of this distribution are ∂A(η)/∂η and ∂2A(η)/∂η2, respectively.
See Khatri (1983) for more details on such class of distribution. For the model (15), it
holds that

E(Yt |Ft−1) = fθ (Yt−1,Yt−2, . . .) = ∂A(ηt )

∂η
.

Proposition 1 Assume that A0(�) holds. Then, there exists a τ − weakly dependent,
stationary and ergodic solution {Yt , t ∈ Z} to (15), satisfying E‖Yt‖ < ∞.

Let (S,A,P) be a probability space, M a σ -subalgebra of A and Z a random
variable with values in a Banach space (E, ‖ · ‖). Assume that ‖Z‖1 < ∞ and define
the coefficient τ as

τ(M, Z) =
∥

∥

∥

∥

∥

sup
h∈�1(E)

{∣

∣

∣

∣

∫

h(x)PZ |M(dx) −
∫

h(x)PZ (dx)

∣

∣

∣

∣

}

∥

∥

∥

∥

∥

1

,

where �1(E) is the set of functions h : E → R such that Lip(h) :=
sup x, y ∈ E, x �= y|h(x) − h(y)|/‖x − y‖ ≤ 1. Consider an E-valued strictly sta-
tionary process (Zt )t∈Z and set for all i ∈ Z, Mi = σ(Zt , t ≤ i). The dependence
between the past of the process (Zt )t∈Z and its future k-tuples may be assessed as
follows. Consider the norm ‖x − y‖ = ‖x1 − y1‖+ · · ·+‖xk − yk‖ on Ek and define

τk(s) = max
1≤�≤k

1

�
sup
{

τ(Mi , (Z j1 , . . . , Z j� )) with i + s ≤ j1 < · · · < j�
}

and τ(s) = sup
k>0

τk(s).

If τ(s) tends to 0 as s → ∞, then the process (Zt )t∈Z is said to be τ -weakly depen-
dent. The weak dependence concept has been introduced by Doukhan and Louhichi
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12 M. L. Diop, W. Kengne

(1999) for the purpose of taking into account some situations where the mixing con-
ditions are not satisfied. We refer to the lecture notes Dedecker et al. (2007) for an
overview on this dependence concept.

In the sequel, we deal with the more general class of model (13), where the distri-
bution of Yt |Ft−1 may be outside the m-parameter exponential family. The following
theorem shows that the Poisson QMLE for the class of models (13) is strongly con-
sistent.

Theorem 3 Assume that A0(�), (MOD.A0) and (14) (with ε ≥ 1) hold with

α
(0)
k = O(k−γ ) for some γ > 3/2. (16)

Then

̂θn
a.s.−→ n → ∞θ∗.

For any t ∈ Z and θ ∈ �, denote �t (θ) := (Yt − λt (θ))(Yt − λt (θ))T and Dt (θ)

the m × m diagonal matrix with the i th diagonal element is equal to λt,i (θ) for any
i = 1, . . . ,m. From the assumption (MOD.A0), the matrix Dt (θ) is a.s. positive
definite. Combining all the regularity assumptions and notations given above, we
obtain the asymptotic normality of the Poisson QMLE, as shown in the following
theorem.

Theorem 4 Assume thatAi (�) (i = 0, 1, 2), (MOD.A0)–(MOD.A2) and (14) (with
ε ≥ 3) hold with

α
(0)
k + α

(1)
k + α

(2)
k = O(k−γ ) f or some γ > 3/2, (17)

then

√
n(̂θn − θ∗) D−→

n→∞N (0, �) with � := J−1
θ∗ Iθ∗ J−1

θ∗ ,

where

Jθ∗ =
[

∂λT
0 (θ∗)
∂θ

D−1
0 (θ∗)∂λ0(θ

∗)
∂θT

]

and

Iθ∗ = E

[

∂λT
0 (θ∗)
∂θ

D−1
0 (θ∗)�0(θ

∗)D−1
0 (θ∗)∂λ0(θ

∗)
∂θT

]

.

In comparison with the results of Lee et al. (2018), Cui et al. (2020) and Fokianos
et al. (2020), Theorems 3 and 4 are applied to the class MODZ( fθ∗) with a general
structure of the conditional mean, whereas these authors deal with linear and log-
linear models. Moreover, Lee et al. (2018) and Cui et al. (2020) consider a parametric
framework, with the assumption that the conditional distribution given the whole past
is known, which is quite restrictive in practice. Theorems 3 and 4 are established in a
semi-parametric setting.
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A general procedure for change-point detection… 13

4.2 Change-point detection

Now, assume that the trajectory (Y1, . . . ,Yn) is generated from one or two processes
satisfying the general model (13) and consider the change-point test of Sect. 1, where
the observations depend on θ∗ under H0 and on (θ∗

1 ,θ
∗
2 ) under H1. Let us define

the contrast function based on the conditional Poisson quasi-log-likelihood for any
segment T ⊂ {1, . . . , n} and θ ∈ �:

̂C(T , θ) :=
∑

t∈T
ϕ̂t (θ) with ϕ̂t (θ) = −̂�t (θ) for all t ∈ Z. (18)

Thus, the MCE computed on T is given by

̂θ(T ) := argmin
θ∈�

(

̂C(T , θ)
)

. (19)

Under the null hypothesis, the assumption (A2) holds from Theorem 3. Letting
ϕt (θ) := −�t (θ) for all t ∈ Z and θ ∈ �, one can see that (A3) and (A4) are also
satisfied fromTheorem 4. The relation (3) in (A3) holds fromLemma 2 (i) (see below),
the proof of Lemma 3 (a) and the arguments in the proof of Lemma 2 (ii), whereas the
relation (4) in (A4) holds from Lemme 2 (ii), Lemma 3 (c). See also Lemma 3(b) for
the required properties about the sequence ( ∂

∂θ
ϕt (θ

∗),Ft )t∈Z. Hence, in absence of
change, all the conditions of Theorem 1 are verified for (Y , θ∗), which assures that the
first result about the asymptotic behavior of the test statistic ̂Qn applies to the class of
models (13). Under the change point alternative H1, one can go along similar lines to
verify that (A1)–(A4) are satisfied for (Y1, θ∗

1 ) and (Y2, θ∗
2 ). This shows that Theorem

1 can also be applied to this class.

5 Numerical results

In this section, the statistic ̂Qn will be computed with un = [(log(n))2] and vn =
[(log(n))5/2] for a sample size n. The procedure is implemented in the R software
(developed by the CRAN project).

5.1 Simulation study

We investigate the performance (level and power) of the test statistic through two
examples of two-dimensional processes, with sample size n = 250, 500, 1000 and
the nominal level α = 0.05. Let us consider the following models.

– A bivariate AR (1) model. Consider the two-dimensional AR(1)model (with zero-
mean) expressed as

Yt = A0Yt−1 + γ0ξt for all t ∈ Z, (20)
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14 M. L. Diop, W. Kengne

where Yt = (Yt,1,Yt,2)T , A0 = (ai, j )i, j=1,2 is a 2 × 2 matrix with eigen-
values inside the complex unit circle, γ0 is a nonzero real number and (ξt =
(ξt,1, ξt,2)

T )t∈Z is a bivariate white noise satisfying the conditions of the class (9).
This process belongs to the class ACT (Mθ , fθ ) with fθ (Yt−1, . . .) = A0Yt−1

and Mθ (Yt−1, . . .) =
(

γ0 0
0 γ0

)

. The parameter of the model is denoted by

θ0 = (a1,1, a1,2, a2,1, a2,2, γ0). At the nominal level α = 0.05, the critical value
of the test is therefore c5,α ≈ 3.899 (see Lee et al. 2003). The performance will be
evaluated in cases where the innovation (ξt )t∈Z is obtained from the standardized
Student distributions with 5 and 8 degrees of freedom for the first and the second
component, respectively. In the scenarios of change, we assume that the parameter
θ0 ≡ (A0, γ0) changes to θ1 ≡ (A1, γ1).

– A bivariate INARCH(1) model.
Assume that {Yt = (Yt,1,Yt,2)T , t ∈ Z} is a count time series with value in
N
2
0, where {Yt,1, t ∈ Z} and {Yt,2, t ∈ Z} are two processes with conditional

distribution following a Poisson distribution and a negative binomial distribution,
respectively. More precisely,

{

Yt,1|Ft−1 ∼ Poisson(λt,1)
Yt,2|Ft−1 ∼ NB(r , r/(r + λt,2))

with λt := (λt,1, λt,2)
T = d0 + B0Yt−1,

(21)

where d0 = (d(1), d(2))T ∈ (0,∞)2, B0 = (bi, j )i, j=1,2 is a 2 × 2 matrix
with nonnegative coefficients, and N B(r , p) denotes the negative binomial dis-
tribution with parameter (r , p) and mean r(1 − p)/p. It is assumed that for
all t ∈ Z, Yt,1, and Yt,2 are conditionally independent given Ft−1 and that
the parameter r is known for each simulation; that is, the parameter of inter-
est is θ0 = (d(1), d(2), b1,1, b1,2, b2,1, b2,2) and the critical value of the test is
c6,α ≈ 4.375 (see also Lee et al. 2003).
In situations of break, we also assume that the parameter changes from θ0 (which
is characterized here by (d0, B0)) to θ1 that we will characterize by (d1, B1) for
this model.

Figure 1 is an illustration of a typical realizations of the statistics ̂Qn,k for two
trajectories of length 1000 generated from bivariate AR(1) processes: a trajectory
without change and a trajectory with a change at time t∗ = 500. One can see that, for
the trajectory without change, the statistics ̂Qn,k are well below the critical value (see
Fig. 1a). For the scenario with change, the maximum (which represents the value of
̂Qn) of the statistics ̂Qn,k is higher than the limit of the critical region and that it is
obtained at a point very close to the instant of break (see Fig. 1b). This empirically
comforts the common use of the classical estimator t̂n = argmax k ∈ Tn

(

̂Qn,k
)

to
determine the break-point.

To evaluate the empirical level and power, we consider trajectories generated from
the two models (20) and (21) in the following situations: (i) scenarios with a constant
parameter θ0 and (ii) scenarios with a parameter change (θ0 → θ1) at time t∗ = n/2.
The replication number in each simulation is 500. For different scenarios, Table 1
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A general procedure for change-point detection… 15

(a) Qn,k for 1000 observations of a bivariate AR(1) process without change

k

0 200 400 600 800 1000

0
1

2
3

4
(b) Qn,k for 1000 observations of a bivariate AR(1) process with change at t*=500

k

0 200 400 600 800 1000

0
2

4
6

8

Fig. 1 Typical realizations of the statistics ̂Qn,k for two trajectories generated from bivariate AR(1)
processes defined in (20). a Is a realization for 1000 observations with a constant parameter θ0 =
(0.5,−0.2, 0.35, 0.1, 1). b Is a realization for 1000 observations in a scenario where the parameter changes
from θ0 = (0.5, −0.2, 0.35, 0.1, 1) to θ1 = (0.5,−0.2, 0.1, 0.1, 1) at t∗ = 500. The horizontal line
represents the limit of the critical region of the test

indicates the proportion of the number of rejections of the null hypothesis computed
under H0 (for the levels) and H1 (for the powers). As can be seen from this table,
the empirical levels are close to the nominal level for each of the two models. One
can see that the statistic is quite sensitive for detecting the change for both the cases
considered under the alternative: the scenario with dependent components and inde-
pendent components (i.e., the scenario where the matrix A1 or B1 is diagonal) after
the breakpoint. For both the classes of models, the results of the test are quite accurate;
the empirical level approaching the nominal one when n increases and the empirical
power increases with n and is close to 1 when n = 1000. This is consistent with the
asymptotic results of Theorem 1 and 2.

5.2 Real data example

We consider the bivariate time series whose variables represent the average daily
concentrations of particulate matter with a diameter less than 10μm and car-
bon monoxide (PM10,CO), collected at some monitoring stations in the Vitória
metropolitan area. We deal with the data from January 31, 2010 to December 30,
2010 (observations on 334 days); see Fig. 2a and b. This series is a part of a
dataset obtained from the State Environment and Water Resources Institute (avail-
able at https://rss.onlinelibrary.wiley.com/pb-assets/hub-assets/rss/Datasets/RSSC
%2067.2/C1239deSouza-1531120585220.zip), which were analyzed by de Souza
et al. (2018).

To apply the proposed test procedure, we consider a two-dimensional AR(1)model
(with nonzero mean) given for t ∈ Z, by

Yt = ω0 + A0Yt−1 + Mξt , (22)

whereYt = (PM10,t ,COt )
T (the value of the corresponding vector at day t),ω0 is a 2-

dimensional vector, A0,M are 2×2matrices and (ξt ) a bivariate white noise satisfying
the conditions of the class (9). The parameter of the model is θ = (ω0, A0, M) ∈ R

10.
The realizations of ̂Qn,k (for all k ∈ Tn) displayed in Fig. 2c show that the resulting

test statistic ̂Qn is higher than the critical value of the test, which indicates that a
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Fig. 2 Plot of the time series and the statistic ̂Qn,k for the change-point detection applied to the bivariate
real data (PM10,CO) with the VAR(1) process defined in (22). The horizontal line represents the limit of
the critical region of the test. The vertical line represents the estimated breakpoint

change-point is detected in this series. The breakpoint is estimated as t̂n = 184 (see
Fig. 2), which corresponds to the date August 02, 2010. The estimated model with
two regimes is given by:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Yt = (16.254
[2.854]

, 664.266[41.240]
)T +

⎛

⎝

0.520[0.0668] 0.003[0.002]
1.462
[1.056]

0.234[0.048]

⎞

⎠ Yt−1

+
⎛

⎝

6.877[3.427] 3.563[3.312]
90.140
[2.528]

−84.360
[2.412]

⎞

⎠ ηt for t ≤ 184,

Yt = (19.362
[5.729]

, 667.930[49.210]
)T +

⎛

⎝

0.352[0.096] 0.004[0.002]
−0.457
[0.320]

0.209[0.046]

⎞

⎠ Yt−1

+
⎛

⎝

6.322[3.322] 3.807[2.371]
66.160[1.969] −60.031

[2.407]

⎞

⎠ ηt for t > 184,

(23)

where in brackets are the standard errors of the estimators obtained from the sandwich
matrix ̂	−1

T , a consistent estimator of the covariance matrix 	−1 defined in (5), com-
puted on the segment T ⊂ {1, . . . , n}. Simulations carried out with the parameters
in (23) show that the procedure works well (in term of empirical level and power) in
that case. Also, this result is in accordance with those obtained by Diop and Kengne
(2022b) who have found a break onAugust 06, 2010with an epidemic procedure in the
carbon monoxide series. The first regime (from January 31, 2010 to August 08, 2010)
includes the austral winter and a period where the winds are weaker. These meteo-
rological factors are known to increase the concentration of some pollutants (such
as the carbon monoxide), which are important determinants associated to the PM10
concentration (see, for instance, Ng and Awang 2018 and the references therein).

6 Proofs of themain results

Let (ψn)n∈N and (rn)n∈N be sequences of random variables or vectors. Throughout
this section, we use the notation ψn = oP (rn) to mean: for all ε > 0, P(‖ψn‖ ≥
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18 M. L. Diop, W. Kengne

ε‖rn‖) −→
n→∞0. Write ψn = OP (rn) to mean: for all ε > 0, there exists C > 0 such

that P(‖ψn‖ ≥ C‖rn‖) ≤ ε for n large enough. In the sequel, C denotes a positive
constant whose the value may differ from one inequality to another.

6.1 Proof of the results of Section 2

6.1.1 Proof of Theorem 1

Define the statistic

Qn = max
k∈Tn

(

Qn,k
)

with

Qn,k = (k(n − k))2

n3
(

̂θ(T1,k) −̂θ(Tk+1,n)
)T

	
(

̂θ(T1,k) −̂θ(Tk+1,n)
)

,

where 	 is the covariance matrix defined in the assumption (A4). For any segment
T ⊂ {1, . . . , n} and θ ∈ �, we also define the function

C(T , θ) =
∑

t∈T
ϕt (θ), where (ϕt (·))t∈Z is given in (A3).

Let 1 ≤ k ≤ k′ ≤ n, θ̄ ∈ � and i ∈ {1, 2, . . . , d}. By the mean value theorem applied
to the function θ → ∂

∂θi
C(Tk,k′ , θ), there exists θn,i between θ̄ and θ∗ such that

∂

∂θi
C(Tk,k′ , θ̄ ) = ∂

∂θi
C(Tk,k′ , θ∗) + ∂2

∂θ∂θi
C(Tk,k′ , θn,i )(θ̄ − θ∗),

which implies

(k′ − k + 1)Fn(Tk,k′ , θ̄ )(θ∗ − θ̄ ) = ∂

∂θ
C(Tk,k′ , θ∗) − ∂

∂θ
C(Tk,k′ , θ̄ ) (24)

with

Fn(Tk,k′ , θ̄ ) = 1

(k′ − k + 1)

∂2

∂θ∂θi
C(Tk,k′ , θn,i )1≤i≤d . (25)

The following lemma will be useful in the sequel.

Lemma 1 Assume that the conditions of Theorem 1 hold.

(i) max
k∈Tn

∣

∣̂Qn,k − Qn,k
∣

∣ = oP (1).

(ii) If ( jn)n≥1 and (kn)n≥1 are two integer-valued sequences such that jn ≤ kn,

kn −→
n→∞∞ and kn − jn −→

n→∞∞, then Fn(Tjn ,kn ,
̂θ(Tjn ,kn ))

a.s.−→ n → ∞F, where
F is the matrix defined in (A4).
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A general procedure for change-point detection… 19

Proof (i) Let k ∈ Tn . As n → ∞, from the asymptotic normality of the MCE and the
consistency of ̂	(un), we obtain:

∥

∥

√
k
(

̂θ(T1,k) − θ∗)∥
∥ = OP (1),

∥

∥

√
n − k

(

̂θ(Tk+1,n) − θ∗)∥
∥

= OP (1) and
∥

∥̂	(un) − 	
∥

∥ = o(1). (26)

Then, it holds that

∣

∣̂Qn,k − Qn,k
∣

∣

= (k(n − k))2

n3

∣

∣

∣

(

̂θ(T1,k) −̂θ(Tk+1,n)
)T (
̂	(un) − 	

)(

̂θ(T1,k) −̂θ(Tk+1,n)
)

∣

∣

∣

≤ C
(k(n − k))2

n3
∥

∥̂	(un) − 	
∥

∥

∥

∥̂θ(T1,k) −̂θ(Tk+1,n)
∥

∥

2

≤ C
∥

∥̂	(un) − 	
∥

∥

[

k(n − k)2

n3
∥

∥

√
k
(

̂θ(T1,k) − θ∗)∥
∥

2

+ k2(n − k)

n3
∥

∥

√
n − k

(

̂θ(Tk+1,n) − θ∗)∥
∥

2
]

≤ o(1)OP (1);

which allows to conclude.
(ii) Applying (25) with θ̄ = ̂θ(Tjn ,kn ), we obtain

Fn(Tjn ,kn ,
̂θ(Tjn ,kn )) =

(

1

kn − jn + 1

∂2

∂θ∂θi
C(Tjn ,kn , θn,i )

)

1≤i≤d

= 1

kn − jn + 1

⎛

⎝

∑

t∈Tjn ,kn

∂2ϕt (θn,i )

∂θ∂θi

⎞

⎠

1≤i≤d

,

where θn,i belongs between ̂θ(Tjn ,kn ) and θ∗. Since ̂θ(Tjn ,kn )
a.s.−→ n → ∞θ∗,

θn,i
a.s.−→ n → ∞θ∗ (for any i = 1, . . . , d) and that F = E

[

∂2ϕ0(θ
∗)

∂θ∂θT

]

exists
(see the assumption (A4)), by the uniform strong law of large numbers, for any
i = 1, . . . , d, we get

∥

∥

∥

∥

∥

∥

1

kn − jn + 1

∑

t∈Tjn ,kn

∂2ϕt (θn,i )

∂θ∂θi
− E

[

∂2ϕ0(θ
∗)

∂θ∂θi

]

∥

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∥

1

kn − jn + 1

∑

t∈Tjn ,kn

∂2ϕt (θn,i )

∂θ∂θi
− E

[∂2ϕ0(θn,i )

∂θ∂θi

]

∥

∥

∥

∥

∥

∥

+
∥

∥

∥

∥

E

[

∂2ϕ0(θn,i )

∂θ∂θi

]

− E

[

∂2ϕ0(θ
∗)

∂θ∂θi

]∥

∥

∥

∥
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20 M. L. Diop, W. Kengne

≤
∥

∥

∥

∥

∥

∥

1

kn − jn + 1

∑

t∈Tjn ,kn

∂2ϕt (θ)

∂θ∂θi
− E

[

∂2ϕ0(θ)

∂θ∂θi

]

∥

∥

∥

∥

∥

∥

�

+ o(1) = o(1) + o(1) = o(1).

This completes the proof of the lemma.
��

Now, we use (26) and the part (ii) of Lemma 1 to show that

Qn
D−→

n→∞ sup
0≤τ≤1

‖Wd(τ )‖2 . (27)

Let k ∈ Tn . Applying (24) with θ̄ = ̂θ(T1,k) and Tk,k′ = T1,k , we get

Fn(T1,k,̂θ(T1,k)) · (θ∗ −̂θ(T1,k)) = 1

k

(

∂

∂θ
C(T1,k, θ

∗
1 ) − ∂

∂θ
C(T1,k,̂θ(T1,k))

)

.

(28)

With θ̄ = ̂θ(Tk+1,n) and Tk,k′ = Tk+1,n , (24) becomes

Fn(Tk+1,n,̂θ(Tk+1,n)) · (θ∗ −̂θ(Tk+1,n))

= 1

n − k

(

∂

∂θ
C(Tk+1,n, θ

∗
1 ) − ∂

∂θ
C(Tk+1,n,̂θ(Tk+1,n))

)

. (29)

Moreover, as n → +∞, Lemma 1(ii) implies

∥

∥Fn(T1,k,̂θ(T1,k)) − F
∥

∥ = o(1) and
∥

∥Fn(Tk+1,n,̂θ(Tk+1,n)) − F
∥

∥ = o(1).

Then, according to (26), for n large enough, (28) gives

√
kF
(

θ∗ −̂θ(T1,k)
) = 1√

k

( ∂

∂θ
C(T1,k, θ

∗) − ∂

∂θ
C(T1,k,̂θ(T1,k))

)

− √
k
((

Fn(T1,k,̂θ(T1,k)) − J
) (

̂θ(T1,k) − θ0
))

= 1√
k

( ∂

∂θ
C(T1,k, θ

∗) − ∂

∂θ
C(T1,k,̂θ(T1,k))

)

+ oP (1)

= 1√
k

( ∂

∂θ
C(T1,k, θ

∗) − ∂

∂θ
̂C(T1,k,̂θ(T1,k))

)

+ oP (1)

+ 1√
k

( ∂

∂θ
̂C(T1,k,̂θ(T1,k)) − ∂

∂θ
C(T1,k,̂θ(T1,k))

)

= 1√
k

( ∂

∂θ
C(T1,k, θ

∗) − ∂

∂θ
̂C(T1,k,̂θ(T1,k))

)

+ oP (1) (from the condition (3) in (A3)).
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This is equivalent to

F
(

θ∗ −̂θ(T1,k)
) = 1

k

( ∂

∂θ
C(T1,k, θ

∗) − ∂

∂θ
̂C(T1,k,̂θ(T1,k))

)

+oP
( 1√

k

)

. (30)

For n large enough,̂θ(T1,k) is an interior point of� and we have ∂
∂θ
̂C(T1,k,̂θ(T1,k)) =

0.
Hence, for n large enough, we get from (30)

F
(

θ∗ −̂θ(T1,k)
) = 1

k

∂

∂θ
C(T1,k, θ

∗) + oP
( 1√

k

)

. (31)

Similarly, we can use (29) to obtain

F
(

θ∗ −̂θ(Tk+1,n)
) = 1

n − k

∂

∂θ
C(Tk+1,n, θ

∗) + oP
( 1√

n − k

)

. (32)

The subtraction of (31) and (32) gives

− F
(

̂θ(T1,k) −̂θ(Tk+1,n)
)

= 1

k

∂

∂θ
C(T1,k, θ

∗) − 1

n − k

∂

∂θ
C(Tk+1,n, θ

∗)

+ oP

(

1√
k

+ 1√
n − k

)

= 1

k

∂

∂θ
C(T1,k, θ

∗) − 1

n − k
(

∂

∂θ
C(T1,n, θ

∗) − ∂

∂θ
C(T1,k, θ

∗)
)

+ oP

(

1√
k

+ 1√
n − k

)

= n

k(n − k)

(

∂

∂θ
C(T1,k, θ

∗) − k

n
· ∂

∂θ
C(T1,n, θ

∗)
)

+ oP

(

1√
k

+ 1√
n − k

)

.

Since the matrix G is positive definite (see (A3)), the above equality is equivalent to

− k(n − k)

n3/2
G−1/2F

(

̂θ(T1,k) −̂θ(Tk+1,n)
)

= G−1/2

√
n

(

∂

∂θ
C(T1,k, θ

∗) − k

n
· ∂

∂θ
C(T1,n, θ

∗)
)

+ oP

(√
k(n − k)

n
+

√
n − k√
n

)

= G−1/2

√
n

(

∂

∂θ
C(T1,k, θ

∗) − k

n
· ∂

∂θ
C(T1,n, θ

∗)
)

+ oP (1) (33)
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and that Qn,k can be rewritten as

Qn,k =
∥

∥

∥

∥

k(n − k)

n3/2
G−1/2F

(

̂θ(T1,k) −̂θ(Tk+1,n)
)

∥

∥

∥

∥

2

for all k ∈ Tn . (34)

Moreover, applying the central limit theorem for the martingale difference sequence
(

∂
∂θ

ϕt (θ
∗),Ft

)

t∈Z (see Billingsley 1968), we have

1√
n

(

∂

∂θ
C(T1,[nτ ], θ∗) − [nτ ]

n

∂

∂θ
C(T1,n, θ

∗)
)

= 1√
n

([nτ ]
∑

t=1

∂

∂θ
ϕt (θ

∗) − [nτ ]
n

n
∑

t=1

∂

∂θ
ϕt (θ

∗)
)

D−→
n→∞BG(τ ) − τ BG(1),

where [x] denotes the integer part of x and BG is a Gaussian process with covariance
matrix min(s, t)G.

Then,

G−1/2

√
n

(

∂

∂θ
C(T1,[nτ ], θ∗) − [nτ ]

n

∂

∂θ
C(T1,n, θ

∗)
)

D−→
n→∞Bd(τ ) − τ Bd(1)

= Wd(τ ) in D([0, 1]),

where Bd is a d-dimensional standard motion and Wd is a d-dimensional Brownian
bridge.

Therefore, using (33) and (34), we obtain

Qn,[nτ ] =
∥

∥

∥

[nτ ](n − [nτ ])
n3/2

G−1/2F
(

̂θ(T1,[nτ ]) −̂θ(T[nτ ]+1,n)
)

∥

∥

∥

2

D−→
n→∞ sup

0≤τ≤1
‖Wd(τ )‖2 in D([0, 1]).

For n large enough, we deduce

Qn = max
vn≤k≤n−vn

(

Qn,k
) = sup

vn
n ≤τ≤1− vn

n

Qn,[nτ ] D−→
n→∞ sup

0≤τ≤1
‖Wd(τ )‖2 in D([0, 1]);

which shows that (27) holds. Hence, we can conclude the proof of the theorem from
Lemma 1(i). ��
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6.1.2 Proof of Theorem 2

Under the alternative, we can write

Yt =
{

Y (1)
t for t ≤ t∗,

Y (2)
t for t > t∗,

where t∗ = [τ ∗n] (with 0 < τ ∗ < 1) and {Y ( j)
t , t ∈ Z} ( j = 1, 2) is a stationary

and ergodic process depending on the parameter θ∗
j (with θ∗

1 �= θ∗
2 ) satisfying the

assumptions (A1)–(A4).
Remark that ̂Qn = max

k∈Tn
(

̂Qn,k
) ≥ ̂Qn,t∗ . Then, to prove the theorem, we will show

that ̂Qn,t∗
P−→

n→∞ + ∞.
For any n ∈ N, we have

̂Qn,t∗ = (t∗(n − t∗))2

n3
(

̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)T
̂	(un)

(

̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)

with

̂	(un) = 1

2

[

̂F(T1,un )̂G(T1,un )
−1
̂F(T1,un ) + ̂F(Tun+1,n)̂G(Tun+1,n)

−1
̂F(Tun+1,n)

]

.

Moreover, the two matrices in the formula of ̂	(un) are positive semi-definite. Then,
we obtain

̂Qn,t∗ = ([τ ∗n](n − [τ ∗n]))2
n3

(

̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)T

×
[

̂F(T1,un )̂G(T1,un )
−1
̂F(T1,un ) + ̂F(Tun+1,n)̂G(Tun+1,n)

−1
̂F(Tun+1,n)

]

× (̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)

≥ n
(

̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)T
[

̂F(T1,un )̂G(T1,un )
−1
̂F(T1,un )

]

× (̂θ(T1,t∗) −̂θ(Tt∗+1,n)
)

. (35)

By the consistency and asymptotic normality of the MCE, we have: (i) ̂θ(T1,t∗) −
̂θ(Tt∗+1,n)

a.s.−→ n → ∞θ∗
1 − θ∗

2 �= 0 and (ii) ̂F(T1,un )̂G(T1,un )
−1
̂F(T1,un ) converges

to the covariance matrix of the stationary model of the first regime which is positive
definite. Therefore, (35) implies ̂Qn,t∗

a.s.−→ n → ∞+∞. This establishes the theorem.
��
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6.2 Proof of the results of Section 4

6.3 Proof of Proposition 1

Let Fλ(y) be the cumulative distribution function of p(y|η) with marginals
Fλ1,1, . . . , Fλm ,m , where λ = (λ1, . . . , λm)T = ∂A(η)/∂η. From the Sklar’s theorem
(see Sklar 1959), one can find a copula C such that, for all y = (y1, . . . , ym) ∈ R

m

Fλ(y) = C
(

Fλ1,1(y1), . . . , Fλm ,m(ym)
)

.

For i = 1, . . . ,m, denote by F−1
λ,i (u) := inf{yi ≥ 0, Fλ,i (yi ) ≥ u} for all u ∈ [0, 1].

Let {Ut = (Ut,1, . . . ,Ut,m)T , t ∈ Z} be a sequence of independent random vectors
with distribution C. We will prove that there exists a τ -weakly dependent, stationary
and ergodic solution (Yt , λt ) of (15) satisfying:

Yt =
(

F−1
λt,1,1

(Ut,1), . . . , F
−1
λt,m ,m(Ut,m)

)T
(36)

with λt = (

λt,1, . . . , λt,m
)T = fθ (Yt−1, . . .). For a process (Yt )t∈Z that fulfills (15)

and (36), we get,

Yt =
(

F−1
λt,1,1

(Ut,1), . . . , F
−1
λt,m ,m(Ut,m)

)T := �(Yt−1, . . . ;Ut ), (37)

where � is a function defined in (Nm
0 )∞ × [0, 1]m . According to Doukhan and Win-

tenberger (2008), it suffices to show that: (i) E‖�(yyy;Ut )‖ < ∞ for some yyy ∈ (Nm
0 )∞

and (ii) there exists a sequence of nonnegative real numbers (αk(�))k≥1 satisfying
∑

k≥1 αk(�) < 1 such that, for all yyy, yyy′ ∈ (Nm
0 )∞, E‖�(yyy;Ut ) − �(yyy′;Ut )‖ ≤

∑

k≥1 αk(�)‖yk − y′
k‖.

Proof of (i). Set fθ (0, . . .) = λ = (λ1, . . . , λm)T . The randomvector
(

F−1
λ1,1

(Ut,1, . . . ,

F−1
λm ,m(Ut,m)

)T is Fλ distributed. Thus,

E‖�(0, . . . ;Ut )‖ = E

∥

∥

∥

(

F−1
λ1,1

(Ut,1), . . . , F
−1
λm ,m(Ut,m)

)∥

∥

∥ = ‖λ‖
= ‖ fθ (0, . . .)‖ < ∞,

where this inequality holds from the assumption A0(�). ��

Proof of (ii). For all yyy, yyy′ ∈ (Nm
0 )∞, set λ = fθ (yyy, . . .) = (λ1, . . . , λm)T and λ′ =

fθ (yyy′, . . .) = (λ′
1, . . . , λ

′
m)T . We have,
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E‖�(yyy;Ut ) − �(yyy′;Ut )‖
= E

∥

∥

∥

(

F−1
λ1,1

(Ut,1), . . . , F
−1
λm ,m(Ut,m)

)

−
(

F−1
λ′
1,1

(Ut,1), . . . , F
−1
λ′
m ,m(Ut,m)

)∥

∥

∥

≤
m
∑

i=1

E
∣

∣F−1
λi ,i

(Ut,i ) − F−1
λ′
i ,i

(Ut,i )
∣

∣ =
m
∑

i=1

|λi − λ′
i | (38)

= ‖λ − λ′‖ = ‖ fθ (yyy, . . .) − fθ (yyy
′, . . .)‖ ≤

∞
∑

k=1

α
(0)
k ‖yk − y′

k‖, (39)

where the equality in (38) holds from the Proposition A.2 of Davis and Liu (2016) and
the inequality in (39) holds from the assumption A0(�). Thus, take αk(�) = α

(0)
k ,

which completes the proof of the proposition. ��

6.3.1 Proof of Theorem 3

To simplify, we will use the following notations in the sequel:

�t,i (θ) := Yt,i log λt,i (θ) − λt,i (θ) = Yt,i log f t,iθ − f t,iθ ,

̂�t,i (θ) := Yt,i loĝλt,i (θ) −̂λt,i (θ) = Yt,i log ̂f
t,i
θ − ̂f t,iθ ,

where f t,iθ and ̂f t,iθ (for i = 1, . . . ,m) represent the i th component of f tθ ≡
fθ (Yt−1,Yt−2, . . .) and ̂f tθ ≡ fθ (Yt−1,Yt−2, . . . ,Y1), respectively.

(i) Firstly, we will show that

1

n

∥

∥̂Ln(θ) − Ln(θ)
∥

∥

�

a.s.−→ n → ∞0. (40)

Remark that

1

n

∥

∥̂Ln(θ) − Ln(θ)
∥

∥

�
≤ 1

n

n
∑

t=1

‖̂�t (θ) − �t (θ)‖�

≤ 1

n

m
∑

i=1

n
∑

t=1

‖̂�t,i (θ) − �t,i (θ)‖�. (41)

Using A0(�) with the condition (16) and the existence of the moment of order 2
(i.e., (14) with ε ≥ 1), one can proceed as in the proof of Theorem 3.1 in Doukhan
and Kengne (2015) to prove that

1

n

n
∑

t=1

‖̂�t,i (θ) − �t,i (θ)‖�
a.s.−→ n → ∞0 for all i = 1, . . . ,m.

Therefore, (40) is obtained by using (41).
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(ii) Let us establish that: for all t ∈ Z,

E
[‖�t (θ)‖�

]

< ∞. (42)

We have

E
[‖�t (θ)‖�

] ≤
m
∑

i=1

E
[

sup
θ∈�

|�t,i (θ)|],

From A0(�), (MOD.A0), (14) (with ε ≤ 1) and by going along similar
lines as in the proof of Theorem 3.1 in Doukhan and Kengne (2015), we get:
E
[

supθ∈� |�t,i (θ)|] < ∞ for all i = 1, . . . ,m. Thus, (42) holds.
Since {Yt , t ∈ Z} is stationary and ergodic, the process {�t (θ), t ∈ Z} is also
a stationary and ergodic sequence. Then, by the uniform strong law of large
numbers applied to {�t (θ), t ∈ Z}, it holds that
∥

∥

∥

1

n
Ln(θ) − E[�0(θ)]

∥

∥

∥

�
=
∥

∥

∥

∥

∥

1

n

n
∑

t=1

�t (θ) − E[�0(θ)]
∥

∥

∥

∥

∥

�

a.s.−→ n → ∞0.

Thus, from (40), we obtain

∥

∥

∥

1

n
̂Ln(θ) − E[�0(θ)]

∥

∥

∥

�
≤ 1

n

∥

∥̂Ln(θ) − Ln(θ)
∥

∥

�

+
∥

∥

∥

∥

1

n
Ln(θ) − E[�0(θ)]

∥

∥

∥

∥

�

a.s.−→ n → ∞0.

(iii) To complete the proof of the theorem, it suffices to show that the function θ →
L(θ) = E[�0(θ)] has a unique maximum at θ∗. Let θ ∈ �, such that θ �= θ∗. We
have

L(θ∗) − L(θ) =
m
∑

i=1

(

E�0,i (θ
∗) − E�0,i (θ)

)

=
m
∑

i=1

(

E

[

Y0,i log f 0,iθ∗ − f 0,iθ∗
]

− E

[

Y0,i log f 0,iθ − f 0,iθ

])

=
m
∑

i=1

(

E

[

f 0,iθ∗ log f 0,iθ∗ − f 0,iθ∗
]

− E

[

f 0,iθ∗ log f 0,iθ − f 0,iθ

])

=
m
∑

i=1

(

E

[

f 0,iθ∗
(

log f 0,iθ∗ − log f 0,iθ

)]

− E

(

f 0,iθ∗ − f 0,iθ

))

.

According to the identifiability assumption A0(�) and since θ �= θ∗, there exists
i0 such that f 0,i0θ �= f 0,i0θ∗ . By going as in the proof of Theorem 3.1 in Doukhan

andKengne (2015), we getE
[

f 0,i0θ∗
(

log f 0,i0θ∗ −log f 0,i0θ

)]−E[ f 0,i0θ∗ − f 0,i0θ ] > 0
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and E
[

f 0,iθ∗
(

log f 0,iθ∗ − log f 0,iθ

)]−E[ f 0,iθ∗ − f 0,iθ ] ≥ 0 for i = 1, . . . ,m, i �= i0.
This establishes (iii), which consequently yields the theorem. ��

6.3.2 Proof of Theorem 4

Applying themean value theorem to the function θ → ∂
∂θi

Ln(θ) for all i ∈ {1, . . . , d},
there exists θ̄n,i between̂θn and θ∗ such that

∂

∂θi
Ln(̂θn) = ∂

∂θi
Ln(θ

∗) + ∂2

∂θ∂θi
Ln(θ̄n,i )(̂θn − θ∗),

which is equivalent to

√
nJ (̂θn)(̂θn − θ∗) = 1√

n

(

∂

∂θ
Ln(θ

∗) − ∂

∂θ
̂Ln(̂θn)

)

+ 1√
n

( ∂

∂θ
̂Ln(̂θn) − ∂

∂θ
Ln(̂θn)

)

(43)

with

J (̂θn) =
(

−1

n

∂2

∂θ∂θi
Ln(θ̄n,i )

)

1≤i≤d
. (44)

The following lemma is needed.

Lemma 2 Assume that the conditions of Theorem 4 hold. Then,

(i) E

[

1√
n

∥

∥

∥

∂
∂θ
̂Ln(θ) − ∂

∂θ
Ln(θ)

∥

∥

∥

�

]

−→
n→∞0.

(ii) 1
n

∥

∥

∥

∂2

∂θ∂θT
̂Ln(θ) − ∂2

∂θ∂θT
Ln(θ)

∥

∥

∥

�
= o(1) a.s..

Proof (i) We have

1√
n

∥

∥

∥

∂

∂θ
̂Ln(θ) − ∂

∂θ
Ln(θ)

∥

∥

∥

�

≤ 1√
n

n
∑

t=1

∥

∥

∥

∂

∂θ
̂�t (θ) − ∂

∂θ
�t (θ)

∥

∥

∥

�

≤ 1√
n

m
∑

i=1

n
∑

t=1

∥

∥

∥

∂

∂θ
̂�t,i (θ) − ∂

∂θ
�t,i (θ)

∥

∥

∥

�
. (45)

Moreover, by proceeding as in Lemma 7.1 of Doukhan and Kengne (2015), we
can use Ai (�) (i = 0, 1), (14) and the condition (17) to establish that

E

[ 1√
n

n
∑

t=1

∥

∥

∥

∂

∂θ
̂�t,i (θ) − ∂

∂θ
�t,i (θ)

∥

∥

∥

�

]

−→
n→∞0 for all i = 1, . . . ,m.
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Thus, we can conclude the proof of (i) from (45).
(ii) It holds that

1

n

∥

∥

∥

∂2

∂θ∂θT
̂Ln(θ) − ∂2

∂θ∂θT
Ln(θ)

∥

∥

∥

�

≤ 1

n

n
∑

t=1

∥

∥

∥

∂2

∂θ∂θT
̂�t (θ) − ∂2

∂θ∂θT
�t (θ)

∥

∥

∥

�

≤ 1

n

m
∑

i=1

n
∑

t=1

∥

∥

∥

∂2

∂θ∂θT
̂�t,i (θ) − ∂2

∂θ∂θT
�t,i (θ)

∥

∥

∥

�
.

By going as in the proof of Lemma 7.1 of Doukhan and Kengne (2015), one

easily get for i = 1, . . . ,m, 1
n

∑n
t=1

∥

∥

∥

∂2

∂θ∂θT
̂�t,i (θ) − ∂2

∂θ∂θT
�t,i (θ)

∥

∥

∥

�
= o(1),

which shows that (ii) holds.
��

The following lemma will also be needed.

Lemma 3 If the assumptions of Theorem 4 hold, then

(a) the matrices Jθ∗ = E
[ ∂λT0 (θ∗)

∂θ
D−1
0 (θ∗) ∂λ0(θ

∗)
∂θT

]

and Iθ∗ = E
[ ∂λT0 (θ∗)

∂θ
D−1
0 (θ∗)

�0(θ
∗)D−1

0 (θ∗) ∂λ0(θ
∗)

∂θT

]

exist and are positive definite;

(b)
(

∂�t (θ
∗)

∂θ
,Ft

)

t∈Z is a stationary ergodic, square integrable martingale difference

sequence with covariance matrix Iθ∗ ;

(c) E
[‖ ∂2�0(θ)

∂θ∂θT
‖�

]

< ∞ and E
[

∂2�0(θ
∗)

∂θ∂θT

] = −Jθ∗ ;

(d) J (̂θn)
a.s.−→ n → ∞Jθ∗ and that the matrix Jθ∗ is invertible.

Proof (a) From the assumption (MOD.A0), we can find a constant C > 0 such that
it holds a.s.

E

∥

∥

∥

∂λT
0 (θ)

∂θ
D−1
0 (θ)

∂λ0(θ)

∂θT

∥

∥

∥

�

≤ CE

∥

∥

∥

∂λ0(θ)

∂θ

∥

∥

∥

2

�

≤ C
m
∑

i=1

E

∥

∥

∥

∂λ0,i (θ)

∂θ

∥

∥

∥

2

�
.

One can show as in the proof of Lemma 7.1 of Doukhan and Kengne (2015) that
for any i = 1, . . . ,m, E

∥

∥

∂λ0,i (θ)

∂θ

∥

∥

2
�

< ∞. Hence,

E

∥

∥

∥

∂λT
0 (θ)

∂θ
D−1
0 (θ)

∂λ0(θ)

∂θT

∥

∥

∥

�
< ∞,

which establishes the existence of Jθ∗ .
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Using (MOD.A0) and Hölder’s inequality, we have

E

∥

∥

∥

∂λT
0 (θ)

∂θ
D−1
0 (θ)�0(θ)D−1

0 (θ)
∂λ0(θ)

∂θT

∥

∥

∥

�
≤ E

[ ∥

∥

∥D−1
0 (θ)(Y0 − λ0(θ))

∥

∥

∥

2

�

∥

∥

∥

∂λ0(θ)

∂θ

∥

∥

∥

2

�

]

≤ CE

[

(‖Y0‖2 + ‖λ0(θ)‖2�
)

∥

∥

∥

∂λ0(θ)

∂θ

∥

∥

∥

2

�

]

≤ C
(

E‖Y0‖4 + E‖λ0(θ)‖4�
)1/2 (

E

∥

∥

∥

∂λ0(θ)

∂θ

∥

∥

∥

4

�

)1/2

≤ C

(

E‖Y0‖4 +
m
∑

i=1

E‖λ0,i (θ)‖4�
)1/2 ( m

∑

i=1

E

∥

∥

∥

∂λ0,i (θ)

∂θ

∥

∥

∥

4

�

)1/2

.

According to the existence of themoment of order 4 (from (14) with ε ≥ 3),E‖Y0‖4 <

∞. Furthermore, proceeding as in the proof ofTheorem3.1 andLemma7.1 inDoukhan
and Kengne (2015), one can also get E‖λ0,i (θ)‖4� < ∞ and E

∥

∥

∂λ0,i (θ)

∂θ

∥

∥

4
�

< ∞ for
any i = 1, . . . ,m. Therefore,

E

∥

∥

∥

∂λT
0 (θ)

∂θ
D−1
0 (θ)�0(θ)D−1

0 (θ)
∂λ0(θ)

∂θT

∥

∥

∥

�
< ∞, (46)

which establishes that Iθ∗ exists.
Now, let U ∈ R

d be a nonzero vector. We have ∂λ0(θ
∗)

∂θT
· U �= 0 a.s. from the

assumption (MOD.A2), which implies

UT Jθ∗U = E

[

UT ∂λT
0 (θ∗)
∂θ

D−1
0 (θ∗)∂λ0(θ

∗)
∂θT

U

]

= E

[

(

D−1/2
0 (θ∗)∂λ0(θ

∗)
∂θT

U

)T

·
(

D−1/2
0 (θ∗)∂λ0(θ

∗)
∂θT

U

)

]

> 0

and

UT Iθ∗U = E

[

UT ∂λT
0 (θ∗)
∂θ

D−1
0 (θ∗)�0(θ

∗)D−1
0 (θ∗)∂λ0(θ

∗)
∂θT

U

]

= E

[

(

(

Y0 − λ0(θ
∗)
)T

D−1/2
0 (θ∗)∂λ0(θ

∗)
∂θT

U

)T

·
(

(

Y0 − λ0(θ
∗)
)T

D−1/2
0 (θ∗)∂λ0(θ

∗)
∂θT

U

)]

> 0.

Hence, Jθ∗ and Iθ∗ are positive definite.
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(b) For any θ ∈ �, we have

∂�t (θ)

∂θ
=

m
∑

i=1

(

Yt,i
λt,i (θ)

− 1

)

∂

∂θ
λt,i (θ) = ∂λT

t (θ)

∂θ
D−1
t (θ)(Yt − λt (θ)).

(47)

Then, according to the stability properties of {Yt , t ∈ Z}, the process { ∂�t (θ)
∂θ

, t ∈
Z
}

is also stationary and ergodic. Moreover, since λt (θ
∗) and ∂λt (θ

∗)
∂θ

are Ft−1-
measurable, we have

E

[

∂�t (θ
∗)

∂θ

]

=
m
∑

i=1

E

[

E

[

∂λT
t (θ∗)
∂θ

D−1
t (θ∗)(Yt − λt (θ

∗))|Ft−1

]]

=
m
∑

i=1

E

[

∂λT
t (θ∗)
∂θ

D−1
t (θ∗) · E [(Yt − λt (θ

∗)
) |Ft−1

]

]

= 0

In addition, E
[

∂�0(θ
∗)

∂θ
∂�0(θ

∗)
∂θT

] = Iθ∗ . Hence, the part second part of the lemma
holds.

(c) We have,

E

∥

∥

∥

∂2�0(θ)

∂θ∂θT

∥

∥

∥

�
=

m
∑

i=1

E

∥

∥

∥

∂2�0,i (θ)

∂θ∂θT

∥

∥

∥

�
< ∞,

where the above inequality holds since E
∥

∥

∥

∂2�0,i (θ)

∂θ∂θT

∥

∥

∥

�
< ∞ for i = 1, . . . ,m by

going as in the proof of Lemma 7.2 in Doukhan and Kengne (2015). Moreover,
according to (47), for any θ ∈ �, we have

∂2�t (θ)

∂θ∂θT
=

m
∑

i=1

(

Yt,i
λt,i (θ)

− 1

)

∂2λt,i (θ)

∂θ∂θT
−

m
∑

i=1

Yt,i
λ2t,i (θ)

∂λt,i (θ)

∂θ

∂λt,i (θ)

∂θT
.

Then, using conditional expectations, we obtain

E

[

∂2�0(θ
∗)

∂θ∂θT

]

= −E

[

m
∑

i=1

1

λ0,i (θ∗)
∂λ0,i (θ

∗)
∂θ

∂λ0,i (θ
∗)

∂θT

]

= −
[

∂λT
0 (θ∗)
∂θ

D−1
0 (θ∗)∂λ0(θ

∗)
∂θT

]

= −Jθ∗ .

(d) We have

J (̂θn) =
(

−1

n

∂2

∂θ∂θi
Ln(θ̄n,i )

)

1≤i≤d
=
(

−1

n

n
∑

t=1

∂2�t (θ̄n,i )

∂θ∂θi

)

1≤i≤d

.
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Since ̂θn
a.s.−→ n → ∞θ∗, θ̄n,i

a.s.−→ n → ∞θ∗ (for any i = 1, . . . , d) and that

E
[

∂2�0(θ
∗)

∂θ∂θT

] = −Jθ∗ exists, by the uniform strong law of large numbers, for any
i = 1, . . . , d, we get

1

n

n
∑

t=1

∂2�t (θ̄n,i )

∂θ∂θi

a.s.= 1

n

n
∑

t=1

∂2�t (θ
∗)

∂θ∂θi

a.s.−→ E

[

∂2�0(θ
∗)

∂θ∂θi

]

as n → ∞.

Therefore,

J (̂θn) =
(

−1

n

n
∑

t=1

∂2�t (θ̄n,i )

∂θ∂θi

)

1≤i≤d

a.s.−→ n → ∞ −
(

E

[

∂2�0(θ
∗)

∂θ∂θi

])

1≤i≤d

= Jθ∗ .

This completes the proof of the lemma. ��
Now, let us use the results of Lemmas 2 and 3 to complete the proof of Theorem 4.
Sincêθn is a local maximum of the function θ → ̂Ln(θ) for n large enough (from

the assumption (MOD.A1) and the consistency of̂θn), ∂
∂θ
̂Ln(̂θn) = 0.

Thus, according to Lemma 2, the relation (43) becomes

√
nJ (̂θn)(̂θn − θ∗) = 1√

n

∂

∂θ
Ln(θ

∗) + oP (1). (48)

Moreover, applying the central limit theorem to the sequence
(

∂�t (θ
∗)

∂θ
,Ft

)

t∈Z, it holds
that

1√
n

∂

∂θ
Ln(θ

∗) = 1√
n

n
∑

t=1

∂

∂θ
�t (θ

∗) D−→
n→∞Nd(0, Iθ∗).

Therefore, for n large enough, using Lemma 3(d) and the relation (48), we obtain

√
n(̂θn − θ∗) = J−1

θ∗

[

1√
n

∂

∂θ
Ln(θ

∗)
]

+ oP (1) D−→
n→∞Nd

(

0, J−1
θ∗ Iθ∗ J−1

θ∗
)

.

This establishes the theorem. ��
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