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Abstract
In one-sided testing, Bayesians and frequentists differ on whether or not there is dis-
crepancy between the inference based on the posterior model probability and that
based on the p value. We add some arguments to this debate analyzing the discrep-
ancy for moderate and large sample sizes. For small and moderate samples sizes, the
discrepancy is measured by the probability of disagreement. Examples of the discrep-
ancy on some basic sampling models indicate the somewhat unexpected result that the
probability of disagreement is larger when sampling from models in the alternative
hypothesis that are not located at the boundary of the hypotheses. For large sample
sizes, we prove that the Bayesian one-sided testing is, under mild conditions, con-
sistent, a property that is not shared by the frequentist procedure. Further, the rate of
convergence is O(enA), where A is a constant that depends on the model from which
we are sampling. Consistency is also proved for an extension to multiple hypotheses.

Keywords Bayesian one-sided test · Consistency · Decision rule · Intrinsic priors · p
Values · Reference priors

Mathematics Subject Classification 62F15 · 62F03

1 Introduction

While it iswidely accepted that for two-sided testing the p valueoverstates the evidence
against the null (Edwards et al. 1963; Dickey 1977; Berger and Sellke 1987), it has
been argued that for one-sided testing the Bayesian and frequentist approaches agree
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in producing a data-based evaluation of the evidence on the null hypothesis (Casella
and Berger 1987).

The main argument for the agreement was that the infimum of the posterior prob-
ability of the null as the prior ranges over a reasonable class of prior distributions is
equal to or smaller than the p value. This yields the Casella and Berger’s assertion
Thus, the p value may be on the boundary or within the range of Bayesian evidence
measures. Micheas and Dey (2003) provide a similar argument for location models.
However, in Berger andMortera (1999) it is questionedwhether the infimum is the best
evidential summary to provide by the Bayesian inference. These authors analyzed the
one-sided testing problem using empirical Bayes factors for exponential and normal
models and concluded that our most important conclusion is that using the default
tests provides less extreme and arguably better answers in one-sided testing than the
p value (p. 553). Morris (1987) in his discussion of the paper by Casella and Berger
(1987) argued that the lower bound is a misleadingmeasure of the evidence of the null.
He also asserted that typical prior beliefs should concentrate closer to the dividing line
between the hypotheses.

On the other hand, the BIC approximation to the Bayes factor avoids the use of
priors, but it does not apply to one-sided testing. The reason is that the dimension of
the null parameter space and the whole space is the same, and hence, BIC does not
correct the likelihood ratio statistic. Some modifications of BIC that can apply were
given by Dudley and Haughton (1997), Kass and Vaidyanathan (1992) and Mulder
and Raftery (2019).

In this paper,we compare formoderate and large sample sizes theBayesian evidence
based on the posterior model probability, and the frequentist based on the p value. The
Bayesian test uses objective reference priors whenever they are proper or the intrinsic
priors if the reference priors are improper. The intrinsic priors were introduced by
Berger and Pericchi (1996) and further studied by Moreno (1997) and Moreno et al.
(1998), and they are priors that concentrate probability around the boundary of the
hypotheses, as it is required by Morris. Although intrinsic priors do not necessarily
exist for nonnested models, there are some exceptions. For one-sided testing, they are
constructed using an auxiliary model (Moreno 2005); for variable selection in regres-
sion, or clustering, they are constructed using an encompassing model that converts
the nonnested model selection problem in a nested one (Casella et al. 2009, 2014;
Moreno et al. 2010, 2015; Wang and Maruyama 2016, among others).

The comparison cannot be based on the (Type I, Type II) error vector, the standard
tool for evaluating a test. The reason is that the posterior probability of the null model
is typically an increasing function of the p value (Girón et al. 2006), and thus, the
Bayesian and frequentist (Type I, Type II) vectors are not comparable as no one
dominates the other. Then, we propose to base the comparison on the probability that
the Bayesian and frequentist decision disagree. This probability gives us a measure
of the strength of the disagreement. Illustrations of this analysis on common models
indicate that the stronger disagreement appears when sampling from models located
in the alternative hypothesis, which are not at the boundary of the hypotheses.

The comparison for large sample sizes is based on an asymptotic analysis. As far as
we know, the asymptotic of the one-sided test is not yet known. Maybe, it is due to the
fact that the frequentist test is by construction inconsistent under the null, although for
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a wide class of sampling models it is consistent under the alternative. Our contribution
to the asymptotic of the Bayesian one-sided test is a general proof of their consistency.
The proof also provides the rate of consistency.

The rest of the paper is organized as follows. To facilitate the reading of the paper,we
bring in Sect. 2 the intrinsic priors for one-sided testing in the absence and presence
of nuisance parameters. In Sect. 3, the probability of disagreement is defined and
illustrated on some basic families of sampling models. Section 4 contains the proof
of the posterior model consistency of the one-sided test, and the multiple hypotheses
H0 : θ = θ0, H1 : θ ≤ θ0, H2 : θ ≥ θ0. Concluding remarks are given in Sect. 5.

2 Priors for one-sided testing

Let X be a random variable with distribution f (x |θ), where θ is a real parameter.
The one-sided testing problem consists of the null hypothesis H1 : θ ≤ θ0 and the
alternative H2 : θ ≥ θ0, where θ0 is a fixed real number. Families of distributions for
which this problem is of interest include location and scale families.

In the absence of prior information on θ , the reference prior πN (θ) is typically
used, and hence, the one-sided Bayesian test is the model selection problem between
the nonnested models

M1 :
{
f (x |θ),

πN (θ)∫ θ0
−∞ πN (θ)dθ

1(−∞,θ0)(θ)

}
,

and

M2 :
{
f (x |θ),

πN (θ)∫ ∞
θ0

πN (θ)dθ
1(θ0,∞)(θ)

}
,

where 1A(θ) is the indicator function of the set A.
Let P(Mi ) denotes the prior probability of model Mi , i = 1, 2. Then, for a given

sample xn = (x1, . . . , xn) of X the posterior probability of M1 is given by

Pr(M1|xn) =
(
1 + BN

21(xn)
P(M2)

P(M1)

)−1

,

where BN
21(xn) is the Bayes factor

BN
21(xn) =

∫ θ0
−∞ πN (θ)dθ∫ ∞
θ0

πN (θ)dθ

∫ ∞
θ0

f (xn|θ)πN (θ)dθ∫ θ0
−∞ f (xn|θ)πN (θ)dθ

.

This posterior probability measures the posterior uncertainty on model M1. If model
M1 and M2 are a priori equally likely, that is, P(M1) = P(M2), it seems reasonable
to choose model M1 if Pr(M1|xn) > 1/2, and M2 otherwise.
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When the prior πN (θ) is improper, the Bayes factor BN
21(xn) is not well defined.

Fortunately, for nested models the intrinsic methodology solves this difficulty replac-
ing the reference prior for the parameter of the complex model with the intrinsic prior.
It is well known that the resulting Bayes factor enjoys excellent sampling properties
(Casella et al. 2009; Moreno and Girón 2005; Moreno et al. 2015).

However, when the models are nonnested, as it is the case here, the intrinsic priors
are not necessarily unique. In fact, we may consider either the pair of priors

I P1 = {πN (θ)1(−∞,θ0)(θ), π I
2 (θ)1(θ0,∞)(θ)}

or

I P2 = {π I
1 (θ)1(−∞,θ0)(θ), πN (θ)1(θ0,∞)(θ)},

whereπ I
1 (θ) = πN (θ)Ey|θ BN

21(y) andπ I
2 (θ) = πN (θ)Ey|θ BN

12(y) are intrinsic priors
for the random training sample y.

We note that if the expectations Ey|θ BN
12(y) and Ey|θ BN

21(y) do exist, the Bayes
factors for I P1 and I P2 are well defined although they might differ. Further, these
expectations do not necessarily exist. Let us illustrate these assertions on exponential
models.

Example 1 Let X be a random variable with distribution f (x |θ) = 1

θ
exp(−x/θ),

θ > 0, x > 0, and the improper Jeffreys’ prior π J (θ) = k/θ , where k is an arbitrary
positive constant. Suppose we are interested in testing H1 : 0 < θ ≤ 1 versus
H2 : 1 ≤ θ < ∞. The default Bayesian models to be compared are

M1 :
{
f (x |θ), π J (θ) = k1

θ
1(0,1)(θ)

}
,

and

M2 :
{
f (x |θ), π J (θ) = k2

θ
1(1,∞)(θ)

}
,

where k1 and k2 are arbitrary positive constant. We note that the intrinsic prior π I
2 (θ)

does not exist as

Ey|θ BJ
12(y) = k1

k2

1

θ

∫ ∞

0

exp{−y(1 + 1/θ)}
1 − exp{−y} dy = ∞.

On the other hand, π I
1 (θ) exists and is given by

π I
1 (θ) = k

1 − θ
1(0,1)(θ),

but the Bayes factor BI P2
12 (xn) = ∞ for any sample xn . Thus, the originalmethodology

for producing intrinsic priors does not necessarily work for one-sided testing.
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An alternative proposal for defining intrinsic priors for one-sided testing was given
inMoreno (2005), and it was formulated in two steps. In a first one, the Bayesianmodel
selection problem between the auxiliary models M0 : f (x |θ0) and M3 : { f (x |θ),

πN (θ), θ ∈ R} is considered. The conditional intrinsic prior π I (θ |θ0) for a training
sample y of minimal size is given by

π I (θ |θ0) = πN (θ)Ey|θ
f (y|θ0)∫

R
f (y|θ)πN (θ)dθ

, θ ∈ R.

This is a proper prior on the real line R. The second step is to take the restriction of
π I (θ |θ0) to the parameter spaces �1 = {θ : θ ≤ θ0} and �2 = {θ : θ ≥ θ0}, and so
we have the proper priors π I

1 (θ |θ0) and π I
2 (θ |θ0) for one-sided testing.

For a sample xn from f (x |θ), the Bayes factor for comparing model M1 :{
f (x |θ), π I

1 (θ |θ0)
}
and M2 : { f (x |θ), π I

2 (θ |θ0)} is the well-defined Bayes factor
for the intrinsic priors

BI
21(xn) =

∫ ∞
θ0

f (xn|θ)π I
2 (θ |θ0)dθ∫ θ0

−∞ f (xn|θ)π I
1 (θ |θ0)dθ

. (1)

The fact that the conditional intrinsic priorsπ I
1 (θ |θ0) andπ I

2 (θ |θ0) are centered around
θ0 is inherited from π I (θ |θ0).

2.1 The presence of nuisance parameters

In the presence of nuisance parameters, the above procedure to produce intrinsic priors
is adapted as follows. Let f (x |θ, ξ) be the sampling family, where we want to test
H1 : θ ≤ θ0 versus H2 : θ ≥ θ0, ξ ∈ Ξ being a nuisance parameter. Let πN (θ, ξ) be
the starting default improper prior for the parameters.

The auxiliary models are now M0 : f (x |θ0, ξ0), where ξ0 is an arbitrary but fixed
point, and M3 : { f (x |θ, ξ), πN (θ, ξ)}. Assuming that πN (θ, ξ) = πN (θ)πN (ξ), the
conditional intrinsic prior for θ, ξ for the model comparison between M0 and M3 is
given by

π I (θ, ξ |θ0, ξ0) = πN (θ)πN (ξ)Ey|θ,ξ

f (y|θ0, ξ0)∫
Ξ

πN (ξ)
∫ ∞
−∞ f (y|θ, ξ)πN (θ)dθdξ

, (2)

where y is the random training sample of minimal size. This conditional intrinsic prior
is by construction a proper prior. Let us denote π I

1 (θ, ξ |θ0, ξ0) and π I
2 (θ, ξ |θ0, ξ0) the

restriction of π I (θ, ξ |θ0, ξ0) to H1 and H2, respectively. Then, for a sample xn , the
Bayes factor for the one-sided test is obtained as

BI
21(xn) =

∫
Ξ

πN (ξ0)dξ0
∫
Ξ
dξ

∫ ∞
θ0

f (xn|θ, ξ)π I
2 (θ, ξ |θ0, ξ0)dθ∫

Ξ
πN (ξ0)dξ0

∫
Ξ
dξ

∫ θ0
−∞ f (xn|θ, ξ)π I

1 (θ, ξ |θ0, ξ0)dθ
. (3)
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We note that in this expression the arbitrary constant appearing in πN (ξ0) cancels out
in the ratio.

2.2 Multiple test

In many applications, the auxiliary model M0 is also of interest. For instance, if θ

represents the effectiveness of a new treatmentwecouldbe interested in testingwhether
θ is equal to θ0, greater than θ0 or smaller than θ0, where θ0 is the effectiveness of the
old treatment. In this case, we have the multiple comparison of the models

M0 : f (x |θ0), M1 : { f (x |θ), π I
1 (θ |θ0)}, M2 : { f (x |θ), π I

2 (θ |θ0)}.

For the model prior {P(Mi ) , i = 0, 1, 2} the posterior probabilities of the models are
given by

Pr(Mi |xn) = mi (xn)P(Mi )∑2
j=0 m j (xn)P(Mj )

, i = 0, 1, 2 , (4)

where m0(xn) = f (xn|θ0),

m1(xn) =
∫ θ0

−∞
f (xn|θ)π I

1 (θ |θ0)dθ,

and

m2(xn) =
∫ ∞

θ0

f (xn|θ)π I
2 (θ |θ0)dθ.

Other extensions to multiple hypotheses with equality and inequality constraints on
multidimensional parameters have been studied in Mulder (2014). He utilizes an
adjusted Fractional Bayes Factor for priors centered on the boundary of the constrained
parameter space.

3 Comparing Bayesian and frequentist one-sided test

The discrepancy between theNeymanfixedType I error probability, the Fisher p value,
and the Jeffreys posterior probability methodologies has been deeply discussed in the
literature. Keys papers are Efron and Gous (2001); Berger (2003). In Berger (2003), it
is asserted that For many types of testing, Fisher, Jeffreys and Neyman disagreed as to
the basic numbers to be reported and could report considerably different conclusions
in actual practice. Here we provide a different measure of the discrepancy between
the conclusions from the Fisher p value and the Bayesian analysis. As we already
mentioned, the Bayesian analysis uses the standard default priors whenever they are
proper or the intrinsic priors when the default priors are improper.
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The frequentist decision of rejecting the null M1, conditional on a given sample
xn = (x1, . . . , xn), is made for any sample point xn in the critical region

WF
n (an) = {xn : p(xn) ≤ an}, an ∈ (0, 1),

where p(xn) is the p value of xn and an a specified value, typically an = 0.05. The
Bayesian rule rejects M1 for any sample point xn in the critical region

WB
n (bn) = {xn : Pr(M1|xn) ≤ bn}, bn ∈ (0, 1),

where bn is a specified value, typically bn = 0.5. The frequentist Type I and II errors
are given by

EF (θ) = (αF
n , [1 − βF

n (θ)]1(θ0,∞)(θ)),

and the Bayesian by

EB(θ) = (αB
n , [1 − βB

n (θ)]1(θ0,∞)(θ)),

where αC
n = supθ≤θ0 PrXn |θ (WC

n (an)) and βC
n (θ) = PrXn |θ (WC

n (bn)) for C = F, B.
The vectors EF (θ) and EB(θ) are not comparable except if one of them dominates
the other. The latter situation is not common as Pr(M1|xn) used to be an increasing
function of p(xn).

An alternativeway of comparing both testingmethods is that of computing the prob-
ability of the sample region on which the decision rules disagree. The disagreement
region Dn(an, bn) is given by

Dn(an, bn) = [W̄ F
n (an) ∩ WB

n (bn)] ∪ [WF
n (an) ∩ W̄ B

n (bn)],

where W̄ denotes the complement ofW .When the truemodel is f (x |θ) the probability
of Dn(an, bn), conditional on θ ,

dn(θ) = Pr Xn |θ (Dn(an, bn)),

is our quantity of interest. The larger the probability dn(θ), the larger the frequentist
and Bayesian disagreement, conditional on θ .

For small or moderate sample sizes, we illustrate how large this disagreement can
be on binomial, exponential, and normal models. The first two do not contain nuisance
parameter, and the last one contains one nuisance parameter.

We note that when the sample size n goes to infinity and sampling from a null
model, the probability of disagreement is the frequentist size, and when sampling
from an alternative model it is the limit of the frequentist Type II error. For, from the
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consistency results in Section 4 it follows that

lim
n→∞Pr Xn |θ (WB

n (0.5)) =
⎧⎨
⎩
1, f or θ > θ0, [Pθ ],

0, f or θ < θ0, [Pθ ].

Thus, for any θ ≥ θ0,

lim
n→∞Pr Xn |θ (Dn(0.05, 0.5)) = lim

n→∞Pr Xn |θ (W̄ F
n (0.05)) = 1 − lim

n→∞ βF
n (θ), [Pθ ],

and for θ ≤ θ0,

lim
n→∞Pr Xn |θ (Dn(0.05, 0.5)) = lim

n→∞Pr Xn |θ (WF
n (0.05)), [Pθ ].

The symbol [Pθ ] means that the limit is in probability when sampling from f (x |θ).

3.1 Bernoulli model

Let X be a random variable with distribution Ber(x |θ) = θ x (1 − θ)1−x , x = 0, 1,
θ ∈ (0, 1). We want to test H1 : θ ≤ θ0 versus H2 : θ ≥ θ0. Since the Jeffreys’
prior for θ is the proper Beta distribution Be(θ |1/2, 1/2), we compare the Bayesian
models

M1 :
{
Ber(x |θ), π J

1 (θ |θ0) = θ−1/2(1 − θ)−1/2

Iθ0
1(0,θ0)(θ)

}
,

and

M2 :
{
Ber(x |θ), π J

2 (θ |θ0) = θ−1/2(1 − θ)−1/2

π − Iθ0
1(θ0,1)(θ)

}
,

where Iθ0 = ∫ θ0
0 θ−1/2(1 − θ)−1/2dθ is the incomplete beta function. For a sample

xn = (x1, . . . , xn) from Ber(x |θ) and model prior P(M1) = P(M2) = 1/2, the
posterior probability of M1 is given by

Pr(M1|xn) =
(
1 + Iθ0

π − Iθ0

∫ 1
θ0

θ tn+1/2(1 − θ)n−tn+1/2dθ∫ θ0
0 θ tn+1/2(1 − θ)n−tn+1/2dθ

)−1

,

where tn = ∑n
i=1 xi . For θ0 = 1/2, the critical and discrepancy regions for the

conventional values an = 0.05, bn = 0.5 , and sample sizes n = 5, 10, 20, 40 are
given in Table 1.

From Table 1, we note thatWF
n (0.05) ⊂ WB

n (0.5), and hence, Dn contains critical
points under the Bayesian approach that are not critical under the frequentist.
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Table 1 Critical and
disagreement regions

n W F
n (0.05) WB

n (0.5) Dn(0.05, 0.5)

5 {5} {3, 4, 5} {3, 4}
10 {9, 10} {5, . . . , 10} {5, . . . , 8}
20 {15, . . . , 20} {10, . . . , 20} {10, . . . , 14}
40 {26, . . . , 40} {20, . . . , 40} {20, . . . , 25}
80 {48, . . . , 80} {40, . . . , 80} {40, . . . , 47}

Fig. 1 Probabilities of disagreement as a function of θ for testing the null H0 : θ ≤ 0.5 versus H1 : θ ≥ 0.5
in Bernoulli model for n = 10 (higher curve) and n = 20 (lower curve)

Figure 1 displays the probability dn(θ) for the sample sizes n = 10, 20 as θ ranges
over (0, 1). From Fig. 1, it follows that the curve of disagreement probabilities is a
nonsymmetric curve around the boundary θ0 = 0.5. The points of large disagreement
probabilities are located in the alternative hypothesis. For n = 10, the mode of the
curve is as large as 0.82, and it is attained θ = 0.66. Further, for θ ∈ (0.45, 0.84) the
probability of disagreement is greater than 0.5. The asymmetry arises because of in
the frequentist decision rule the null hypothesis θ ≤ 0.5 plays a different role than the
alternative θ ≥ 0.5.

3.2 Exponential model

Let X be a randomvariablewith the exponential distribution f (x |θ) = 1/θ exp(−x/θ),
x > 0, θ > 0, and consider the one-sided testing with null H1 : 0 < θ ≤ 1 versus
the alternative H2 : 1 ≤ θ < ∞. The Jeffreys’ prior for θ is the improper den-
sity π J (θ) = k/θ that cannot be used for the Bayesian test. To derive the intrinsic
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Table 2 Critical and
disagreement regions

n W F
n (0.05) WB

n (0.5) Dn(0.05, 0.5)

5 (1.83,∞) (0.940, ∞) (0.940, 1.83)

10 (1.57,∞) (0.968,∞) (0.968, 1.57)

20 (1.39,∞) (0.984,∞) (0.984, 1.39)

40 (1.27,∞) (0.990,∞) (0.990, 1.27)

priors, we follow the two steps presented in Sect. 2.2. First, we find the intrin-
sic prior π I (θ |θ0 = 1) arising from the model comparison M0 : f (x |θ0) versus
M3 : { f (x |θ), π J (θ)}, which turns out to be π I (θ |1) = (1 + θ)−2, θ ≥ 0, and the
restriction of π I (θ |1) to the interval H1 and H2 yields the Bayesian models

M1 :
{
f (x |θ) = 1

θ
exp

(
− x

θ

)
, π I

1 (θ |1) = 2

(1 + θ)2
1(0,1)(θ)

}
,

and

M2 :
{
f (x |θ) = 1

θ
exp

(
− x

θ

)
, π I

2 (θ |1) = 2

(1 + θ)2
1(1,∞)(θ)

}
.

Hence, for a sample xn from f (x |θ) and the model prior P(M1) = P(M2) = 1/2,
the posterior probability of model M1 is given by

Pr(M1|n, x̄n) =
(
1 +

∫ ∞
1 (1 + θ)−2θ−n exp{−nx̄n/θ}dθ∫ 1
0 (1 + θ)−2θ−n exp{−nx̄n/θ}dθ

)−1

,

where x̄n = ∑n
i=1 xi/n.

Table 2 presents the critical regions WF
n (0.05) and WB

n (0.5) and the disagreement
region Dn(0.05, 0.5) for the sample sizes n = 5, 10, 20, 40.

Since WF
n (0.05) ⊂ WB

n (0.5) the set Dn contains points x̄n for which the null H1
is rejected under the Bayesian analysis, but it is accepted under the frequentist. Thus,
the frequentist is a more conservative test than the Bayesian. Figure 2 displays the
probability dn(θ) for the sample size n = 5, 10 as θ ranges in (0, 5). This figure shows
that the probability of disagreement is a nonsymmetric curve around the boundary θ =
1. The probability of disagreement attains its maximum in the alternative hypothesis
H2, a similar behavior as that in the preceding Bernoulli one-sided testing.

3.3 Normal model

Let us consider the random variable X with normal distribution N (x |μ, σ 2), where μ

is the parameter of interest and σ is the nuisance parameter, and consider the one-sided
testing H1 : μ ≤ 0 versus H2 : μ ≥ 0. The Jeffreys’ prior is the improper density
π J (μ, σ ) = k/σ . Then, we derive the intrinsic priors using the auxiliary models
M0 : N (x |0, σ 2

0 ) and M3 : {N (x |μ, σ 2), π J (μ, σ ) = k/σ }, where σ0 is a unknown
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Fig. 2 Probabilities of disagreement as a function of θ for testing the null H0 : θ ≤ 1 versus H1 : θ ≥ 1 in
exponential model for n = 5 (thinner curve) and n = 10 (thicker)

but fixed value. The intrinsic prior of (μ, σ ), conditional on (0, σ0), turns out to be
the proper density

π I (μ, σ |0, σ0) = N

(
μ|0, σ 2

0 + σ 2

2

)
HC+(σ |0, σ0),

where HC+(σ |0, σ0) represents the half Cauchy distribution on the positive part of
the real line. The restriction of π I (μ, σ |0, σ0) to the sets {μ : μ ≤ 0} and {μ : μ ≥ 0}
yields the priors

π I
i (μ, σ |0, σ0) = 2N

(
μ|0, σ 2

0 + σ 2

2

)
HC+(σ |0, σ0)1Hi (μ), i = 1, 2.

Integrating σ0 with respect to the improper prior πN (σ0) = k/σ0, we have the uncon-
ditional intrinsic priors

π I
i (μ, σ |0) = 2k1Hi (μ)

∫ ∞

0
N

(
μ|0, σ 2

0 + σ 2

2

)
HC+(σ |0, σ0) 1

σ0
dσ0, i = 1, 2.

This yields the Bayesian model Mi : {
N (x |μ, σ 2), π I

i (μ, σ |0)} for i = 1, 2. For a
sample xn = (x1, . . . , xn) from the normal distribution N (x |μ, σ 2) and the model
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Table 3 Critical and
disagreement regions

n W F
n (0.05) WB

n (0.5) Dn(0.05, 0.5)

5 (2.132, ∞) (0, ∞) (0, 2.132)

10 (1.833,∞) (0, ∞) (0, 1.833)

20 (1.729,∞) (0, ∞) (0, 1.729)

40 (1.685,∞) (0, ∞) (0, 1.685)

prior P(M1) = P(M2) = 0.5, the posterior probability of M1 turns out to be

Pr(M1|n, x̄n, sn) =
(
1 +

∫ ∞
0

∫ π/2
0 g(xn, ϕ, μ)dϕdμ∫ 0

−∞
∫ π/2
0 g(xn, ϕ, μ)dϕdμ

)−1

,

where

g(xn, ϕ, μ) = (sin ϕ)−n
(
2μ2 + ns2n + n(x̄n − μ)2

sin2 ϕ

)−(n+1)/2

,

x̄n = ∑n
i=1 xi/n and s2n = ∑n

i=1(xi − x̄n)2/n. Thus, the posterior probability of
M1 depends on the data (x̄n, s2n ) through the statistic tn−1 = √

n x̄n/sn . Further,
Pr(M1|n, tn−1) is a decreasing function of tn−1. Since Pr(M1|n, tn−1) = 0.5 if and
only if tn−1 = 0, the Bayesian critical region is given by

WB
n = {tn−1 : tn−1 ≥ 0}.

The frequentist critical regionWF
n for rejecting the null H1 is given by the quantile 0.95

of the student t distribution with n − 1 degrees of freedom. Critical and disagreement
regions for sample sizes n = 5, 10, 20, 40, 80 are displayed in Table 3.

From Table 3, it follows thatWF
n (0.05) ⊂ WB

n (0.5), and hence, Dn contains points
x̄n that yield the Bayesian rejection of the null but lead to the frequentist acceptation.
Thus, the frequentist is a more conservative test than the Bayesian.

Figure 3 displays the probabilities of Dn(μ, σ ) for the sample sizes n = 5, 10
as μ ranges over (−3, 4) and σ = 1. The message of these probabilities is that the
probability of discrepancy is again a nonsymmetric curve around the boundaryμ = 0.
For n = 5, the maximum probability is as large as 0.712 and it is attained at θ = 1.06,
a point located in the alternative hypothesis H2. Further, for μ ∈ (0.08, 2.09) the
probability of disagreement is larger than 0.5.

4 Asymptotic

Consistency is a key property of any statistical testing procedure as it means that the
procedure provides the correct decision without uncertainty when the sample size goes
to infinity. An inconsistent procedure should not be used for hypothesis testing.
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Fig. 3 Probabilities of disagreement as a function of μ for testing the null H0 : μ ≤ 0 versus H1 : μ ≥ 0
in normal models for n = 5 (higher curve) and n = 10 (lower curve)

Definition 1 Given a class of models M = {Mi , P(Mi ), i = 1, . . . , p}, where Mi

= { fi (x |θi ), πi (θi ), θi ∈ �i } and P(Mi ) is the prior probability of model Mi , the
Bayesian model selection is posterior model consistent in M if the equations

lim
n→∞Pr(Mi |xn) =

{
1, [Pθ j ], f or j = i,
0, [Pθ j ], f or j �= i,

(5)

hold for any i, j = 1, . . . p. The symbol [Pθ j ] reminds us that the limit is in probability
when sampling from f j (x |θ j ).

From the expression of Pr(Mi |xn), it follows that posterior model consistency in
M holds if and only if for any θ j ∈ � j we have that

lim
n→∞

p∑
k = 1
k �= i

Bki (xn)
P(Mk)

P(Mi )
=

{
0, [Pθ j ], j = i,
∞, [Pθ j ], j �= i,

for i, j = 1, 2, . . . , p. (6)

Theorem 1 proves that under mild conditions on the likelihood and priors, posterior
model consistency holds for the Bayesian one-sided testing.

Theorem 1 Let us consider the class of models M = {Mi , P(Mi ), i = 1, 2}, where
Mi = { f (x |θ), πi (θ), θ ∈ �i } with �1 = {θ : θ ≤ θ0} and �2 : {θ : θ ≥ θ0}, and
P(Mi ) > 0, i = 1, 2. Then, if the likelihood f (xn|θ) = ∏n

i=1 f (xi |θ) and prior πi (θ)
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are continuous functions such that f (xn|θ0) > 0 and πi (θ0) > 0, the Bayes factor

B21(xn) =
∫ ∞
θ0

f (xn|θ)π2(θ)dθ∫ θ0
−∞ f (xn|θ)π1(θ)dθ

satisfies

lim
n→∞ B21(xn) =

{
0, [Pθ ], i f θ < θ0,

∞, [Pθ ], i f θ > θ0.

Further, the speed of the limit in probability [Pθ ] is O(e−nA(θ)) if θ < θ0 with A(θ) =
Eθ log f (x |θ) − Eθ log f (x |θ0) > 0, and O(enA(θ)) if θ > θ0.

Proof Let us write the Bayes factor B21(xn) as

B21(xn) = B01(xn)B20(xn),

where

B01(xn) = f (xn|θ0)∫ θ0
−∞ f (xn|θ)π1(θ)dθ

and B20(xn) =
∫ ∞
θ0

f (xn|θ)π2(θ)dθ

f (xn|θ0) .

When sampling from f (x |θ1) for θ1 < θ0, we can write

− 2 log B01(xn) = −2 log
f (xn|θ0)
f (xn|θ1) − 2 log

f (xn|θ1)∫ θ0
−∞ f (xn|θ)π1(θ)dθ

. (7)

Using the Laplace approximation for the integral
∫ θ0
−∞ f (xn|θ)π1(θ)dθ , the second

term of the right side of (7) can be written as

−2 lim
n→∞ log

f (xn|θ1)∫ θ0
−∞ f (xn|θ)π1(θ)dθ

= −2 lim
n→∞ log

(
f (xn|θ1)
f (xn|θ̂1)

1

n−1/2

)

= lim
n→∞

(
−2 log

f (xn|θ1)
f (xn|θ̂1)

)
− 2 lim

n→∞ log n1/2, [Pθ1 ],

where f (xn|θ̂1) = supθ<θ0
f (xn|θ). Further, the limit in probability [Pθ1 ] of

−2 log f (xn|θ1)/ f (xn|θ̂1) is a positive random variable that does not degenerate to
a constant (in fact, it has a Chi-squared distribution; see Wilks 1963, chapter 13).
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Moreover, the first term in the right-hand side of (7) can be written as

− 2 log
f (xn|θ0)
f (xn|θ1) = 2n

(
1

n

n∑
i=1

log f (xi |θ1) − 1

n

n∑
i=1

log f (xi |θ0)
)

. (8)

If A(θ1) is the limit in probability [Pθ1 ] of the expression inside the parenthesis in (8),
we have by the Law of Large Numbers that

A(θ1) = lim
n→∞

(
1

n

n∑
i=1

log f (xi |θ1) − 1

n

n∑
i=1

log f (xi |θ0)
)

= Eθ1 log f (x |θ1) − Eθ1 log f (x |θ0) > 0, [Pθ1 ],

where from the Jensen inequality A(θ1) > 0. Thus,

lim
n→∞

(
−2 log

f (xn|θ0)
f (xn|θ1)

)
= lim

n→∞ 2nA(θ1) = ∞, [Pθ1 ]. (9)

We note that this convergence is not only in probability, but it is almost surely [Pθ1 ].
Therefore,

lim
n→∞ B01(xn) = lim

n→∞ n1/2e−nA(θ1) = 0, [Pθ1 ]. (10)

On the other hand, when sampling from f (x |θ1) the Bayes factor B20(xn) is finite,
in fact it is smaller than or equal to 1 . For,

lim
n→∞ B20(xn) = lim

n→∞

∫ ∞
θ0

f (xn|θ)π2(θ)dθ

f (xn|θ0)
≤ lim

n→∞
supθ≥θ0

f (xn|θ)

f (xn|θ0) = 1, [Pθ1 ], (11)

where the last equality follows from the fact that the MLE θ̂n of θ in the set {θ ≥ θ0}
converges in probability [Pθ1 ] to θ0 . Thus, from (10) and (11) it follows that

lim
n→∞ B21(xn) = lim

n→∞ B20(xn)B01(xn) = 0, [Pθ1 ]. (12)

This proves the first assertion.
Similar arguments to those used for proving (10) yield that when sampling from

f (x |θ2) for θ2 > θ0,
lim
n→∞ B20(xn) = ∞, [Pθ2 ], (13)

and the rate of convergence is O(enA(θ2)), where A(θ2) = Eθ2 log f (x |θ2) −
Eθ2 log f (x |θ0) > 0. Further, when sampling from f (x |θ2), the Bayes factor B01(xn)
is greater than zero. Indeed, this result follows from

lim
n→∞ B01(xn) = lim

n→∞
f (xn|θ0)∫ θ0

−∞ f (xn|θ)π1(θ)dθ
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≥ lim
n→∞

f (xn|θ0)
supθ≤θ0

f (xn|θ)
= 1, [Pθ2 ]. (14)

Thus, from (13) and (14) we have that

lim
n→∞ B21(xn) = lim

n→∞ B20(xn)B01(xn) = ∞, [Pθ2 ]. (15)

This proves the second assertion and completes the proof of the theorem. �

Corollary 1 Let f (x |θ, ξ) be a sampling model, where ξ ∈ Ξ is a nuisance parameter,
and consider the one-sided testing H1 : θ ≤ θ0 versus H2 : θ ≥ θ0. Then, the Bayes
factor B I

21(xn) for the intrinsic priorsπ I
i (θ, ξ |θ0) for i = 1, 2 given in (2) is consistent.

Proof The Bayes factor BI
21(xn) can be written as

BI
21(xn) =

∫ ∞
θ0

h2(xn|θ)dθ∫ θ0
−∞ h1(xn|θ)dθ

,

where

hi (xn|θ) =
∫

Ξ

∫
Ξ

f (xn|θ, ξ)π I
i (θ, ξ |θ0, ξ0)πN (ξ0)dξdξ0.

This proves the assertion. �

Let us consider the multiple model comparison between model M0 : f (x |θ0),

M1 : { f (x |θ1), π1(θ1), θ1 < θ0} and M2 : { f (x |θ2), π2(θ2), θ2 > θ0} with model
prior P(Mi ) > 0 for i = 0, 1, 2 . Theorem 2 proves that the Bayesian model selection
is posterior model consistent and the rate of convergence is exponential except when
sampling from M0 in which case the rate is potential.

Theorem 2 Under the conditions in Theorem 1, and model prior P(Mi ) > 0, i =
0, 1, 2 , we have that

(i)

lim
n→∞Pr(M0|xn) =

{
1, [Pθ ], i f θ = θ0,

0, [Pθ ], i f θ �= θ0,

and the rate of convergence for θ = θ0 is O(nb) with b > 0, and for θ �= θ0 is
O(e−nA(θ)), where A(θ) = limn→∞ Eθ log f (x |θ) − Eθ f (x |θ0) > 0.

(ii) For i �= 0, we have

lim
n→∞Pr(Mi |xn) =

{
1, [Pθ ], i f θ < θ0,

0, [Pθ ], i f θ ≥ θ0,
, i = 1, 2

and the rate of convergence is again exponential.
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Proof We prove that Eq. (6) holds for i, j = 0, 1, 2, and any θ in the real line R.
To prove i) we have to prove that when sampling from f (x |θ0)

lim
n→∞

(
B10(xn)

P(M1)

P(M0)
+ B20(xn)

P(M2)

P(M0)

)
= 0, [Pθ0 ], (16)

and when sampling from θ �= θ0,

lim
n→∞

(
B10(xn)

P(M1)

P(M0)
+ B20(xn)

P(M2)

P(M0)

)
= ∞, [Pθ ], θ �= θ0. (17)

To prove (16), we use the Laplace approximation to the integral on B10(xn), and write

lim
n→∞ B10(xn) = lim

n→∞

∫ θ0
−∞ f (xn|θ)π1(θ)dθ

f (xn|θ0) = lim
n→∞

f (xn|θ̂1)
f (xn|θ0)n

−1/2 = 0, [Pθ0 ].
(18)

The last equality follows from the fact that limn→∞ f (xn|θ̂1)/ f (xn|θ0)), [Pθ0 ] is a
positive random variable. The same arguments yields

lim
n→∞ B20(xn) = lim

n→∞

∫ ∞
θ0

f (xn|θ)π2(θ)dθ

f (xn|θ0) = lim
n→∞

f (xn|θ̂2)
f (xn|θ0)n

−1/2 = 0, [Pθ0 ].
(19)

Then, (18) and (19) prove (16) and the first assertion in (i) is proved. If we now
sampling from f (x |θ1) for θ1 < θ0, we have

lim
n→∞ B10(xn) = lim

n→∞
f (xn|θ̂1)
f (xn|θ1)

f (xn|θ1)
f (xn|θ0)n

−1/2 = ∞, [Pθ1 ]. (20)

The last equality follows from equality (10) in Theorem 1. A similar argument proves
that when sampling from f (x |θ2) for θ2 > θ0,

lim
n→∞ B20(xn) = lim

n→∞
f (xn|θ̂2)
f (xn|θ2)

f (xn|θ2)
f (xn|θ0)n

−1/2 = ∞, [Pθ2 ]. (21)

Expressions (20) and (21) prove the second assertion in (i). This completes the proof
of part (i).

To prove (ii) for i = 1, we have to prove that

lim
n→∞

(
B01(xn)

P(M0)

P(M1)
+ B21(xn)

P(M2)

P(M1)

)
= 0, [Pθ1 ],

and

lim
n→∞

(
B01(xn)

P(M0)

P(M1)
+ B21(xn)

P(M2)

P(M1)

)
= ∞, [Pθ ], θ �= θ1.
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And for i = 2, arguments are similar to that used for proving (i) show that

lim
n→∞

(
B01(xn)

P(M0)

P(M1)
+ B12(xn)

P(M1)

P(M2)

)
= 0, [Pθ2 ],

and

lim
n→∞

(
B01(xn)

P(M0)

P(M1)
+ B12(xn)

P(M1)

P(M2)

)
= ∞, [Pθ ], θ �= θ2.

This completes the proof of the theorem. �

We note that these theorems are valid for the intrinsic priors π I

1 (θ |θ0) and π I
2 (θ |θ0).

5 Concluding remarks

For small andmoderate samples sizes, a comparison between the decisions ofBayesian
and frequentist one-sided testing has been presented. The comparison is based on the
probability that the procedures make opposite decisions. This comparison indicates
that for usual sampling families the probability is maximum when the true model is in
the alternative hypothesis and not at the boundary of the hypotheses. This asymmetric
behavior is inherited from the asymmetric role the frequentist approach assigns to the
null and the alternative hypothesis.

It is interesting to point out that in our one-sided testing examples the sampling
region in which the decisions disagree contains points that the frequentist analysis
accepts the null hypothesis and the Bayesian rejects it (WF ⊂ WB). For other hypoth-
esis testing, the disagreement region is not necessarily of this type, as the following
simple example shows.

Example 2 Let us consider the two-sided testing on the mean θ of the normal distri-
bution N (x |θ, 1). For the null H1 : θ = 0 and the alternative H2 : θ �= 0 with the
prior N (θ |0, 2), the frequentist rejection region contains the Bayesian rejection region
(WB ⊂ WF ), which is exactly the opposite what occurs in the one-sided testing.

Figure 4 displays the probability of disagreement, conditional on θ , as θ ranges
over (−5, 5) for n = 1. The disagreement region is given by D1 = {x : 1.96 ≤ |x |
≤ 2.22}. The curve as a function of θ represents the probability that the Bayesian
analysis accepts the null and the frequentist rejects the null. The maximum probability
of disagreement is equal to 0.103 and it is attained at |θ | = 2.105. This probability
grows as n grows. For instance, for n = 20 the shape of the curve is similar to that in
Fig. 4, but the mode is as large as 0.64 and it is attained at |θ | = 0.34.

On the other hand, for large sample sizes we have proved that under mild condi-
tions the Bayesian procedure provides consistent posterior model probabilities. This
assertion is also valid in the presence of nuisance parameters. Moreover, the speed of
the convergence is surprisingly fast. For the multiple test H0 : θ = θ0, H1 : θ ≤ θ0,
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Fig. 4 Disagreement probabilities for the frequentist and Bayesian test for the null H0 : θ = 0 versus
H1 : θ �= 0 for the normal model N (x |θ, 1) and n = 1

H2 : θ ≥ θ0 the Bayesian testing procedure is also consistent, and the speed of conver-
gence of the posterior probabilities is also exponential except when sampling from H0
in which case it is O(n1/2). We recall that the frequentist test finds serious difficulties
for dealing with multiple tests.
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