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Abstract
Although estimation and testing are different statistical problems, if we want to use a
test statistic based on the Parzen–Rosenblatt estimator to test the hypothesis that the
underlying density function f is a member of a location-scale family of probability
density functions, it may be found reasonable to choose the smoothing parameter in
such a way that the kernel density estimator is an effective estimator of f irrespective
of which of the null or the alternative hypothesis is true. In this paper we address this
question by considering the well-known Bickel–Rosenblatt test statistics which are
based on the quadratic distance between the nonparametric kernel estimator and two
parametric estimators of f under the null hypothesis. For each one of these test statis-
tics we describe their asymptotic behaviours for a general data-dependent smoothing
parameter, and we state their limiting Gaussian null distribution and the consistency
of the associated goodness-of-fit test procedures for location-scale families. In order
to compare the finite sample power performance of the Bickel–Rosenblatt tests based
on a null hypothesis-based bandwidth selector with other bandwidth selector methods
existing in the literature, a simulation study for the normal, logistic and Gumbel null
location-scale models is included in this work.

Keywords Kernel density estimator · Goodness-of-fit tests · Bickel–Rosenblatt
tests · Bandwidth selection

Mathematics Subject Classification 62G10 · 62G07

B Carlos Tenreiro
tenreiro@mat.uc.pt
http://www.mat.uc.pt/∼tenreiro/

1 CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11749-021-00799-3&domain=pdf
http://orcid.org/0000-0002-5495-6644


718 C. Tenreiro

1 Introduction

Given X1, . . . , Xn independent and identically distributed real-valued random vari-
ables from an absolutely continuous distribution with continuous density function f ,
it is well known that the unknown density function f may be estimated by using the
Parzen–Rosenblatt estimator (Rosenblatt 1956; Parzen 1962) defined, for x ∈ R, by

fh(x) := 1

n

n∑

i=1

Kh(x − Xi ),

where Kh(·) = K (·/h)/h, for h > 0, with K a kernel in R, that is, K is a bounded
and symmetric probability density function, and the bandwidth h = hn is a sequence
of strictly positive real numbers converging to zero as n tends to infinity, which we
always assume along this paper (see Devroye and Györfi 1985; Silverman 1986; Bosq
and Lecoutre 1987; Wand and Jones 1995; Simonoff 1996, and Tsybakov 2009, for
general reviews on density estimation).

Other than the estimation of the underlying probability density function, the kernel
density estimator can also be used for testing the null hypothesis

H0 : f ∈ F0, (1)

where F0 is a parametric family of density functions, against a general alterna-
tive hypothesis. This idea was first explored in Bickel and Rosenblatt (1973) who
considered, among other, two test statistics based on the L2 distance between the non-
parametric estimator fh and two parametric estimators of f under the null hypothesis.
Focusing our attention on the case where F0 is a location-scale family, that is,

F0 = {
g(·; θ1, θ2) : θ1 ∈ R, θ2 > 0

}
, (2)

with g(x; θ1, θ2) = f0((x−θ1)/θ2)/θ2, and f0 is a known probability density function
on R, the Bickel–Rosenblatt test statistics we are interested in are given by

In(h) = In(X1, . . . , Xn; h) := nh
∫

{ fh(x) − Kh ∗ g(x; θ̂1, θ̂2)}2dx, (3)

and

Jn(h) = Jn(X1, . . . , Xn; h) := nh
∫

{ fh(x) − g(x; θ̂1, θ̂2)}2dx, (4)

where the integrals are over R with respect to the Lebesgue measure, θ̂k , for k = 1, 2,
are consistent estimators of θk under H0, and ∗ denotes the convolution operator.
The theoretical properties of goodness-of-fit tests based on In(h) and Jn(h) were
first studied by Bickel and Rosenblatt (1973) in the univariate case by using strong
approximation techniques for empirical processes, and by Rosenblatt (1975) in the
multivariate case, by using a Poissonization of sample size technique. However, a full
description of their asymptotic behaviour was later provided in Fan (1994) by using the
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fact, first noticed in Hall (1984), that central limit theorems for the integrated squared
error of kernel density estimators can be derived by using a central limit theorem for
degenerate U-statistics with variable kernels (see Ghosh and Huang 1991; Fan 1998;
Gouriéroux and Tenreiro 2001; Cao and Lugosi 2005, for other works on goodness-
of-fit tests based on the kernel density estimator).

Taking into account that the classF0 is closedwith respect to affine transformations,
some authors argue that any reasonable statistic Tn = Tn(X1, . . . , Xn) for testing H0
should be location-scale invariant, that is, it should satisfy the equality

Tn(a + bX1, . . . , a + bXn) = Tn(X1, . . . , Xn),

for each a ∈ R and b > 0 (see Henze 2002, p. 469, Ebner and Henze 2020, p. 847). As
we can easily see, this invariance property does not hold for the functionals In(h) and
Jn(h)wheneverwe take for h a deterministic bandwidth, evenwhen θ̂1 is location-scale
equivariant and θ̂2 is scale equivariant, that is,

θ̂1(a + bX1, . . . , a + bXn) = a + b θ̂1(X1, . . . , Xn)

and

θ̂2(a + bX1, . . . , a + bXn) = b θ̂2(X1, . . . , Xn),

for each a ∈ R and b > 0. However, if we further assume that h = ĥ(X1, . . . , Xn)

depends on the observations and is scale equivariant, then In(ĥ) and Jn(ĥ) are
location-scale invariant test statistics. This invariance property follows easily from
the representations

In(ĥ) = n(ĥ/θ̂2)

∫
{ f̃ĥ/θ̂2

(y) − Kĥ/θ̂2
∗ f0(y)}2dy, (5)

and

Jn(ĥ) = n(ĥ/θ̂2)

∫
{ f̃ĥ/θ̂2

(y) − f0(y)}2dy, (6)

where

f̃h(y) = 1

n

n∑

i=1

Kh(y − Yn,i ),

is the kernel estimatorwith kernel K and smoothing parameter h, based on the so-called
scaled residuals Yn, j = (X j − θ̂1)/θ̂2, j = 1, . . . , n. When ĥ takes the form ĥ = θ̂2h
with h a deterministic bandwidth, the statistic In(ĥ) is considered in Bowman (1992)
(see also Fan 1994, pp. 332–336) and the theoretical properties of the goodness-of-fit
test based on In(ĥ) are described in Tenreiro (2007) in the case where θ1 and θ2 are,
respectively, themean and the standard deviation of g(·; θ1, θ2), and θ̂1 = X̄n and θ̂2 =
Sn , where X̄n = n−1 ∑n

i=1 Xi is the sample mean and S2n = n−1 ∑n
i=1(Xi − X̄n)

2

is the sample variance. Moreover, Bowman (1992, p. 3) also suggests to take for the

123



720 C. Tenreiro

deterministic bandwidth h the asymptotic optimal bandwidth, in the sense of the mean
integrated square error, for estimating the null density f0. In this case, we have

h = h1 = h1( f0; K , n) = cK R( f ′′
0 )−1/5n−1/5, (7)

with
cK = R(K )1/5μ2(K )−2/5 (8)

(see Bosq and Lecoutre 1987, pp. 78–83 andWand and Jones 1995, pp. 19–23), where
R(ϕ) = ∫

ϕ(x)2dx andμ2(ϕ) = ∫
x2ϕ(x)dx , for an arbitrary real-valuedmeasurable

function ϕ, which leads to consider for ĥ the null hypothesis-based bandwidth selector

ĥH0 = θ̂2h1( f0; K , n). (9)

In the case of testing an hypothesis of normality, that is, f0 = φ, where φ(x) =
(2π)−1/2 exp(−x2/2), x ∈ R, is the standard Gaussian density, and taking K = φ

and θ̂2 = Sn , this leads to the data-dependent bandwidth

ĥH0 = (4/3)1/5Snn
−1/5. (10)

This approach, also considered in Bowman and Foster (1993, p. 535) for testing a
multivariate hypothesis of normality, was first suggested with apparent good results
by Henze and Zirkler (1990, p. 3600; see also Ebner and Henze 2020) and the cor-
responding theoretical properties of the test statistic In(ĥ) first established in Gürtler
(2000).

From an estimation perspective, the choice of the bandwidth is crucial to the per-
formance of the kernel density estimator, this being one of the most studied topics in
kernel density estimation, and several data-based approaches have been proposed for
selecting h (see Wand and Jones 1995, pp. 58–89, and also Tenreiro 2017, p. 3440,
where more recent bandwidth selection methods are mentioned). Although estima-
tion and testing are different statistical problems, if we want to test H0 through a test
statistic based on the kernel density estimator, it may be found reasonable to select the
smoothing parameter in such a way that fh is an effective estimator of the underly-
ing density f irrespective of which of the null or the alternative hypothesis is true, a
property that is not fulfilled by automatic bandwidth selector (9). Although some scep-
ticism has been expressed about this approach by Bowman (1992, p. 3), mainly due
to the extra source of variation introduced into the null distribution of the test statistic
by the considered bandwidth selector, in this paper we intend to address this issue
deeply by considering the situation where the data-dependent smoothing parameter ĥ
satisfies the relative consistency condition

ĥ

h0
− 1 = op(1), (11)

123



On automatic kernel density estimate-based tests for… 721

where h0 = h0( f ; K , n) is the exact optimal bandwidth in the sense that it minimizes
the kernel density estimator mean integrated square error, that is,

h0 = argmin
h>0

MISE( f ; K , n, h), (12)

where

MISE( f ; K , n, h) = E

( ∫
{ fh(x) − f (x)}2dx

)
.

For a square integrable density f , the existence of this exact optimal bandwidth for all
n ∈ N can be established whenever the kernel K is continuous at zero with R(K ) <

2K (0) (see Chacón et al. 2007). Classical data-based bandwidth selectors such as the
least squares cross-validation bandwidth or the two-stage direct plug-in bandwidth
selector based on h1 = h1( f ; K , n), which are both described in Wand and Jones
(1995, pp. 63–65,71–72), are scale equivariant and satisfy (11).

The remainder of this work is organised as follows. In Sect. 2 we describe the
asymptotic behaviour of the Bickel–Rosenblatt test statistics In(ĥ) and Jn(ĥ) with
ĥ = ĥn(X1, . . . , Xn) a general data-dependent smoothing parameter. In a univariate
context these results extend those obtained by Fan (1994), Gürtler (2000) and Tenreiro
(2007). The limiting null distribution and the consistency of the considered Bickel–
Rosenblatt tests for location-scale families are stated in Sect. 3. In Sect. 4 we conduct
a simulation study to compare the finite sample power performance of the Bickel–
Rosenblatt tests based on the null hypothesis-based bandwidth selector ĥH0 with other
scale equivariant bandwidth selectors ĥ satisfying condition (11). We consider the
cases of the normal, logistic and Gumbel null location-scale models. Although ĥH0

does not satisfy this relative consistency condition unless f ∈ F0, we conclude that
the tests based on it, especially those based on In , are in general more powerful than,
or at least as powerful as, those based on the considered bandwidth selectors that
satisfy such condition. Some other data-driven bandwidths inspired in the methods
considered in Cao and Van Keilegom (2006), Martínez-Camblor et al. (2008) and
Martínez-Camblor and Uña-Álvarez (2013) in the context of smooth tests for the k-
sample problem are adapted to our context and included in the simulation study. These
last bandwidth selectors, which can be computed by resampling, take the general form
λ̂ĥ, where ĥ is a scale equivariant bandwidth selector (e.g. ĥ = ĥH0 ) and λ̂ is a data-
driven tuning parameter selector taking values in a finite set of tuning parameters
� (e.g. � = {0.5, 0.75, 1, 1.5, 2}). Nevertheless, none of these bandwidth selectors
have shown to be preferable to ĥH0 . Section 5 includes a brief summary and some
conclusions. For convenience of exposition, the proofs are deferred to “Appendix A”
and some of the simulation results are relegated to the online supplementary material.

2 Test statistics asymptotic behaviour

In this section we are interested in the asymptotic behaviour of the Bickel–Rosenblatt
test statistics In(ĥ) and Jn(ĥ) given by (3) and (4), respectively, where ĥ =
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722 C. Tenreiro

ĥn(X1, . . . , Xn) is a general data-dependent smoothing parameter. In a univariate
framework the results presented here extend those obtained by Fan (1994), Gürtler
(2000) and Tenreiro (2007).

2.1 Asymptotic behaviour of In(ĥ)

In order to describe the asymptotic behaviour of the integrated square error In(ĥ) we
consider the following assumptions on the underlying probability density function f ,
the parametric family F0 given by (2), the estimators θ̂1 and θ̂2, the kernel K and
the data-dependent bandwidth ĥ. We denote by F an appropriate set of probability
density functions onR that containsF0 and towhich the underlyingprobability density
function f belongs, and by Lr , for r ∈ [1,∞], the normed vector space of measurable
functions ϕ : R → R for which ||ϕ||r < ∞, where ||ϕ||r := ( ∫ |ϕ(x)|rdx)1/r < ∞
for r ∈ [1,∞[, and ||ϕ||∞ = inf{c ≥ 0 : |ϕ(x)| ≤ c for almost every x}.
Assumption (D) f ∈ L∞, for all f ∈ F .

Assumption (F) f0 is two times continuously differentiable with f0 ∈ L∞, f ′
0, y 
→

y f ′
0(y) ∈ L2 ∩ Lr and f ′′

0 , y 
→ y2 f ′′
0 (y) ∈ Lr , for some r ∈ ]2,∞].

Assumption (P) For all f ∈ F there exist θ1( f ) ∈ R and θ2( f ) > 0 such that

θ̂k
p−→ θk( f ), for k = 1, 2. Moreover, if f = g(·; θ1, θ2), for some θ1 ∈ R and

θ2 > 0 (i.e. f ∈ F0), we assume that

√
n
(
θ̂k − θk

) = 1√
n

n∑

i=1

ψk(Xi ; θ1, θ2) + op(1),

whereψk(·; θ1, θ2) is a real functiondependingon θ1 and θ2,with E f (ψk(X; θ1, θ2)) =
0 and E f (ψk(X; θ1, θ2)

2) < ∞, for k = 1, 2.

Assumption (K) The kernel K belongs toK ω, for some ω ∈ {2, 3, . . .}, whereK ω

is the set of real-valued functions K on R with continuous derivatives up to order ω

such that lim|u|→∞ uK (u) = 0, for which there exists η ∈ ]0, 1[, such that the real-
valued functions K �,η defined, for u ∈ R, by K �,η(u) = |u|� sup|h−1|≤η |K (�)(u/h)|,
are bounded and integrable on R for � = 0, 1, . . . , ω.

The standard Gaussian kernel K = φ belongs to K ω for all ω, and every kernel
with compact support with continuous derivatives up to order ω belongs toK ω.

Assumption (B) For all f ∈ F , there exists a deterministic sequence (hn( f )) =
(h( f )) of strictly positive real numbers satisfying h( f ) → 0 and nh( f ) → ∞, as
n → ∞, such that

ξn := ĥ

h( f )
− 1 = op(1).

Asmentioned before, under some conditions on f and K , assumption (B) is fulfilled
by the least squares cross-validation bandwidth and by the two-stage direct plug-in
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bandwidth selector with h( f ) = h0, where h0 is given by (12). Of course, in these
cases assumption (B) is also fulfilled with h( f ) = h1, where h1 is given by (7), as
h0 and h1 are asymptotically equivalent (see Hall and Marron 1991, p. 159). From
a density estimation point of view, the distinction between bandwidth selectors is
usually based on the rate of convergence to zero of the relative error ξn . For example,
we have ξn = Op

(
n−1/10

)
for the least squares cross-validation bandwidth (see Scott

and Terrel 1987; Hall and Marron 1987), and ξn = Op
(
n−5/14

)
for the two-stage

direct plug-in bandwidth selector (see Tenreiro 2003). A better order of convergence
is achieved by the smoothed cross-validation method of Hall et al. (1992) and by the
plug-in method of Hall et al. (1991) for which we have ξn = Op

(
n−1/2

)
. Note that

these rates of convergence are not directly comparable since the conditions imposed to
f in each case are not necessarily the same. A different situation occurs when ĥ is the
well-known normal scale bandwidth selector defined by ĥ = (8

√
π/3)1/5cK n−1/5σ̂ ,

where cK is given by (8) and σ̂ is a consistent estimator of the standard deviation σ f

of f (see Wand and Jones 1995, p. 60). Although this bandwidth selector satisfies
assumption (B) with h( f ) = (8

√
π/3)1/5cK n−1/5σ f , and we have ξn = Op

(
n−1/2

)

whenever the scale estimator is such that σ̂ − σ f = Op
(
n−1/2

)
, the normal scale

bandwidth selector does not fulfil relative consistency condition (11).
In the next result, which proof is given in Sect. A.1, we describe the asymp-

totic behaviour of the Bickel–Rosenblatt test statistic In(ĥ) given by (3) where
ĥ = ĥn(X1, . . . , Xn) is a general data-dependent smoothing parameter. Recall that
R(ϕ) = ∫

ϕ(x)2dx for an arbitrary real-valued measurable function ϕ.

Theorem 1 Under assumptions (D), (F), (P), (K) and (B), let us assume that

h( f )−1/2ξ2n + nh( f )1/2ξω
n = op(1). (13)

(a) If the null hypothesis is true, then

ν−1
f h( f )−1/2(In(ĥ) − R(K )

) d−→ N (0, 1),

where

ν2f = 2R(K ∗ K )R( f ).

(b) If the alternative hypothesis is true, then

(nh( f ))−1(In(ĥ) − R(K )
) p−→ R

(
f − g(·; θ1( f ), θ2( f ))

)
.

Remark 1 If h( f ) = cn−1/5(1 + o(1)) and ξn = Op
(
n−α

)
, for some c > 0 and 0 <

α ≤ 1/2, condition (13) is satisfied whenever α > max(1/20, 9/(10ω)). Therefore,
it holds for the least squares cross-validation bandwidth selector whenever ω ≥ 10,
and for the two-stage direct plug-in bandwidth selector if ω ≥ 3.
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2.2 Asymptotic behaviour of Jn(ĥ)

In order to describe the asymptotic behaviour of the integrated square error Jn(ĥ)

some additional assumptions are needed.

Assumption (D′) For all f ∈ F , f is two times continuously differentiable onRwith
f ′′ ∈ L∞ ∩ L2.

Assumption (F′) f0 is such that f ′′
0 ∈ L∞ ∩ Ls , with 1/r + 1/s = 1 and r ∈ ]2,∞]

is given in assumption (F).

Assumption (K′) The functions u 
→ u2K �,ε(u), for � = 0, 1, . . . , ω, where K �,ε is
defined in assumption (K), are bounded and integrable on R.

Assumption (B′) For all f ∈ F , the deterministic sequence h( f ) is such that
nh( f )5 → λ f , as n → ∞, for some λ f ∈ ]0,∞[.

Note that if h( f ) = h0, where h0 is given by (12), then λ f = c5K R( f ′′)−1, where
cK is given in (8).

In the next result, which proof is given in Sect. A.2, we describe the asymp-
totic behaviour of the Bickel–Rosenblatt test statistic Jn(ĥ) given by (4) where
ĥ = ĥn(X1, . . . , Xn) is a general data-dependent smoothing parameter.

Theorem 2 Under assumptions (D), (D′), (F), (F′), (P), (K), (K′), (B), (B′), let us
assume that

h( f )−1/2ξn + nh1/2ξω
n = op(1). (14)

(a) If the null hypothesis is true, then

υ−1
f h( f )−1/2(Jn(ĥ) − R(K ) − cn( f ; K )

) d−→ N (0, 1)

where

cn( f ; K ) = nh( f )R(Kh( f ) ∗ f − f ),

and

υ2
f = 2R(K ∗ K )R( f ) + λ f μ2(K )2Var f (ϕ f (X))

with

ϕ f (u) = f ′′(u) −
∑

k

ψk(u; θ1( f ), θ2( f ))
∫

f̄ ′′(x) ∂g

∂θk
(x; θ1( f ), θ2( f ))dx,

where f̄ (x) = f (−x), for x ∈ R.
(b) If the alternative hypothesis is true, then

(nh( f ))−1(Jn(ĥ) − R(K ) − cn( f ; K )
) p−→ R

(
f − g(·; θ1( f ), θ2( f ))

)
.
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Remark 2 Under the conditions ofRemark1, condition (14) holds ifα > max(1/10, 9/
(10ω)). Therefore, it is not fulfilled by the least squares cross-validation bandwidth
selector, and it holds for the two-stage direct plug-in bandwidth selector whenever
ω ≥ 3.

3 Bickel–Rosenblatt tests for location-scale families

Under the assumptions of Theorems 1 and 2, if θ̂1 and θ̂2 are location-scale and scale
equivariant estimators of θ1 and θ2, respectively, and the deterministic sequence h( f )
is scale equivariant (that is, h(g) = bh( f ), where g(·) = f ((· − a)/b)/b, for all
a ∈ R and b > 0), a property that is satisfied by exact optimal bandwidth (12), we can
easily conclude that ν−1

f h( f )−1/2 = ν−1
f0
h( f0)−1/2, υ−1

f h( f )−1/2 = υ−1
f0
h( f0)−1/2

and cn( f ; K ) = cn( f0; K ). Therefore, from Theorems 1 and 2 we deduce that the
tests based on the critical regions

Cn(In(ĥ), α) = {
ν−1
f0
h( f0)

−1/2(In(ĥ) − R(K )
)

> �−1(1 − α)
}

and

Cn(Jn(ĥ), α) = {
υ−1
f0
h( f0)

−1/2(Jn(ĥ) − R(K ) − cn( f0; K )
)

> �−1(1 − α)
}
,

where α ∈ ]0, 1[ and �−1(1 − α) is the quantile of order 1 − α of the stan-
dard normal distribution, are asymptotically of level α and consistent to test f ∈
F0 against f ∈ F\F0, that is, Pf

(
Cn(Tn, α)

) → α, for all f ∈ F0, and
Pf

(
Cn(Tn, α)

) → 1, for all f ∈ F\F0, where Tn = Tn(X1, . . . , Xn) stands for

either In(X1, . . . , Xn; ĥ(X1, . . . , Xn)) or Jn(X1, . . . , Xn; ĥ(X1, . . . , Xn)).
Such as in the case where ĥ is deterministic (see Fan 1995, p. 372), some simulation

results reveal that the asymptotic normal distribution provides a poor approximation
to the finite sample distributions of In(ĥ) and Jn(ĥ) under the null hypothesis, which
implies large differences between the true level and the nominal level of the tests based
on the previous critical regions. This fact is illustrated in Table 1 where type I error
estimates based on 20,000 simulations under the null hypothesis are shown for the
normality tests based on the previous critical regions with K = φ and ĥ = ĥH0 given
by (10).

In order to circumvent this problem, the standard strategy (see Fan 1995, pp. 372–
373) is to consider instead the test defined by the critical region

C (Tn, α) = {
Tn > q(T ∗

n , α)
}
,

where Tn = Tn(X1, . . . , Xn) stands for either In(X1, . . . , Xn; ĥ(X1, . . . , Xn)) or
Jn(X1, . . . , Xn; ĥ(X1, . . . , Xn)), and q(T ∗

n , α) = q(T ∗
n , α; X1, . . . , Xn) denotes the

quantile of order 1−α of the distribution of the random variable T ∗
n defined as follows:

(1) Use the original sample X1, . . . , Xn to compute θ̂1 and θ̂2;
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Table 1 Type I error estimates for the normality tests based on the critical regions Cn(In(ĥ), α) and
Cn(Jn(ĥ), α), with K = φ and ĥ = ĥH0 , for nominal significant levels α = 0.1, 0.05, 0.01 and sample

sizes n = 10k , k = 2, 3, 4

Level α In(ĥH0 ) Jn(ĥH0 )

n = 102 n = 103 n = 104 n = 102 n = 103 n = 104

0.01 0.000 0.002 0.006 0.000 0.002 0.008

0.05 0.001 0.006 0.018 0.001 0.008 0.020

0.10 0.001 0.011 0.030 0.002 0.015 0.035

The number of replications for each case is 20,000

(2) Draw a random sample U1, . . . ,Un from the distribution f0 and define the boot-
strap sample by X∗

n,i = θ̂1 + θ̂2Ui , for i = 1, . . . , n;
(3) Use the bootstrap sample to compute Tn(X∗

n,1, . . . , X
∗
n,n) and call it T ∗

n .

Of course, if the test statistic Tn is location-scale invariant, which occurs if we further
assume that ĥ is scale equivariant, the quantile q(T ∗

n , α), which does not depend on the
observed sample, is the quantile of order 1−α of Tn under H0, we denote by q(Tn, α).
This quantile is assumed to be a known quantity as is can be well approximated by
repeating steps 2) and 3) for a large number of times. As stated in the next result,
which proof is presented in Sect. A.3, in this important case the test based on the
critical region C (Tn, α), has a level of significance at most equal to α for each sample
size n and is consistent to test f ∈ F0 against f ∈ F\F0.

Theorem 3 Under the assumptions of Theorems 1 or 2, let us assume that θ̂1 and θ̂2
are location-scale and scale equivariant estimators of θ1 and θ2, respectively. If the
bandwidth selector ĥ is scale equivariant, then the test statistic Tn, where Tn stands
for either In(ĥ) or Jn(ĥ), is location-scale invariant, and the test based on the critical
region

C (Tn, α) = {
Tn > q(Tn, α)

}
, (15)

where α ∈ ]0, 1[, is such that

Pf
(
C (Tn, α)

) ≤ α, for all f ∈ F0,

and

Pf
(
C (Tn, α)

) → 1, for all f ∈ F\F0.

4 Finite sample results

In this section we conduct a simulation study to compare the finite sample power
performance of goodness-of-fit tests based on critical regions (15) for several choices
of the scale equivariant bandwidth selector ĥ.More precisely, we intend to compare the
null hypothesis-based bandwidth selector ĥH0 proposed by Bowman (1992) given by
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(9), with other scale equivariant bandwidth selectors ĥ satisfying relative consistency
condition (11), for which it is expected, at least from an asymptotic point of view, that
the kernel estimator fĥ is an effective estimator of the underlying density f irrespective

of which of the null or the alternative hypothesis is true. To this end, besides ĥH0

three other automatic and scale equivariant bandwidth selectors are considered in
our study. They are the least squares cross-validation bandwidth selector ĥCV, the
two-stage direct plug-in bandwidth selector ĥPI (see Wand and Jones 1995, pp. 63–
65,71–72) and also a modified version of the bandwidth selector proposed in Chacón
and Tenreiro (2013), where the cross-validation function is replaced by the weighted
cross-validation function with γ = 0.5 (for the definition of the weighted cross-
validation function, see Tenreiro 2017, p. 3440). Under some conditions on f , ĥCT
fulfils assumption (B)with h( f ) = h0 and ξn = Op

(
n−5/14

)
(seeChacón andTenreiro

2013, Theorem 3.1, p. 2207). The power results observed in our simulation study for
the bandwidths ĥCV, ĥPI and ĥCT reveal that this latter bandwidth presents a good
overall performance for a wide range of alternative density features, which is relevant
for real data situations where there is usually little prior information on the alternative
density shape. For this reason, and because no essential feature is lost, hereafter we
confine to the results obtained by the bandwidths ĥH0 and ĥCT.

From representations (5) and (6), and taking for K the standard normal density,
which we always assume from now on, the test statistics In(ĥ) and Jn(ĥ) can be
evaluated from the equalities

In(ĥ) = h̃

n

n∑

i, j=1

Q(Yn,i ,Yn, j ; h̃)

and

Jn(ĥ) = h̃

n

n∑

i, j=1

R(Yn,i ,Yn, j ; h̃),

where for u, v ∈ R and h > 0,

Q(u, v; h) = φ√
2h(u − v) − φ√

2h ∗ f0(u) − φ√
2h ∗ f0(v) + φ√

2h ∗ f̄0 ∗ f0(0)

and

R(u, v; h) = φ√
2h(u − v) − φh ∗ f0(u) − φh ∗ f0(v) + f̄0 ∗ f0(0),

with h̃ = ĥ/θ̂2, Yn, j = (X j − θ̂1)/θ̂2, j = 1, . . . , n, and f̄0(u) = f0(−u), for u ∈ R.
Taking into account the convolution properties of the Gaussian densities (see Wand
and Jones 1995, pp. 177–180), the calculation of In(ĥ) and Jn(ĥ) is especially simple
for the normality test in which case no numerical integration is required. In this case,
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we have

In(ĥ) = nh̃
n+1∑

k,l=1

wkφ(β2
k +β2

l )1/2(αk − αl)wl

and

Jn(ĥ) = nh̃
n+1∑

k,l=1

wkφ(γ 2
k +γ 2

l )1/2(αk − αl)wl ,

where w = ( 1n , . . . , 1
n ,−1), α = (Yn,1, . . . ,Yn,n, 0), β = (

h̃, . . . , h̃, (h̃2 + 1)
1
2
)
and

γ = (h̃, . . . , h̃, 1).
We start the study on the finite sample performance of the tests based on critical

regions (15) for nominal levels α = 0.1, 0.05, 0.01, by considering the test of normal-
ity in which case the null model is given by (2) with f0 = φ, and we take θ̂1 = X̄n

and θ̂2 = Sn the maximum likelihood estimators of θ1 and θ2 under H0. As the test
statistics In(ĥ) and Jn(ĥ) for ĥ = ĥH0 and ĥ = ĥCT are invariant under null hypothesis
(see Theorem 3), the quantiles of order 1 − α in critical regions (15) are estimated
by performing 100,000 simulations under the null hypothesis. We consider alternative
distributions from a well-known set of normal mixture densities considered in Marron
and Wand (1992) which is often used in the context of kernel density estimation. This
set is very rich, containing densities with a wide variety of features, such as kurtosis,
skewness and multimodality. The densities of the considered alternatives jointly with
the density of the normal distribution with the same mean and variance are shown in
Fig. 1. The densities are identified as in Marron and Wand (1992), and the values for
the parameters of this set of normal mixture densities are given in Table 1 of the same
article. For the nominal level α = 0.05 and sample sizes n = 20, 50, 80 we report
in Table 2 the power estimates based on 10,000 samples from the considered set of
alternative densities. All the simulations in this work were carried out using programs
written in the R language (R Development Core Team 2019).

Taking into account some simulation experiments, not presented here to save space,
to estimate the mean integrated squared error of the kernel density estimator for each
one of the bandwidths ĥH0 and ĥCT, we can conclude that the kernel estimator based on
ĥH0 performs better than that based on ĥCT for the normal mixture densities 2, 6, 8, 9
and 12 (for the considered sample sizes). This may explain the results shown in Table
2 where the tests based on ĥH0 perform generally better than those based on ĥCT for
alternatives 2, 6, 8 and 9, and they perform similarly for alternative 12. The opposite
situation occurs for the remaining four normal mixtures where the kernel density
estimator based on ĥCT performs much better than that based on ĥH0 . However, only
for the normal mixtures 4 and 15 the tests based on ĥCT perform clearly better than
those based on ĥH0 . For densities 3 and 7 the tests perform similarly. As the considered
alternative densities are far from the null hypothesis density family in shape, we can
conclude that even a low performing bandwidth selector from a density estimation
point of view is good enough to detect such alternatives. In this situation, estimation and
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Fig. 1 Probability density functions of alternatives from theMarron andWand (1992) set of normal mixture
densities (solid) and the probability function of the Gaussian distribution with the same mean and variance
of the considered alternative (dashed)

testing demand different answers regarding bandwidth selection. The results presented
in Table 2 for the skewed unimodal density 2 also deserve an additional comment. This
is an interesting case because density 2 is not far from the normal density in shape, and
we may expect that ĥH0 , as based on the null density family, may reach good power
results for alternative densities which are not far from the null density model in shape.
The simulations results observed for density 2 support this idea. The results presented
in Table 2 also show different performances for the tests based on the test statistics
In(ĥ) and Jn(ĥ) no matter which bandwidth is used. The statistic Jn(ĥ) seems to be
more effective in detecting multimodal alternatives, whereas In(ĥ) shows in general
a better performance in the detection of unimodal alternatives.

Based on the previous conclusions, we have good reasons to believe that ĥH0 may
reach a good power performance for wide sets of alternative distributions. In order
to examine in detail this question, other than the goodness-of-fit test for the normal
distributionwe also consider two other null location-scalemodels. They are the logistic
modelwhere f0(x) = (exp(−x/2)+exp(x/2))−2, for x ∈ R, and theGumbel extreme
value model where f0(x) = exp(−x − exp(−x)), for x ∈ R. For this latter family of
distributions we take for θ̂1 and θ̂2 the maximum likelihood estimators of θ1 and θ2,
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Table 2 Empirical power results, at level α = 0.05, for the goodness-of-fit tests for the normal distribution
based on In(ĥ) and Jn(ĥ) with ĥ = ĥH0 and ĥ = ĥCT, for some alternatives from the Marron and Wand
(1992) set of normal mixture densities

ĥ In(ĥ) Jn(ĥ)

n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 2

ĥH0 0.18 0.34 0.49 0.08 0.16 0.26

ĥCT 0.13 0.26 0.39 0.11 0.19 0.27

Alternative MW 3

ĥH0 0.86 1.00 1.00 0.74 1.00 1.00

ĥCT 0.81 1.00 1.00 0.80 1.00 1.00

Alternative MW 4

ĥH0 0.32 0.72 0.93 0.07 0.28 0.63

ĥCT 0.57 0.93 0.99 0.54 0.90 0.99

Alternative MW 6

ĥH0 0.16 0.51 0.76 0.32 0.70 0.89

ĥCT 0.13 0.41 0.66 0.20 0.61 0.86

Alternative MW 7

ĥH0 0.97 1.00 1.00 1.00 1.00 1.00

ĥCT 0.96 1.00 1.00 0.99 1.00 1.00

Alternative MW 8

ĥH0 0.13 0.38 0.59 0.22 0.51 0.72

ĥCT 0.12 0.33 0.53 0.15 0.44 0.66

Alternative MW 9

ĥH0 0.22 0.67 0.89 0.42 0.84 0.96

ĥCT 0.18 0.55 0.81 0.26 0.77 0.95

Alternative MW 12

ĥH0 0.10 0.21 0.33 0.12 0.25 0.38

ĥCT 0.09 0.20 0.35 0.10 0.24 0.39

Alternative MW 15

ĥH0 0.23 0.72 0.95 0.44 0.89 0.99

ĥCT 0.64 1.00 1.00 0.65 1.00 1.00

The power estimates are based on 10,000 samples from the considered alternatives

which satisfy

θ̂2 = X̄n −
∑n

j=1 X j exp(−X j/θ̂2)
∑n

j=1 exp(−X j/θ̂2)
and θ̂1 = −θ̂2 log

(
n−1

n∑

j=1

X j exp(−X j/θ̂2)

)
.

In the case of the goodness-of-fit test for the logistic distribution we use the moment
estimators θ̂1 = X̄n and θ̂2 = √

3 Sn/π which are simpler to evaluate and nearly as

123



On automatic kernel density estimate-based tests for… 731

efficient as the maximum likelihood estimators (see Johnson et al. 1995, pp. 127–
130). Similarly to the goodness-of-fit test for the normal distribution, we are under the
assumptions of Theorem 3 and the tests based on critical regions (15) are implemented
as explained before.

For comparisonproposes, besides the bandwidth selectors ĥH0 and ĥCT,we consider
in this study other bandwidth selectors which are based on the common principle that
the bandwidth should be tuned in order to improve the power performance of the test.
In order to implement this idea, we consider the set of scale equivariant bandwidths
based on ĥ, where ĥ stands for ĥH0 or ĥCT, given by

ĥλ(X1, . . . , Xn) = λĥ(X1, . . . , Xn), λ ∈ �,

where � is a finite set of strictly positive real numbers that will act as tuning param-
eters. Besides the value λ = 1 associated with the reference bandwidth ĥ, this
set is meant to include tuning parameters smaller and larger than the unit. If we
denote by Tn,λ(X1, . . . , Xn) one the statistics In(X1, . . . , Xn; ĥλ(X1, . . . , Xn)) or
Jn(X1, . . . , Xn; ĥλ(X1, . . . , Xn)), from the scale equivariant property of ĥ we know
that Tn,λ is location-scale invariant, and therefore the null distribution of Tn,λ does not
depend on f ∈ F0, whereF0 is given by (2). Therefore, the tests with critical regions

C (Tn,λ, α) = {Tn,λ > q(Tn,λ, α)}, λ ∈ �, (16)

where q(Tn,λ, α) denotes the quantile of order 1− α of Tn,λ under H0, have levels of
significance at most equal to α. As before, we assumed that these quantiles are known
quantities as they can be well approximated by simulating under the null hypothesis
for a large number of times (100,000 replications under the null hypothesis are used).
The power properties of each one of the previous test procedures depend on λ which
is the reason that its choice is usually crucial to obtain a performing test procedure.
In order to make such a choice, we need to define a suitable location-scale invariant
measurable function taking values in �, λ̂ = λ̂(X1, . . . , Xn), called tuning parameter
selector, on the basis of which we can consider a test procedure based on the critical
region

C (Tn,λ̂
, α) = {Tn,λ̂

> q(Tn,λ̂
, α)}, (17)

where q(Tn,λ̂
, α) denotes the quantile of order 1 − α of Tn,λ̂

under H0. This test has
a level of significance at most equal to α for each sample size n.

In order to define effective methods for selecting the tuning parameter λ ∈ �, we
will adapt to our situation three methods considered in Cao and Van Keilegom (2006),
Martínez-Camblor et al. (2008) andMartínez-Camblor and Uña-Álvarez (2013) in the
context of smooth tests for the k-sample problem. Given the level α of the test, and a
sample X1, . . . , Xn from f , the first tuning parameter selector we consider, we denote
by λ̂1 = λ̂1(X1, . . . , Xn;α), was originally used in Cao and Van Keilegom (2006,
p. 69) and is defined as the value in � that maximises the smooth bootstrap power,
that is,

λ̂1 = argmax
λ∈�

1

B1

B1∑

k=1

I
(
Tn,λ(X

∗
k,1, . . . , X

∗
k,n) > q(Tn,λ, α)

)
, (18)
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with

X∗
k, j = XU(k−1)n+ j + ĥCT(X1, . . . , Xn)N(k−1)n+ j ,

for k = 1, . . . , B1 and j = 1, . . . , n, where Nl , for l = 1, . . . , nB1, are independent
copies of the standard normal distribution, and Ul , for l = 1, . . . , nB1, are inde-
pendent copies of the discrete uniform distribution on {1, . . . , n}; that is, for each
k = 1, . . . , B1, X∗

k1, . . . , X
∗
kn is generated by resampling from the Parzen–Rosenblatt

estimator with Gaussian kernel and smoothing parameter ĥCT(X1, . . . , Xn). As
expressed by the notation λ̂1(X1, . . . , Xn;α), note that λ̂1 depends on the consid-
ered level α.

The secondmethod for selectingλweconsider is based on the observation that given
the values Tn,λ(X1, . . . , Xn) of the test statistics for the observed sample X1, . . . , Xn ,
more evidence against the null hypothesis is obtained for smaller p-values. Therefore,
to construct a powerful test it makes sense to minimise the bootstrap p-value along
λ ∈ �, an idea that was used in Martínez-Camblor et al. (2008, pp. 4014–4015);
see also Martínez-Camblor and Uña-Álvarez (2009). Hence, we denote by λ̂2 =
λ̂2(X1, . . . , Xn) the tuning parameter selector given by

λ̂2 = argmin
λ∈�

1

B0

B0∑

j=1

I
(
Tn,λ(X0,( j−1)n+1, . . . , X0, jn) ≥ Tn,λ(X1, . . . , Xn)

)
, (19)

where X0,l , for l = 1, . . . , nB0, are independent copies of the random variable X0
with density f0.

The last method for selecting λ we consider was introduced in Martínez-Camblor
and Uña-Álvarez (2013, p. 273) and is based on the idea that λ should be chosen in
order to maximise the discrimination capability, between the null and the alternative
hypotheses, of the diagnostic variable Tn,λ expressed by the area under the ROC curve
associated with it. As this area is given by P(T 0

n,λ < T 1
n,λ), where T 0

n,λ and T 1
n,λ are

independent random variable with the null and the alternative distributions of Tn,λ,
respectively (see Krzanowski and Hand 2009, pp. 26–28), we consider the tuning
parameter selector λ̂3 = λ̂3(X1, . . . , Xn) defined by

λ̂3 = argmax
λ∈�

1

B0B1

B0∑

j=1

B1∑

k=1

I
(
Tn,λ(X0,( j−1)n+1, . . . , X0, jn) < Tn,λ(X

∗
k,1, . . . , X

∗
k,n)

)
,

(20)
where X0,l , for l = 1, . . . , nB0, and X∗

k, j , for k = 1, . . . , B1 and j = 1, . . . , n, are
defined as before.

Taking into account that, conditionally on the sequences N = (Nl), U = (Ul) and
X0 = (X0,l), the previous tuning parameter selectors are location-scale invariants,
we conclude that the tests based on critical region (17), where λ̂ stands for either
λ̂1, λ̂2 or λ̂3, have levels of significance at most equal to α for each sample size n
(conditionally on N , U and X0). In the practical implementation of these tests we
always take� = {0.5, 0.75, 1, 1.5, 2}. For the normality goodness-of-fit tests we take

123



On automatic kernel density estimate-based tests for… 733

B0 = B1 = 200, and the quantiles q(Tn,λ̂
, α) are estimated by performing 100,000

simulations under the null hypothesis. For the goodness-of-fit tests for the logistic and
Gumbel distributions we take B0 = B1 = 100, and the quantiles are estimated by
performing 50,000 simulations under the null hypothesis, because the evaluation of
the corresponding test statistics is more time-consuming than in the normal case.

For the alternatives 4 and 8 from the Marron and Wand (1992) set of normal mix-
ture densities, Tables 3 and 4 present power estimates, at level α = 0.05, for the
normality goodness-of-fit tests based on critical regions (16) with ĥλ = λĥ, λ =
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and (17) with � = {0.5, 0.75, 1, 1.5, 2},
where ĥ = ĥH0 , ĥCT. As mentioned before, for all samples sizes we see that the
empirical power depends on λ. However, these two alternatives reveal different situ-
ations. For alternative 8 the best power results are in general observed for values of
λ close or even equal to 1, and therefore the tests based on λ̂ j ĥ, for j = 1, 2, 3, are
not expected to be more powerful than those based on the bandwidth selector ĥ. The
figures in both tables support this idea. A similar situation occurs for alternative 4
and bandwidth ĥCT. However, when the bandwidth ĥH0 is used for alternative 4, an
alternative for which the kernel estimator based on ĥH0 performs poorly from a density
estimation point of view, we see that it is highly advisable to use a tuning parameter
smaller than 1, which may explain the good results obtained by the tuning parameters
selectors λ̂2 and λ̂3 for the test based on In and by λ̂1 for the test based on Jn .

For α = 0.01, 0.05, 0.1, and sample sizes n = 20, 50, 80, we present in Tables
5–7 (see the supplementary online material) estimates of the nominal levels of signif-
icance for the goodness-of-fit tests for the normal, logistic and Gumbel distributions,
respectively, based on In(ĥ) and Jn(ĥ) for the different bandwidth selectors ĥ based
on ĥH0 and ĥCT. They are based on 20, 000 simulations under the null hypothesis.
These results indicate that all the tests have an effective level of significance very close
to α. With some few exceptions, the estimated levels are inside the approximate 95%
confidence interval for the preassigned nominal levels.

Although a larger set of alternative distributions, usually considered in power stud-
ies for testing the normal, logistic and Gumbel distributions, was considered in our
study (see Epps and Pulley 1983; Meintanis 2004; Epps 2005; Romão et al. 2010), we
limit ourselves to present in Tables 8–10 (normal distribution), Tables 11–13 (logistic
distribution) and Tables 14–16 (Gumbel distribution) the empirical power results for
someof these alternatives (see the supplementary onlinematerial). Thefirst seven alter-
natives are from the following location-scale families: uniform, exponential, Laplace,
Cauchy, normal, logistic and Gumbel. The remaining six alternatives are from the fol-
lowing families of distributions: Student, lognormal, Tukey, gamma,Weibull and beta.
For the exact definition of the distributions included in these tables, see Epps (2005).
We limit ourselves to present here the results obtained for the nominal level α = 0.05
and sample sizes n = 20, 50, 80. However, similar conclusions can be drawn for the
nominal levels α = 0.1, 0.01 also considered in our study. For comparison purposes,
we include in the previous tables power estimates for the classical Anderson–Darling
(1954) goodness-of-fit test which is based on a weighted quadratic distance between
the empirical distribution function and a parametric estimator of the distribution func-
tion of f under the null hypothesis (see Stephens 1986, and the references therein, for
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Table 3 Power estimates, at level α = 0.05, for the normality goodness-of-fit tests based on In(λĥH0 ) and

Jn(λĥH0 ), withλ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and In(λ̂ j ĥH0 ) and Jn(λ̂ j ĥH0 ), j = 1, 2, 3,
with � = {0.5, 0.75, 1, 1.5, 2}, for alternatives 4 and 8 from the Marron and Wand (1992) set of normal
mixture densities

λ In(λĥH0 ) Jn(λĥH0 )

n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 4

0.25 0.54 0.94 0.99 0.54 0.93 0.99

0.50 0.46 0.89 0.99 0.42 0.87 0.98

0.75 0.37 0.81 0.97 0.24 0.68 0.93

1.00 0.32 0.72 0.93 0.07 0.28 0.63

1.25 0.28 0.63 0.87 0.02 0.02 0.06

1.50 0.26 0.56 0.81 0.01 0.00 0.00

1.75 0.24 0.49 0.74 0.01 0.00 0.00

2.00 0.23 0.43 0.68 0.01 0.00 0.00

3.00 0.20 0.31 0.46 0.00 0.00 0.00

5.00 0.19 0.23 0.29 0.00 0.00 0.00

λ̂1 0.35 0.75 0.94 0.21 0.50 0.74

λ̂2 0.44 0.90 0.98 0.02 0.07 0.09

λ̂3 0.49 0.90 0.99 0.02 0.14 0.34

Alternative MW 8

0.25 0.15 0.33 0.49 0.15 0.33 0.49

0.50 0.17 0.40 0.59 0.18 0.43 0.62

0.75 0.16 0.40 0.61 0.20 0.49 0.69

1.00 0.13 0.38 0.59 0.22 0.51 0.72

1.25 0.11 0.35 0.56 0.23 0.51 0.71

1.50 0.08 0.31 0.52 0.23 0.49 0.68

1.75 0.07 0.27 0.49 0.22 0.46 0.65

2.00 0.07 0.23 0.44 0.21 0.44 0.61

3.00 0.06 0.15 0.29 0.21 0.39 0.53

5.00 0.05 0.12 0.21 0.20 0.37 0.48

λ̂1 0.13 0.35 0.56 0.17 0.41 0.61

λ̂2 0.16 0.37 0.54 0.14 0.10 0.08

λ̂3 0.14 0.24 0.39 0.11 0.08 0.13

The number of replications used is 10,000

goodness-of-fit tests based on the empirical distribution function). In order to imple-
ment this test, the quantiles of order 1−α of the Anderson–Darling test statistic A2 are
estimated by performing 100,000 simulations under the null hypothesis. In the case of
the goodness-of-fit test for the normal distribution we also include in our simulation
study the highly recommended Shapiro–Wilk (1965) test SW implemented by the R-
function shapiro.test. For all the tests included in the study, the power estimates are
based on 10,000 samples from the considered alternatives.
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Table 4 Power estimates, at level α = 0.05, for the normality goodness-of-fit tests based on In(λĥCT) and
Jn(λĥCT), withλ = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 5, and In(λ̂ j ĥCT) and Jn(λ̂ j ĥCT), j = 1, 2, 3,
with � = {0.5, 0.75, 1, 1.5, 2}, for alternatives 4 and 8 from the Marron and Wand (1992) set of normal
mixture densities

λ In(λĥCT) Jn(λĥCT)

n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

Alternative MW 4

0.25 0.50 0.92 0.99 0.50 0.92 0.99

0.50 0.55 0.93 0.99 0.54 0.93 0.99

0.75 0.56 0.93 0.99 0.54 0.92 0.99

1.00 0.57 0.93 0.99 0.54 0.90 0.99

1.25 0.57 0.93 0.99 0.37 0.78 0.95

1.50 0.58 0.93 0.99 0.13 0.45 0.76

1.75 0.58 0.93 0.99 0.02 0.12 0.34

2.00 0.58 0.93 0.99 0.01 0.01 0.05

3.00 0.58 0.92 0.99 0.00 0.00 0.00

5.00 0.57 0.91 0.99 0.00 0.00 0.00

λ̂1 0.56 0.93 0.99 0.48 0.86 0.98

λ̂2 0.48 0.91 0.99 0.01 0.03 0.11

λ̂3 0.47 0.87 0.98 0.10 0.86 0.91

Alternative MW 8

0.25 0.14 0.31 0.48 0.15 0.32 0.48

0.50 0.15 0.34 0.53 0.15 0.36 0.55

0.75 0.13 0.34 0.54 0.15 0.40 0.61

1.00 0.12 0.33 0.53 0.15 0.44 0.66

1.25 0.11 0.31 0.51 0.08 0.28 0.51

1.50 0.10 0.29 0.49 0.04 0.04 0.11

1.75 0.09 0.27 0.47 0.03 0.02 0.02

2.00 0.08 0.25 0.45 0.03 0.02 0.01

3.00 0.07 0.20 0.37 0.03 0.02 0.01

5.00 0.07 0.16 0.30 0.03 0.02 0.01

λ̂1 0.12 0.33 0.53 0.12 0.33 0.51

λ̂2 0.15 0.35 0.51 0.02 0.01 0.00

λ̂3 0.16 0.30 0.46 0.04 0.22 0.17

The number of replications used is 10,000

Although none of the considered tests present uniformly better results for the con-
sidered set of alternative distributions, the main conclusion that can be drawn from
this study is that the tests based on ĥH0 present in fact a good overall performance
for a wide set of alternative distributions. Regarding the two tests based on ĥH0 , our
preference goes to the test based on the test statistic In(ĥH0). This test is in general
more powerful than, or at least as powerful as, the tests based on ĥCT, and also proves
to be quite competitive against the Anderson–Darling test, although slightly less per-
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forming than the Shapiro–Wilk test for normality. However, no matter the considered
null hypothesis model, for some of the considered alternatives, such as the light-tailed
alternatives uniform and beta, the test based on Jn(ĥH0) shows to be more powerful
than that based on In(ĥH0). Finally, note that the new bandwidth selectors λ̂ j ĥH0 or
λ̂ j ĥCT, for j = 1, 2, 3, which are much more time-consuming to compute than ĥH0

or ĥCT, do not reveal in general any special advantage over these simple to compute
bandwidths, the exception being the Tukey(5) alternative distribution for the normal
and the logistic models. As some simulation experiments reveal (not presented here),
the extra source of variation they introduce into the null hypothesis distribution of
the associated test statistics, especially those based on Jn , may explain the observed
results.

5 Conclusions

The choice of the bandwidth is crucial to the performance of the Parzen–Rosenblatt
estimator and several automatic bandwidth selectors considered in the literature satisfy
relative consistency condition (11). This is not the case of the null hypothesis-based
bandwidth selector ĥH0 that only satisfies this condition when the null hypothesis
is true. However, if we want to use the Bickel–Rosenblatt test statistics to test the
hypothesis that the underlying density function f is a member of a location-scale
family of probability density functions, the finite sample results presented in this
paper support the idea that the tests based on ĥH0 present a good overall performance
for a wide set of alternative distributions. These tests are in general more powerful
than, or at least as powerful as, those based on data-dependent smoothing parameters
ĥ that satisfy the relative consistency condition irrespective of which of the null or
the alternative hypothesis is true, as well as those inspired on existing data-driven
bandwidths for smooth tests for the k-sample problem which can be computed by
resampling.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-021-00799-3.
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A Proofs

A.1 Proof of Theorem 1

Consider the expansion

(nĥ)−1 In(ĥ) =
∫

{ fĥ(x) − Kĥ ∗ f (x)}2dx

+
∫

{Kĥ ∗ f (x) − Kĥ ∗ g(x; θ̂1, θ̂2)}2dx

+ 2
∫

{ fĥ(x) − Kĥ ∗ f (x)}{Kĥ ∗ f (x) − Kĥ ∗ g(x; θ̂1, θ̂2)}dx
=: In,1 + In,2 + 2In,3. (21)

In order to establish the asymptotic behaviour of each one of the previous terms, we
use the approach of Tenreiro (2001), which is based on the Taylor expansion

Kh(u) := W (u, h) =
ω−1∑

�=0

(h − 1)�K ∂(�)(u) + (h − 1)ωK ∂(ω)(u, h),

where u ∈ R, h > 0,

K ∂(�)(u) := 1

�!
∂�W

∂h�
(u, 1), � = 0, . . . , ω − 1,

and

K ∂(ω)(u, h) := 1

(ω − 1)!
∫ 1

0
(1 − t)ω−1 ∂ωW

∂hω
(u, 1 + t(h − 1))dt .

Note that, from assumption (K) the functions K ∂(�) are bounded and integrable on R,
for � = 1, . . . , ω − 1, and there exists η ∈ ]0, 1[ such that the function K ∂(ω),η(u) :=
sup|h−1|≤η |K ∂(ω)(u, h)|, is bounded and integrable on R. From the previous Taylor

expansion we deduce the following expansions for fĥ , Kĥ ∗ f and Kĥ ∗ g(·; θ̂1, θ̂2),
that play a crucial role in what follows. For x ∈ R and denoting by h the deterministic
bandwidth h( f ) given in assumption (B), we have

fĥ(x) =
ω−1∑

�=0

ξ�
n
1

n

n∑

i=1

K ∂(�)
h (x − Xi ) + ξω

n
1

n

n∑

i=1

K ∂(ω)
h (x − Xi , ĥ), (22)

Kĥ ∗ f (x) =
ω−1∑

�=0

ξ�
n K

∂(�)
h ∗ f (x) + ξω

n K ∂(ω)
h (·, ĥ)∗ f (x), (23)
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and

Kĥ ∗ g(x; θ̂1, θ̂2) =
ω−1∑

�=0

ξ�
n K

∂(�)
h ∗g(x; θ̂1, θ̂2) + ξω

n K ∂(ω)
h (·, ĥ)∗g(x; θ̂1, θ̂2), (24)

where K ∂(�)
h (u) = K ∂(�)

h (u/h)/h and K ∂(ω)
h (u, ĥ) = K ∂(ω)

h (u/h, ĥ/h)/h. Moreover,

for |ĥ/h − 1| ≤ η we have |K ∂(ω)
h (u, ĥ)| ≤ K ∂(ω),η

h (u), for u ∈ R.
Each one of the terms in (21) is studied in the following propositions. We denote

by h the deterministic sequence h( f ) given in assumption (B).

Proposition 1 We have

In,1 = (1 − ξn)
1

nh
R(K ) + 1

nh1/2
Un(1 + op(1))

+ Op

(
n−1h−1/2ξn + (nh)−1ξ2n + ξω

n

)
,

where Un given by (25) is asymptotically normal with zero mean and variance 2R(K∗
K )R( f ).

Proof Using equalities (22) and (23), and assumptions (D), (K) and (B), from Propo-
sition 2 of Tenreiro (2001, p. 290) we have

In,1 =
∫

{ fh(x) − Kh ∗ f (x)}2dxdx − ξn
1

nh
R(K )

+ Op

(
n−1h−1/2ξn + (nh)−1ξ2n + ξω

n

)
.

Moreover, using degenerated U-statistics techniques (see Hall 1984; Tenreiro 1997)
we have

∫
{ fh(x) − Kh ∗ f (x)}2dx = 1

nh
R(K ) + 1

nh1/2
Un(1 + op(1)),

with

Un = 2

n

∑

1≤i< j≤n

qn(Xi , X j ), (25)

qn(u, v) = h1/2
∫ {

Kh(x − u) − Kh∗ f (x)
}{

Kh(x − v) − Kh∗ f (x)
}
dx,

andUn is asymptotically normalwith zeromean andvariance equal to 2R(K∗K )R( f ).
�

Proposition 2 We have

In,2 = R
(
f − g(·; θ1( f ), θ2( f ))

) + op(1).

123



On automatic kernel density estimate-based tests for… 739

Moreover, under the null hypothesis we have

In,2 = Op
(
n−1).

Proof From (23) and (24) we have

In,2 =
ω−1∑

�,�′=0

ξ�+�′
n

∫
K ∂(�)
h ∗ δ̂n(x)K

∂(�′)
h ∗ δ̂n(x)dx

+ 2
ω−1∑

�=0

ξω+�
n

∫
K ∂(�)
h ∗ δ̂n(x)K

∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

+ ξ2ωn

∫ (
K ∂(ω)
h (·, ĥ)∗ δ̂n(x)

)2dx,

where δ̂n(x) = f (x) − g(x; θ̂1, θ̂2). Moreover,

∣∣∣∣
∫

K ∂(�)
h ∗ δ̂n(x)K

∂(�′)
h ∗ δ̂n(x)dx

∣∣∣∣ ≤ ||K ∂(�)||1||K ∂(�′)||1||δ̂n||22,

and for all ε ∈ ]0, η[ and for |ĥ/h − 1| ≤ ε we have

∣∣∣∣
∫

K ∂(�)
h ∗ δ̂n(x)K

∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

∣∣∣∣ ≤ ||K ∂(�)||1||K ∂(ω),η||1||δ̂n||22

and

∣∣∣∣
∫ (

K ∂(ω)
h (·, ĥ)∗ δ̂n(x)

)2dx
∣∣∣∣ ≤ ||K ∂(ω),η||21||δ̂n||22.

Therefore, from assumption (B) we can write

In,2 = R
(
Kh ∗ δ̂n

) + Op
(||δ̂n||22ξn

)
. (26)

On the other hand, from assumption (F) the function (θ1, θ2) 
→ g(x; θ1, θ2) has
continuousfirst-order partial derivatives, and the functions (θ1, θ2) 
→ ∣∣∣∣ ∂g

∂θk
(·; θ1, θ2)

∣∣∣∣
2

are locally bounded on R×]0,+∞[ for k = 1, 2. Therefore, for each x ∈ R, a Taylor
expansion of g(x; θ̂1, θ̂2) at the point (θ1( f ), θ2( f )) leads to

δ̂n(x) = f (x) − g(x; θ̂1, θ̂2) = f (x) − g(x; θ1( f ), θ2( f )) + un(x), (27)

where
||un||2 = Op

(|θ̂1 − θ1( f )| + |θ̂2 − θ2( f )|
)
. (28)
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The first part of the stated result follows now from (26) and the following conver-
gence that can be established from standard arguments as h tends to zero, when n
tends to infinity:

R
(
Kh∗( f − g(·; θ1( f ), θ2( f )))

) = R
(
f − g(·; θ1( f ), θ2( f ))

) + o(1).

Finally, taking into account that δ̂n = un under the null hypothesis, where ||un||2 =
Op(n−1/2) from assumption (P), we deduce that In,2 = Op(n−1) under the null
hypothesis. �

To establish the order of convergence of In,3 we need the following lemma. Note
that we are always assuming that ĥ satisfies assumption (B).

Lemma 1 Let ϕ be a real-valued function defined on R×]0,+∞[, and assume that
there exists η ∈ ]0, 1[ such that the function ϕη(u) = sup|h−1|≤η |ϕ(u, h)| is bounded
and integrable.

(a) If γn : R 
→ R is such ||γn||2 = O(1) then

1

n

n∑

i=1

∫ {
ϕh(x − Xi ) − ϕh ∗ f (x)

}
γn(x)dx = Op

(
n−1/2).

(b) If γn : R 
→ R is such ||γn||r = O(1), for some r ∈ [1,∞], then

1

n

n∑

i=1

∫
|ϕh(x − Xi , ĥ) − ϕh(·, ĥ) ∗ f (x)|γn(x)dx = Op(1).

(c) If γ̃n = γ̃n(·; X1, . . . , Xn) : R 
→ R is such that ||γ̃n||r = Op(1), for some
r ∈ [1,∞], then

1

n

n∑

i=1

∫
|ϕh(x − Xi , ĥ) − ϕh(·, ĥ) ∗ f (x)|γ̃n(x)dx = Op

(
h−1/r ).

Proof Write Sn,a , Sn,b and Sn,c for the sums considered in each one of the parts a),
b) and c). The order of convergence stated in part a) follows from the inequalities

E(S2n,a) ≤ 1

n
E

( ∫
ϕh(x − Xi )γn(x)dx

)2

≤ 1

n

∫∫
ϕ(u)2γn(z + uh)2 f (z)dudz

≤ 1

n
|| f ||∞||ϕ||22||γn||22.
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In order to establish parts b) and c), it is enough to note that for all ε ∈ ]0, η[ and
for |ĥ/h − 1| ≤ ε we have

|Sn,b| ≤ 1

n

n∑

i=1

{ ∫
ϕε
h(x − Xi )|γn|(x)dx +

∫
ϕε
h ∗ f (x)|γn|(x)dx

}
=: Sε

n,b,

and

|Sn,c| ≤ 1

n

n∑

i=1

{ ∫
ϕε
h(x − Xi )|γ̃n|(x)dx +

∫
ϕε
h ∗ f (x)|γ̃n|(x)dx

}
=: Sε

n,c,

where

E(Sε
n,b) ≤ 2

∫
ϕε
h ∗ f (x)|γn|(x)dx ≤ 2|| f ||∞||ϕε ||s ||γn||r ,

and

Sε
n,c ≤ 2h−1/r ||γ̃n||r ||ϕε ||s,

with 1/r + 1/s = 1. Therefore, Sε
n,b = Op(1) and Sε

n,c = Op
(
h−1/r

)
which implies

the stated results as ĥ/h − 1 = op(1). �
Proposition 3 We have

In,3 = Op
(
(nh)−1/2).

Moreover, under the null hypothesis we have

In,3 = Op
(
n−1h−1/r + n−1/2ξω

n

)
,

where r ∈ ]2,∞] is given in assumption (F).

Proof The first statement follows from Propositions 1 and 2 since |In,3| ≤ I 1/2n,1 I
1/2
n,2 .

On the other hand, from (22), (23) and (24) we have

In,3 =
ω−1∑

�,�′=0

ξ�+�′
n

1

n

n∑

i=1

∫ {
K ∂(�)
h (x − Xi ) − K ∂(�)

h ∗ f (x)
}
K ∂(�′)
h ∗ δ̂n(x)dx

+
ω−1∑

�=0

ξω+�
n

1

n

n∑

i=1

{
K ∂(�)
h (x − Xi ) − K ∂(�)

h ∗ f (x)
}
K ∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

+
ω−1∑

�=0

ξω+�
n

1

n

n∑

i=1

∫ {
K ∂(ω)
h (x−Xi , ĥ)−K ∂(ω)

h (·, ĥ)∗ f (x)
}
K ∂(�)
h ∗ δ̂n(x)dx
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+ ξ2ωn
1

n

n∑

i=1

∫ {
K ∂(ω)
h (x−Xi , ĥ)−K ∂(ω)

h (·, ĥ)∗ f (x)
}
K ∂(ω)
h (·, ĥ)∗ δ̂n(x)dx

= I 1n,3 + I 2n,3 + I 3n,3 + I 4n,3.

where δ̂n(x) = f (x) − g(x; θ̂1, θ̂2). From assumption (F), the function (θ1, θ2) 
→
g(x; θ1, θ2) has continuous second-order partial derivatives, and for some r ∈ ]2,∞]
the functions (θ1, θ2) 
→ ∣∣∣∣ ∂2g

∂θk∂θl
(·; θ1, θ2)

∣∣∣∣
r are locally bounded onR×]0,+∞[, for

k, l = 1, 2. Therefore, under the null hypothesis a Taylor expansion of g(x; θ̂1, θ̂2) at
the point (θ1( f ), θ2( f )) leads to

δ̂n(x) = −
∑

k

(θ̂k − θk( f ))
∂g

∂θk
(x; θ1( f ), θ2( f )) + vn(x), (29)

for x ∈ R, where from assumption (P)

||vn||r = Op
(
(θ̂1 − θ1( f ))

2 + (θ̂2 − θ2( f ))
2) = Op

(
n−1).

Therefore, from Lemma 1 we get I 1n,3 = Op
(
n−1h−1/r

)
, I 2n,3 = Op

(
(n−1/2 +

n−1h−1/r )ξω
n

)
, I 3n,3 = Op

(
(n−1/2 + n−1h−1/r )ξω

n

)
and I 4n,3 = Op

(
(n−1/2 +

n−1h−1/r )ξ2ωn
)
, which completes the proof. �

We can now conclude the proof of Theorem 1. As ξn = op(1) and h → 0, as
n → ∞, from Proposition 1 we have

In,1 = Op
(
(nh)−1 + ξω

n

)
.

Therefore, from expansion (21) and Propositions 2 and 3, we get

(nh)−1(In(ĥ) − R(K )
) = R

(
f − g(·; θ1( f ), θ2( f ))

) + Op
(
(nh)−1/2 + ξω

n

)
,

which completes the proof of part b) as nh → ∞, when n → ∞. Moreover, under
the null hypothesis from Propositions 1, 2 and 3 we also have

h−1/2(In(ĥ) − R(K )
) = Un + Op

(
h−1/2ξ2n + h1/2−1/r + nh1/2ξω

n

)
+ op(1).

Taking into account hypothesis (13), this completes the proof of parta) as r > 2 andUn

are asymptotically normalwith zeromean and variance equal to ν2f = 2R(K∗K )R( f ).
�

A.2 Proof of Theorem 2

Let us consider the expansion

(nĥ)−1 Jn(ĥ) =
∫

{ fĥ(x) − f (x)}2dx
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+
∫

{ f (x) − g(x; θ̂1, θ̂2)}2dx

+ 2
∫

{ fĥ(x) − f (x)}{ f (x) − g(x; θ̂1, θ̂2)}dx
=: Jn,1 + Jn,2 + 2Jn,3. (30)

Each one of these terms will be studied in the following propositions. As before, we
denote by h the deterministic sequence h( f )which existence is assured by assumption
(B).

Proposition 4 We have

Jn,1 = 1

nh
R(K ) + R(Kh ∗ f − f ) + 1

nh1/2
Un(1 + op(1)) + 1√

nh−2
Vn

+Op

((
(nh)−1 + h4

)
ξn + ξω

n

)
,

where Un is defined in Proposition 1 and Vn given by (31) is asymptotically normal
with zero mean and variance μ2(K )2Var f ( f ′′(X1)).

Proof Taking into account equality (22) and assumptions (D), (D’), (K), (K’) and (B),
from Lemma 1 of Tenreiro (2001, p. 286) we have

Jn,1 =
∫

{ fh(x) − f (x)}2dx + Op

((
(nh)−1 + h4

)
ξn + ξω

n

)
.

Using degenerated U-statistics techniques (see Hall 1984) we know that

∫
{ fh(x) − f (x)}2dxdx = 1

nh
R(K ) + R(Kh ∗ f − f )

+ 1

nh1/2
Un(1 + op(1)) + 1√

nh−2
Vn,

with Un given by (25) and

Vn := 2√
n

n∑

i=1

∫
{Kh(x − Xi ) − Kh ∗ f (x)}h−2{Kh ∗ f (x) − f (x)}dx, (31)

with

h−2{Kh ∗ f (x) − f (x)} =
∫∫ 1

0
(1 − t)u2K (u) f ′′(x − tuh)dudt, (32)

is asymptotically normal with zeromean and variance equal toμ2(K )2Var f ( f ′′(X1)).
�

Proposition 5 We have

Jn,2 = R
(
f − g(·; θ1( f ), θ2( f ))

) + op(1).
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Moreover, under the null hypothesis we have

Jn,2 = Op
(
n−1).

Proof It follows straightforwardly from (27) and (28). �
Proposition 6 We have

Jn,3 = Op
(
(nh)−1/2).

Moreover, under the null hypothesis we have

Jn,3 = − 1√
nh−2

(
Wn + op(1)

) + Op
(
n−1h−1/r + n−1/2ξω

n

)
,

where Wn is given by (36).

Proof The first statement follows fromPropositions 4 and 5 because |Jn,3| ≤ J 1/2n,1 J 1/2n,2

and R(Kh ∗ f − f ) = O(h4). Write

Jn,3 =
∫

{ fĥ(x) − Kĥ ∗ f (x)}δ̂n(x)dx +
∫

{Kĥ ∗ f (x) − f (x)}δ̂n(x)dx
=: J 1n,3 + J 2n,3, (33)

where δ̂n(x) = f (x) − g(x; θ̂1, θ̂2). From (22) and (23) we have

J 1n,3 =
ω−1∑

�=0

ξ�
n
1

n

n∑

i=1

∫ {
K ∂(�)
h (x − Xi ) − K ∂(�)

h ∗ f (x)
}
δ̂n(x)dx

+ ξω
n
1

n

n∑

i=1

∫ {
K ∂(ω)
h (x − Xi , ĥ) − K ∂(ω)

h (·, ĥ)∗ f (x)
}
δ̂n(x)dx,

where from Lemma 1 we get

J 1n,3 = Op
(
n−1h−1/r + n−1/2ξω

n

)
. (34)

On the other hand, from (23) we have

J 2n,3 =
∫

{Kh ∗ f (x) − f (x)}δ̂n(x)dx

+
ω−1∑

�=1

ξ�
n

∫
K ∂(�)
h ∗ f (x)δ̂n(x)dx + ξω

n

∫
K ∂(ω)
h (·, ĥ)∗ f (x)δ̂n(x)dx, (35)
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where for all ε ∈ ]0, η[ and for |ĥ/h − 1| ≤ ε we have

∣∣∣∣
∫

K ∂(ω)
h (·, ĥ)∗ f (x)δ̂n(x)dx

∣∣∣∣ ≤ ||K ∂(ω),η||1|| f ||2||δ̂n||2.

Moreover, as
∫
K ∂(�)(u)du = ∫

uK ∂(�)(u)du = 0 for � ≥ 1, a Taylor expansion of
second order leads to

K ∂(�)
h ∗ f (x) = h2

∫∫ 1

0
(1 − t)u2K ∂(�)(u) f ′′(x − tuh)dtdu.

Therefore, for � ≥ 1 we have

∣∣∣∣
∫

K ∂(�)
h ∗ f (x)δ̂n(x)dx

∣∣∣∣ ≤ h2
∫

u2|K ∂(�)(u)|du|| f ′′||2||δ̂n||2.

Taking into account (27) and the fact that ||δ̂n||2 = Op(n−1/2) under the null hypoth-
esis, from (35) we get

J 2n,3 =
∫

{Kh ∗ f (x) − f (x)}δ̂n(x)dx + Op
(
n−1/2(h2ξn + ξω

n )
)
.

Finally, from (29) and (32), and assumptions (E) and (G ′), we have

∫
{Kh ∗ f (x) − f (x)}δ̂n(x)dx

= h2
∫∫∫ 1

0
(1 − t)u2K (u) f ′′(x − tuh)δ̂n(x)dtdudx

= − 1√
nh−2

(
Wn + op(1)

) + Op
(
n−1h2

)
,

where

Wn = 1√
n

n∑

i=1

∑

k

ψk(Xi ; θ1( f ), θ2( f ))Dk( f ), (36)

with

Dk( f ) = 1

2
μ2(K )

∫
f̄ ′′(x) ∂g

∂θk
(x; θ1( f )θ2( f ))dx,

as

∫∫∫ 1

0
(1 − t)u2K (u) f ′′(x − tuh)

∂g

∂θk
(x; θ1( f )θ2( f ))dtdudx = Dk( f ) + o(1),
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and

∣∣∣∣
∫∫∫ 1

0
(1 − t)u2K (u) f ′′(x − tuh)vn(x)dtdudx

∣∣∣∣ ≤ μ2(K )|| f ′′||s ||vn||r ,

with 1/r + 1/s = 1. Thus

J 2n,3 = − 1√
nh−2

(
Wn + op(1)

) + Op
(
n−1h2 + n−1/2(h2ξn + ξω

n )
)

(37)

The proposition follows from (33), (34) and (37). �
We can now conclude the proof of Theorem 2. From Proposition 4 and assumption

(B’) we have

Jn,1 = Op
(
(nh)−1 + ξω

n

)
.

Therefore, from expansion (30) and Propositions 5 and 6, we get

(nh)−1(Jn(ĥ) − R(K ) − cn( f ; K )
)

= R
(
f − g(·; θ1( f ), θ2( f )

) + Op
(
(nh)−1/2 + ξω

n

)
,

which completes the proof of part b). Moreover, from Propositions 4, 5 and 6, under
the null hypothesis we also have

h−1/2(Jn(ĥ) − R(K ) − cn( f ; K )
) = Un + (nh5)1/2(Vn − 2Wn)

+ Op

(
h−1/2ξn + h1/2−1/r + nh1/2ξω

n

)
+ op(1).

Taking into account hypothesis (14), this completes the proof of part a) as r > 2
and, from the central limit theorem for degenerate U-statistics with variable kernels
established in Tenreiro (1997, Theorem 1, p. 190), the sumUn+(nh5)1/2(Vn−2Wn) is
asymptotically normal with zero mean nd variance equal to σ 2

f = 2R(K ∗ K )R( f )+
λ f μ2(K )2Var f (ϕ f (X)). �

A.3 Proof of Theorem 3

We consider only the case of the test based on the critical region C (Jn(ĥ), α) =
{Jn(ĥ), α) > q(Jn(ĥ), α)} given in (15), where q(Jn(ĥ), α) is the quantile of order
1− α of the null distribution of Jn(ĥ), but similar arguments can be used to establish
the consistency of the test based on C (In(ĥ), α). From Theorem 2.a) and for f ∈ F0
we have υ−1

f h( f )−1/2
(
q(Jn(ĥ), α) − R(K ) − cn( f ; K )

) → �−1(1− α). Therefore,

q(Jn(ĥ), α) → R(K ) + c( f0; K ), (38)
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because h( f ) tends to zero, as n → ∞, and cn( f ; K ) = cn( f0; K ) = c( f0; K )(1 +
o(1)), with c( f ; K ) = 1

4λ f μ2(K )2R( f ′′)(1 + o(1)) (see Wand and Jones 1995,
pp. 19–23, and Bosq and Lecoutre 1987, pp. 80–81). On the other hand, fromTheorem

2.b) and for f ∈ F\F0 we have (nh( f ))−1
(
Jn(ĥ)− R(K )−cn( f ; K )

) p−→ R
(
f −

g(·; θ1( f ), θ2( f ))
) �= 0, which enables us to conclude that

Jn(ĥ)
p−→ +∞, for all f ∈ F\F0, (39)

as nh( f ) → ∞, and cn( f ; K ) = c( f ; K )(1 + o(1)). The consistency of the test
based on C (Jn(ĥ), α) follows now from (38) and (39). �
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