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Abstract
In this correspondence, for a nonnegative regular summability matrix B and an array
{ank} of real numbers, the concept of B-statistical uniform integrability of a sequence
of random variables {Xk} with respect to {ank} is introduced. This concept is more
general and weaker than the concept of {Xk} being uniformly integrable with respect
to {ank}. Two characterizations of B-statistical uniform integrability with respect to
{ank} are established, one of which is a de La Vallée Poussin-type characterization.
For a sequence of pairwise independent random variables {Xk}which is B-statistically
uniformly integrable with respect to {ank}, a law of large numbers with mean conver-
gence in the statistical sense is presented for

∑∞
k=1 ank(Xk − EXk) as n → ∞. A

version is obtained without the pairwise independence assumption by strengthening
other conditions.
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1 Introduction

The concept of uniform integrability plays an important role, not only in the field of
Probability Theory, but also in that of Functional Analysis.

In this last field, uniform integrability of a set of random variables is equivalent,
via the Dunford–Pettis theorem, to its relative weak sequential compactness in the L1

space, which opens the door to the use of this concept in fruitful functional–analytic
techniques.

In the field of Probability Theory, particularly in the area of limit theorems, uniform
integrability is the right condition for relaxing the condition of identical distribution in
the case of weak laws of large numbers. At the same time, it is the condition needed in
order that convergence in probability impliesmean convergence, and thus, convergence
a.s. with the addition of uniform integrability also impliesmean convergence (see, e.g.,
Chow and Teicher 1997, p. 99).

The main motivation of the summability theory is to make a non-convergent
sequence or series to converge in a more general sense. Therefore, summability the-
ory has many applications in probability limit theorems, approximation theory with
positive linear operators and differential equations, whenever the ordinary limit does
not exist (see Ordóñez Cabrera and Volodin 2005; Hu et al. 2001; Giuliano Antonini
et al. 2013; Gadjiev and Orhan 2002; Söylemez and Ünver 2017; Braha 2018; Ünver
2014; Atlihan et al. 2017; Tas and Yurdakadim 2017; Balser and Miyake 1999; Balser
2000).

Statistical-type generalizations of the concepts of mathematical analysis play an
important role to study in these areas whenever ordinary versions fail. In this paper,
we introduce the concept of B-statistical uniform integrability with respect to {ank},
where B is a nonnegative regular summability matrix and {ank} is an array of real
numbers. We use the concept of B-statistical supremum to introduce the concept of
B-statistical uniform integrability with respect to {ank}which is not only more general
than the concept of uniform integrability with respect to {ank} but also weaker than
the concept of uniform integrability with respect to {ank}.

Let x = {xk : k ≥ 1} be a real sequence and let B = {bnk : n ≥ 1, k ≥ 1} be a
summability matrix (an array of real numbers). If the sequence

{
(Bx)n : n ≥ 1

}
is

convergent to a real number α, then we say that the sequence x is B-summable to the
real number α where the series

(Bx)n =
∞∑

k=1

bnkxk

is convergent for any n ∈ N andN is the set of positive integers. A summability matrix
B is said to be regular if limn→∞(Bx)n = L whenever limk→∞xk = L (see Boos
2000). Throughout this paper, we assume that B = {bnk} is a nonnegative regular
summability matrix.

Let K ⊂ N. Then, the number

δB(K ) := lim
n→∞

∑

k∈K
bnk
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is said to be the B-density of K whenever the limit exists (see Buck 1946, 1953; Fridy
1985;Kolk 1993).Regularity of the summabilitymatrix B ensures that 0 ≤ δB(K ) ≤ 1
whenever δB(K ) exists. Ifwe consider B = C , theCesàromatrix, then δ(K ) := δC (K )

is called the (natural or asymptotic) density of K (see Freedman and Sember 1981)
where C = (cnk) is the summability matrix defined by

cnk =
{

1
n , if k ≤ n

0, otherwise.

A real sequence x = {xk} is said to be B-statistically convergent (see Connor 1989;
Fridy and Miller 1991) to a real number α if for any ε > 0,

δB ({k ∈ N : |xk − α| ≥ ε}) = 0.

In this case, we write stB − limk→∞xk = α. If we consider the Cesàro matrix,
then C-statistical convergence is called statistical convergence (Fast 1951; Steinhaus
1951;Šalát 1980). B-statistical convergence is regular (i.e., it preserves ordinary limits)
and there exist some sequences which are B-statistically convergent but not ordinary
convergent. Recall that if a sequence x = {xk} is statistically convergent to a real
number α, then there exists a subsequence

{
xk j
}
such that lim j→∞ xk j = α and

δB(
{
k j : j ∈ N

}
) = 1 (see Šalát 1980; Miller 1995).

A real number M is said to be a B-statistical upper bound of a sequence {xk} if

δB ({k ∈ N : xk > M}) = 0.

In this case, {xk} is said to be B-statistically upper bounded. The infimum of the
set of all B-statistical upper bounds of a B-statistically upper bounded sequence is
said to be the B-statistical supremum of {xk} and is denoted by supstB k∈Nxk (Altinok
and Küçükaslan 2014). If the sequence x = {xk} is not B-statistically upper bounded,
then we define supstB k∈Nxk = ∞. We use the notation supstk∈Nxk , whenever B = C .

A similar definition for the B-statistical infimum, infstB k∈Nxk , was given in Altinok
and Küçükaslan (2014) as well. It was also known from Altinok and Küçükaslan
(2014) that

inf
k∈N xk ≤ infstB

k∈N
xk ≤ supstB

k∈N
xk ≤ sup

k∈N
xk . (1)

The following remark is used in our proofs:

Remark 1 If supstB k∈Nxk = M < ∞ then, by the definition of B-statistical bounded-
ness for any ε > 0 there exists b < M + ε such that δB ({k ∈ N : xk > b}) = 0. Thus,
we have

δB ({k ∈ N : xk > M + ε}) = 0.
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86 M. Ordóñez. Cabrera et al.

Throughout this paper, all random variables are defined on a fixed but otherwise
arbitrary probability space (�,F , P). The expected value of a random variable X is
denoted by EX , and we use the notation I for the indicator function. We assume that
{ank} is an array of real numbers such that

supstB
n∈N

∞∑

k=1

|ank | < ∞. (2)

Let us now review the concept of uniform integrability for a sequence of random
variables {Xk} and provide several equivalent formulations of this concept.

A sequence of random variables {Xk} is said to be uniformly integrable (see Chung
2001, p. 100) if

lim
c→∞ sup

k∈N
E |Xk | I{|Xk |>c} = 0.

The uniform integrability criterion (see Chow and Teicher 1997, p. 94) asserts that
{Xk} is uniformly integrable if and only if
(i) supk∈N E |Xk | < ∞
(ii) for all ε > 0, there exits δ > 0 such that for every event A with P(A) < δ,

sup
k∈N

E |Xk | IA < ε.

It is easy to show via examples that (i) and (ii) are independent conditions in the
sense that neither implies the other. Hu and Rosalsky (2011) noted that (ii) is indeed
equivalent to the apparently stronger condition
(ii

′
) for all ε > 0, there exits δ > 0 such that for every sequence of events {Ak} with

P(Ak) < δ, k ∈ N,

sup
k∈N

E |Xk | IAk < ε.

The following classical result of Charles de La Vallée Poussin (see Meyer 1966, p.
19) provides another characterization of uniform integrability. We refer to it as the de
La Vallée Poussin criterion for uniform integrability.

Proposition 1 (de La Vallée Poussin). A sequence of random variables {Xk} is uni-
formly integrable if and only if there exists a convex monotone function G defined on
[0,∞) with G(0) = 0 such that

lim
x→∞

G(x)

x
= ∞ and sup

k∈N
EG(|Xk |) < ∞.

The proof of the necessity half is far more difficult than the proof of the sufficiency
half. On the other hand, the sufficiency half provides a very useful method for estab-
lishing uniform integrability of a sequence of random variables. For the sufficiency
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On the concept of B-statistical uniform integrability of weighted… 87

half, the condition that G is a convex monotone function defined on [0,∞) with
G(0) = 0 is not needed; it can be weakened to the condition that G is a nonnegative
Borel measurable function defined on [0,∞).

An alternative proof of the de La Vallée Poussin criterion for uniform integrability
was provided by Chong (1979).

Now, we define a new version of uniform integrability which is called B-statistical
uniform integrability with respect to {ank}.
Definition 1 A sequence of random variables {Xk} is said to be B-statistically uni-
formly integrable with respect to {ank} if

lim
c→∞ supstB

n∈N

∞∑

k=1

|ank |E |Xk | I{|Xk |>c} = 0.

By considering (1), it is easy to see that if a sequence of random variables {Xk} is
uniformly integrablewith respect to {ank}, then it is B-statistically uniformly integrable
with respect to {ank}. On the other hand, since uniform integrability implies uniform
integrability with respect to {ank} (see Ordóñez Cabrera 1994), we conclude that
uniform integrability implies B-statistical uniform integrability with respect to {ank}.
Moreover, if we take the identity matrix as B, then B-statistical uniform integrability
reduces to uniform integrability with respect to {ank}.

The following example shows that B-statistical uniform integrability with respect
to {ank} does not imply uniform integrability with respect to {ank} in general:
Example 1 Let A = (ank) be the array defined by

ank =

⎧
⎪⎨

⎪⎩

1, if n = j2 and k = n
1
2 j , if n = j2 + 1 and n ≤ k ≤ ( j + 1)2 − 1
0, otherwise.

Consider the sequence of random variables {Xk} defined by

Xk =
{

±k, with probability 1/2 if k = j2

0, otherwise.

As

E |Xk | =
{
k, if k = j2

0, otherwise,

we have

∞∑

k=1

|ank |E |Xk | =
{
n, if n = j2

0, otherwise.
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Therefore, we obtain supn∈N
∑∞

k=1 |ank |E |Xk | = ∞ which yields that {Xk} is not
uniformly integrable with respect to A (see Theorem 2 of Ordóñez Cabrera 1994).
On the other hand, we have for any c > 0 that

E |Xk | I{|Xk |>c} ≤ E |Xk | I{|Xk |>0}

=
{
k, if k = j2

0, otherwise

which implies that

∞∑

k=1

|ank |E |Xk | I{|Xk |>0} =
{
n, if n = j2

0, otherwise.

Thus, we get supstC k∈NE |Xk | I{|Xk |>c} = 0. Hence, the sequence {Xk} is C -
statistically uniformly integrable with respect to A.

2 Main results

The following theorem characterizes the concept of B-statistical uniform integrability
with respect to {ank}:

Theorem 1 A sequence of random variables {Xk} is B-statistically uniformly inte-
grable with respect to {ank} if and only if the following two conditions hold:
(i) supstB n∈N

∑∞
k=1 |ank |E |Xk | < ∞

(ii) For every ε > 0, there exists ν(ε) > 0 such that

supstB
n∈N

∞∑

k=1

|ank |E |Xk | IFk ≤ ε

for any sequence {Fk} of events with

supstB
n∈N

∞∑

k=1

|ank | P(Fk) ≤ ν(ε). (3)

Proof Let {Xk} be a B-statistically uniformly integrable sequence of random variables
with respect to {ank} and let ε > 0. Then, there exists a > 0 such that

δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>a} > ε/2

})

= 0. (4)
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By (2), we can choose M such that

supstB
n∈N

∞∑

k=1

|ank | < M < ∞. (*)

Note that with a > 0 as in (4),

{

n ∈ N :
∞∑

k=1

|ank |E |Xk | > Ma + ε

2

}

⊂
{

n ∈ N :
∞∑

k=1

|ank |E |Xk |I{|Xk |≤a} > Ma

}

⋃
{

n ∈ N :
∞∑

k=1

|ank |E |Xk |I{|Xk |>a} >
ε

2

}

⊂
{

n ∈ N :
∞∑

k=1

|ank | > M

}

⋃
{

n ∈ N :
∞∑

k=1

|ank |E |Xk |I{|Xk |>a} >
ε

2

}

. (**)

Combining (*), (4), and (**), we obtain that

0 ≤ δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | > Ma + ε

2

})

≤ δB

({

n ∈ N :
∞∑

k=1

|ank | > M

})

+ δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk |I{|Xk |>a} >
ε

2

})

= 0 + 0 = 0

and so

δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | > Ma + ε

2

})

= 0.

Thus, the real number Ma + ε
2 is a B-statistical upper bound of the sequence

{∑∞
k=1 |ank |E |Xk | : n ∈ N

}
. Hence (i) holds.
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To verify (ii), if we choose ν(ε) = ε

2a
then, for any sequence {Fk} of events such

that (3) holds we have

δB

({

n ∈ N : a
∞∑

k=1

|ank | P(Fk) > ε/2

})

= 0. (5)

Moreover, we obtain

{
n ∈ N : ∑∞

k=1 |ank |E |Xk | IFk > ε
}

⊂ {
n ∈ N : ∑∞

k=1 |ank |E |Xk | IFk∩{|Xk |≤a} > ε/2
}

∪ {n ∈ N : ∑∞
k=1 |ank |E |Xk | IFk∩{|Xk |>a} > ε/2

}

⊂ {
n ∈ N : a∑∞

k=1 |ank | P(Fk) > ε/2
}

∪ {n ∈ N : ∑∞
k=1 |ank |E |Xk | I{|Xk |>a} > ε/2

}
.

Thus, we obtain by (4) and (5) that

0 ≤ δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | IFk > ε

})

≤ δB

({

n ∈ N : a
∞∑

k=1

|ank | P(Fk) > ε/2

})

+ δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>a} > ε/2

})

= 0,

which implies δB
({
n ∈ N : ∑∞

k=1 |ank |E |Xk | IFk > ε
}) = 0. Therefore, (ii) is satis-

fied.

Conversely, suppose that (i) and (ii) hold. If supstB n∈N
∑∞

k=1
|ank |E |Xk | = M <

∞, then by Remark 1 we get

δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | > M + ε

})

= 0. (6)

By using Markov’s inequality, we have for any c > 0 that

{

n ∈ N :
∞∑

k=1

|ank | P(|Xk |>c)>
M + ε

c

}

⊂
{

n ∈ N :
∞∑

k=1

|ank |E |Xk |>M+ε

}

.
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Therefore, by (6), we have

δB

({

n ∈ N :
∞∑

k=1

|ank | P(|Xk | > c) >
M + ε

c

})

= 0. (7)

Now, let c > M+ε
ν

. Then, we get

{

n ∈ N :
∞∑

k=1

|ank | P(|Xk |>c)>ν

}

⊂
{

n ∈ N :
∞∑

k=1

|ank | P(|Xk |>c)>
M+ε

c

}

.

(8)

Thus, we obtain by (7) and (8) that

δB

({

n ∈ N :
∞∑

k=1

|ank | P(|Xk | > c) > ν

})

= 0. (9)

On the other hand, if we use (ii) for the sequence of events {|Xk | > c}, we can write
{

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>c} > ε

}

⊂
{

n ∈ N :
∞∑

k=1

|ank | P(|Xk | > c) > ν

}

.

Hence, by (9), we have δB

({
n ∈ N :

∑∞
k=1

|ank |E |Xk | I{|Xk |>c} > ε
})

= 0

which implies that

supstB
n∈N

∞∑

k=1

|ank |E |Xk | I{|Xk |>c} ≤ ε.

Hence, the proof is completed.

Remark 2 If we take B as the identity matrix, then by Theorem 1 we immediately
obtain Theorem 2 of Ordóñez Cabrera (1994) and if we take B as the identity matrix
and if we take {ank} as the Cesàro array, then by Theorem 1 we obtain Theorem 3 of
Chandra (1989).

A de La Vallée Poussin-type characterization of uniform integrability with respect
to {ank} can be found in Ordóñez Cabrera (1994). Now, motivating from these char-
acterizations, we prove the following de La Vallée Poussin-type characterization of
B-statistical uniform integrability with respect to {ank}.
Theorem 2 A sequence of random variables {Xk} is B-statistically uniformly inte-
grable with respect to {ank} if and only if there exists a Borel measurable function

φ : (0,∞) → (0,∞) such that limt→∞
φ(t)

t
= ∞ and
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supstB
n∈N

∞∑

k=1

|ank |Eφ |Xk | < ∞.

Proof If {Xk} is B-statistically uniformly integrable with respect to {ank}, then we can
choose a sequence of positive integers {n j } such that for any j ∈ N

supstB
n∈N

∞∑

k=1

|ank |E |Xk | I{|Xk |>n j} <
1

2 j
.

Therefore, for any j ∈ N, we have

δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>n j} >
1

2 j

})

= 0. (10)

On the other hand, there exists j0 ∈ N such that c j0 > c′
jo
whenever

∑∞
j=1c j ≥

∑∞
j=1

c′
j where c j and c′

j are positive real numbers for any j ∈ N. Now using this

fact, it is easy to see that there exists j0 ∈ N such that

⎧
⎨

⎩
n ∈ N :

∞∑

j=1

∞∑

k=1

|ank |E |Xk | I{|Xk |>n j} >

∞∑

j=1

1

2 j

⎫
⎬

⎭

⊂
{

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>n j0

} >
1

2 j0

}

. (11)

If we consider that
∑∞

j=1

1

2 j
= 1, then we obtain by (10) and (11) that

δB

⎛

⎝

⎧
⎨

⎩
k ∈ N :

∞∑

j=1

∞∑

k=1

|ank |E |Xk | I{|Xk |>n j} > 1

⎫
⎬

⎭

⎞

⎠ = 0. (12)

Moreover, there exists a Borel measurable function (see Chandra 1989; Ordóñez

Cabrera 1994) φ : (0,∞) → (0,∞) such that limt→∞
φ(t)

t
= ∞ and for any k ∈ N

Eφ (|Xk |) ≤
∞∑

j=1

∞∑

i=n j

P (|Xk | > i)

which implies (see Ordóñez Cabrera 1994) that

{

n ∈ N :
∞∑

k=1

|ank |Eφ (|Xk |) > 1

}
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⊂
⎧
⎨

⎩
n ∈ N :

∞∑

k=1

⎛

⎝|ank |
∞∑

j=1

∞∑

i=n j

P (|Xk | > i)

⎞

⎠ > 1

⎫
⎬

⎭

⊂
⎧
⎨

⎩
n ∈ N :

∞∑

j=1

∞∑

k=1

|ank |E |Xk | I{|Xk |>n j} > 1

⎫
⎬

⎭
. (13)

Therefore, by (12) and (13), we obtain

δB

({

n ∈ N :
∞∑

k=1

|ank |Eφ (|Xk |) > 1

})

= 0

which implies that supstB n∈N
∑∞

k=1
|ank |Eφ |Xk | ≤ 1.

Conversely, if there exists such a function φ and ε > 0, then by Remark 1 we get

δB

({

n ∈ N :
∞∑

k=1

|ank |Eφ (|Xk |) > M + ε

})

= 0 (14)

where M := supstB n∈N
∑∞

k=1 |ank |Eφ |Xk | and there exists a > 0 such that
φ(t)

t
>

M + ε + 1

ε
whenever t > a. Therefore,

{

n ∈ N :
∞∑
k=1

|ank |E |Xk | I{|Xk |>a} > ε

}

⊂
{

n ∈ N : ε
M+ε+1

∞∑
k=1

|ank |Eφ (|Xk |) I{|Xk |>a} > ε

}

=
{

n ∈ N : 1
M+ε+1

∞∑
k=1

Eφ (|Xk |) I{|Xk |>a} > 1

}

⊂
{
n ∈ N : 1

M+ε+1 > 1
M+ε

}
∪
{

n ∈ N :
∞∑
k=1

Eφ (|Xk |) I{|Xk |>a} > M + ε

}

=
{

n ∈ N :
∞∑
k=1

Eφ (|Xk |) I{|Xk |>a} > M + ε

}

.

Hence, (14) implies

δB

({

n ∈ N :
∞∑

k=1

E |Xk | I{|Xk |>a} > ε

})

= 0

which means that {Xk} is B-statistically uniformly integrable with respect to {ank}.
Remark 3 If we take B as the identity matrix, then by Theorem 2 we immediately
obtain Theorem 3 of Ordóñez Cabrera (1994) and if we take B as the identity matrix
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94 M. Ordóñez. Cabrera et al.

and {ank} as the Cesàro array, then by Theorem 2 we obtain Theorem 1 of Chandra
(1989).

3 The law of large numbers

The concept of uniform integrability is a useful tool to establish the law of large num-
bers with mean convergence (Chandra 1989; Ordóñez Cabrera 1994; Chung 2001), as
uniform integrability with respect to {ank} of a sequence {Xk} of pairwise independent
random variables implies the following law of large numbers with mean convergence
(see Chandra 1989):

lim
n→∞E

∣
∣
∣
∣
∣

n∑

k=1

ank(Xk − EXk)

∣
∣
∣
∣
∣
= 0. (15)

After introducing the concept of B-statistical uniform integrability, we can consider
a result about the law of large numbers with mean convergence in the statistical sense.
Let p ≥ 1. The B-statistical version of convergence in the pth mean of a sequence of
random variables {Xk} to a random variable X is defined by:

stB − lim
k→∞

E |Xk − X |p = 0.

Moreover, {Xk} is said to be B-statistically convergent to X in probability if for
any ε, ν > 0

δB ({k ∈ N : P((|Xk − X |) ≥ ν) ≥ ε}) = 0.

In this case, we write Xk
stB,P→ X . For the statistical version of this definition,

see Ghosal (2013). Considering the extended Markov’s inequality, we have that B-
statistical convergence in pth mean implies B-statistical convergence in probability
for p > 0.

Remark 4 Let p > q > 0. Assume that a sequence of random variables {Xk} is
B-statistically convergent to a random variable X in pth mean. Then, the sequence{|Xk − X |p} is B-statistically convergent to zero. Therefore, there exists {k j : j ∈ N

}

such that δB
({
k j : j ∈ N

}) = 1 and

lim
j→∞E

∣
∣Xk j − X

∣
∣p = 0.

Thus, we have that the subsequence
{
Xk j

}
is convergent in the pth mean to X

which implies it is convergent in the qth mean to X . Hence, we get

lim
j→∞E

∣
∣Xk j − X

∣
∣q = 0. (16)
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As δB
({
k j : j ∈ N

}) = 1, (16) implies that

stB − lim
k→∞

E |Xk − X |q = 0.

Hence, {Xk} is B-statistically convergent to X in qth mean.

Various notions on convergence of sequences of random variables in the statistical
sense may be found in Ghosal (2013, 2016).

Lemma 1 Let {Xk} be a sequence of uniformly bounded pairwise independent random
variables and let {ank} be an array such that (2) holds and

stB − lim
n→∞

sup
k∈N

|ank | = 0. (17)

Then,

stB − lim
n→∞

E

( ∞∑

k=1

ank(Xk − EXk)

)2

= 0. (18)

Proof Let supstB
n∈N

∑∞
k=1 |ank | < M . Then, we have

δB

({

n ∈ N :
∞∑

k=1

|ank | ≥ M

})

= 0. (19)

If H > 0 denotes a uniform bound of {Xk}, then by (17) we get for any ε > 0 that

δB

({

n ∈ N : sup
k∈N

|ank | ≥ ε/MH2
})

= 0. (20)

Now, we have from the pairwise independence that

⎧
⎨

⎩
n ∈ N : E

( ∞∑

k=1

ank(Xk − EXk)

)2

≥ ε

⎫
⎬

⎭

⊂
{

n ∈ N :
∞∑

k=1

a2nkE(Xk − EXk)
2 ≥ ε

}

⊂
{

n ∈ N : H2 sup
k∈N

|ank |
∞∑

k=1

|ank | ≥ ε

}

⊂
{

n ∈ N : sup
k∈N

|ank | ≥ ε/MH2
}

∪
{

n ∈ N :
∞∑

k=1

|ank | ≥ M

}

. (21)
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By (19), (20) and (21), we have

0 ≤ δB

⎛

⎝

⎧
⎨

⎩
n ∈ N : E

( ∞∑

k=1

ank(Xk − EXk)

)2

≥ ε

⎫
⎬

⎭

⎞

⎠

≤ δB

({

n ∈ N : sup
k∈N

|ank | ≥ ε/MH2
})

+ δB

({

n ∈ N :
∞∑

k=1

|ank | ≥ M

})

= 0

which yields that

δB

⎛

⎝

⎧
⎨

⎩
n ∈ N : E

( ∞∑

k=1

ank(Xk − EXk)

)2

≥ ε

⎫
⎬

⎭

⎞

⎠ = 0.

Therefore, (18) holds.

Theorem 3 Let {Xk} be a sequence of pairwise independent random variables and
let {ank} be an array such that (2) and (17) hold. If {Xk} is B-statistically uniformly
integrable with respect to {ank}, then

stB − lim
n→∞

E

∣
∣
∣
∣
∣

∞∑

k=1

ank(Xk − EXk)

∣
∣
∣
∣
∣
= 0

and, a fortiori,

∞∑

k=1

ank(Xk − EXk)
stB,P→ 0.

Proof Since {Xk} is B-statistically uniformly integrable with respect to {ank}, for any
ε > 0 there exists a > 0 such that

supstB
n∈N

∞∑

k=1

|ank |E |Xk | I{|Xk |>a} < ε/4

which implies

δB

({

n ∈ N :
∞∑

k=1

|ank |E |Xk | I{|Xk |>a} > ε/4

})

= 0. (22)
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Now, we define for any k ∈ N

Uk = Xk I{|Xk |≤a}
Vk = Xk I{|Xk |>a}.

The sequence of random variables {Uk − EUk} is pairwise independent with uni-
form bound 2a. By Lemma 1 and Remark 4, we have

stB − lim
n→∞

E

∣
∣
∣
∣
∣

∞∑

k=1

ank(Uk − EUk)

∣
∣
∣
∣
∣
= 0.

Therefore,

δB

({

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ank(Uk − EUk)

∣
∣
∣
∣
∣
> ε/2

})

= 0. (23)

On the other hand,

{

n ∈ N :
∞∑

k=1

|ank | |Vk − EVk | > ε/2

}

⊂
{

n ∈ N : 2
∞∑

k=1

|ank |E |Vk | > ε/2

}

=
{

n ∈ N :
∞∑

k=1

|ank |E
∣
∣Xk I{|Xk |>a}

∣
∣ > ε/4

}

. (24)

Now, by (22) and (24), we obtain

δB

({

n ∈ N :
∞∑

k=1

|ank | |Vk − EVk | > ε/2

})

= 0.

Finally, as

{

n ∈ N : E
∣
∣
∣
∣

∞∑
k=1

ank(Xk − EXk)

∣
∣
∣
∣ > ε

}

⊂
{

n ∈ N : E
∣
∣
∣
∣

∞∑
k=1

ank(Uk − EUk)

∣
∣
∣
∣ > ε/2

}

∪
{

n ∈ N :
∞∑
k=1

|ank | |Vk − EVk | > ε/2

}

, (25)
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by (23) and (25), we have

δB

({

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ank(Xk − EXk)

∣
∣
∣
∣
∣
> ε

})

= 0

which finishes the proof.

Remark 5 If we take B as the identity matrix, then by Theorem 3 we immediately
obtain Theorem 4 of Ordóñez Cabrera (1994) and if we take B as the identity matrix
and if we take {ank} as the Cesàro array, then by Theorem 3 we obtain Theorem 1 of
Chandra (1989).

In the following theorem, we drop the pairwise independence assumption by
strengthening the other conditions.

Theorem 4 Let 0 < p < 1 and let {ank} be an array such that

supstB
n∈N

∞∑

k=1

|ank |p < ∞

and

stB − lim
n→∞

sup
k∈N

|ank | = 0.

If
{|Xk |p

}
is a B-statistically uniformly integrable sequence of random variables

with respect to
{|ank |p

}
, then

stB − lim
n→∞

E

∣
∣
∣
∣
∣

∞∑

k=1

ank Xk

∣
∣
∣
∣
∣

p

= 0

and, a fortiori,

∞∑

k=1

ank Xk
stB,P→ 0.

Proof Let ε > 0. Then, there exists a > 0 such that

supstB
n∈N

∞∑

k=1

|ank |p E |Xk |p I{|Xk |>a} < ε/2

which implies

δB

({

n ∈ N :
∞∑

k=1

|ank |p E |Xk |p I{|Xk |>a} > ε/2

})

= 0. (26)
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If supstB
n∈N

∑∞
k=1

|ank |p < M < ∞, then we obtain

δB

({

n ∈ N :
∞∑

k=1

|ank |p > M

})

= 0. (27)

Since stB − lim
n→∞

supk∈N |ank | = 0, we get

δB

({

n ∈ N : sup
k∈N

|ank | > (ε/aM)1/1−p
})

= 0. (28)

Now, if we define sequences of random variables {Uk} and {Vk} as in Theorem 3,
then we have

{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankUk

∣
∣
∣
∣
∣
> ε

}

⊂
{

n ∈ N :
∞∑

k=1

|ank |E |Uk | > ε

}

⊂
{

n ∈ N : a sup
k∈N

|ank |1−p
∞∑

k=1

|ank |p > ε

}

⊂
{

n ∈ N : sup
k∈N

|ank |1−p > ε/aM

}

∪
{

n ∈ N :
∞∑

k=1

|ank |p > M

}

. (29)

Thus, by (27), (28) and (29), we have

δB

({
n ∈ N : E

∣
∣
∣
∑∞

k=1
ankUk

∣
∣
∣ > ε

})
= 0.

Thus, the sequence
{
E

∣
∣
∣
∑∞

k=1
ankUk

∣
∣
∣ : n ∈ N

}
is B-statistically convergent to

zero. Now, Remark 4 implies that

stB − lim
n→∞

E

∣
∣
∣
∣
∣

∞∑

k=1

ankUk

∣
∣
∣
∣
∣

p

= 0. (30)

Therefore,

δB

({

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankUk

∣
∣
∣
∣
∣

p

> ε/2

})

= 0.
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On the other hand,

{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankVk

∣
∣
∣
∣
∣

p

> ε/2

}

⊂
{

n ∈ N :
∞∑

k=1

|ank |p E |Vk |p > ε/2

}

=
{

n ∈ N :
∞∑

k=1

|ank |p E |Xk |p I{|Xk |>a} > ε/2

}

.

Thus, by (26), we obtain

δB

({

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankVk

∣
∣
∣
∣
∣

p

> ε/2

})

= 0. (31)

Moreover, we have

{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ank Xk

∣
∣
∣
∣
∣

p

> ε

}

⊂
{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankUk

∣
∣
∣
∣
∣

p

+ E

∣
∣
∣
∣
∣

∞∑

k=1

ankVk

∣
∣
∣
∣
∣

p

> ε

}

⊂
{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankUk

∣
∣
∣
∣
∣

p

> ε/2

}

∪
{

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ankVk

∣
∣
∣
∣
∣

p

> ε/2

}

.

(32)

Now, by (30), (31) and (32), we conclude

δB

({

n ∈ N : E
∣
∣
∣
∣
∣

∞∑

k=1

ank Xk

∣
∣
∣
∣
∣

p

> ε

})

= 0.

This finished the proof.

Remark 6 If we take B as the identity matrix, then by Theorem 4 we immediately
obtain Theorem 5 of Ordóñez Cabrera (1994).

4 Conclusion and an open problem

The main goal of this article is to introduce the concept of B-statistical uniform
integrability of a sequence of random variables with respect to an array of weights,
where B is a nonnegative regular summability matrix. This notion is then applied to
obtain new laws of large numbers that generalize some well-known results from the
literature.
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One of the main results of the article, Theorem 3, provides the law of large num-
bers with respect to L1-convergence for a sequence of pairwise independent random
variables, while the subsequent Theorem 4 provides the law of large numbers for an
arbitrary sequence of random variables without any assumptions on their joint dis-
tributions. Theorem 4 is proved under the assumption that the sequence

{|Xk |p
}
is a

B-statistically uniformly integrable sequence of random variables with respect to the
array of weights, where 0 < p < 1. It would be interesting to obtain a version of
Theorem 4 for p ≥ 1.
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