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Abstract
This paper deals with parametric inference about the independent and identically dis-
tributed discrete lifetimes of components of a k-out-of-n system. We consider the
maximum likelihood estimation assuming that the available data consists of compo-
nent failure times observed up to and including the moment of the breakdown of the
system. First, we provide general conditions for the almost sure existence of a strongly
consistent sequence of maximum likelihood estimators (MLE’s). Then, we focus on
three typical discrete failure distributions—the Poisson, binomial and negative bino-
mial distributions—and prove that in these cases the MLE’s are unique, provided they
exist, and that they are strongly consistent. Finally, we complete our results by Monte
Carlo simulation study. Interestingly, the inference considered in the paper can be
viewed as equivalent to one based on Type-II right censored discrete data. Therefore,
our results can as well be applied to the case when Type-II right censored sample from
a discrete distribution is observed.
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1 Introduction

An important class of systems studied in reliability theory is one containing so called
k-out-of-n systems. Such systems consist of n elements and work as long as at least
k of the elements function. As technical structures having some redundancy, they
find various applications in engineering when highly reliable products are needed, for
example, they are used in design of servers in internet service or in design of automotive
and aeronautic engines. Consequently, they have attracted substantial interest—a vast
literature on k-out-of-n systems is available. One stream of this literature concerns
inference about component lifetimes based on failure times in a k-out-of-n system or
in a sample of k-out-of-n systems.Classicworks ofHalperin (1952) andBhattacharyya
(1985) describe asymptotic properties of MLE’s based on failure times of components
of a k-out-of-n system. Generalizations of this results to the case when some of the
failure times are censored can be found, among others, in Kong and Fei (1996) and
Lin and Balakrishnan (2011). There are also works developing estimation methods for
the distribution of components in a system based on a sample of lifetimes of systems;
see, for example, Ng et al. (2012), Navarro et al. (2012), Hermanns and Cramer (2018)
and the references therein.

All the above-mentioned results, however, concern only the case when the compo-
nent lifetimes have absolutely continuous distributions. Yet, in some applications the
continuity assumption is not adequate. This is the case, for instance, when the system
performs a task repetitively and its components have certain probabilities of breakdown
upon each cycle or when the component lifetimes represent the numbers of turn-on and
switch-off up to failures. While reliability properties of k-out-of-n systems consisting
of components with discrete lifetimes have been studied over the years; see Weiss
(1962), Young (1970), Tank and Eryilmaz (2015), Dembińska (2018), Dembińska
and Goroncy (2020) and Dembińska et al. (2019), to the best of our knowledge results
concerning inference about discrete lifetimes of components based on failure times in
k-out-of-n systems are not known.

The aim of this paper is to fill in this gap in the literature. We focus on maximum
likelihood estimation of an unknown parameter of discrete distribution of component
lifetimes of a k-out-of-n system. The estimation is based on failure times of com-
ponents observed up to and including the system breakdown. In Sect. 2, we set our
notation, describe the inference problem under consideration and point out that this
problem can be viewed as equivalent to inference from a Type-II right censored sam-
ple. Next, in Sect. 3, we present a theorem asserting that under some mild regularity
conditions the MLE’s of interest exist almost surely for all sufficiently large n and
are strongly consistent. The proof of this theorem is postponed to the “Appendix”. In
Sect. 4, we choose three typical discrete failure distributions—Poisson, binomial and
negative binomial—to be the distributions of lifetimes of the components and show
that then the MLE’s are unique if they exist, their values can be obtained easily by
numerical methods and obtainedMLE’s are strongly consistent. In Sect. 5, we perform
Monte Carlo simulation study to investigate finite-sample properties of MLE’s dis-
cussed in Sect. 4. Section 6 contains an illustrative example based on real failure data
while in Sect. 7 we give concluding remarks and problems for future investigations.
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2 Maximum likelihood point estimation

Let F = {F(θ, ·), θ ∈ Θ} be a family of discrete cumulative distribution func-
tions (cdf’s), where θ ∈ R is the parameter of interest. Consider a k-out-of-n system
which consists of n two-state (i.e., working or failed) components. We assume that
the lifetimes of the components, T1, T2, . . . , Tn , are independent and identically dis-
tributed (iid) random variables (rv’s) with the common cdf F(θ, ·) ∈ F , so that
F(θ, t) = Pθ (T1 ≤ t). Next, we denote f (θ, t) = Pθ (T1 = t), i.e., f (θ, ·) is the
probability mass function (pmf) corresponding to F(θ, ·), and F(θ, t) = 1− F(θ, t).
Moreover, for simplicity of notation we require that for any θ ∈ Θ the support of
F(θ, ·), denoted by supp F(θ, ·), is of the form {0, 1, . . . , M}, where M ≤ ∞. Yet,
it is easily seen that the results of Sect. 3 hold more generally in the case when
supp F(θ, ·) = {x0, x1, . . . , xM }, M ≤ ∞, where x0 < x1 < · · · < xM and if
M = ∞ then the sequence (xn, n ≥ 0) has no accumulation points.

Our aim is to use themaximum-likelihood approach to estimate the unknownparam-
eter θ from the failure data collected up to and including a breakdown of a k-out-of-n
system. Let T1: n ≤ T2: n ≤ · · · ≤ Tn: n denote the order statistics corresponding to
T1, T2, . . . , Tn . A k-out-of-n systemworks as long as at least k of its components work.
It fails when the (n − k + 1)th component failure occurs. Thus, the lifetime of k-out-
of-n system is the (n − k + 1)th smallest of the component lifetimes, i.e., Tn−k+1: n .
However, in the case of discretely operating elements if k �= 1 then at the moment of
the system failure we do not necessarily have exactly n−k+1 inoperative elements—
due to possible ties between component failures with non-zero probability the number
of inoperative elements can be larger than n−k+1; see Davies and Dembińska (2019)
for details. Therefore, collecting data up to and including a breakdown of a k-out-of-n
system we can register not only the values of T1: n, T2: n, . . . , Tn−k+1: n but also the
value of S—the number of failed components at the moment of failure of the system.
This means that we observe

S, T1: n, T2: n, . . . , Tn−k+1: n,

or equivalently,

S, T1: n, T2: n, . . . , TS: n .

To express in a closed form the joint pmf of S, T1: n, T2: n, . . . , TS: n ,

Pθ (S = s, T1: n = t1, . . . , Ts: n = ts),

and consequently to find the likelihood function of interest we follow an approach
proposed by Gan and Bain (1995) based on the concept of tie-runs. Let s ∈ {n −
k + 1, . . . , n} and t1 ≤ t2 ≤ · · · ≤ ts have m tie-runs with lengths z1, z2, . . . , zm
(z1 + · · · + zm = s), i.e.,

t1 = · · · = tz1 < tz1+1 = · · · = tz1+z2 < · · · < tz1+···+zm−1+1 = · · · = tz1+···+zm (= ts).
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410 A. Dembińska, K. Jasiński

Then the observed likelihood function of S, T1: n, T2: n, . . . , TS: n , given by

L(θ) = L(θ; s, t1, . . . , ts)
= Pθ (S = s, T1: n = t1, . . . , Tn−k+1: n = tn−k+1, . . . , Ts: n = ts)

= Pθ (S = s, T1: n = t1, . . . , Tn−k+1: n = tn−k+1, . . . , Ts: n = ts, Ts+1: n > ts),

where Tn+1: n = ∞, has the form

L(θ) = n!
(n − s)!∏m

i=1 zi !

(
m∏

i=1

[ f (θ, tz1+···+zi )]zi
)
[
F(θ, ts)

]n−s
(1)

if s ∈ {n − k + 1, . . . , n} and tn−k+1 = · · · = ts . Otherwise the right-hand side of (1)
reduces to 0.

If the derivatives ∂
∂θ

f (θ, t), t ∈ {0, 1, . . . , M}, exist, then the observed likelihood
equation ∂

∂θ
log L(θ; s, t1, . . . , ts) = 0 can be written as

m∑

i=1

zi
∂ log f (θ, tz1+···+zi )

∂θ
+ (n − s)

∂ log F(θ, ts)

∂θ
= 0, (2)

where ∂
∂θ

log F(θ, ts) is defined to be equal to 0 if ts = M < ∞.
In Sect. 3, we will prove that under some simple regularity conditions concerning

the family F , the likelihood equation

∂

∂θ
log L(θ; S, T1: n, . . . , Ts: n) = 0 (3)

with Pθ -probability 1, for all sufficiently large n, has a solution θ̂n such that the
sequence (θ̂n, n ≥ 1) of estimators of θ is strongly consistent. Next, in Sect. 4, we
will show that for three families of typical discrete lifetime distributions the MLE of
the parameter of interest is unique. Hence, by the result of Sect. 3 in the case of the
three families the sequence of MLE’s is strongly consistent.

It is worth pointing out that the results presented in this paper, even though formu-
lated in terms of inference from failure times of components of a k-out-of-n system up
to and including its breakdown, can as well be applied to inference based on Type-II
right censored discrete data. Indeed, during an experiment in which Type-II right cen-
soring is applied n items with iid lifetimes T1, T2, . . . , Tn are placed on a test. Due to
budget or time limitations or on account of ethical decisions in biomedical problems,
the experiment is terminated at the moment of the r th failure, where r < n is fixed
in advance. If the lifetimes Ti , i = 1, . . . , n, are discrete rv’s, then with non-zero
probability it may happen that at the moment of the r th failure more than r items
are broken. Clearly, in order not to lose any information it is reasonable to make the
inference not only from the values of T1: n, T2: n, . . . , Tr : n but to include also the value
of S—the number of failed items at the time of the r th failure. Therefore, the problem
is equivalent to inference based on S, T1: n, T2: n, . . . , Tr : n , and with r = n−k+1 it is
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Maximum likelihood estimators based on discrete component… 411

exactly the same problem as inference from failure times of components of a k-out-of-
n system up to and including its breakdown. To the best of our knowledge maximum
likelihood inference for discrete distributions based on censored data has not been
studied before in the literature.

3 Strong consistency

The standard theorems of asymptotic theory of MLE’s constructed from iid obser-
vations do not apply to our problem in which we make inference from dependent
and non-identically distributed rv’s S, T1: n, . . . , Tn−k+1: n . However, as will be shown
later on, the basic machinery of proving that under some regularity conditions MLE’s
from iid observations are strongly consistent can be modified to derive the following
analogous result for MLE’s obtained from failure data of a k-out-of-n system.

Theorem 1 Assume that the family F = {F(λ), λ ∈ Θ} satisfies the following three
conditions:

(A1) Θ ⊂ R is an open interval (possibly infinite);
(A2) for all λ ∈ Θ and j ∈ {0, 1, . . . , M}, ∂3 f (λ, j)

∂λ3
exists and is a continuous

function of λ ∈ Θ;
(A3) ∂ log f (λ,0)

∂λ
�= 0 for all λ ∈ Θ .

Let T1, . . . , Tn be iid rv’s with cdf F(θ, ·) for some θ ∈ Θ . If k = k(n) = [(1− q)n],
n ≥ 1, where q ∈ (0, 1) and [x] stands for the largest integer not exceeding x, then
there exists a sequence (θ̂n, n ≥ 1) such that, with Pθ -probability 1,

– for all sufficiently large n, θ̂n is a solution to the likelihood equation (3);
– θ̂n → θ as n → ∞.

Proof See the “Appendix”. 	

Theorem 1 can be used in practice, because for a given family F = {F(θ, ·),

θ ∈ Θ} we can check if its assumptions are satisfied without knowing the value of the
true parameter θ . In particular, this theorem will allow us to deduce that the MLE’s
obtained in the next section are strongly consistent.

4 MLE’s for some specific families of distributions

In this section, we will consider the Poisson Poiss(θ), θ > 0, binomial b(w, θ),
θ ∈ (0, 1), and negative binomial nb(w, θ), θ ∈ (0, 1), distributions as possible
component lifetime distributions of a k-out-of-n system. These three distributions,
besides the geometric one, are listed by Barlow and Proschan (1996) as typical discrete
failure distributions widely used in reliability engineering. We will prove that in the
case of all these discrete distributions if theMLE of the parameter θ based on observed
values of S, T1: n, . . . , TS: n exists then it is unique. Hence, Theorem 1 will guarantee
that in these cases the MLE of θ exists almost surely for sufficiently large n and is
strongly consistent.
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412 A. Dembińska, K. Jasiński

It is worth pointing out that, since the geometric distribution is a special case
of the negative binomial distribution, results proved here for the negative binomial
lifetimes of components hold in particular for geometrically distributed lifetimes. Yet
the geometric case is easier—then a closed-form formula for the MLE of θ can be
obtained and hence not only asymptotic but also exact distributional properties of this
estimator can be given. For this purpose, the geometric case will be considered in
details in a separate paper.

To prove results of this section, we will make use of the following two lemmas.
The first one is taken from Pólya and Szegő (1998, p. 41).

Lemma 1 Let the radius of convergence of the power series
∑∞

i=0 αi x i be ρ ∈ (0,∞],
let the number of its zeros in the interval 0 < x < ρ be Z and let the number of changes
of sign in the sequence of its coefficients be C. Then Z ≤ C.

The second lemma concerns linear combinations of Bernstein polynomials and was
first proved by Schoenberg (1959). Recall that Bernstein polynomials of degree w are
defined by Bj,w(x) = (wj

)
x j (1 − x)w− j , x ∈ (0, 1), j = 0, . . . , w.

Lemma 2 The number of zeros of a given nonzero linear combination of Bernstein
polynomials B(x) =∑n

i=0 βi Bi,n(x), x ∈ (0, 1), does not exceed the number of sign
changes of the sequence β = (β0, . . . , βn). The first and the last signs of the sum are
identical to the signs of the first and the last nonzero element of β, respectively.

Fromnow onwewill assume that the observed values of S, T1: n, . . . , TS: n are equal
to s, t1, . . . , ts , respectively, where s ∈ {n − k + 1, . . . , n}, tn−k+1 = · · · = ts and the
chain t1 ≤ t2 ≤ . . . ≤ ts have m tie-runs with lengths z1, z2, . . . , zm (z1 +· · ·+ zm =
s). Furthermore, for simplicity of notation, we will write

δ = z1tz1 + z2tz1+z2 + · · · + zmts . (4)

4.1 Poisson distribution

Let the component lifetimes Ti , i = 1, . . . , n, have the Poisson distribution Poiss(θ)

with a pmf

f (θ, t) = e−θ θ t

t ! , t ∈ {0, 1, 2, . . .}, (5)

where θ > 0 is the parameter to estimate. Then by (1) and (4) the observed likelihood
function of S, T1: n, . . . , TS: n can be written as

L(θ) = C1e
−θnθδ

⎛

⎝
∞∑

j=ts+1

θ j

j !

⎞

⎠

n−s

, θ > 0,

where C1 does not depend on θ . Simple calculations show that

d

dθ
log L(θ) = −n + δ

θ
+ (n − s)

∞∑

j=ts

θ j

j !

⎛

⎝
∞∑

j=ts+1

θ j

j !

⎞

⎠

−1

, θ > 0. (6)
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From (6) it is easily seen that if s = n, then the function L(θ), θ > 0, has a global
maximum at δ/n if δ > 0, and does not attain a global maximum if δ = 0. Hence, the
MLE does not exist when T1 = T2 = · · · = Tn = 0.We see at once that the probability
of such an event, e−nθ , decreases to 0 as n → ∞. It is worth also noting that if s = n
and δ > 0, that is if we observe the following event {Tn−k+1: n = Tn−k+2: n = · · · =
Tn: n > 0}, then the MLE is just equal to the sample mean.

It remains to consider the case when s ∈ {n − k + 1, . . . , n − 1}. For this purpose,
note that (6) can be rewritten as

d

dθ
log L(θ)

=
⎛

⎝
∞∑

j=ts+1

θ j+1

j !

⎞

⎠

−1⎛

⎝−n
∞∑

j=ts+1

θ j+1

j ! + δ

∞∑

j=ts+1

θ j

j ! + (n − s)
∞∑

j=ts

θ j+1

j !

⎞

⎠

=
⎛

⎝
∞∑

j=ts+1

θ j+1

j !

⎞

⎠

−1⎧
⎨

⎩

(
δ + (n − s)(ts + 1)

) θ ts+1

(ts + 1)! +
∞∑

j=ts+2

(δ − js)
θ j

j !

⎫
⎬

⎭

=
⎛

⎝
∞∑

j=ts+1

θ j+1

j !

⎞

⎠

−1

h(θ), say. (7)

From (7) it is clear that d
dθ log L(θ) has the same sign as h(θ). But h(θ) can be

represented as

h(θ) =
∞∑

j=0

αs,t1,...,ts ( j)θ
j , θ > 0, (8)

where

αs,t1,...,ts ( j) =
⎧
⎨

⎩

0, j = 0, . . . , ts,(
(n − s)(ts + 1) + δ

)
/( j !), j = ts + 1,

(δ − s j)/( j !), j = ts + 2, ts + 3, . . . .

We see at once that
(
(n − s)(ts + 1) + δ

)
/( j !) > 0 since s < n and δ ≥ 0. Moreover,

(δ − s j)/( j !) < 0 for j ≥ ts + 2, because

δ − s j = z1(tz1 − j) + z2(tz1+z2 − j) + · · · + zm(ts − j)

and tz1+···+zi − j < 0 for i = 1, . . . ,m and j ≥ ts + 2, which is due to the fact
that 0 ≤ tz1 < tz1+z2 < · · · < tz1+···+zm = ts . Consequently, the number of sign
changes in the sequence (αs,t1,...,ts ( j), j ≥ 0) equals one. The radius of convergence
of the power series in (8) is ρ = ∞. Therefore, Lemma 1 guarantees that the number
of zeros of h(θ) in the interval (0,∞) is at most one. But from (7) we see that
h(θ) = (n − s)θ ts+1/(ts !) + (δ − sθ)

∑∞
j=ts+2 θ j/( j !) and consequently
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414 A. Dembińska, K. Jasiński

h (δ/s) = (n − s)
(δ/s)ts+1

ts ! > 0 (9)

and

h

(
δ + (n − s)(ts + 1)

s

)

= −(n − s)(ts + 1)
∞∑

j=ts+2

(
δ + (n − s)(ts + 1)

) j

s j j ! < 0.

(10)
Hence, h(θ) has exactly one zero in (0,∞), which by (7) shows that the likelihood
equation

d

dθ
log L(θ) = 0 (11)

has exactly one solution in (0,∞). Moreover, the function L(θ) is first increasing,
then decreasing, which implies it attains its global maximum and the observed MLE
of θ , being the solution to (11), is unique. From (9) and (10) we know that the observed

MLE of θ belongs to the finite interval
(

δ
s ,

δ+(n−s)(ts+1)
s

)
and therefore can be found

easily through numerical methods.
Thus, we have proved the following theorem

Theorem 2 From the Poisson distribution with pmf given in (5), suppose we have
observed failure times of components of a k-out-of-n system up to and including the
breakdown of the system S = s, T1: n = t1, . . . , Ts: n = ts .

(1) Then θ̂ML,n(s, t1, . . . , ts), the observed MLE of θ , is unique provided it exists.
More precisely, we have

– θ̂ML,n(s, t1, . . . , ts) does not exists if s = n and δ = 0 (i.e., if t1 = t2 = · · · =
tn = 0),

– θ̂ML,n(s, t1, . . . , ts) = δ/n if s = n and δ > 0,

– θ̂ML,n(s, t1, . . . , ts) is unique, belongs to the interval
(

δ
s ,

δ+(n−s)(ts+1)
s

)
and

hence can be obtained easily by numerical methods if s ∈ {n − k + 1,
. . . , n − 1}.

(2) Moreover, by Theorem 1, if k = [np], 0 < p < 1, then almost surely, for all
sufficiently large n, θ̂ML,n = θ̂ML,n(S, T1: n, . . . , TS: n) exists and θ̂ML,n is a
strongly consistent estimator of θ .

4.2 Binomial distribution

Now suppose that the component lifetimes Ti , i = 1, . . . , n, of a k-out-of-n system
have the binomial distribution b(w, θ) with the following pmf

f (θ, t) =
(

w

t

)

θ t (1 − θ)w−t , t ∈ {0, 1, . . . , w}, (12)
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where w ∈ {1, 2, . . .} is known and θ ∈ (0, 1) is the parameter to estimate. With the
notation (4), the observed likelihood function (1) is given by

L(θ) = C2θ
δ(1 − θ)ws−δ

⎡

⎣
w∑

j=ts+1

(
w

j

)

θ j (1 − θ)w− j

⎤

⎦

n−s

, θ ∈ (0, 1), (13)

where C2 does not depend on θ . An easy computation shows that, for θ ∈ (0, 1),

d

dθ
log L(θ) = δ

θ
−ws − δ

1 − θ
+(n−s)

∑w
j=ts+1( j − wθ)

(
w
j

)
θ j−1(1 − θ)w− j−1

∑w
j=ts+1

(
w
j

)
θ j (1 − θ)w− j

. (14)

If s = n then we see from (14) that the function L(θ), θ ∈ (0, 1), has a global
maximum at δ/(wn) if δ > 0, and does not attain a global maximum if δ = 0. Hence,
similarly to the Poisson case, the MLE does not exist when T1 = T2 = · · · = Tn = 0
and it is easily seen that the probability of non-existence, (1 − θ)nw, approaches 0 as
n → ∞. Moreover, if Tn−k+1: n = Tn−k+2: n = · · · = Tn: n > 0, then the MLE is
equal to the sample mean divided by w.

The case of s ∈ {n − k + 1, . . . , n − 1} requires more effort. Note that (14) can be
rewritten as

d

dθ
log L(θ) = (1 − θ)−1

⎧
⎨

⎩

w∑

j=ts+1

(
w

j

)

θ j (1 − θ)w− j

⎫
⎬

⎭

−1

g(θ), (15)

where

g(θ) =
{
1 − θ

θ
δ − (ws − δ)

} w∑

j=ts+1

(
w

j

)

θ j (1 − θ)w− j

+ (1 − θ)(n − s)
w∑

j=ts+1

(
w

j

)

( j − wθ) θ j−1(1 − θ)w− j−1.

Clearly g(θ) has the same sign as d
dθ log L(θ). Moreover, it is easy to check that

g(θ) can be represented as the following linear combination of Bernstein polynomials
Bj,w(x) = (wj

)
x j (1 − x)w− j , x ∈ (0, 1), j = 0, 1, . . . , w,
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g(θ) =
w−1∑

j=ts

(

δ
w − j

j + 1
+ (n − s)(w − j)

)

Bj,w(θ)

−
w∑

j=ts+1

(
(ws − δ) + (n − s)(w − j)

)
Bj,w(θ)

=
w∑

j=0

βs,t1,...,ts ( j)Bj,w(θ), θ ∈ (0, 1),

where

βs,t1,...,ts ( j) =

⎧
⎪⎪⎨

⎪⎪⎩

0, j = 0, . . . , ts − 1,
w−ts
ts+1

(
δ + (n − s)(ts + 1)

)
, j = ts,

δ(w+1)−ws( j+1)
j+1 , j = ts + 1, . . . , w − 1.

−(ws − δ), j = w.

The coefficient βs,t1,...,ts (ts) is positive since ts < w when s < n. Now for j =
ts +1, . . . , w−1 we check that βs,t1,...,ts ( j) < 0, which is equivalent to the inequality

δ(w + 1) − ws( j + 1)

= z1{w(tz1 − j) + (tz1 − w)} + · · · + zm{w(ts − j) + (ts − w)} < 0. (16)

But
tz1 < tz1+z2 < · · · < ts < w, (17)

which shows that for j = ts + 1, . . . , w − 1 the expressions in the braces in (16)
are negative and hence (16) holds. Finally, we verify that βs,t1,...,ts (w) < 0. This
corresponds to the inequality

z1(tz1 − w) + z2(tz1+z2 − w) + · · · + zm(ts − w) < 0,

which is true because of the relation (17). Summarizing we have proved that

sgn(βs,t1,...,ts ( j)) =
⎧
⎨

⎩

0, j = 0, . . . , ts − 1,
+ 1, j = ts,
− 1, j = ts + 1, . . . , w.

Lemma 2 now ensures that the sign of the derivative (15) is first positive and
then negative on (0, 1). From this we conclude that the observed likelihood function
(13) is first increasing and then decreasing there. Hence, it has a global maximum in
(0, 1) which is attained at the point being the only solution to the observed likelihood
equation. Therefore, the observed MLE of θ exists and is unique.

Thus, we have the following analogue of Theorem 2.
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Theorem 3 From the binomial distribution with pmf given in (12), suppose we have
observed failure times of components of a k-out-of-n system up to and including the
breakdown of the system S = s, T1: n = t1, . . . , Ts: n = ts .

(1) Then θ̂ML,n(s, t1, . . . , ts), the observed MLE of θ , is unique provided it exists.
More precisely, we have

– θ̂ML,n(s, t1, . . . , ts) does not exists if s = n and δ = 0,
– θ̂ML,n(s, t1, . . . , ts) = δ

nw
if s = n and δ > 0,

– θ̂ML,n(s, t1, . . . , ts) is unique and can be obtained easily by numerical methods
if s ∈ {n − k + 1, . . . , n − 1}.

(2) Moreover, conclusion (2) of Theorem 2 holds.

4.3 Negative binomial distribution

Consider a k-out-of-n system composed of n components whose lifetimes Ti , i =
1, . . . , n, have the negative binomial distribution nb(w, θ) with a pmf

f (θ, t) =
(
t + w − 1

w − 1

)

θ t (1 − θ)w, t ∈ {0, 1, 2, . . .}, (18)

where w ∈ {1, 2, . . .} is known and θ ∈ (0, 1) is the parameter to estimate. Then the
observed likelihood function (1) takes on the form

L(θ) = C3θ
δ(1 − θ)sw

⎧
⎨

⎩
1 −

ts∑

j=0

(
j + w − 1

w − 1

)

θ j (1 − θ)w

⎫
⎬

⎭

n−s

= C3θ
δ(1 − θ)nw

⎧
⎨

⎩

∞∑

j=ts+1

(
j + w − 1

w − 1

)

θ j

⎫
⎬

⎭

n−s

, θ ∈ (0, 1), (19)

whereC3 does not depend on θ and δ is given in (4). The observed likelihood equation
(2) becomes

δ

θ
− nw

1 − θ
+ (n − s)

∞∑

j=ts+1

(
j + w − 1

w − 1

)

jθ j−1

⎧
⎨

⎩

∞∑

j=ts+1

(
j + w − 1

w − 1

)

θ j

⎫
⎬

⎭

−1

= 0,

(20)
or equivalently

{δ(1−θ)−nwθ}
∞∑

j=ts+1

(
j + w − 1

w − 1

)

θ j+(1−θ)(n−s)
∞∑

j=ts+1

(
j + w − 1

w − 1

)

jθ j = 0.

(21)
If s = n and δ = 0, then the function L(θ) given in (19) is decreasing and consequently
the observedMLEof θ does not exist. It is obvious that the probability of non-existence,
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P(T1 = T2 = · · · = Tn = 0) = (1− θ)nw, decreases to 0 as n → ∞. Otherwise, that
is when s < n or δ > 0, we have

lim
θ↘0

L(θ) = 0 = lim
θ↗1

L(θ)

and, since L(θ), θ ∈ (0, 1), is continuous and positive, it has a global maximum. In
the case when s = n and δ > 0 we easily see from (20) that this global maximum is
attained at θ = δ/ (nw + δ) and hence that the observed MLE of θ is equal to

θ̂ML,n(s, t1, . . . , ts) = δ

nw + δ
= t̄

w + t̄
if s = n and δ > 0,

where t̄ is the observed sample mean.
It remains to consider the case when s ∈ {n − k + 1, . . . , n − 1}. For this purpose,

note that the left-hand side of (21) can be represented as the following power series

∞∑

j=ts+1

(
δ + j(n − s)

)
(
j + w − 1

w − 1

)

θ j

−
∞∑

j=ts+2

(δ + nw + (n − s)( j − 1))

(
j + w − 2

w − 1

)

θ j

=
∞∑

j=0

γs,t1,...,ts ( j)θ
j , (22)

where

γs,t1,...,ts ( j) =

⎧
⎪⎨

⎪⎩

0, j = 0, . . . , ts,(
w+ts
w−1

)(
δ + (n − s)(ts + 1)

)
, j = ts + 1,

( j+w−2
w−1

) δ(w−1)−sw j
j , j = ts + 2, ts + 3, . . . .

Hence

sgn(γs,t1,...,ts ( j)) =
⎧
⎨

⎩

0, j = 0, . . . , ts,
+ 1, j = ts + 1,
− 1, j = ts + 2, ts + 3, . . . .

(23)

Indeed, if s < n then δ + (n − s)(ts + 1) > 0, which implies γs,t1,...,ts (ts + 1) > 0.
Moreover, if j ≥ ts + 2 then j > ts > · · · > tz1+z2 > tz1 and consequently

δ(w − 1) − sw j = z1
(
(w − 1)tz1 − w j

)

+ z2
(
(w − 1)tz1+z2 − w j

)+ · · · + zm
(
(w − 1)ts − w j

)
< 0,

which shows that γs,t1,...,ts ( j) < 0 for j ≥ ts + 2.
Since the radius of convergence of the power series in (22) is ρ = 1, from Lemma 1

and (23) we obtain that the left-hand side of (21) [or equivalently of (20)] considered
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as a function of θ has at most one zero in the interval (0, 1). But from the previous
discussion, we know that the function L(θ), θ ∈ (0, 1), has a global maximum.
Therefore, the left-hand side of (20) has exactly one zero in (0, 1) and this zero is a
point at which the likelihood function L(θ) attains its global maximum. The observed
MLE of θ is unique and can be obtained easily by numerical methods.

Thus, we have proved the following result.

Theorem 4 From the negative binomial distributionwith pmf given in (18), supposewe
have observed failure times of components of a k-out-of-n system up to and including
the breakdown of the system S = s, T1: n = t1, . . . , Ts: n = ts .

(1) Then conclusion (1) of Theorem 3 holds with “ δ
nw

” replaced by “ δ
nw+δ

”.
(2) Moreover, conclusion (2) of Theorem 2 is valid.

5 Monte Carlo simulation study

From Sect. 4 we know that in the case of Poisson Poiss(θ), binomial b(w, θ) and
negative binomial nb(w, θ) distributions the maximum likelihood estimators of θ

based on failure times of components of a k-out-of-n system observed up to and
including the breakdown of the system are strongly consistent as n → ∞ and k =
[pn], where p ∈ (0, 1) is fixed. The aim of this section is to investigate finite-sample
properties of these estimators via Monte Carlo simulation study. For this purpose we
assume Poisson Poiss(θ = 1), binomial b(w = 4, θ = 0.5) and negative binomial
nb(w = 5, θ = 0.15) component lifetimes. The parameters of these distributionswere
chosen so that the corresponding variances are equal (in the case of the Poisson and
binomial distributions) or approximately equal (in the case of the negative binomial
distribution) to one. The almost equal variances allow to make comparisons between
the three considered cases. Next, for each of the chosen distributions and for some
selected values of n and k wegenerate N = 1000 times the failure times of components
of a k-out-of-n system observed up to and including the system breakdown obtaining
the data of the form s(i), t (i)1 ≤ · · · ≤ t (i)n−k+1 = · · · = t (i)

s(i)
, i = 1, . . . , N . For

each i = 1, . . . , N we then compute θ̂
(i)
ML, the maximum likelihood estimator of θ ,

using numerical methods if necessary. More precisely, to solve the corresponding
likelihood equation we use the method of finding the unique root of a continuous
function in a finite interval, such as the bisection method. Finally, we compute the
mean and standard deviation of θ̂

(i)
ML, i = 1, . . . , N . These values can be treated as

the simulated expectation and standard deviation of θ̂ML. The obtained results are
presented in Tables 1, 2 and 3. It is interesting that during the simulations we did
not encounter samples with non-existing MLE’s. This was so because for the cases
considered in the tables the probabilities of non-existence are very small as Table 4
shows.

In the simulation study we observe that even for small n (n = 15) the bias of θ̂ML
is small—the simulated expectations of θ̂ML are close to the true values of θ . As n and
k increases in such a way that k/n is kept fixed both the bias and standard deviation of
θ̂ML decreases. Moreover, from Tables 1 and 3 we see that for the same values of n the
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Table 1 Simulated means and standard deviations of θ̂ML for various values of n and k when component
lifetimes have the Poiss(θ = 1) distribution

The case when k = 1
3n The case when k = 2

3 n

n k n − k + 1 Mean SD n k n − k + 1 Mean SD

15 5 11 1.0030 0.2646 15 10 6 0.9789 0.2821

30 10 21 0.9976 0.1896 30 20 11 0.9806 0.2038

45 15 31 1.0022 0.1514 45 30 16 0.9848 0.1738

60 20 41 0.9988 0.1317 60 40 21 0.9851 0.1421

120 40 81 0.9988 0.0964 120 80 41 0.9884 0.1070

Table 2 Simulated means and standard deviations of θ̂ML for various values of n and k when component
lifetimes have the binomial b(w = 4, θ = 0.5) distribution

The case when k = 11
16 n The case when k = 2

3 n

n k n − k + 1 Mean SD n k n − k + 1 Mean SD

16 11 6 0.4974 0.0687 15 10 6 0.4983 0.0705

32 22 11 0.4975 0.0483 30 20 11 0.4985 0.0488

48 33 16 0.4978 0.0404 45 30 16 0.4989 0.0411

64 44 21 0.4980 0.0341 60 40 21 0.4990 0.0346

128 88 41 0.4983 0.0236 120 80 41 0.4990 0.0252

Table 3 Simulated means and standard deviations of θ̂ML for various values of n and k when component
lifetimes have the negative binomial distribution nb(w = 5, θ = 0.15) distribution

The case when k = 1
3n The case when k = 2

3 n

n k n − k + 1 Mean SD n k n − k + 1 Mean SD

15 5 11 0.1515 0.0180 15 10 6 0.1538 0.0218

30 10 21 0.1510 0.0126 30 20 11 0.1516 0.0152

45 15 31 0.1504 0.0099 45 30 16 0.1516 0.0120

60 20 41 0.1502 0.0087 60 40 21 0.1509 0.0107

Table 4 Selected approximate values of probabilities of non-existence of MLE (formulas for these proba-
bilities are taken from Sect. 4)

Distribution Poiss(θ = 1) b(w = 4, θ = 0.5) nb(w = 5, θ = 0.15)
Formula e−nθ = e−n (1 − θ)nw = 16−n (1 − θ)nw = (0.85)5n

n = 15 3 × 10−7 9 × 10−19 5 × 10−6

n = 30 9 × 10−14 8 × 10−37 3 × 10−11

n = 60 9 × 10−27 6 × 10−73 7 × 10−22
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bias and standard deviation are smaller when n−k+1 is larger. This is so because the
single experiment terminates at the moment of the (n − k + 1)th component failure
and larger n − k + 1 allows to collect more information and thus to obtain a better
precision of estimation.

In Table 2, we see a surprising situation. For the same values of n−k+1 we obtain
larger bias when n is larger. This may not agree with our intuition—larger n means
that more elements are involved in a single experiment and thus we may expect a
better estimation. Yet this is not the case. The reason is that if k = k(n) = [(1− q)n],
where q ∈ (0, 1) is such that the qth quantile of F(θ, ·) is not unique, then due to
(38) the behavior of Tn−k+1: n is unstable causing worse behavior of θ̂ML. Note that
the qth quantile of the binomial b(w = 4, θ = 0.5) distribution is not unique when
1 − q = 11/16 and is so when 1 − q = 2/3. Therefore, biases presented in the left-
hand side of Table 2 are greater than the corresponding ones given in the right-hand
side of this table.

6 Illustrative example

The following are times until breakdown in days of air monitors operated at a
nuclear power plant: T1(ω) = 8, T2(ω) = 26, T3(ω) = 10, T4(ω) = 8, T5(ω) =
29, T5(ω) = 20, T7(ω) = 10, for fixed ω ∈ Ω; see Bickel and Doksum (1977, p.
189). Assuming that the sample is from a Poisson Poiss(θ) population and considering
3 scenarios we will find MLE’s of θ .

1. For an uncensored sample it is well known that the MLE of θ is equal to the
mean. Therefore, based on the whole sample we obtain θ̂

(1)
ML = 15.86.

2. Now suppose that we terminate the experiment at the moment of the r = 5th
failure, that is after 20days. Then we have exactly s = 5 air monitors broken.
Using the inference based on S(ω) = 5, T1: 7(ω) = 8, T2: 7(ω) = 8, T3: 7(ω) =
10, T4: 7(ω) = 10, T5: 7(ω) = 20, we get θ̂ (2)

ML = 12.80.
3. Finally, let us consider censoring by terminating the experiment at the moment

of the r = 3th failure, that is after 10days. Then we observe s = 4 air mon-
itors breakdowns. Thus, we collect the following data: S(ω) = 4, T1: 7(ω) =
8, T2: 7(ω) = 8, T3: 7(ω) = 10, T4: 7(ω) = 10. The MLE based on this data is
equal to θ̂

(3)
ML = 10.87.

We see that the value of the MLE changes significantly when we change the cen-
soring scenario. This unpleasurable feature is due to the fact that n = 7 is very small.
Apparently, to obtain more reliable estimates we need to conduct an experiment with
a larger number of air monitors.

7 Conclusions

In this paper,we have focused onmaximum likelihood inference of the discrete lifetime
distribution of components of a k-out-of-n system in the case when failure times of
the components observed up to and including the moment of the breakdown of the
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system are available. Another problem of interest is the inference in the case when a
sample of lifetimes of k-out-of-n systems and numbers of broken components at the
moment of the system failure is given. We are currently working on the latter problem
and planning to report our findings in a forthcoming paper.

It is also worth pointing out that the new results we obtained for the discrete case
are analogous to that known in the literature for the continuous case in the sense that
in both the cases under some regularity conditions the MLE’s of interest exist almost
surely for sufficiently large n and are strongly consistent. Yet, the regularity conditions
for the two cases are different and in the proofs different techniques are needed.
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Appendix

The Appendix is devoted to the proof of Theorem 1. From now on we assume that θ

is the true value of the unknown parameter. For q ∈ (0, 1), let γ
q
and γ q stand for the

lower and upper qth quantile of F(θ, ·), respectively, i.e.,

γ
q

= inf{x ∈ R: F(θ, x) ≥ q} and γ q = sup{x ∈ R: F(θ, x) ≤ q}. (24)

If γ
q

= γ q then we say that the qth quantile of F(θ, ·) is unique and denote it by γq .

Otherwise we say that this quantile is not unique. For example, if F(θ, ·) is the cdf of
T1 such that Pθ (T1 = 0) = 1 − Pθ (T1 = 1) = 0.5, then

– for q = 0.5 the qth quantile is not unique since γ
0.5

= 0 < γ 0.5 = 1,
– for q �= 0.5 the qth quantile is unique and γq = 0 if q ∈ (0, 0.5) and γq = 1 if
q ∈ (0.5, 1).

The symbol
Pθ−a.s.−→ denotes convergence with Pθ -probability 1. If M = ∞ then M −1

is understood as∞. I (·) stands for the indicator function, that is I (A) = 1 if the event
A occurs and I (A) = 0 otherwise. Moreover, to simplify notation, from now on we
adopt the convention that

∂ j log F(λ, β)

∂λ j

∣
∣
∣
λ=λ0

· I (Ti > β) = 0, j = 1, 2, 3, whenever F(λ0, β) = 0.

We start with a technical lemma which will simplify our discussion.

Lemma 3 Assume that the family F = {F(λ), λ ∈ Θ} satisfies conditions (A1)–(A3)
of Theorem 1. Let T1, . . . , Tn be iid rv’s with cdf F(θ, ·) for some θ ∈ Θ . Then
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(1) ∂3 log f (λ, j)
∂λ3

exists for any λ ∈ Θ and j ∈ {0, 1, . . . , M}, and ∂3 log F(λ, j)
∂λ3

exists
for all λ ∈ Θ and j ∈ {0, 1, . . . , M − 1};

(2) for β = 0, 1, . . . , M,

A(1)
n (β)

Pθ−a.s.−→ 0 and A(2)
n (β)

Pθ−a.s.−→ −vθ (β) as n → ∞, (25)

where

A(1)
n (β) = 1

n

n∑

i=1

{
∂ log f (λ, Ti )

∂λ

∣
∣
∣
λ=θ

· I (Ti ≤ β) + ∂ log F(λ, β)

∂λ

∣
∣
∣
λ=θ

· I (Ti > β)

}

,

(26)

A(2)
n (β) = 1

n

n∑

i=1

{
∂2 log f (λ, Ti )

∂λ2

∣
∣
∣
λ=θ

· I (Ti ≤ β) + ∂2 log F(λ, β)

∂λ2

∣
∣
∣
λ=θ

· I (Ti > β)

}

,

(27)

vθ (β) =
β∑

j=0

[
∂ log f (λ, j)

∂λ

]2 ∣
∣
∣
λ=θ

· f (θ, j) +
[

∂ log F(λ, β)

∂λ

]2 ∣
∣
∣
λ=θ

· F(θ, β)

∈ (0, ∞); (28)

(3) for a fixed neighborhood N (θ) of θ such that the closure of N (θ) is contained
in Θ , and for every c ∈ N (θ), β = 0, 1, . . . , M, n = 1, 2, . . . there exists a rv
Ã(3)
n (β) satisfying |A(3)

n (β)| ≤ Ã(3)
n (β) and

Ã(3)
n (β)

Pθ−a.s.−→ wθ(β) as n → ∞, (29)

where

A(3)
n (β) = 1

n

n∑

i=1

{
∂3 log f (λ, Ti )

∂λ3

∣
∣
∣
λ=c

· I (Ti ≤ β) + ∂3 log F(λ, β)

∂λ3

∣
∣
∣
λ=c

· I (Ti > β)

}

(30)
and wθ(β) ∈ [0,∞) is a non-random constant depending only on θ, β and
N (θ).

Proof Part (1) is a consequence of assumption (A2) and the fact that F(λ, j) =
1 −∑ j

i=0 f (λ, i).
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To prove part (2), note that A(1)
n (β) and A(2)

n (β) are means of iid rv’s with Pθ -
expectations equal to

β∑

j=0

∂ log f (λ, j)

∂λ

∣
∣
∣
λ=θ

· f (θ, j) + ∂ log F(λ, β)

∂λ

∣
∣
∣
λ=θ

· F(θ, β) =
β∑

j=0

∂ f (λ, j)

∂λ

∣
∣
∣
λ=θ

+ ∂F(λ, β)

∂λ

∣
∣
∣
λ=θ

= ∂

∂λ

{ β∑

j=0

f (λ, j) + F(λ, β)

}∣
∣
∣
λ=θ

= ∂

∂λ
(1) = 0

and

β∑

j=0

∂2 log f (λ, j)

∂λ2

∣
∣
∣
λ=θ

· f (θ, j) + ∂2 log F(λ, β)

∂λ2

∣
∣
∣
λ=θ

· F(θ, β)

= ∂2

∂λ2

{ β∑

j=0

f (λ, j) + F(λ, β)

}∣
∣
∣
λ=θ

−
{ β∑

j=0

(
1

f (λ, j)

∂ f (λ, j)

∂λ

)2 ∣
∣
∣
λ=θ

· f (θ, j)

+
(

1

F(λ, β)

∂F(λ, β)

∂λ

)2 ∣
∣
∣
λ=θ

· F(θ, β)

}

= −vθ (β),

respectively. Clearly vθ (β) < ∞.Moreover, assumption (A3) guarantees that vθ (β) >

0. The strong law of large numbers gives (25).

For the proof of part (3) first observe that the continuity of ∂3 f (λ, j)
∂λ3

with respect to

λ ∈ Θ implies that of ∂3 log f (λ, j)
∂λ3

and ∂3 log F(λ, j)
∂λ3

. In particular, these functions are
continuous on the closure of N (θ) and hence bounded there. This means that there
exist functions gθ : {0, 1, . . . , M} → [0,∞) and hθ : {0, 1, . . . , M − 1} → [0,∞)

satisfying

∣
∣
∣
∂3 log f (λ, j)

∂λ3

∣
∣
∣ ≤ gθ ( j) and

∣
∣
∣
∂3 log F(λ, j)

∂λ3

∣
∣
∣ ≤ hθ ( j) for all λ ∈ N (θ).

Consequently, for c ∈ N (θ),

|A(3)
n (β)| ≤ 1

n

n∑

i=1

{gθ (Ti )I (Ti ≤ β) + hθ (β)I (Ti > β)}, (31)

where, in the case of M < ∞, we can define hθ (M) = 0. We will show that Ã(3)
n (β)

can be taken to be equal to the right-hand side of (31). For this purpose, note that the
right-hand side of (31) is a mean of iid rv’s with Pθ -expectation given by

β∑

j=0

gθ ( j) f (θ, j) + hθ (β)F(θ, β). (32)
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Set wθ(β) equal to (32). It is easily seen that wθ(β) ∈ [0,∞). By the strong law of
large numbers, we obtain (29), and the proof of part (3) is complete. 	


Now we are ready to prove Theorem 1. We will divide the proof into two parts.
In the first part we will consider the simpler case when the qth quantile of F(θ, ·) is
unique. In the second part we will deal with the more difficult case when this quantile
is not unique.

Proof of Theorem 1 Part 1 for the case when the qth quantile of F(θ, ·), γq , is unique
Analyzing (1)we see that the log-likelihood function of S, T1, . . . , TS can bewritten

in terms of T1, . . . , Tn as

C +
n∑

i=1

log f (θ, Ti ) · I (Ti ≤ Tn−k+1: n) +
n∑

i=1

log F(θ, Tn−k+1: n) · I (Ti > Tn−k+1: n)

= l(θ; T1, . . . , Tn), say,

where C does not depend on θ . On account of part (1) of Lemma 3, we can use Taylor
expansion of the function ∂

∂λ
l(λ; t1, . . . , tn) around θ to get

1

n

∂

∂λ
l(λ; T1, . . . , Tn) = A(1)

n (Tn−k+1: n) + (λ − θ)A(2)
n (Tn−k+1: n)

+ 1

2
(λ − θ)2A(3)

n (Tn−k+1: n), (33)

where A(i)
n (·), i = 1, 2, 3, are defined in (26), (27) and (30), respectively, and c is a

point between λ and θ .

Now recall that the uniqueness of the qth quantile of F(θ, ·) implies Tn−k+1:n
Pθ−a.s.−→

γq , as n → ∞; see Smirnov (1952). Consequently, since γq is not an accumulation
point of the support of F(θ, ·), we must have, with Pθ -probability 1,

Tn−k+1:n = γq for all sufficiently large n; (34)

see Dembińska (2012, proof of Proposition 2.1). Therefore, with Pθ -probability 1,
A(k)
n (Tn−k+1: n) = A(k)

n (γq) for all sufficiently large n, k = 1, 2, 3, which implies

A(k)
n (Tn−k+1: n) − A(k)

n (γq)
Pθ−a.s.−→ 0, k = 1, 2, 3. (35)

Using (35) and part (2) of Lemma 3 we get

A(1)
n (Tn−k+1: n)

Pθ−a.s.−→ 0 and A(2)
n (Tn−k+1: n)

Pθ−a.s.−→ −vθ (γq) as n → ∞, (36)

where vθ (·) is given by (28) and vθ (γq) ∈ (0,∞). Fix a neighborhood N (θ) of θ such
that the closure of N (θ) is contained in Θ . Assuming that (33) holds for λ ∈ N (θ)
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and applying (35) and part (3) of Lemma 3 we obtain

|A(3)
n (Tn−k+1: n)| ≤ |A(3)

n (Tn−k+1: n) − A(3)
n (γq)| + Ã(3)

n (γq)
Pθ−a.s.−→ wθ(γq), (37)

where wθ(γq) is a non-negative real constant.
Having proved (33), (36) and (37) we can now proceed as in the proof of theorem

from Section 4.2.2 of Serfling (2001) to show that the conclusion of Theorem 1 is true.
Part 2 for the case when the qth quantile of F(θ, ·), γq , is not unique
In this case, that is when γ

q
< γ q , where γ

q
and γ q are defined in (24), we have with

Pθ -probability 1

lim inf
n→∞ Tn−k+1:n = γ

q
and lim sup

n→∞
Tn−k+1:n = γ q; (38)

see Dembińska (2014, Section 3). Using the same arguments as in the proof of (34)
we see that (38) and the fact that γ

q
nor γ q are not accumulation points of the support

of F(θ, ·) give, with Pθ -probability 1,

Tn−k+1:n ∈ {γ
q
, γ q} for all sufficiently large n. (39)

Nowwe fix a neighborhood N (θ) of θ such that the closure of N (θ) is contained inΘ ,
and write Taylor expansion (33) for λ ∈ N (θ). Next, we set λ1 = θ − ε, λ2 = θ + ε,

where 0 < ε <
min

(
vθ (γ

q
),vθ (γ q )

)

wθ (γ
q
)+wθ (γ q )

and ε is small enough that λ1, λ2 ∈ N (θ). The

functions vθ (·) and wθ(·) are specified by Lemma 3. From (33) we get

1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

· I (Tn−k+1: n = γ
q
)

=
{

A(1)
n (γ

q
) − εA(2)

n (γ
q
) + 1

2
ε2A(3)

n (γ
q
)

}

· I (Tn−k+1: n = γ
q
),

which implies

∣
∣
∣
1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

− ε vθ (γ q
)

∣
∣
∣ · I (Tn−k+1: n = γ

q
)

≤
{
|A(1)

n (γ
q
)| + ε|A(2)

n (γ
q
) + vθ (γ q

)| + 1

2
ε2 Ã(3)

n (γ
q
)
}

· I (Tn−k+1: n = γ
q
),

(40)

where Ã(3)
n (·) is as in part (3) of Lemma 3. Clearly, inequality (40) still holds if we

replace “γ
q
” by “γ q”. Hence, setting v̂θ = vθ (γ q

) · I (Tn−k+1: n = γ
q
) + vθ (γ q) ·
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I (Tn−k+1: n = γ q) and using (39) we obtain, with Pθ -probability 1, for all sufficiently
large n,

∣
∣
∣
1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

− ε v̂θ

∣
∣
∣ =

∣
∣
∣
1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

− ε vθ (γ
q
)

∣
∣
∣

· I (Tn−k+1: n = γ
q
) +

∣
∣
∣
1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

− ε vθ (γ q )

∣
∣
∣ · I (Tn−k+1: n = γ q )

≤ |A(1)
n (γ

q
)| + |A(1)

n (γ q )| + ε
(
|A(2)

n (γ
q
) + vθ (γ

q
)| + |A(2)

n (γ q ) + vθ (γ q )|
)

+ 1

2
ε2
(
Ã(3)
n (γ

q
) + Ã(3)

n (γ q )
) Pθ −a.s.−→ 1

2
ε2
(
wθ (γ

q
) + wθ (γ q )

)
≤ 1

2
εmin

(
vθ (γ

q
), vθ (γ q )

)
,

where the above convergence is due to parts (2) and (3) of Lemma 3. Consequently,
with Pθ -probability 1, for all sufficiently large n,

∣
∣
∣
1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

− ε v̂θ

∣
∣
∣ ≤ 3

4
εmin (vθ (γ q

), vθ (γ q)),

which yields

1

n

∂

∂λ
l(λ; T1, . . . , Tn)

∣
∣
λ=λ1

≥ −3

4
εmin (vθ (γ q

), vθ (γ q )) + ε v̂θ ≥ 1

4
εmin (vθ (γ q

), vθ (γ q )).

(41)

Similarly, we can show that, with Pθ -probability 1, for all sufficiently large n,

1

n

∂

∂λ
l(λ; T1, . . . , Tn)|λ=λ2 ≤ −1

4
εmin (vθ (γ q

), vθ (γ q)). (42)

Since l(λ; T1, . . . , Tn) is a continuous function with respect to λ, (41) and (42)
show that, with Pθ -probability 1, for all sufficiently large n, the likelihood equation
∂
∂λ
l(λ; T1, . . . , Tn) = 0 has at least one solution λ ∈ (θ − ε, θ + ε).
Now, repeating the same arguments as that used in Section 4.2.2 of Serfling (2001)

we can construct a sequence of estimators (θ̂n, n ≥ 1) satisfying conditions from the
conclusion of Theorem 1. 	
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