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Abstract
We develop a method originally proposed by R. A. Fisher into a general procedure,
called tailoring, for deriving goodness-of-fit tests that are guaranteed to have a χ2

asymptotic null distribution.Themethodhas a robustness feature that itworks correctly
in testing a certain aspect of the model while some other aspect of the model may
be misspecified. We apply the method to small area estimation. A connection, and
difference, to the existing specification test is discussed. We evaluate performance
of the tests both theoretically and empirically, and compare the performance with
several existing methods. Our empirical results suggest that the proposed test is more
accurate in size, and has either higher or similar power compared to the existing tests.
The proposed test is also computationally less demanding than the specification test
and other comparing methods. A real-data application is discussed.

Keywords Goodness-of-fit tests · Maple · Model diagnostics · Robustness · Small
area estimation · Tailoring

Mathematics Subject Classification 62F05 · 62J05 · 62D99

1 Introduction

Goodness-of-fit tests for mixed models, or mixed effects models, have received con-
siderable attention in recent literature (e.g., Jiang 2001; Claeskens and Hart 2009;
Dao and Jiang 2016). Such tests are relevant to many practical problems. For exam-
ple, mixed effects models are extensively used in small area estimation (SAE; e.g.,
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Rao and Molina 2015). Here the term small area typically refers to a population for
which reliable statistics of interest cannot be produced based on direct sampling from
the population due to certain limitations of the available data. Examples of small areas
include a geographical region (e.g., a state, county,municipality), a demographic group
(e.g., a specific age × sex × race group), a demographic group within a geographic
region, etc. Statistical models, especially mixed effects models, have played key roles
in improving small area estimates by borrowing strength from relevant sources. It is
known, however, that in case of model misspecification, the traditional empirical best
linear unbiased prediction (EBLUP) method may lose efficiency. See, for example,
Jiang et al. (2011). In case of model misspecification, an alternative method, known
as observed best prediction (OBP), is shown to be more accurate than the EBLUP. On
the other hand, when the underlying model is correctly specified, EBLUP is known to
be more efficient than OBP (e.g., Jiang et al. 2011, 2015). Therefore, it is important,
in practice, to know whether or not the assumed model is appropriate in order to come
up with a more efficient SAE strategy.

A standard assumption for mixed effects models, in general (e.g., Jiang 2007), is
that the random effects are normally distributed. This assumption has had substantial
impact on many aspects of the inference. For example, estimation of the mean squared
prediction errors of small area predictors is an important issue in SAE (e.g., Rao and
Molina 2015). The well-known Prasad-Rao method (Prasad and Rao 1990) depends
on the normality assumption and may not be accurate if the assumption fails (e.g.,
Lahiri and Rao 1995). Also, prediction interval obtained via parametric bootstrap
methods (e.g., Chatterjee et al. 2008) depends heavily on the normality assumption.
The normality assumption is even more critical for inference about generalized linear
mixedmodels (GLMMs; e.g., Jiang 2007). See, for example, Jiang andNguyen (2009).
Although there are strategies that are less dependent on the normality assumption, those
strategies are often less efficient than the normality-based method when the normality
assumption actually holds, or approximately holds. Thus, it is important to check the
validity of the normality assumption so that an appropriate, or more efficient, method
can be used for the inference.

In the literature of mixed effects models, such problems as discussed above have to
do with mixed model diagnostics; see, for example, Pierce (1982), sec. 2.4.1 of Jiang
(2007), Claeskens and Hart (2009). Jiang (2001) proposed a χ2-type goodness-of-fit
test for linear mixed model (LMM) diagnostics, whose asymptotic null distribution is
a weightedχ2, where the weights are eigenvalues of some nonnegative definite matrix.
Claeskens andHart (2009) proposed an alternative approach to theχ2 test for checking
the normality assumption in LMM. The authors considered a class of distributions
that include the normal distribution as a reduced, special case. The test is based on
the likelihood-ratio test (LRT) that compares the “estimated distribution” and the null
distribution (i.e., normal). A model selection procedure via the information criteria
is used to determine the larger class of distributions for the LRT. In particular, the
asymptotic null distribution is in the form of the distribution of supl≥1{2Ql/l(l + 3)},
where Ql = ∑l

q=1 χ2
q+1, l is the order of polynomial, andχ2

2 , χ2
3 , . . . are independent

such that χ2
j has a χ2 distribution with j degrees of freedom, j ≥ 2.
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The χ2-type tests depend on the choice of cells, based on which the observed and
expected cell frequencies are evaluated. As noted by Jiang and Nguyen (2009), per-
formance of the χ2 test is sensitive to the choice of the cells, and there is no “optimal
choice” of such cells known in the literature. On the other hand, the Claeskens-Hart
test depends on the choice of the information criterion. As is well known, there are dif-
ferent versions of the information criteria, such as AIC (Akaike 1956), BIC (Schwarz
1978), HQ (Hannan and Quinn 1979). The difference in the performance of the test by
different information criteria is unclear. Furthermore, the weighted-χ2 asymptotic null
distribution of Jiang (2001) depends on eigenvalues of a certain matrix, whose expres-
sions are complicated, and involve unknown parameters. These parameters need to be
estimated in order to obtain the critical values of the tests. Due to such a complication,
Jiang (2001) suggests to use a Monte-Carlo method to compute the critical value; but,
by doing so, the usefulness of the asymptotic result may be undermined. Similarly, the
asymptotic distribution of the Claeskens-Hart test is not simple and involves supreme
of normalized partial sums of χ2 random variables.

It might be argued that, in today’s computer era, having aχ2 asymptotic distribution
is, perhaps, not as important as in the past. However, there are, still, attractive fea-
tures of the χ2 limiting distribution that are worth pursuing. First, the χ2 distribution
corresponds to the right standardization–it is the “square” of the norm of a standard
multivariate normal random vector. In this regard, anything other than χ2 leaves, at
least, some room for improvement. In other words, if the limiting distribution is not a
(central) χ2, the test statistic has not been completely standardized. Note that, while
there is only one way of a complete standardization, there are many, if not infinitely
many, ways of incomplete standardization, so it may not be convincing why one way
is preferred over the others. Second, having a computer-driven, non-analytic asymp-
totic distribution makes it difficult to study properties of the limiting distribution. For
example, how does the reduction of complexity of the model under the null hypothesis
play a role? It may not be easy to tell if all one gets are a bunch of numbers. A related
issue is regarding direction of improvement. This may not be easy to see without a
simple analytic expression for the asymptotic distribution.

In Sect. 2, we generalize a method initiated by Fisher (1922) in deriving goodness-
of-fit tests (GoFTs) that are guaranteed to have asymptotic χ2 null distributions. A
robust feature of the proposed test is that it can be used to test a certain aspect of the
assumed model while another aspect of the model is misspecified. We also discuss
a connection, and difference, between our GoFT and the specification test based on
the generalized method of moments (GMM; e.g., Hall 2005) that is known in the
econometrics literature.

In Sect. 3, we apply our generalized procedure to SAE to derive a goodness-of-fit
test under the Fay-Herriot model (Fay and Herriot 1979). The test is developed under
a predictive consideration that incorporates the special interest of SAE. In Sect. 4, we
evaluate performance of the proposed GoFT via simulation studies. We compare our
GoFT with several competing methods, including the specification test. The results
show that our GoFT is more accurate in term of the size, and has higher or similar
power compared to the competing methods. Our GoFT is also computationally less
demanding than the specification test. A real data example is discussed in Sect. 5. Some
concluding remarks and future directions are given in Sect. 6. Proofs and technical

123



Goodness-of-fit test with a robustness feature 79

details are deferred to Appendix. Computer codes are provided as supplementary
materials.

2 Tailoring

In this section, we describe a general approach to obtaining a test statistic that has
an asymptotic χ2 distribution under the null hypothesis. The original idea can be
traced back to R. A. Fisher (1922), who used the method to obtain an asymptotic χ2

distribution for Pearson’s χ2-test, when the so-called minimum chi-square estimator
is used. However, Fisher did not put forward the method that he originated under a
general framework, as we do here. Suppose that there is a sequence of s-dimensional
random vectors, B(ϑ), which depend on a vector ϑ of unknown parameters with
dimension r such that, when ϑ is the true parameter vector, one has E{B(ϑ)} = 0,
Var{B(ϑ)} = Is , and, as the sample size increases,

|B(ϑ)|2 d−→ χ2
s , (1)

where | · | denotes the Euclidean norm. However, because ϑ is unknown, one cannot
use (1) for GoFT. What is typically done, such as in Pearson’s χ2-test, is to replace
ϑ by an estimator, ϑ̂ . Question is: what is ϑ̂? The ideal scenario would be that, after
replacing ϑ by ϑ̂ in (1), one has a reduction of degrees of freedom (d.f.), which leads
to

|B(ϑ̂)|2 d−→ χ2
ν , (2)

where ν = s − r > 0. This is the famous “subtract one degree of freedom for each
parameter estimated” rule taught in many elementary statistics books (e.g., Rice 1995,
p. 242). However, as is well known (e.g., Moore 1978), depending on what ϑ̂ is
used, (2) may or may not hold, regardless of what degrees of freedom are actually
involved. In fact, the only method that is known to achieve (2) without restriction on
the distribution of the data is Fisher’s minimum χ2 method. In a way, the method
allows one to “cut-down” the d.f. of (1) by r , and thus convert an asymptotic χ2

s to an
asymptotic χ2

ν . For such a reason, we have dubbed the method, under the more general
setting below, tailoring. We develop the method with a heuristic derivation, with the
rigorous justification given in the Appendix.

The “right” estimator ofϑ for tailoring is supposed to be the solution to an estimating
equation of the following form:

C(ϑ) ≡ A(ϑ)B(ϑ) = 0, (3)

where A(ϑ) is an r × s non-random matrix that plays the role of tailoring the s-
dimensional vector, B(ϑ), to the r -dimensional vector, C(ϑ). The specification of A
will become clear at the end of the derivation. Throughout the derivation, ϑ denotes
the true parameter vector. For notation simplicity, we use A for A(ϑ), Â for A(ϑ̂),
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etc, where ϑ̂ is the solution of (3). Under regularity conditions, one has the following
expansions, which can be derived from the Taylor series expansion and large-sample
theory (e.g., Jiang 2010):

ϑ̂ − ϑ ≈ −
{

Eϑ

(
∂C

∂ϑ ′

)}−1

C, (4)

B̂ ≈ B − Eϑ

(
∂B

∂ϑ ′

){

Eϑ

(
∂C

∂ϑ ′

)}−1

C . (5)

Because Eϑ {B(ϑ)} = 0 [see above (1)], one has

Eϑ

(
∂C

∂ϑ ′

)

= AEϑ

(
∂B

∂ϑ ′

)

. (6)

Combining (5) and (6), we get

B̂ ≈ {Is −U (AU )−1A}B, (7)

where U = Eϑ(∂B/∂ϑ ′). We assume that A is chosen such that

U (AU )−1A is symmetric. (8)

Then, it is easy to verify that Is − U (AU )−1A is symmetric and idempotent. If we
further assume that the following limit exists:

Is −U (AU )−1A −→ P, (9)

then P is also symmetric and idempotent. Thus, assuming that B
d→ N (0, Is), which

is typically the argument leading to (1), one has, by (7), B̂
d→ N (0, P), hence (e.g.,

Searle 1971, p. 58) |B̂|2 d→ χ2
ν , where ν = tr(P) = s − r . This is exactly (2).

It remains to answer one last question: Is there such a non-random matrix A =
A(ϑ) that satisfies (8) and (9)? We show that, not only the answer is yes, there is an
optimal one. Let A = N−1U ′W , where W is a symmetric, non-random matrix to be
determined, and N is a normalizing constant that depends on the sample size. By (4)
and the fact that Varϑ(B) = Is [see above (1)], we have

varϑ(ϑ̂) ≈ (U ′WU )−1U ′W 2U (U ′WU )−1 ≥ (U ′U )−1, (10)

by, for example, Lemma 5.1 of Jiang (2010). The equality on the right side of (10)
holds when W = Is , giving the optimal A:

A = A(ϑ) = U ′

N
= 1

N
Eϑ

(
∂B ′

∂ϑ

)

. (11)
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The A given by (11) clearly satisfies (8) [which is U (U ′U )−1U ′]. It will be seen in
the next section that, with N = m, (9) is expected to be satisfied. It should be noted
that the solution to (3), ϑ̂ , does not depend on the choice of N .

Remark 1 A basic assumption for the tailoring method to work is that E{B(ϑ)} =
0 when ϑ is the true parameter vector. However, from the proof of the result (see
Appendix) it is seen that the condition “ϑ is the true parameter vector” is not critical.
For example, in case there is a model misspecification, a “true parameter vector” may
not exist. Nevertheless, what is important is that there is some parameter vector, ϑ ,
which is not necessarily the true parameter vector, such that the equation

A(ϑ)E{B(ϑ)} = 0 (12)

holds. This equation holds, of course, when ϑ is the true parameter vector, but it
can also hold when the true parameter vector does not exist, such as under model
misspecification. In fact, in the latter case, one may define the “true parameter vector”
as the unique ϑ , assumed exist, that satisfies (12). Note that the number of equations
in (12) is the same as the dimension of ϑ ; thus, one expect that a solution exists and is
unique, under some regularity conditions. To see that (12) is the key, note that under
(12), (3) is equivalent to A(ϑ)[B(ϑ) − E{B(ϑ)}] = 0, where the expectation is with
respect to the true underlying distribution. It follows that one can replace B(ϑ) by
B(ϑ) − E{B(ϑ)}, which has mean zero, and all of the arguments in the proof go
through. This property has given tailoring some unexpected robustness feature, that
is, it can work correctly in spite of some model misspecification. We illustrate more
specifically in the next section.

Remark 2 There is a connection between the tailoring method and the specification
test (ST) based on GMM (e.g., Hall 2005). However, there is also a difference. The dif-
ference is that ST is equivalent to (3) with A(ϑ) given by (11) without the expectation,
but for tailoring the expectation is taken first before using it in (3). One may compare
this difference to that between the observed Fisher information and expected one in
maximum likelihood (ML) estimation (Efron and Hinkley 1978). Although it may be
argued that, asymptotically, this difference may be of lower order—in fact, ST may
also be viewed as an extension of the original idea of Fisher (1922), and it has the same
asymptotic null distribution as tailoring—finite-sample performance may differ. We
demonstrate this difference in our simulation study in Sect. 4. Furthermore, because,
after taking the expectation, some terms in ∂B ′/∂ϑ in (11) may vanish, the form of
A(ϑ) in (3) may be substantially simplified. One may, again, compare this to Fisher
scoring in ML. For example, McCullagh and Nelder (1989, p. 42) developed the well-
known GLM algorithm and noted that it often simplifies the numerical computation
of the ML estimator. In our simulation study, we have also observed that tailoring is
computationally less demanding than ST, apparently also due to the simplification of
taking the expectation. See Sect. 4 for more detail.

Remark 3 The asymptotic covariance matrix of ϑ̂ , that is, the left side of (10), has
a “sandwich” expression, which is similar to the well-known sandwich estimator
of the (asymptotic) covariance matrix of a GEE (generalized estimating equations)
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estimator. See, for example, Kauermann and Carroll (2001), who studied impact of
the sandwich estimator in terms of relative efficiency and coverage probability of the
resulting confidence interval. The sandwich estimator provides robust estimation of
the variation of the GEE estimator when the variance-covariance structure of the data
is misspecified. The robustness feature of tailoring is, in a way, more general in that it
is not necessarily with respect to misspecification of the variance-covariance structure.
For example, in the next section we are mainly concerned with misspecification of the
mean function.

3 Applying tailoring to SAE

As noted, we intend to develop a GoFT that takes into account the special interests
in SAE problems. The development is based on an appropriate objective function in
conjunction with the tailoring method. We shall focus on area-level models (Fay and
Herriot 1979); extension of the method to other types of SAE models, such as the
nested-error regression model (Battese et al. 1988), is fairly straightforward.

There are different aspects of themodel that are subject tomodel checking.Although
the focus here is on testing for the normality assumption of the random effects, the
method can be easily extended to testing other aspects of the assumedmodel. As noted
(see Remark 1 of the previous section), the proposed test has a robustness feature that
it can be used to test one aspect of the model assumption, here normality, while other
aspects of the model, for example, the mean function, may be misspecified.

The Fay-Herriot (FH) model may be expressed as that (i) (yi , θi ), i = 1, . . . ,m
are independent; (ii) yi |θi ∼ N (θi , Di ); and (iii) θi ∼ N (x ′

iβ, σ 2). Here, yi is the
direct estimate from the i th area, θi is the small area mean, xi is a vector of observed
covariates, β is a vector of unknown parameters, σ 2 is an unknown variance, and Di is
a sampling variance that is assumed known. The normality assumption has to do with
(iii). The reason that this is not an issue with (ii) is because, in practice, yi is typically
a sample summary such as a sample mean or proportion; as a result, the normality
assumption in (ii) often holds approximately due to the central limit theorem (CLT).
However, there is no obvious reason to believe that the CLT should hold for (iii). Thus,
we consider a broader class of distributions, namely, the skewed normal distribution
(SN; Azzalini and Capitanio 2014), which includes the normal distribution as a special
case. Under the SN distribution, (iii) is replaced by (iii) θi ∼ SN(x ′

iβ, σ 2, α), which
denotes the SN distribution with mean x ′

iβ, variance σ 2, and skewness parameter α

(see below), noting that α = 0 leads to the normal distribution. We denote the model
parameters as ψ = (β ′, σ 2, α)′.

Suppose that, under the null hypothesis, there is a reduction in the dimension of the
parameter vector such that γ = γ0 under the null hypothesis, where γ is a sub-vector
of ψ and γ0 is known. Let ϑ denote the vector of parameters in ψ other than γ . In
this section, notation such as Eϑ , etc. will be understood as expectation, etc. under the
null hypothesis.

The LRT is often used in the context of goodness-of-fit. However, because, in SAE,
the primary interest is prediction of mixed effects (e.g., Jiang 2007; Rao and Molina
2015), it is reasonable to develop something that is closely related to the predictive
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interest. To motivate something that is in a similar spirit of LRT, but takes into account
the SAE interest, let us consider the problem from a “Bayesian” perspective.

In general, let θ be a vector of unobserved quantities that one wishes to predict
(e.g., small area mean θi in FH model), ψ be the vector of parameters involved in
either f (y|θ) or f (θ), and y a vector of observations. The likelihood function may
be viewed, using a Bayesian term, as a marginal likelihood with the distribution of θ ,
f (θ), treated as a prior, that is,

f (y|ψ) =
∫

f (y|θ, ψ) f (θ |ψ)dθ. (13)

The likelihood is used for estimation of fixed parameters, which are associated with
either f (θ) or f (y|θ) or both. To come up with a predictive version of the likelihood,
we may simply replace the prior in (13) by its “posterior”, that is, the conditional pdf
of θ given y, f (θ |y). With this replacement, we obtain

f (y|y, ψ) ≡
∫

f (y|θ, ψ) f (θ |y, ψ)dθ. (14)

We call (14) the predictive likelihood, or PL. The reason is that, if parameter estimation
is of primary interest, one uses the prior, f (θ), to obtain the (marginal) likelihood (13).
Now, becausewe replace f (θ) by f (θ |y), which is themain outcome for the prediction
of θ , and then go through the same operation, the output (14) should be called a
predictive likelihood. It should be noted that the predictive likelihood is not necessarily
a likelihood, as it does not always possess some of the well-known properties of the
likelihood. However, we can, at least, adjust the score equation of the PL to make it
unbiased.

The adjusted PL score is given by

sa(ψ) = ∂

∂ψ
log f (y|y, ψ) − Eψ

{
∂

∂ψ
log f (y|y, ψ)

}

. (15)

We call the estimator ofψ obtained by solving the adjusted PL score equation, sa(ψ) =
0, or, equivalently, the following equation:

∂

∂ψ
log f (y|y, ψ) = Eψ

{
∂

∂ψ
log f (y|y, ψ)

}

(16)

maximum adjusted PL estimator, or Maple, in view of its analogy to the MLE.
Under the FH model, it is easy to show that f (θ |y, ψ) = ∏m

i=1 f (θi |yi , ψ) where
θ = (θ1, ..., θm). Thus, we have

f (y|y, ψ) =
∫ m∏

i=1

f (yi |θi , ψ) f (θi |yi , ψ)dθ

=
m∏

i=1

∫

f (yi |θi , ψ) f (θi |yi , ψ)dθi =
m∏

i=1

f (yi |yi , ψ), (17)
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where f (yi |yi , ψ) = ∫
f (yi |θi , ψ) f (θi |yi , ψ)dθi . Without the null hypothesis that

the random effects are normal, that is, α = 0, we have yi |θi ∼ N (θi , Di ) and θi ∼
SN(x ′

iβ, σ 2, α). It is then shown in the Appendix that

f (yi |yi , ψ) = 1√
Di (1 + Bi )

φ

[
yi − x ′

iβ√
Di (1 + Bi )/(1 − Bi )

]
Φ[α2i (yi − x ′

iβ)]
Φ[α3i (yi − x ′

iβ)] ,(18)

where αsi = (4 − s)σα/
√{(4 − s)σ 2 + Di }{(4 − s)σ 2 + (1 + α2)Di }, s = 2, 3,

Bi = σ 2/(σ 2 + Di ), and Φ(·), φ(·) denote the cdf, pdf of N (0, 1), respectively. Note
that, when α = 0, (18) reduces to that under normality. Also note that f (yi |yi , ψ) 	=
f (yi , ψ).
By (17), the PL can be expressed as

∏m
i=1 f (yi |yi , ψ). To test H0 : α = 0, let

bi (yi , ϑ) = {(∂/∂ψ) log f (yi |yi , ψ)}|α=0 − E[{(∂/∂ψ) log f (yi |yi , ψ)}|α=0].

One can derive the adjusted PL equation, (16), as follows:

∂ log f (yi |yi , ψ)

∂β

∣
∣
∣
∣
α=0

− E

{
∂ log f (yi |yi , ψ)

∂β

∣
∣
∣
∣
α=0

}

= ai (σ
2)xi (yi − x ′

iβ),

∂ log f (yi |yi , ψ)

∂σ 2

∣
∣
∣
∣
α=0

− E

{
∂ log f (yi |yi , ψ)

∂σ 2

∣
∣
∣
∣
α=0

}

= bi (σ
2)(yi − x ′

iβ)2 − ci (σ
2),

∂ log f (yi |yi , ψ)

∂α

∣
∣
∣
∣
α=0

− E

{
∂ log f (yi |yi , ψ)

∂α

∣
∣
∣
∣
α=0

}

= di (σ
2)(yi − x ′

iβ),

where ai (σ 2) = (1 − Bi )2/Di (1 + Bi ), bi (σ 2) = (1 − Bi )3(3 + Bi )/2D2
i (1 + Bi )2,

ci (σ 2) = (1−Bi )2(3+Bi )/2Di (1+Bi )2, and di (σ 2) = √
2/πσ(1−Bi )2/Di (1+Bi ).

Let ϑ denote the true ϑ . If the model is correctly specified under the null
hypothesis, then, under the null hypothesis,

∑m
i=1 bi (yi , ϑ) is a sum of independent

random vectors with mean zero. On the other hand, if there is some misspeci-
fication in the mean function that the true β, hence the true ϑ , does not exist
(under the null hypothesis), we again define the “true ϑ” as the unique solution
to (12). Then, all of the arguments in the derivation of Sect. 2 go through by
replacing

∑m
i=1 bi (yi , ϑ)with

∑m
i=1[bi (yi , ϑ)−E{bi (yi , ϑ)}]. Furthermore, we have

Vb(ϑ) = Varϑ {∑m
i=1 bi (yi , ϑ)} = ∑m

i=1 Varϑ {bi (yi , ϑ)}, where

Varϑ {bi (yi , ϑ)} =
⎡

⎣
gi (σ 2)xi x ′

i 0p gi (σ 2)(xi
√
2/πσ)

0′
p hi (σ 2) 0

gi (σ 2)(x ′
i

√
2/πσ) 0 gi (σ 2)(2σ 2/π)

⎤

⎦

with gi (σ 2) = (1−Bi )3/Di (1+Bi )2 and hi (σ 2) = (1−Bi )4(3+Bi )2/2D2
i (1+Bi )4.

Thus, if we let B(ϑ) = V−1/2
b (ϑ)

∑m
i=1 bi (yi , ϑ), we have B(ϑ)

d−→ N (0, Is),
where s = dim(ψ) = 3. It follows that (1) holds. Because r = dim(ϑ) = 2 < s, the
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tailoring method applies to yield (2) with ν = s − r = 1. In particular, we have

A(ϑ) = 1

m

{
m∑

i=1

Eϑ

(
∂b′

i

∂ϑ

)}

V−1/2
b (ϑ),

where bi is defined above and

Eϑ

(
∂b′

i

∂ϑ

)

= −
[
ai (σ 2)xi x ′

i 0p di (σ 2)xi
0′
p bi (σ 2) 0

]

.

This gives A(ϑ) for solving the tailoring equation (3).

4 Simulation study

We carry out a simulation study to evaluate performance of the tailoring methods
based on Maple, described in the previous section, and compare it with existing meth-
ods. Specifically, we compare our method with those of Pierce (1982), Jiang (2001),
Claeskens andHart (2009), andSTbased onGMM(e.g., Hall 2005). For Pierce (1982),
the test statistic under the FH model for H0 : α = 0 is given by F̂ ≡ mT̂ 2

m/V , where

T̂m = 1

m

m∑

i=1

√
Di (yi − x

′
i β̂)

σ̂ 2 + Di
,

V = 1

m

m∑

i=1

Di

Di + σ̂ 2 − mP{var(ψ̂ − ψ)}P ′

with P = lim E(∂Tm/∂ψ). The asymptotic null distribution of the test statistic is χ2
1 .

In the current case, it can be shown that

P = − lim

{
1

m

[∑m
i=1

√
Di x

′
i/(Di + σ 2)

0

] }

.

In the case of Jiang (2001), one has the test statistic

χ̂2
J = 1

m

K∑

k=1

{Nk − pk(ψ̂)}2,

where Nk = ∑m
i=1 1(yi∈Ck ) = #{1 ≤ i ≤ m : yi ∈ Ck}, and pk(ψ) = ∑m

i=1 Pψ(yi ∈
Ck) = ∑m

i=1 pik(ψ). More specifically, the cells, Ck , 1 ≤ k ≤ K are defined as
follows: C1 = (−∞, c1],Ck = (ck−1, ck], 2 ≤ k ≤ K − 1, and CK = (cK−1,∞).
Regarding the choice of K and ck’s, by Jiang (2001), we may choose K = max(p +
2, [m1/5]), where p is the dimension of β. Once K is chosen, the ck’s are chosen so
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that there are equal number of yi ’s within each Ck, 1 ≤ k ≤ K . It then follows that
Nk = m/K , 1 ≤ k ≤ K . Finally, the pik(ψ) have the following expressions:

pi1(ψ) = Φ

(
c1 − x ′

iβ√
σ 2 + Di

)

,

pik(ψ) = Φ

(
ck − x ′

iβ√
σ 2 + Di

)

− Φ

(
ck−1 − x ′

iβ√
σ 2 + Di

)

, 2 ≤ k ≤ K − 1,

piK (ψ) = 1 − Φ

(
cK−1 − x ′

iβ√
σ 2 + Di

)

.

We then use aMonte-Carlomethod (e.g., bootstrapping) to compute the critical values,
as suggested by Jiang (2001).

In the case of Claeskens and Hart (2009), one uses the test statistic

χ̂2
CH = max

1≤l≤M

2{log Ll − log LM=0}
l(l + 3)/2

,

where log L is the log-likelihood andM is the order of polynomial which plays the role
of a smoothing parameter. The test is based on the LRT which compares the estimated
distribution (M > 0) and the null distribution (M = 0; i.e., normal). Similar to the
Jiang (2001), one needs to use replications from the test statistic above to approximate
the critical values. We consider M = 2 in our simulation study.

As noted (see Remark 2 in Sect. 2), the ST is simply tailoring with the expectation
sign in (11) removed. In the case of Maple, to obtain the A corresponding to ST, we
have ∂b′

i/∂ϑ = (aist )1≤s≤2,1≤t≤3, where

ai11 = −ai (σ
2)xi x

′
i ,

ai12 = −2bi (σ
2)xi (yi − x ′

iβ),

ai13 = −di (σ
2)xi ,

ai21 = −2bi (σ
2)x ′

i (yi − x ′
iβ),

ai22 = {∂bi (σ 2)/∂σ 2}(yi − x ′
iβ)2 − {∂ci (σ 2)/∂σ 2},

ai23 = {∂di (σ 2)/∂σ 2}(yi − x ′
iβ),

with

∂bi (σ 2)

∂σ 2 = −2bi (σ 2)(1 − Bi )(3 + Bi )

2Di (1 + Bi )
− ai (σ 2){2(1 + Bi )2 + (1 − Bi )(3 + Bi )}

2(2σ 2 + Di )2
,

∂ci (σ 2)

∂σ 2 = −2bi (σ 2)(3 + Bi )

2(1 + Bi )
− ai (σ 2)Di

(2A + Di )2
,

and ∂di (σ 2)/∂σ 2 = −2bi (σ 2)
√
2/πσ + ai (σ 2)/

√
2πσ .
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To evaluate and compare performance of the aforementioned methods, let B̂2
PL, F̂ ,

χ̂2
J , χ̂

2
CH, and B̂2

ST represent the test statistics for tailoring/Maple, Pierce (1982), Jiang
(2001), Claeskens and Hart (2009), and ST, respectively [for notation simplicity we
write |B(ϑ̂)|2 as B̂2]. We consider two situations where the assumed model is either
correct or misspecified. The assumed model is a FH model:

yi = β1xi + vi + ei , i = 1, . . . ,m;

however, the data are generated under the following FH model:

yi = β1xi + vi + ei , 1 ≤ i ≤ n,

yi = β2xi + vi + ei , n + 1 ≤ i ≤ m,

where m = 2n, Di = Di1 for 1 ≤ i ≤ n and Di = Di2 for n + 1 ≤ i ≤ m. We
choose σ 2 = 10, noting that vi ∼ SN (0, σ 2, α) and ei ∼ N (0, Di ). The Di1 are
generated from the uniform distribution between 3.5 and 4.5. There are two scenarios
for Di2, one generated from U (3.5, 4.5) and the other from U (0.5, 1.5). Let β1 = 1,
and β2 = 1 or 3; and the true value of α is 0 under the null hypothesis, and 0.5 under
the alternative. The xi ’s are generated from the uniform distribution between 0 and
1, and fixed during the simulation study. Note also that the Di ’s are fixed during the
simulation study. It is seen that, when β1 	= β2, the underlying model is misspecified.

We consider testing H0 : α = 0 with three different levels of significance, 0.01,
0.05, 0.10, and four different sample sizes, m = 50, 100, 200, and 500. We run
R = 5, 000 simulations to calculate B̂2

PL, F̂, χ̂2
J , χ̂2

CH, and B̂2
ST. In particular, we

generate response variable y(r1)
i = β1xi + v

(r1)
i + e(r1)

i , (1 ≤ i ≤ n; r1 = 1, ..., R),

and y(r1)
i = β2xi + v

(r1)
i + e(r1)

i , (n + 1 ≤ i ≤ m; r1 = 1, ..., R), where v
(r1)
i ∼

SN (0, σ 2, α = 0) and e(r1)
i ∼ N (0, Di1) for 1 ≤ i ≤ n and e(r1)

i ∼ N (0, Di2)

for n + 1 ≤ i ≤ m. For each simulated dataset, we estimate σ 2 and β1 for B̂2
PL, F̂ ,

χ̂2
J , χ̂2

CH, and B̂2
ST, where r = 2 and s = 3. Note that for B̂2

PL, we use tailoring to
estimate the model parameters; we use the Prasad-Rao approach for F̂ and χ̂2

J as it is
computationally faster, the MLE for χ̂2

CH, and GMM for B̂2
ST.

Also, we use 1000 replications to obtain the critical values, in each simulation run,
for χ̂2

J , and 100 replication run for χ̂
2
CH (due to the fact that the latter is computationally

more intensive). To obtain the sizes of the tests, we count the number of times (out of
R) that B̂2(r1)

PL , F̂ (r1), and B̂2(r1)
ST exceed the critical values for the three different levels

of significance, namely, χ2
(0.01)(1) = 6.63, χ2

(0.05)(1) = 3.84, χ2
(0.10)(1) = 2.70, and

divide those numbers by R. In the cases of Jiang (2001) andClaeskens andHart (2009),
χ̂
2(r1)
J and χ̂

2(r1)
CH are compared with their corresponding critical values obtained using

the bootstrap approach (i.e., 1000 replications for Jiang test and 100 replications for
CH test under the null hypothesis), in each simulation run. The powers of the tests are
obtained the same way, the only difference being that the sizes are computed when
the data are generated under the null hypothesis α = 0, while the powers under the
alternative of α = 0.5.
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The empirical size and power for different levels of significance, different scenarios,
anddifferentmethods are reported inTables 1, 2 and3. It seems that,with the increasing
sample size (m) and for all three different levels of significance, B̂2

PL and χ̂2
J have

approximately the right size under different scenarios. However, in the case of F̂ , the
test does not seem to have the right size if there are misspecifications in the mean and
significant change in the range of the sampling variances for the small areas. The size
also does not seem to improve for χ̂2

CH with increasing sample size. As for B̂2
ST, it

seems that the test does not have the right size until m = 500. Regarding the power,
B̂2
PL seems to perform very well under all scenarios. The power performance of χ̂2

J
seems to be poor compared to B̂2

PL, while the power performance of F̂ and B̂2
ST is

similar to that of B̂2
PL. It appears that the power of χ̂2

CH does not also improve with
increasing sample size.

Note, in particular, that B̂2
ST performs poorly in size unless m = 500. To further

investigate the possible reason for this, we provide in Table 4 median estimates of
σ 2 over the simulation runs R under different sample sizes and scenarios, for PL
(tailoring) and ST (GMM). It is seen that the estimate of σ 2 by GMM performs poorly
until m = 500.

It has also been observed that PL (tailoring) is computationally much less demand-
ing than ST (GMM). For example, the rate of convergence for the parameter estimates
GMM/ST, in terms of the number of iterations needed for the Newton-Raphson pro-
cedure to achieve a given level of accuracy (the largerm the slower convergence), was
much lower than that for the corresponding Maple/tailoring method.

5 Median income data

We discuss two applications of the tailoring method regarding the median income
data of four-person families at the state level in the USA (Ghosh et al. 1996). The first
application has to do for choosing an appropriate model; the second is about checking
the normality assumption. The data has been analyzed by several researchers using
different set-ups. In this analysis, the response variable yi is the four-person median
income from the sample survey at state i in year 1989, and xi is the census four-person
median income at state i in year 1979 (i = 1, ...,m = 51).

5.1 Choosing an appropriate model

An inspection of the scatter plot (Fig. 1) suggests that a quadratic model may fit the
data well. As a starting point, we test whether a quadratic mixed model rather than
linear mixed model fits the data well. That is,

yi = β0 + β1xi + β2x
2
i + vi + ei , i = 1, ...,m = 51, (19)

where the vi ’s are state-specific random effects and ei ’s are sampling errors. It is
assumed that vi and ei are independent with vi ∼ N (0, σ 2) and ei ∼ N (0, Di ) with
known Di . We now test H0 : β2 = 0 vs H1 : β2 	= 0. In the case of Maple/tailoring
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Table 4 Median estimate of σ 2

for PL (tailoring) and ST
(GMM) methods under different
sample sizes and scenarios

Di2 β2 m PL (tailoring) ST (GMM)

U (3.4, 4.5) 1 50 10.00 1237e+5

100 10.00 1470.00

200 10.04 11.00

500 10.01 10.49

3 50 11.00 1255e+5

100 10.00 585.30

200 10.39 12.00

500 10.33 10.83

U (0.5, 1.5) 1 50 10.00 1661e+4

100 10.00 1038e+3

200 10.02 12.00

500 10.00 10.53

3 50 11.00 1589e+4

100 10.00 980100

200 10.36 12.00

500 10.33 10.83

approach, themodel parameter estimates are β̂0 = 4503.2, β̂1 = 1.60, σ̂ 2 = 1.9×107

which result in rejecting H0 as B̂2
PL = 5.36 > 3.84 [= χ2

0.05(1)]. Thus, the test
suggests that the linear model is inappropriate.

Based on the above result, we can also evaluate the cubic model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + vi + ei , (20)

or a quadratic-outlying (Q-O)model (due to the point at the right side of the scatterplot
of yi vs xi ; see Jiang et al. 2011), as

yi = β0 + β1xi + β2x
2
i + β31(xi>30000) + vi + ei . (21)

In the case of Maple/tailoring approach, the model parameter estimates are β̂0 =
−72375.1, β̂1 = 845.1, β̂2 = −1.50, σ̂ 2 = 16982730, which cannot reject H0 as
B̂2
PL = 1.19 < 3.84 [= χ2

0.05(1)]. Thus, the test confirms the quadratic model is an
appropriate model for this data rather than the cubic model.

Finally, we consider the Q-O model. To evaluate the Q–O model, we use Maple
in conjunction with tailoring to test H0 : β3 = 0 in model (21). In the case of
Maple/tailoring approach, the model parameter estimates are β̂0 = −72375.1, β̂1 =
849.1, β̂2 = −1.50, σ̂ 2 = 16982730, which cannot reject the H0 as B̂2

PL = 1.31 <

3.84 [= χ2
0.05(1)]. Thus, the test confirms that the quadratic model as an appropriate

model for this data rather than the Q-O model.
Overall, we conclude that the quadratic model is a good fit for the data.
It should be noted that we also applied the methods of Pierce (1982), Jiang (2001),

and Claeskens and Hart (2009) to this data. None of these tests were able to reject the
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Fig. 1 Plot of survey income in 1989 (y) vs family median income in 1979 (x)

linear model null hypothesis. This seems to be consistent with the pattern observed in
our simulation study in Sect. 4 that these tests appear to have lower power than our
tests.

5.2 Checking the normality assumption

It is known that income data are typically not normal. In this application, our goal
is to check the normality assumption for median incomes of four-person families at
the state level in the USA (Ghosh et al. 1996). Following Sect. 5.1, we consider the
quadratic model (19).

We consider testing H0 : α = 0 vs H1 : α 	= 0. First, we apply the Maple
approach in conjunction with tailoring. The parameter estimates are β̂1 = 2.07, β̂2 =
−1.2 × 10−5, σ̂ 2 = 1.9 × 107, which result in B̂2

PL = 4.67 > 2.70 = χ2
1 (0.90),

rejecting H0 at the 10% significance level.
Next, we apply the ST method to this data. In this case, the GMM estimates are

β̂1 = 2.07, β̂2 = −1.3 × 10−5, σ̂ 2 = 1.9 × 107, which result B̂2
ST = 4.93 > 2.70,

also rejecting H0 at the 10% significance level.
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Note that, although the values of tailoring and GMM estimates are very close, the
GMM equation for ST is more complicated than the tailoring one due to not taking
the expected value of the A matrix (see Remark 2 in Sect. 2). This may explain the
poor performance of ST in terms of the size (when m is moderate) and computational
efficiency in our simulation study reported in Sect. 4.

We also applied the methods of Pierce (1982), Jiang 2001, and Claeskens and Hart
(2009) to test the hypothesis. None of these tests were able to reject the normality
assumption. For the latter two methods, this seems to be consistent with the pattern
observed in our simulation study in Sect. 4 that these tests appear to be less powerful.

6 Discussion

There are multiple ways of checking for goodness-of-fit. A main reason that PL is
considered in the context of SAE is due to an intuitive fact that it gets the predictive
distribution of θ , the vector of small area means, involved in the process. To illustrate
with a simple example, consider the following James-Stein example. Suppose that
yi = θi + ei , i = 1, . . . ,m, where θi , ei , i = 1, . . . ,m are independent such that θi ∼
N (μ, A), ei ∼ N (0, 1). The model is a special case of the Fay-Herriot model. From
a Bayesian perspective, θi has a prior distribution, which is normal with mean μ and
variance A. However, the predictive distribution of θi , given the data y = (yi )1≤i≤m ,
is normal with mean wμ + (1 − w)yi and variance wA, where w = (A + 1)−1. It is
clear that the data has an impact on understanding the distribution of θ , going from
the prior distribution to the predictive distribution. This is what we want to check with
our goodness-of-fit test. In contrast, the traditional likelihood corresponds to using the
prior distribution of θ instead of the predictive distribution [compare (13) and (14)].
The data has no impact on the prior distribution; in other words, the prior distribution
is not sensitive to how one predicts the distribution of θ using the data. Therefore,
intuitively, the likelihood based method has little to do with the main interest of SAE,
that is, the prediction of θ .

The next question is how this intuition makes a difference. This has to do with
the main objective of using a statistical model. Is the model used for interpretation
or prediction? If the model is used for interpretation, then perhaps one can ignore a
few outliers because, here, the focus is the main trend, or big picture. However, if the
main objective is prediction, the outliers may not be ignored. In practice, ignoring a
few outliers can result in the cost of millions of dollars, if not billions of dollars. The
objective is taken seriously, for example, in our real-data example (see Sect. 5.1). Here,
a single point on the right side appears to be an outlier. If one uses a non-predictive
goodness-of-fit test, such as Pierce (1982), Jiang (2001), and Claeskens and Hart
(2009), none of these tests have rejected the linear model null hypothesis (see the last
paragraph of Sect. 5.1). This suggests that these tests tend to look at the big picture,
and therefore ignore the “outlier”. On the other hand, our predictive-based test, that
is, PL/tailoring, is able to reject the null hypothesis. This means that PL is taking the
“outlier” more seriously by considering its potential impact on the prediction.

Regarding extension of the proposed method to other SAE models, note that tailor-
ing is a general method that can be implemented as long as one has a base function,
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B(ϑ), in hand that satisfies certain conditions (see the first paragraph of Sect. 2). For
example, to extend our GoFT to the nested-error regression (NER; Battese et al. 1988)
model, we need to (I) set up a framework for GoFT; and (II) construct an appropriate
base function. We discuss these two parts below. (I) An NER model can be expressed
as yi j = x ′

i jβ + vi + ei j , i = 1, . . . ,m, j = 1, . . . , ni , where yi j is the outcome
variable, xi j is a known vector of auxiliary variables, β is a vector of fixed effects,
vi is an area-specific random effect, and ei j is an error. The standard assumptions
are that the random effects and errors are independent with (i) vi ∼ N (0, σ 2

v ) and
(ii) ei j ∼ N (0, σ 2

e ). Note that, unlike in the Fay-Herriot model, here, it may not be
reasonable to assume that the distribution of ei j is normal, because the central limit
theorem (CLT) may not apply. Thus, to set up the GoFT framework, we may replace
both (i) and (ii) by the skewed normal distribution family. (II) The general principle
of PL (see the middle part of Sect. 3) still applies to this case. We just need to derive
the resulting base function following the general steps and, with the base function,
the resulting GoFT by the tailoring method. We will develop the details, and study
performance of the resulting test in our future work.

Supplementary Materials The supplementary materials contain R codes and cor-
responding “readme” files for the simulation and application conducted in this work.
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Appendix

This appendix provides justification for the heuristic derivation given in Sect. 2 regard-
ing the asymptotic null distribution as well as other details.

A.1 Notation and regularity conditions

Let ϑ0 denote the true ϑ ; ‖M‖ = √
λmax(M ′M) the spectral norm of matrix M , where

λmax denotes the largest eigenvalue; λmin the smallest eigenvalue; and |v| = √
v′v the

Euclidean norm of vector v. Note that the matrices A(ϑ), B(ϑ), etc. in Sect. 2 depend
on the sample size, m, although the dependence will be implicit in notation.

Suppose that B(ϑ) in (1) can be expressed as B(ϑ) = V−1/2(ϑ)
∑m

i=1 bi (Yi , ϑ),
whereY1, . . . ,Ym are independent randomvectors, Eϑ {bi (Yi , ϑ)} = 0,Varϑ {bi (Yi , ϑ)}
exists, and V (ϑ) = ∑m

i=1 Varϑ {bi (Yi , ϑ)} is nonsingular. Then, with N = m and
A(ϑ) given by (11), the C(ϑ) in (3) can be expressed as

C(ϑ) = 1

m

m∑

i=1

Eϑ

(
∂B ′

∂ϑ

)

V−1/2(ϑ)bi (Yi , ϑ) = 1

m

m∑

i=1

cm,i (ϑ)

with cm,i (ϑ) defined in an obvious way. Denote ΔC(ϑ) = (∂/∂ϑ ′)C(ϑ). We assume
the following regularity conditions as m → ∞:
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A1. The parameter space of ϑ , Θ , is an open subset of Rr , and cm,i is continuously
differentiable with respect to ϑ for each 1 ≤ i ≤ m.

A2. With probability tending to one, ΔC(ϑ0) is nonsingular.
A3. D(ϑ) = limm→∞ E{ΔC(ϑ)} exists, and there is a constant δ > 0 such that

sup
|ϑ−ϑ0|<δ

‖ΔC(ϑ) − D(ϑ)‖ P−→ 0.

A.2 Asymptotic behavior of #̂

In this subsection, we state a result regarding existence, uniqueness, and consistency
of ϑ̂ , the solution to the tailoring equation (3) which is our estimator of ϑ used in
(2). The proof is very similar to that of Theorem 2 of Foutz (1977), and therefore is
omitted.

Lemma 1. Under assumptions A1–A3, there exists a sequence of estimators, ϑ̂ ,

such that C(ϑ̂) = 0 with probability tending to one, and ϑ̂
P−→ ϑ0. Furthermore, if

ϑ̃ also satisfies the above, then P(ϑ̃ = ϑ̂) → 1 as m → ∞.

A.3 Asymptotic distribution of B(#̂)

We assume the following additional regularity conditions:

A4. there is a full rank matrix, Q, such that

1√
m
Eϑ0

(
∂B

∂ϑ ′

)

−→ Q and
1√
m

{
∂B

∂ϑ ′ − Eϑ0

(
∂B

∂ϑ ′

)}
P−→ 0,

where ∂B/∂ϑ ′ is evaluated at ϑ0.
A5. There is a compact subspace of Θc ⊂ Θ that contains ϑ0 as an interior point
such that the supϑ∈Θc

‖ · ‖ of V (ϑ)/m and of its up to second partial derivatives
(with respect to ϑ) are bounded, and lim inf[infϑ∈Θc λmin{V (ϑ)/m}] > 0.
A6. For the same Θc, the supϑ∈Θc

‖ · ‖ of m−1 ∑m
i=1 Eϑ(∂bi/∂θ ′) and of its up to

second partial derivatives (with respect to ϑ) are bounded; and the supϑ∈Θc
‖ · ‖ of

m−1 ∑m
i=1 bi and its up to second partial derivatives with respect to ϑ are bounded

in probability.
A7. ∀ε > 0, max1≤i≤m Eϑ0{b2i 1(|bi |>εm)} → 0 asm → ∞, where bi = bi (Yi , ϑ0).

Theorem 1 Let ϑ̂ denote the estimator in Lemma 1. Under assumptions A1–A7, we

have B(ϑ̂)
d−→ N (0, P), where P = Is − Q(Q′Q)−1Q′ is idempotent with rank

ν = s − r .

Proof First, by assumptions A5, A7, and the central limit theorem for an array of
independent random variables (e.g., Theorem 6.12 of Jiang 2010), it follows that

B(ϑ0)
d−→ N (0, Is). (A.1)
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Next, by the Taylor series expansion, we have

0 = C(ϑ̂) = C(ϑ0) + ∂C

∂ϑ ′ (ϑ̂ − ϑ0) + 1

2

[

(ϑ̂ − ϑ0)
′ ∂2C(k)

∂ϑ∂ϑ ′

]

1≤k≤r
(ϑ̂ − ϑ0),(A.2)

where ∂C/∂ϑ ′ is evaluated at ϑ0, and ∂2C(k)/∂ϑ∂ϑ ′ denotes the kth component of C
evaluated at some ϑ(k) that lies between ϑ0 and ϑ̂ . By assumptions A4–A6, it follows
that

∂C

∂ϑ ′ = Q′Q + oP(1). (A.3)

Similarly, by assumptions A5 and A6, it can be shown that

∂2C(k)

∂ϑ∂ϑ ′ = OP(1), 1 ≤ k ≤ r . (A.4)

By (A.2)–(A.4), and Lemma 1, we have 0 = C(ϑ0) + {Q′Q + oP(1)}(ϑ̂ − ϑ0), or

ϑ̂ − ϑ0 = −{Q′Q + oP(1)}−1C(ϑ0). (A.5)

On the other hand, again by the Taylor series expansion, we have

B(ϑ̂) = B(ϑ0) + ∂B

∂ϑ ′ (ϑ̂ − ϑ0) + 1

2

[

(ϑ̂ − ϑ0)
∂2B(k)

∂ϑ∂ϑ ′

]

1≤k≤s
(ϑ̂ − ϑ0), (A.6)

where ∂B/∂ϑ ′ is evaluated at ϑ0, and ∂2B(k)/∂ϑ∂ϑ ′ denotes the kth component of B
evaluated at some ϑ(k) that lies between ϑ0 and ϑ̂ . By assumption A4 and (A.1), it is
easy to see that C(ϑ0) = OP(m−1/2). It follows by (A.5) that ϑ̂ − ϑ0 = OP(m−1/2).
Therefore, by assumptions A5 and A6, it can be shown that the last term on the right
side of (A.6) is oP(1). Furthermore, by assumption A4, we have

√
mA(ϑ0) −→ Q′, 1√

m

∂B

∂ϑ ′
P−→ Q. (A.7)

Combining (A.5)–(A.7), we have

B(ϑ̂) = B(ϑ0) −
(

1√
m

∂B

∂ϑ ′

)

{Q′Q + oP(1)}−1√mA(ϑ0)B(ϑ0)

= {Is − Q(Q′Q)−1Q′}B(ϑ0) + oP(1)
d−→ N (0, P),

and P = Is − Q(Q′Q)−1Q′ is idempotent with rank(P) = s − r .

Corollary 1 Under the conditions of Theorem 1, we have |B(ϑ̂)|2 d−→ χ2
s−r .
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A.4 Derivation of (18)

We have f (θi |yi ) = f (yi |θi ) f (θi )/
∫

f (yi |θi ) f (θi )dθi = Ii1/Ii2. For Ii1, we have

Ii1 = 2

σ
√
Di

φ

(
yi − θi√

Di

)

φ

(
θi − x ′

iβ

σ

)

Φ

(

α
θi − x ′

iβ

σ

)

.

Next, we can show, after some simplification, that

(yi − θi )
2

Di
+ (θi − x ′

iβ)2

σ 2 = (θi − μi )
2

σ 2
i

+ (yi − x ′
iβ)2

σ 2 + Di
,

where μi = (Di x ′
iβ + σ 2yi )/(σ 2 + Di ) and σ 2

i = Bi Di with Bi = σ 2/(σ 2 + Di ).
It follows that Ii1 can be expressed as

Ii1 = 2

σ
√
Di

φ

(
θi − μi

σi

)

φ

(
yi − x ′

iβ√
σ 2 + Di

)

Φ

(

α
√
1 − Bi

θi − μi

σi
+ α

√
Bi

yi − x ′
iβ√

σ 2 + Di

)

.

Thus, we obtain the expression f (θi |yi ) =
{

σiΦ

(
α
√
Bidi

√
1 + α2(1 − Bi )

)}−1

φ

(
θi − μi

σi

)

Φ

(

α
√
1 − Bi

θi − μi

σi
+ α

√
Bidi

)

,

where di = (yi − x ′
iβ)/

√
σ 2 + Di , and we have used the following fact:

Azzalini and Capitanio (2014): Let φ(·) and Φ(·) denote pdf and cdf of the stan-
dard normal distribution. Then for all constants a, b ∈ R and real value u, we have∫ +∞
−∞ φ(u)Φ(a + bu)du = Φ(a/

√
1 + b2).

To calculate f (yi |yi ), we have

f (yi |yi ) =
{

σiΦ

(
α
√
Bidi

√
1 + α2(1 − Bi )

)}−1
1√
Di

×
∫ +∞

−∞
φ

(
yi − θi√

Di

)

φ

(
θi − μi

σi

)

Φ

(

α
√
1 − Bi

θi − μi

σi
+ α

√
Bidi

)

dθi .

It can now be shown, after some simplification, that

(yi − θi )
2

Di
+ (θi − μi )

2

σ 2
i

= (θi − μθ i )
2

σ 2
θ i

+ (yi − μi )
2

σ 2
i + Di

,
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where μθ i = (Diμi + σ 2
i yi )/(σ

2
i + Di ) and σ 2

θ i = σ 2
i Di/(σ

2
i + Di ). Thus, we have

f (yi |yi ) = 1√
Di

φ

⎛

⎝ yi − μi
√

σ 2
i + Di

⎞

⎠

{

σiΦ

(
α
√
Bidi

√
1 + α2(1 − Bi )

)}−1

×
∫ +∞

−∞
φ

(
θi − μθ i

σθ i

)

Φ

(

α

√
Di

2σ 2 + Di

θi − μθ i

σθ i
+ α fi

)

dθi

=
{

σiΦ

(
α
√
Bidi

√
1 + α2(1 − Bi )

)}−1
σθ i√
Di

φ

⎛

⎝ yi − μi
√

σ 2
i + Di

⎞

⎠

×Φ

(
α fi

√
1 + α2Di/(2σ 2 + Di )

)

,

where fi = {2σ/(2σ 2 + Di )}(yi − x ′
iβ). From here it is easy to derive (18).
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