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Abstract
The mixture of factor analyzers (MFA) model has emerged as a useful tool to perform
dimensionality reduction and model-based clustering for heterogeneous data. In seek-
ing the most appropriate number of factors (q) of a MFA model with the number of
components (g) fixed a priori, a two-stage procedure is commonly implemented by
firstly carrying out parameter estimation over a set of prespecified numbers of factors,
and then selecting the best q according to certain penalized likelihood criteria. When
the dimensionality of data grows higher, such a procedure can be computationally pro-
hibitive. To overcome this obstacle, we develop an automated learning scheme, called
the automated MFA (AMFA) algorithm, to effectively merge parameter estimation
and selection of q into a one-stage algorithm. The proposed AMFA procedure that
allows for much lower computational cost is also extended to accommodate missing
values. Moreover, we explicitly derive the score vector and the empirical information
matrix for calculating standard errors associated with the estimated parameters. The
potential and applicability of the proposedmethod are demonstrated through a number
of real datasets with genuine and synthetic missing values.
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1 Introduction

The mixture of factor analyzers (MFA) model, initially introduced by Ghahramani
and Hinton (1997), has attracted considerable attention over the past three decades
and been broadly applied in diverse fields, see the monograph by McLachlan and Peel
(2000) for a comprehensive overview. The MFA combines the advantages of Gaus-
sian mixture model and factor analysis (FA) and has now been taken as a promising
tool for simultaneously performing model-based clustering and linear dimensionality
reduction.More precisely, it provides a global nonlinear approach to dimension reduc-
tion via the adoption a factor-analytic representation for the covariance matrices of
component distributions. Ghahramani and Beal (2000) presented a novel variational
inference for a Bayesian treatment of MFA models. Ueda et al. (2000) proposed a
split-and-merge expectation maximization (SMEM) algorithm for the MFA model
and showed its real-world applications to image compression and handwritten digits
recognition. In clusteringmicroarray gene-expression profiles,McLachlan et al. (2002,
2003) illustrated the effectiveness of the MFA approach for reducing the dimension
of the feature space.

A computational feasible EM algorithm (Dempster et al. 1977) has been suggested
by Ghahramani and Hinton (1997) for fitting theMFAmodel. McLachlan et al. (2003)
developed an alternating expectation conditional maximization (AECM) algorithm
(Meng and van Dyk 1997) for fitting MFA and further investigated its practical use
for modeling high-dimensional data. The convergence of AECM can be moderately
faster than EM due to less amount of missing data in some CM-steps. Zhao and Yu
(2008) further provided a much more efficient procedure, which is developed under
an expectation conditional maximization (ECM; Meng and Rubin 1993) scheme by
treating only membership indicators as missing data. Its appealing efficiency can be
attributable to the fact that the latent factors are not taken into account in the complete-
data space, while all estimators in CM-steps still have closed forms.

The occurrence of missing data that may complicate data analysis is a ubiquitous
problem in nearly all fields of scientific research. There exist many strategies for
dealingwith incomplete data under variousmissing-datamechanisms. Little andRubin
(2002) outlined a taxonomy of techniques for handling missing values. The maximum
likelihood (ML) methods of imputing missing values under mixtures of multivariate
normal distributions have been well studied, see, for example, Ghahramani and Jordan
(1994) and Lin et al. (2006). For learning FA models with possibly missing values,
Zhao and Shi (2014) proposed a novel automated factor analysis (AFA) algorithm that
allows for determining the number of factors (q) in an automated manner.

In this paper, we establish a generalization of AFA algorithm, called the automated
MFA (AMFA) algorithm, which performs parameter estimation and determination of
the number of factors (q) simultaneously for fitting the MFA with known mixture
component size (g). When g is treated as unknown, the AMFA algorithm can also
be applied to automatically determine an appropriate number of q for each value of
g within a given range, still being much more efficient than the two-stage methods.
The computational cost of AMFA can be substantially faster than the two-stage EM-
based algorithms when the dimension of variables (p) or the proportion of missing
information becomes high. Moreover, the proposed learning procedure allows for
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handling the data in the presence of missing values under the assumption of missing
at random (MAR) mechanism. Notably, the two-stage ECM algorithm can be treated
as a simplified case of AMFA without updating q. To facilitate implementation, two
auxiliary permutation matrices that exactly extract the observed and missing portions
of an individual are incorporated into the estimating procedure. The Hessian matrix
of the MFA model with incomplete data is also explicitly derived for obtaining the
asymptotic standard errors of parameter estimators.

The rest of the paper is organized as follows. Section 2 formulates an incomplete-
data specification of MFA model and presents some of its essential properties. In
Sect. 3, we briefly describe how to perform the EM and AECM algorithms for fitting
MFA models under a MAR mechanism. In Sect. 4, we propose a one-stage AMFA
algorithm for parameter estimation and automatic determination of q. In Sect. 5,
we explicitly derive the Hessian matrix of the observed log-likelihood function for
computing the asymptotic standard errors of the ML estimators. We illustrate the
usefulness and ability of the proposedmethod inSect. 6 through two real-data examples
and two simulation studies. Section 7 offers some concluding remarks and highlights
possible directions for further work. The detailed derivations of lengthy technical
results are sketched in Online Supplementary Appendices.

2 MFAmodel withmissing data

The MFA model is a global nonlinear approach by postulating a finite mixture of g
FA models for the representation of the data in a lower-dimensional subspace. Let Y j

denote a p-dimensional random vector of the j th individual for j = 1, . . . , n. In the
MFA formulation, each observation Y j is modeled as

Yj = μi + Ai Fi j + εi j with probability πi (i = 1, . . . , g), (1)

where π ′
i s are known as mixing proportions which are constrained to be positive and

sum to one, g is the number of mixture components, μi is a p×1 mean vector, Ai is a

p × q matrix of factor loadings, Fi j
iid∼ Nq(0, Iq) is a q-dimensional vector (q < p)

of factors and εi j
ind∼ Np(0,Ψ i ) is a p-dimensional vector of errors and independent

of Fi j . Besides, Iq is an identity matrix of size q, and Ψ i is a p × p diagonal matrix
with positive diagonal elements referred to as uniqueness variances.

Let Θ = {πi , θ i }gi=1 be the entire unknown parameters subject to
∑g

i=1 πi = 1,
where θ i = {μi , Ai ,Ψ i } denotes the vector of the unknown parameters within the i th
component. Thus, the MFA model defined as (1) has the probability density function
(pdf) of Y j :

f ( y j ;Θ) =
g∑

i=1

πiφp( y j ;μi ,Σ i ),

where φp(·;μ,Σ) indicates the pdf ofNp(μ,Σ) andΣ i is the i th component covari-
ance matrix taking the form of Σ i = Ai A�

i + Ψ i .
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Tohandle the datawith possiblymissing values,we introduce two indicatormatrices
for identifying the observed and missing locations of each individual, denoted by
O j (poj × p) and M j ((p − poj ) × p), such that

Yo
j = O jY j and Ym

j = M jY j , (2)

where Yo
j (p

o
j × 1) and Ym

j ((p − poj ) × 1) are the observed and missing components
of Y j , respectively. To identify the original group of individual Y j , an unobservable
allocation vector Z j = {Z1 j , . . . , Zgj } is introduced, for j = 1, . . . , n, where Zi j ∈
{0, 1} are binary outcomes with constraint

∑g
i=1 Zi j = 1. The role of Z j is to encode

which component has brought into Y j . That is, Zi j = 1 if Y j belongs to the i th group,
and Zi j = 0 otherwise. It follows that Z j ∼ M(1,π) has a multinomial distribution
with prior probabilities π = (π1, . . . , πg).

Incorporating missing information (2) into (1) leads to Yo
j | (Zi j = 1) ∼

Npoj
(μo

i j ,Σ
oo
i j ), where μo

i j = O jμi and Σoo
i j = O jΣ i O�

j . Therefore, the marginal
pdf of Yo

j is given by

f ( yoj ;Θ) =
g∑

i=1

πiφpoj
( yoj ;μo

i j ,Σ
oo
i j ). (3)

Furthermore,we obtain a hierarchical representation ofY o
j under theMFA framework:

Yo
j | (Fi j , Zi j = 1) ∼ Npoj

(O j (μi + Ai Fi j ), O jΨ i O�
j ),

Fi j | (Zi j = 1) ∼ Nq(0, Iq), Z j ∼ M(1,π). (4)

As a consequence, we can establish the following theorem, which is useful for the
evaluation of some conditional expectations involved in the EM algorithm discussed
in Sect. 3.

Theorem 1 Given the hierarchical representation of the MFA model specified by (4),
we obtain the following conditional distributions:

(a) The conditional distribution of Ym
j given yoj , Fi j and Zi j = 1 is

Ym
j | ( yoj , Fi j , Zi j = 1) ∼ Np−poj

(μm·o
i j ,Σmm·o

i j ),

where μm·o
i j = M j

{
μi + Ai Fi j + Ψ iCoo

i j ( y j − μi − Ai Fi j )
}
and Σmm·o

i j =
M j (I p − Ψ iCoo

i j )Ψ iM�
j with Coo

i j = O�
j (O jΨ i O�

j )−1O j .
(b) The conditional distribution of Fi j given yoj and Zi j = 1 is

Fi j | ( yoj , Zi j = 1) ∼ Nq
(
A�
i S

oo
i j ( y j − μi ), Iq − A�

i S
oo
i j Ai

)
,

where Sooi j = O�
j (O jΣ i O�

j )−1O j .
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(c) The conditional distribution of Ym
j given yoj and Zi j = 1 is

Ym
j | ( yoj , Zi j = 1) ∼ Np−poj

(μ2·1,Σ22·1),

whereμ2·1 = M j
{
μi +Σ i Sooi j ( y j −μi )

}
andΣ22·1 = M j

{
I p−Σ i Sooi j

}
Σ iM�

j .
(d) The conditional distribution of Fi j given y j and Zi j = 1 is

Fi j | ( y j , Zi j = 1) ∼ Nq
(
A�
i Σ−1

i ( y j − μi ), Iq − A�
i Σ−1

i Ai
)
.

Proof See Supplementary Appendix A. ��

We further establish the following corollary, which is useful for evaluating the
Q-function in the EM algorithm discussed in Sect. 3.1.

Corollary 1 Given the conditional distributions in Theorem 1, we have

(a) E(Y j | yoj , Zi j = 1) = μi + Σ i Sooi j ( y j − μi ),

(b) E
{
M�

j cov(Y
m
j | yoj , Fi j , Zi j = 1)M j | yoj , Zi j = 1

}
= (I p − Ψ iCoo

i j )Ψ i ,

(c) cov
{
M�

j E(Ym
j | yoj , Fi j , Zi j = 1) − Ai Fi j | yoj , Zi j = 1

}

= (Ω i j − Ai )Φ i j (Ω i j − Ai )
�,

whereΦ i j = cov(Fi j | yoj , Zi j = 1) = Iq − A�
i S

oo
i j Ai andΩ i j = (

I p −Ψ iCoo
i j

)
Ai .

Proof See Supplementary Appendix B. ��

Furthermore,wehave the following conditional expectationswhich are summarized
in Corollary 2 and required for the development of the AECM algorithm described in
Sect. 3.2.

Corollary 2 Given the hierarchical specification of (4), we can get

(a) cov(Y j | yoj , Zi j = 1) = (I p − Σ i Sooi j )Σ i ,

(b) E{Ai Fi j (Y j − μi )
� | yoj , Zi j = 1} = Ai


�
i V i j ,

(c) E(Fi j F�
i j | yoj , Zi j = 1) = 
�

i V i j
i + Iq − 
�
i Ai ,

where 
i = Σ−1
i Ai and

V i j = E{(Y j − μi )(Y j − μi )
� | yoj , Zi j = 1}

= Σ i Sooi j ( y j − μi )( y j − μi )
�Sooi j Σ i + (I p − Σ i Sooi j )Σ i .

Proof See Supplementary Appendix C. ��
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3 ML estimation via the EM and AECM algorithms

3.1 The EM algorithm

The EM algorithm (Dempster et al. 1977) is a popular tool for carrying out ML esti-
mation in a variety of incomplete-data problems. Each iteration of the EM algorithm
is composed of two processes, alternating between an E-step in which the missing
data are estimated by their conditional expectations, and an M-step which simultane-
ously maximizes the conditional expectation of complete-data log-likelihood function
computed in the E-step with respect to all unknown parameters. The EM procedure is
particularly useful when theM-step is computationally simpler than the maximization
of the original likelihood.

Weoffer a feasible EMprocedure for learning theMFAmodelwith incomplete data.
For notational convenience, we denote the allocation variables by Z = (Z1, . . . , Zn),
latent factors by F = {Fi1, . . . , Fin}gi=1 and missing portion of the data by ym =
( ym1 , . . . , ymn ). Let yo = ( yo1, . . . , y

o
n) be the observed portion of the data and Y

[1]
c =

( y, F, Z) be the complete data, where y = ( yo, ym).
The log-likelihood function of Θ for complete data Y [1]

c = ( y, F, Z), omitting
additive constant terms, is

�[1]
c (Θ | Y [1]

c ) =
g∑

i=1

n∑

j=1

Zi j

{
ln πi − 1

2
ln |Ψ i |

−1

2
( y j − μi − Ai Fi j )

�Ψ −1
i ( y j − μi − Ai Fi j )

}
.

Let Θ̂
(k) = {π̂ (k)

i , μ̂
(k)
i Â

(k)
i , Ψ̂

(k)
i }gi=1 denote the estimates ofΘ at the kth iteration. On

the E-step,we compute the expected log-likelihood for the complete data (the so-called
Q-function),where the expectation is takenwith respect to the conditional distributions
of the missing data ( ym, F, Z) given the observed data yo and the current estimates of

parameters Θ̂
(k)

. On theM-step, we maximize the Q-function to compute the updated

parameter estimates, say Θ̂
(k+1)

. The detailed implementation of the proposed EM
algorithm is summarized as follows:

E-step: Compute the following conditional expectations:

ẑ(k)i j = E(Zi j | yoj , Θ̂
(k)

) =
π̂

(k)
i φpoj

( yoj ; μ̂
o(k)
i j , Σ̂

oo(k)
i j )

∑g
h=1 π̂

(k)
h φpoj

( yoj ; μ̂
o(k)
h j , Σ̂

oo(k)
h j )

,

F̂
(k)
i j = E(Fi j | yoj , Zi j = 1, Θ̂

(k)
) = Â

(k)�
i Ŝ

oo(k)
i j ( y j − μ̂

(k)
i ),

ŷ(k)
i j = E(Y j | yoj , Zi j = 1, Θ̂

(k)
) = μ̂

(k)
i + Σ̂

(k)
i Ŝ

oo(k)
i j ( y j − μ̂

(k)
i ), (5)

Φ̂
(k)
i j = cov(Fi j | yoj , Zi j = 1, Θ̂

(k)
) = Iq − Â

(k)�
i Ŝ

oo(k)
i j Â

(k)
i ,
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and Λ̂
(k)
i j = E(Fi j F�

i j | yoj , Zi j = 1, Θ̂
(k)

) = F̂
(k)
i j F̂

(k)�
i j + Φ̂

(k)
i j , where μ̂

o(k)
i j =

O j μ̂
(k)
i , Σ̂

oo(k)
i j = O j Σ̂

(k)
i O�

j and Ŝ
oo(k)
i j = O�

j

(
O j Σ̂

(k)
i O�

j

)−1O j .
Therefore, the resulting Q-function is obtained as

Q(Θ | Θ̂
(k)

) =
g∑

i=1

n∑

j=1

ẑ(k)i j

{

ln πi − 1

2
ln |Ψ i | − 1

2
tr
[
Ψ −1

i

×
{(

ŷ(k)
i j − μi − Ai F̂

(k)
i j

)(
ŷ(k)
i j − μi − Ai F̂

(k)
i j

)�

+(I p − Ψ̂
(k)
i Ĉ

oo(k)
i j )Ψ̂

(k)
i + (

Ω̂
(k)
i j − Ai

)
Φ̂

(k)
i j

(
Ω̂

(k)
i j − Ai

)�}]
}

,

where Ĉ
oo(k)
i j = O�

j (O j Ψ̂
(k)
i O�

j )−1O j and Ω̂
(k)
i j = (

I p − Ψ̂
(k)
i Ĉ

oo(k)
i j

)
Â

(k)
i .

M-step: Find Θ̂
(k+1)

by maximizing Q-function, leading to

π̂
(k+1)
i =

∑n
j=1 ẑ

(k)
i j

n
, μ̂

(k+1)
i =

∑n
j=1 ẑ

(k)
i j ( ŷ(k)

j − Â
(k)
i F̂

(k)
i j )

∑n
j=1 ẑ

(k)
i j

,

Â
(k+1)
i =

⎡

⎣
n∑

j=1

ẑ(k)i j

{
( ŷ(k)

j − μ̂
(k+1)
i )F̂

(k)�
i j + Ω̂

(k)
i j Φ̂

(k)
i j

}
⎤

⎦

×
⎡

⎣
n∑

j=1

ẑ(k)i j (F̂
(k)
i j F̂

(k)�
i j + Φ̂

(k)
i j )

⎤

⎦

−1

,

Ψ̂
(k+1)
i =

Diag
(∑n

j=1 ẑ
(k)
i j Υ̂

(k)
i j

)

∑n
j=1 ẑ

(k)
i j

,

where Υ̂
(k)
i j = (

ŷ(k)
j − μ̂i

(k+1) − Âi
(k+1)

F̂
(k)
i j

)(
ŷ(k)
j − μ̂i

(k+1) − Âi
(k+1)

F̂
(k)
i j

)� +
(I p − Ψ̂ i

(k)
Ĉ
oo(k)
i j )Ψ̂

(k)
i + (Ω̂

(k)
i j − Â

(k+1)
i

)
Φ̂

(k)
i j

(
Ω̂

(k)
i j − Â

(k+1)
i

)�.

3.2 The AECM algorithm

The AECM algorithm (Meng and van Dyk 1997) is a flexible extension of the ECM
algorithm (Meng and Rubin 1993) in which the specification of the complete data on
each CM-step is allowed to be different. With the adoption of AECM, each iteration
consists of several cycles and each cycle has its own E-step and CM-steps. Indeed, two
main advantages of AECM lie on its mathematical simplicity and less computational
cost, as compared with the EM algorithm derived in the preceding subsection.

To employ the AECM algorithm to the fitting of MFA models with missing values,
we partition the unknown parameters Θ = (

Θ1,Θ2
)
, where Θ1 = {πi ,μi }gi=1 and
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Θ2 = {Ai ,Ψ i }gi=1. In the first cycle, given Θ2 = Θ̂
(k)
2 , the log-likelihood function

of Θ1 for complete data Y [2]
c = ( y, Z), excluding constant terms, takes the form of

�[2]
c (Θ1 | Y [2]

c ) =
g∑

i=1

n∑

j=1

Zi j

{
ln πi − 1

2
ln |Σ i |− 1

2
( y j −μi )

�Σ−1
i ( y j −μi )

}
. (6)

The implementation of the proposed AECM algorithm, as detailed below, consists
of one E-step followed by one CM-step in each of two cycles across iterations.

E-step of cycle 1: Compute the Q-function corresponding to (6) as follows:

Q[2](Θ1 | Θ̂
(k)

) =
g∑

i=1

n∑

j=1

ẑ(k)i j

[

ln πi − 1

2
tr
{
Σ̂

(k)−1
i ( ŷ(k)

i j − μi )( ŷ
(k)
i j − μi )

�}
]

,

(7)

where Σ̂
(k)
i = Â

(k)
i Â

(k)�
i + Ψ̂

(k)
i and ŷ(k)

i j is the same as (5) given in the E-step of EM.

CM-steps of cycle 1: Find Θ̂
(k+1)
1 by maximizing (7). The resulting estimators are

π̂
(k+1)
i =

∑n
j=1 ẑ

(k)
i j

n
and μ̂

(k+1)
i =

∑n
j=1 ẑ

(k)
i j ŷ(k)

i j
∑n

j=1 ẑ
(k)
i j

(8)

in which μ̂
(k+1)
i has a simpler expression than that of EM.

In the second cycle, we take ( y, F, Z) to be the complete data and estimate Θ2

given Θ1 = Θ̂
(k+1)
1 . Hence, the complete-data log-likelihood function of Θ2 for

Y [1]
c = ( y, F, Z), omitting terms irrelevant to Θ2, is

�[1]
c (Θ2 | Y [1]

c ) =
g∑

i=1

n∑

j=1

Zi j

×
{

− 1

2
ln |Ψ i | − 1

2
( y j − μ̂

(k+1)
i − Ai Fi j )

�Ψ −1
i ( y j − μ̂

(k+1)
i − Ai Fi j )

}
.

(9)

E-step of cycle 2: Similarly, obtain the Q-function corresponding to (9), given by

Q[1](Θ2 | Θ̂
(k+1)
1 , Θ̂

(k)
2 ) =

g∑

i=1

n∑

j=1

ẑ(k)i j

×
{

− 1

2
ln |Ψ i | − 1

2
tr

(

Ψ −1
i

[
(I p − Ai Γ̂

(k)�
i )V̂

(k)
i (I p − Ai Γ̂

(k)�
i )� + Ai ζ̂

(k)
i A�

i

])}

,

(10)
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where Γ̂
(k)
i = Σ̂

(k)−1
i Â

(k)
i , ζ̂

(k)
i = ∑n

j=1 ẑ
(k)
i j (Iq − Γ̂

(k)�
i Â

(k)
i )/

∑n
j=1 ẑ

(k)
i j and

V̂
(k)
i =

∑n
j=1 ẑ

(k)
i j

{
( ŷ(k)

i j − μ̂
(k+1)
i )( ŷ(k)

i j − μ̂
(k+1)
i )� + (I p − Σ̂

(k)
i Ŝ

oo(k)
i j )Σ̂

(k)
i

}

∑n
j=1 ẑ

(k)
i j

.

(11)
CM-step of cycle 2: Maximizing (10) over Ai and Ψ i gives

Â
(k+1)
i = V̂

(k)
i Γ̂

(k)
i

(
Γ̂

(k)�
i V̂

(k)
i Γ̂

(k)
i + ζ̂

(k)
i

)−1
and

Ψ̂
(k+1)
i = Diag

(
V̂

(k)
i − Â

(k+1)
i Γ̂

(k)�
i V̂

(k)
i

)
.

4 Automated learning of MFAwithmissing information

In the EM and AECM algorithms, the values of g and q are considered to be fixed
and known. The most popular measure for model selection in mixture models is the
Bayesian information criterion (BIC; Schwarz 1978) due to its satisfactory theoreti-
cal properties (Keribin 2000) and empirical performances (Fraley and Raftery 1998,
2002). The BIC is calculated as

BIC = m ln n − 2�max,

where m is the number of parameters and �max is the maximized log-likelihood value.
However, it is typically a time-consuming process to perform a grid search of a range
of (g, q) pairs. To cope with this obstacle, we develop a faster learning procedure,
called the AMFA algorithm in short, to determine the best q in MFA despite that g is
still assumed to be known. When g = 1, our procedure includes the one-stage AFA
algorithm (Zhao and Shi 2014) as a special case.

Meng andRubin (1993) have shown that the asymptotic convergence rate of theEM-
type algorithm is inversely related the amount ofmissing data.More exactly, the speeds
of the EM-type algorithms are governed by the fractions of observed information in
the respective data-augmentation space. Zhao and Yu (2008) proposed a fast ECM
algorithm for the MFA model without the presence of missing values under a smaller
data augmentation Y [2]

c as utilized in the first cycle of AECM.
From (6), unlike the AECM algorithm, we utilize the smaller complete data Y [2]

c =
( y, Z) to update Â

(k)
i and Ψ̂

(k)
i by maximizing

Q�(Θ2) = −1

2

g∑

i=1

n∑

j=1

ẑ(k)i j

{
ln |Ai A�

i + Ψ i | + tr
(
(Ai A�

i + Ψ i )
−1V̂

(k)
i

)}
, (12)

where Θ2 = {Ai ,Ψ i }gi=1 and V̂
(k)
i is the local covariance matrix as defined by (11).

Let Ãi � [Ψ̂ (k)
i ]−1/2Ai and Ṽ i � [Ψ̂ (k)

i ]−1/2V̂
(k)
i [Ψ̂ (k)

i ]−1/2. To locally maximize
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Automated learning of mixture of factor analyzers 1107

(12) under smaller augmentation data space with ( y, Z), it follows straightforwardly
from Zhao and Yu (2008) that each Ãi satisfies

Ãi

(
Iq + Ã

�
i Ãi

)
= Ṽ i Ãi . (13)

Let U iqi Di Ri be the singular value decomposition of Ãi , where U iqi is a p × qi
matrix satisfying U�

iqi
U iqi = Iqi , Di = Diag(di1, . . . , diqi ) is a diagonal matrix with

elements di1 ≥ di2 ≥ · · · ≥ diqi > 0, and Ri is an arbitrarily chosen qi × q matrix
satisfying Ri R�

i = Iqi . Therefore, the decomposition of (13) is equivalent to

U iqi

(
Iqi + D2

i

)
= Ṽ iU iqi ,

where
(
ui1, 1 + d2i1

)
, . . . ,

(
uiqi , 1 + d2iqi

)
are the corresponding eigenvector–

eigenvalue pairs of Ṽ i .
Consider the decomposition for Ṽ i = U iΛiU�

i , where U i = [
ui1 · · · ui p

]
is a

p × p orthogonal matrix and Λi = Diag(λi1, . . . , λi p). Using the facts of

ln |I p + Ãi Ã
�
i | =

qi∑

r=1

ln λir and tr
{
(I p + Ãi Ã

�
i )−1Ṽ i

}
=

qi∑

r=1

1 +
p∑

r=qi+1

λir ,

it can be therefore established from (12) that

Q�(A1, . . . , Ag, {Ψ̂ (k)
i }gi=1)

= −1

2

g∑

i=1

n̂(k)
i

{

ln |Ψ̂ (k)
i | +

qi∑

r=1

(ln λir − λir + 1) +
p∑

r=1

λir

}

, (14)

where n̂(k)
i = ∑n

j=1 ẑ
(k)
i j . Obviously, the sum

∑g
i=1 n

(k)
i

(
ln |Ψ̂ (k)

i | + ∑p
r=1 λir

)
is

irrelevant to the determination of qi , and the function f (λ) = ln λ − λ + 1 is negative
and strictly decreasing over the interval (1,∞). So, it is clear to see that the more the
eigenvalue λr is larger than one, the more the factor r contributes (14).

Following Zhao and Shi (2014), we incorporate the penalty term of BIC, say
m(q) ln(n), into (14) to aid the selection of q. Accordingly, the optimal q can be
calculated as an integer solution satisfying the equation:

q̂(k+1) = argmin
q≤qmax

[ g∑

i=1

n̂(k)
i

{ q∑

r=1

(ln λir − λir + 1)

}

+ m(q) ln n

]

, (15)

where qmax is the greatest integer satisfying the following identifiability constraint
(Ledermann 1937):

qmax ≤ p + (1 −√
1 + 8p)/2. (16)
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1108 W.-L. Wang, T.-I. Lin

Letting q = q̂(k+1), it can be shown that the solution for Ai that globally maximizes
(12) is

Â
(k+1)
i = [Ψ̂ (k)

i ]1/2U iq ′
i
(Λiq ′

i
− Iq ′

i
)1/2Ri , (17)

where Λiq ′
i
= Diag(λi1, . . . , λiq ′

i
) for which q ′

i = q if λiq ′
i
> 1; otherwise, q ′

i is set to
be the unique integer satisfying λiq ′

i
> 1 ≥ λiq ′

i+1. As such, Λiq ′
i
− Iq ′

i
is guaranteed

to be positive definite. For simplicity, the rotation matrix Ri is chosen as the first q ′
i

rows of Iq to satisfy the requirement of Ri R�
i = Iq ′

i
in our analysis.

Next, we devise an element-wise scheme in a similar spirit of Zhao et al. (2008)
for updating the component uniqueness variances sequentially. First, we define

Ψ̂
(k)
ir � Diag

(
ψ̂

(k+1)
i1 , . . . , ψ̂

(k+1)
i,r−1 , ψir , ψ̂

(k)
i,r+1, . . . , ψ̂

(k)
i p

)
.

Given Ai = Â
(k+1)
i and Ψ i = Ψ̂

(k)
ir , Eq. (12) is obviously a function of ψir , so we

simply denote it by �̄(ψir ). Letting Σ ir � Ψ̂
(k)
ir + Â

(k+1)
i Â

(k+1)�
i , maximization of

�̄(ψir ) is equivalent to solving the following equation:

−2

n̂(k)
i

∂�̄(ψir )

∂ψir
= (Σ−1

ir − Σ−1
ir V iΣ

−1
ir )rr = 0, (18)

where (·)rr indicates the (r , r)th entry of the matrix given in the parenthesis. Multi-

plying both sides by [Ψ̂ (k)
i ]−1/2, Eq. (18) can be equivalently rewritten as

(Σ̃
−1
ir − Σ̃

−1
ir Ṽ i Σ̃

−1
ir )rr = 0, (19)

where Σ̃ ir = [Ψ̂ (k)
i ]−1/2Σ ir [Ψ̂ (k)

i ]−1/2.
To calculate the inverse of Σ̃ ir easily, we adopt the following notation:

Ψ̃ ir � Ψ̂
(k)
ir [Ψ̂ (k)

i ]−1 = ωir er e�
r +

r−1∑

h=1

ω̂
(k+1)
ih ehe�

h + I p,

where ωir = ψir/ψ
(k)
ir − 1 and ω̂

(k+1)
ih = ψ̂

(k+1)
ih /ψ̂

(k)
ih − 1. Combining the above

definition, we obtain

Σ̃ ir = Ψ̃ ir + Ãi Ã
�
i = ωir er e�

r + Bir ,

where er is the r th column of I p, for r = 1, . . . , p, and Bir = ∑r−1
h=1 ω̂

(k+1)
ih ehe�

h +
I p + Ãi Ã

�
i . Using the matrix inversion formula (Golub and Van Loan 1989), we

obtain

Σ̃
−1
ir =

(
Bir + ωir er e�

r

)−1 = B−1
ir − ωir B

−1
ir er e�

r B−1
ir

1 + ωir e�
r B−1

ir er
, (20)
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where the last equality holds when Bir is a nonsingular matrix and
1 + ωir e�

r B−1
ir er �= 0.

Substituting (20) into (19) yields the following result:

(Σ̃
−1
ir − Σ̃

−1
ir Ṽ i Σ̃

−1
ir )rr = e�

r B−1
ir er + ωir (e�

r B−1
ir er )2 − e�

r B−1
ir Ṽ i B

−1
ir er

(1 + ωir e�
r B−1

ir er )2
, (21)

where the right-hand side is a function of ωir . Because the denominator of (21) is
greater than zero, equating the equation to zero gives the unique solution

ω̂
(k+1)
ir = (e�

r B−1
ir er )−2(e�

r B−1
ir Ṽ i B

−1
ir er − e�

r B−1
ir er ). (22)

The corresponding solution of ψir is given by

ψ̂
(k+1)
ir = [ω̂(k+1)

ir + 1]ψ̂(k)
ir . (23)

However, the solution (23) is not always kept positive under certain circumstances.
To ensure that Ψ i is positive definite, one common way is to choose a very small
number η > 0 and assume ψir > η. That is, we set ψ̂

(k+1)
ir = η if ω̂

(k+1)
ir ≤ −1.

In such a way, the uniqueness variances are guaranteed to be positive and ω̂
(k+1)
ih =

(ψ̂
(k+1)
ih /ψ̂

(k)
ih − 1) > −1, for h = 1, . . . , r − 1. Thus, it is trivial to see that Bir =

diag(ω̂(k+1)
i1 + 1, . . . , ω̂(k+1)

i,r−1 + 1, 1, . . . , 1) + Ãi Ã
�
i is positive definite and so is

invertible. It is worth to note that the inverse of Bir can be easily calculated because
of 1 + ωir e�

r B−1
ir er > 0 as ωir > −1. This fact is justified in Proposition 2 of Zhao

et al. (2008) for the single-factor analysis model.
Afterward, we discuss in more detail about the unimodal property of �̄(ψir ). As we

have shown previously,

− 2

n̂(k)
i

∂�̄(ψir )

∂ψir
= (Σ̃

−1
ir − Σ̃

−1
ir Ṽ i Σ̃

−1
ir )rr × [ψ̂(k)

ir ]−1

= e�
r B−1

ir er + ωir (e�
r B−1

ir er )2 − e�
r B−1

ir Ṽ i B
−1
ir er

(1 + ωir e�
r B−1

ir er )2
[ψ̂(k)

ir ]−1.

From (23), we obtain ω̂
(k+1)
ir = ψ̂

(k+1)
ir /ψ̂

(k)
ir − 1 and ωir = ψir/ψ̂

(k)
ir − 1. Now, if

ψ̂
(k+1)
ir > ψir , it implies that

ω̂
(k+1)
ir = (e�

r B−1
ir er )−2(e�

r B−1
ir Ṽ i B

−1
ir er − e�

r B−1
ir er ) > ωir ,

or equivalently e�
r B−1

ir er + ωir (e�
r B−1

ir er )2 − e�
r B−1

ir Ṽ i B
−1
ir er < 0. This will lead

to �̄′(ψir ) > 0, since ψ̂
(k)
ir is always positive. Similarly, we can verify that �̄′(ψir ) < 0

if ψ̂
(k+1)
ir < ψir . Hence, we can conclude that ψ̂

(k+1)
ir is a global maximizer of �̄(ψir )

at iteration k + 1.
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In summary, the proposed AMFA algorithm proceeds as follows:

E-step: Same as the E-step of cycle 1 of the AECM algorithm.
CM-step 1: Compute π̂

(k+1)
i and μ̂

(k+1)
i using the same estimators (8) as in the

AECM algorithm.
CM-step 2: Compute q̂(k+1) using Eq. (15).

CM-step 3: Compute Â
(k+1)
i using Eq. (17).

CM-step 4: Compute ψ̂
(k+1)
ir using (23) for i = 1, . . . , g and r = 1, . . . , p.

To avoid an improper solution of ψir , the estimated value of ωir in (22) can be
rendered as

ω̂
(k+1)
ir = max

{
b�
i,r Ṽ i bi,r − bi,rr

b2i,rr
,

η

ψ̂
(k)
ir

− 1

}

,

where bi,r and bi,rr denote the r th column and the (r , r)th element of B−1
ir , respec-

tively.

Notably, when CM-step 2 is skipped, the AMFA algorithm is referred to as the
ECM procedure (Zhao and Yu 2008) for a fixed q. As will be demonstrated in our
illustrations, the AMFA algorithm is much more efficient than the tandem approach
implemented by EM, AECM and ECM algorithms.

5 Provision of standard error estimates

The sampling-based bootstrap technique (Efron and Tibshirani 1993) is a simple pro-
cedure for estimating the sampling distribution of estimator of interest. Although
conceptually simple, one major obvious drawback of this approach is that it can be
either computational intractable or unrealistically time-consuming, especially formix-
ture models (Basford et al. 1997). We offer a simple and effective information-based
method for obtaining the standard errors of the ML estimates of the parameters after
convergence of the AMFA algorithm. Following the notation used in Boldea andMag-
nus (2009) and Montanari and Viroli (2011), we explicitly derive the score vector and
the Hessian matrix of the MFA model with possible missing values. The standard
errors for the parameter estimates can be obtained by evaluating the inverse of the
observed information matrix.

From (3), the log-likelihood for the MFA model with incomplete data is

�(Θ | yo) =
n∑

j=1

ln f ( yoj ) =
n∑

j=1

ln

( g∑

i=1

πiφ
o
i j

)

, (24)

where φo
i j = φpoj

( yoj ;μo
i j ,Σ

oo
i j ).

Let f i = vec(Ai ) denote a pq×1 column vector obtained by stacking all columns
of Ai , and ψ i a p× 1 containing the main diagonal of Ψ i . Thus, there exists a unique
p2 × p duplication matrix D such that ψ i = D�vec(Ψ i ). Moreover, it can be shown
that the first and second derivatives of ln φo

i j are, respectively, given by
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d ln φo
i j = b�

i jdμi − (vec(Ai ))
�(Iq ⊗ Bi j )dvec(Ai ) − 1

2
diag(Bi j )dψ i (25)

and

d2 ln φo
i j = −dμ�

i S
oo
i j dμi − 4(d vec(Ai ))

�(A�
i bi j ⊗ Sooi j )dμi

−2(dψ i )
�D�(bi j ⊗ Sooi j )dμi − (d vec(Ai ))

�(Iq ⊗ Sooi j )d vec(Ai )

−2(d vec(Ai ))
�(A�

i Υ i j Ai ⊗ Sooi j )d vec(Ai )

−2(dψ i )
�D�(Υ i j Ai ⊗ Sooi j )d vec(Ai ) − 1

2
(dψ i )

�D�(Υ i j ⊗ Sooi j )Ddψ i ,

(26)

where bi j = Sooi j ( y j − μi ), Bi j = Sooi j − bi j b�
i j and Υ i j = Sooi j − 2Bi j . For the sake

of concise representation, the following lemma presents the compact forms of (25)
and (26) whose detailed proof is sketched in Supplementary Appendix D.

Lemma 1 The first two derivatives of ln φo
i j in MFA models that allow for missing

values are given by

d ln φo
i j = c�i jdθ i and d2 ln φo

i j = −(dθ i )
�C i j (dθ i ),

where

ci j =
⎛

⎝
bi j

−(Iq ⊗ Bi j )vec(Ai )

− 1
2diag(Bi j )

⎞

⎠ , and

C i j =
⎛

⎜
⎝

Sooi j 2(b�
i j Ai ⊗ Sooi j ) (b�

i j ⊗ Sooi j )D
2(A�

i bi j ⊗ Sooi j ) 2A
�
i Υ i j Ai ⊗ Sooi j + (Iq ⊗ Bi j ) (A�

i Υ i j ⊗ Sooi j )D
D�(bi j ⊗ Sooi j ) D�(Υ i j Ai ⊗ Sooi j )

1
2 D

�(Υ i j ⊗ Sooi j )D

⎞

⎟
⎠ .

(27)

Proof The proof is straightforward and hence omitted. ��
Following the same notation used in Boldea and Magnus (2009), we write ai =

ei/πi , for i = 1, . . . , g − 1, where ei denotes the i th column of I g−1, and ag =
−1g−1/πg with 1g−1 being a (g − 1) × 1 vector of ones. The score vector is defined
as the first derivative of (24), denoted by s(Θ | yo) = ∑n

j=1 s j (Θ | yoj ), where

s j (Θ | yoj ) = ∂ ln f ( yoj )

∂Θ
= vec(sπj , s

1
j , . . . , , s

g
j ).

Using Lemma 1 and

d ln f ( yoj ) =
g∑

i=1

πiφ
o
i jd ln(πiφ

o
i j )

∑g
h=1 πhφ

o
h j

, (28)
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we obtain the explicit expressions for the elements of s j (Θ | yoj ), which contain

sπj = ∑g
i=1 αo

i j ai = ā j and sij = αo
i j ci j for i = 1, . . . , g, where

αo
i j = πiφ

o
i j

∑g
h=1 πhφ

o
h j

(29)

is the posterior probability that yoj belongs to the i th group.
Consequently, the second derivative of the log-likelihood function, called the Hes-

sian matrix, is H(Θ | yo) = ∑n
j=1 H j (Θ | yoj ), where

H j (Θ | yoj ) = ∂s j (Θ | yoj )
∂Θ� =

⎡

⎢
⎢
⎢
⎢
⎣

Hππ
j Hπ1

j · · · Hπg
j

H1π
j H11

j · · · H1g
j

...
...

...

Hgπ
j Hg1

j · · · Hgg
j

⎤

⎥
⎥
⎥
⎥
⎦

. (30)

From (28), we can deduce

d2 ln f ( yoj ) =
g∑

i=1

αo
i j

[
d2 ln(πiφ

o
i j ) + {d ln(πiφ

o
i j )})2

]−
{ g∑

i=1

αo
i jd ln(πiφ

o
i j )

}2

.

(31)

Using Lemma 1 in conjunction with (31), we establish the following theorem, which
allows a direct calculation of the Hessian matrix defined in (30).

Theorem 2 The Hessian matrix in (30) is composed of the elements of

Hππ
j = −ā j ā�

j , Hπ i
j = αo

i j (ai − ā j )c�i j , H iπ
j = Hπ i�

j ,

H ik
j = −αo

i jα
o
k j ci j c

�
k j (i �= k), Hki

j = (H ik
j )�,

H i i
j = −αo

i jC i j + αo
i j (1 − αo

i j )ci j c
�
i j ,

where ci j and C i j are defined as in (27), and αo
i j is given in (29).

Proof The proof is straightforward and hence omitted. ��
It is well known that the mixture models may suffer from the label-switching prob-

lem (Stephens 2000) such that the parameters are not identifiable. A common strategy
of alleviating this problem is to impose a constraint that makes the components unique,
e.g., π1 > · · · > πg . Suppose that the mixture parameters are identifiable and have a
bounded likelihood. Redner and Walker (1994) showed that the ML estimator Θ̂ can
converge in probability to the true values of Θ and in distribution to a multivariate
normal distribution with mean vector Θ and covariance matrix being the inverse of
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Fisher information matrix. That is, as n → ∞,

Θ̂
p→ Θ, and

√
n(Θ̂ − Θ)

d→ Nm(0, I−1(Θ)), (32)

wherem = Dim(Θ).Under suitable regularity conditions (Cramér 1946), the expected
information matrix I(Θ) can be approximated by

Io(Θ̂) ≈ −
n∑

j=1

H j (Θ̂ | yoj ). (33)

Thus, the large sample properties of (32) and (33) are useful for proceeding with
hypothesis testing and constructions of confidence intervals. In practice, standard
errors of parameter estimates can be extracted from the square root of the diagonal
elements of I−1

o (Θ̂).

6 Numerical illustrations

6.1 Example 1: Ozone day detection data

Ozone is an allotrope of oxygen and is known to be much less stable than the diatomic
allotrope O2. It is generated by binding dioxygen and oxygen atom together which
is decomposed by high-energy radiation from the effect of ultraviolet light and atmo-
spheric electrical discharges. Most of ozone is in stratosphere, and the consistency is
highest at distance 20 km to 30 km above the earth’s surface called the ozone layer
region, which absorbs ultraviolet radiation (UV) that is especially harmful to living
creatures.

Our first example concerns the one-hour (1-h) and eight-hour (8-h) peak of ground
ozone level data with genuine missing values, which were collected by Zhang and
Fan (2008) from 1998 to 2004 at the Houston, Galveston and Brazoria (HGB) area of
Texas, USA. Both of which consist of more than 2500 instances with 72 continuous
attributes containing various measures of air pollutant and meteorological information
for the HGB area. Moreover, there is a nominal variable whose label equals 1 for the
ozone day and 0 for the normal day. In July 1997, the Environmental Protection
Agency (EPA) announced a new standard 8-h 0.08 parts per million (ppm) in place
of the previous 0.12 ppm 1-h standard. The difference between the two datasets is the
measure of air pollution at peaks during 1 h and 8 h. It is interesting to notice that
only a few percent belongs to ozone days. Specifically, there are 73 (2.88%) ozone
days versus 2463 normal days in the 1-h samples and 160 (6.31%) ozone days versus
2374 normal days in the 8-h samples. The data are publicly available from the UCI
machine learning database repository (Frank and Asuncion 2010). There are plenty
of missing values in these data. A more detailed account of the fractions of missing
values is summarized in Table 1. From the table, we found that both datasets exhibit
similar missing patterns across different percentage ranges. In addition, the normal
days tend to have greater proportions of missing values than ozone days.
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Table 1 Number of normal and ozone days with different percentage ranges of missing values for 1-h and
8-h ozone data

Missing rate (%) One hour Eight hour

Normal Ozone Normal Ozone

0 1791 (72.72%) 57 (78.08%) 1719 (72.41%) 128 (80.00%)

> 0−5 261 (10.60%) 6 (8.22%) 209 (8.80%) 12 (7.50%)

> 5−10 70 (2.84%) 1 (1.37%) 67 (2.82%) 4 (2.50%)

> 10−15 12 (0.49%) 2 (2.74%) 11 (0.46%) 3 (1.88%)

> 15−20 11 (0.45%) 0 (0.00%) 9 (0.38%) 2 (1.25%)

> 20−25 6 (0.24%) 0 (0.00%) 6 (0.25%) 0 (0.00%)

> 25−30 82 (3.33%) 3 (4.11%) 82 (3.45%) 3 (1.88%)

> 30 275 (11.17%) 4 (5.48%) 271 (11.42%) 8 (5.00%)

Total 2463 (100%) 73 (100%) 2374 (100%) 160 (100%)

Values in parentheses represent the associated percentage

To compare the convergence behavior of the EM, AECM and ECM algorithms, we
fit the MFA model to the 1-h and 8-h datasets. The number of components g is fixed
at 2 to reflect two intrinsic clusters (normal versus ozone days), whereas the number
of factors q varies from 1 to 40, though in principle the maximum on the basis of (16)
should be 60. Such a consideration arises from the fact that the three algorithms may
fail to converge due to an over-fitting of MFA when q is over 40. Table 2 compares
the top three models for getting the highest BICa = −BIC/2 and the required CPU
time. Comparing the resulting fitting performances for the 1-h and 8-h datasets, the
optimal numbers of factors chosen by the three algorithms are between 24 to 28. It
can be observed that the ECM algorithm converges significantly faster than EM and
AECM and attains higher BICa values. Accordingly, a larger BICa value indicates a
better-fitting model. Even though the ECM algorithm is more efficient, it takes nearly
2 machine hours to complete the learning. From a practical viewpoint, the running
time of the two-stage procedures seems a bit too long.

To speed up the learning process, we adopt the AMFA algorithm which generally
takes within 3 minutes to converge (Table 2). Note that different initial values q̂(0)

may yield slightly different optimal q; they all ended up with similar BICa values to
those of ECM. Figure 1 displays the evolvement of BICa values against number of
iterations starting by q̂(0) = 10, 12 and 14. It is obvious that the AMFA algorithm
performs similarly to get the final q ∈ (24, 28) (Table 2), but it converges very quickly
in the sense of fewer iterations as well as the CPU time as compared to the two-stage
algorithms.

6.2 Example 2: Diabetes in Pima Indian women

Diabetes mellitus (DM), called diabetes for short, is a disease that occurs when
patients’ blood sugar is at high level for a long time. Symptoms of diabetes include
frequent urination, increased thirst, increased hunger and decreased weight. There are
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Fig. 1 The evolvement of BICa for fitting the AMFA algorithm

three main types of diabetes; no matter which one of types, if keep untreated, they
will cause complications. Type-1 DM is known as insulin-dependent diabetes mellitus
(IDDM), resulting from autoimmune destruction of the β-cells that will cause shortage
of insulin. Type-2 DM, known as non-insulin-dependent diabetes mellitus (NIDDM),
is a long-term metabolic disorder due to obesity and lack of exercise. Gestational
diabetes mellitus (GDM) is a situation that women without diabetes have high blood
sugar levels during pregnancy.

The second example to which we testify the usefulness of our methods is the Pima
Indianwomen data, publicly available at theUCImachine learning database repository
(Frank andAsuncion 2010). The dataset comprised p = 8 attributes, including number
of times pregnant (x1), plasma glucose concentration (x2), diastolic blood pressure
in mmHg (x3), triceps skinfold thickness in mm (x4), 2-h serum insulin in mu U
per ml (x5), body mass index (x6), diabetes pedigree function (x7) and age (x8),
for 268 diabetic and 500 non-diabetic female patients. A detailed description of the
eight attributes and their numbers of missing units is summarized in Table 2 of Wang
and Lin (2015). Overall, there are 652 unobserved measurements over the total of
8 × 768 = 6144 measurements, leading to a missing rate of 10.61%.

Because there are two known clusters labeled by ‘diabetic’ and ‘non-diabetic,’ we
therefore focus on the comparison under a two-componentMFAmodelwith q = 1−4.
We implement the EM, AECM, ECM and AMFA algorithms to fit MFA models to
the data. Figure 2 displays the typical evolution of the BICa=−BIC/2 values trained
by the four algorithms. As can be seen, all algorithms achieve nearly the same BICa

values except for EM which suffers from premature convergence for q = 2 and 3.
The premature convergence means that evolutionary process gets stagnated too early
to obtain the optimal value or results in a drop of successive log-likelihood values.

Table 3 shows the performance of the best chosen model along with the required
CPU time obtained by running the three two-stage EM-based algorithms and the one-
stage AMFA algorithm. Observing the table, the AECM, ECM and AMFA algorithms
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Fig. 2 The typical evolvements of BICa for EM, AECM, ECM and AMFA algorithms fitted to the Pima
Indian women data

Table 3 The performance of the three two-stage procedures and the proposed AMFA algorithm for the
fitting of MFA models to the Pima Indian women data

EM AECM ECM AMFA

q 4 3 3 3

m 85 75 75 75

�max −6747.159 −6749.935 −6748.867 −6748.867

BICa −7029.521 −6999.077 −6998.010 −6998.009

CPU time (in s) 55.8 79.28 15.92 5.16

select the same number of factors (q = 3) and attain approximately the same BICa

value. The EM algorithm offers an inferior solution (q = 4) due to premature conver-
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gence. It is also readily seen that the AMFA algorithm takes the least amount of CPU
time to reach the optimal solution (q = 3). The empirical results provide evidence
that the AMFA algorithm is more efficient than the two-stage algorithms.

Table 4 summarizes the resulting parameter estimates together with the associated
standard errors obtained by inverting (33) for the chosen three-factor MFA model.
The results indicate that all the mean estimates of eight variables are significantly less
than zero for component 1 and greater than zero for component 2, suggesting that all
variables contribute equally important to the separation between groups.

6.3 Example 3: Simulation based on cereal data with synthetic missing values

Our third example concerns the cereal data reported originally by Lattin et al. (2003).
Among these data, 116 participants appraise 12 cereals on p = 25 attributes, including
filling, salt, soggy and so on. Someof respondents assessedmore than one cereal so that
there are n = 235 observations. Participants used the five-point scale to demonstrate
the level to each characteristic of cereal brands. Zhao and Shi (2014) implemented the
AFA algorithm to fit a single-component MFAmodel to the cereal data and concluded
the most appropriate number of factors attains at q = 4.

We consider the fitting of the MFA models to the cereal data with g varying from
1 to 3 and q from 1 to qmax = 18. Table 5 compares the performance of the AMFA
and three two-stage procedures for estimating 12 different MFA models, and outputs
include the optimal choice of q, final BICa value as well as the CPU time. As one
can see, all algorithms give the same final ML solution, among the AMFA demands
substantially smaller CPU time (less than 1 s). It is also worth noting that the two-
componentMFAmodelwith three factors provides the best fit. Contrary to the previous
studies, the underlying distribution of the cereal data should be multimodal rather than
unimodal.

To study the computational efficiency of the AMFA algorithm relative to the two-
stage procedures for learning MFAmodels in the presence of missing values, artificial
missing data were generated by deleting randomly from the complete cereal data stud-
ied under three proportions of missingness: 5%, 10% and 20%. In this study, we focus
on comparing the learning of two-component MFAmodels as g is a priori determined
to be 2 based on the best fitting of the complete cereal data. Table 6 summarizes the
results, including the CPU time, BICa values and the selected number of factors q
averaged over 100 Monte Carlo replications together with their corresponding stan-
dard deviations. The computational results of EM are not included because it urges
to converge prematurely, especially when the missing rate rises. We observe that both
AECM and ECM procedures give somewhat similar BICa values, whereas the AMFA
algorithm is prone to provide slightly inferior BICa scores. Apparently, the numbers
of factors selected by the three estimating procedures are all getting smaller as the
missing rate increases. In terms of computational efficiency, the AMFA algorithm
represents a much faster computational speed than the two-stage procedures. Conse-
quently, the optimal values of q determined by the three considered procedures are
quite close, while the AMFA algorithm is shown to be more reliable as it yields lower
standard deviations.

123



Automated learning of mixture of factor analyzers 1119

Ta
bl
e
4

M
L
re
su
lts

fr
om

fit
tin

g
th
e
M
FA

m
od
el
w
ith

g
=

2
an
d
q

=
3
to

th
e
Pi
m
a
In
di
an

w
om

en
da
ta

V
ar
ia
bl
e

C
om

po
ne
nt

1
C
om

po
ne
nt

2

μ
1

A
1

Ψ
1

μ
2

A
2

Ψ
2

x 1
−0

.5
67

1
−0

.0
61

9
−0

.0
00

9
0.
28

57
0.
14

98
0.
45

49
−0

.0
99

6
0.
14

21
−0

.4
77

2
0.
88

84

(0
.0
31

1)
(0
.0
19

6)
(0
.0
23

4)
(0
.0
27

2)
(0
.0
18

0)
(0
.0
55

0)
(0
.0
38

0)
(0
.0
42

8)
(0
.0
50

5)
(0
.0
73

7)

x 2
−0

.4
42

8
0.
14

99
−0

.5
05

8
−0

.0
22

1
0.
20

10
0.
35

22
0.
17

35
−0

.9
14

0
−0

.0
55

2
0.
26

71

(0
.0
44

6)
(0
.0
29

4)
(0
.0
39

8)
(0
.0
33

4)
(0
.0
43

1)
(0
.0
54

7)
(0
.0
37

3)
(0
.0
92

6)
(0
.0
49

6)
(0
.1
60

6)

x 3
−0

.3
57

1
0.
13

68
−0

.2
12

6
0.
11

42
0.
83

28
0.
28

08
0.
31

04
0.
00

28
−0

.3
60

3
0.
66

54

(0
.0
56

0)
(0
.0
40

1)
(0
.0
46

7)
(0
.0
46

0)
(0
.0
68

8)
(0
.0
48

5)
(0
.0
34

0)
(0
.0
37

8)
(0
.0
44

4)
(0
.0
54

4)

x 4
−0

.2
54

8
0.
69

80
−0

.0
83

4
0.
04

39
0.
43

22
0.
16

09
0.
55

26
−0

.0
43

5
−0

.1
21

6
0.
67

03

(0
.0
61

0)
(0
.0
42

4)
(0
.0
50

3)
(0
.0
51

6)
(0
.0
50

9)
(0
.0
60

2)
(0
.0
41

6)
(0
.0
44

5)
(0
.0
51

1)
(0
.0
64

4)

x 5
−0

.4
40

1
0.
18

57
−0

.3
48

7
−0

.0
67

2
0.
05

00
0.
30

46
0.
14

03
−0

.6
22

0
0.
17

85
1.
00

79

(0
.0
32

7)
(0
.0
22

5)
(0
.0
29

7)
(0
.0
28

9)
(0
.0
16

4)
(0
.0
90

6)
(0
.0
56

6)
(0
.0
69

8)
(0
.0
70

0)
(0
.1
28

4)

x 6
−0

.2
34

7
0.
95

72
0.
01

02
−0

.0
01

2
0.
00

50
0.
18

14
0.
99

03
0.
00

37
−0

.0
00

6
0.
00

50

(0
.0
57

2)
(0
.0
53

0)
(0
.0
50

7)
(0
.0
44

6)
(0
.0
67

3)
(0
.0
50

9)
(0
.0
55

8)
(0
.0
40

4)
(0
.0
46

1)
(0
.0
85

9)

x 7
−0

.2
73

2
0.
09

10
0.
01

03
−0

.0
45

8
0.
36

21
0.
21

92
0.
12

00
−0

.0
75

4
0.
33

27
1.
26

23

(0
.0
38

5)
(0
.0
24

9)
(0
.0
29

8)
(0
.0
29

0)
(0
.0
39

0)
(0
.0
59

2)
(0
.0
41

2)
(0
.0
46

9)
(0
.0
54

8)
(0
.0
92

3)

x 8
−0

.7
24

5
0.
05

10
−0

.0
46

5
0.
21

31
0.
02

06
0.
58

12
−0

.2
30

5
−0

.0
08

4
−0

.6
68

5
0.
48

43

(0
.0
17

4)
(0
.0
10

9)
(0
.0
13

3)
(0
.0
20

1)
(0
.0
07

1)
(0
.0
52

6)
(0
.0
35

4)
(0
.0
40

1)
(0
.0
56

1)
(0
.0
71

1)

V
al
ue
s
w
ith

in
pa
re
nt
he
se
s
ar
e
st
an
da
rd

er
ro
rs
of

M
L
es
tim

at
es

123



1120 W.-L. Wang, T.-I. Lin

Table 5 Comparison of the AMFA and two-stage algorithms for the fitting of cereal data with MFAmodels

g Output EM AECM ECM AMFA

1 q 4 4 4 4

BICa −7418.10 −7418.10 −7418.10 −7418.10

CPU time (in s) 43.41 33.40 12.72 0.07

2 q 3 3 3 3

BICa −7250.00 −7250.00 −7250.00 −7250.00

CPU time (in s) 119.67 94.56 18.73 0.69

3 q 2 2 2 2

BICa −7297.19 −7297.19 −7297.19 −7297.19

CPU time (in s) 181.28 133.30 17.57 0.25

Table 6 Simulation results based on 100 replications for the cereal data with synthetic missing values

Missing rate Output AECM ECM AMFA

5% q 2.87 2.80 2.99

(0.68) (0.68) (0.10)

BICa −6944.12 −6944.56 −7000.77

(30.35) (28.20) (105.89)

CPU time (in s) 3060.14 306.30 9.62

(205.38) (54.34) (3.51)

10% q 2.82 2.75 2.84

(0.80) (0.81) (0.37)

BICa −6636.07 −6634.15 −6715.71

(44.07) (43.04) (108.85)

CPU time (in s) 5287.64 580.40 16.64

(325.97) (89.73) (6.89)

20% q 2.58 2.64 2.30

(0.78) (0.80) (0.46)

BICa −5996.88 −5999.94 −6049.52

(43.95) (47.25) (87.29)

CPU time (in s) 6390.59 1029.74 18.08

(356.57) (184.92) (13.07)

6.4 Example 4: Simulation based on artificial data

A simulation experiment is conducted to examine the performance of the EM, AECM,
ECM and AMFA algorithms in recovering the true underlying parameter values when
the number of components is correctly specified.We generate 500Monte Carlo data of
p = 8 attributes, and sample sizes n=150 (small), 300 (moderate) and 600 (relatively
large) form a MFA model with g = 3 components and q = 3 factors. The setup of
true values of parameters is
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πi = 1/3, μi = 2i · 18, Bi = Unif(8, 3), Ψ i = 0.3i · I8, for i = 1, 2, 3,

where Unif(p, q) denotes a p × q matrix of random numbers drawn from a uniform
distribution on the unit interval (0, 1), 18 indicates a column vector of length 8 with
all entries equal to 1, and I8 denotes a 8 × 8 identity matrix.

For each simulated dataset, we compare the estimation accuracy and efficiency of
the four considered algorithms on the fitting of the three-component MFAmodel with
q ranging from 1 to qmax = 4. To investigate the estimation accuracies, we report
in Table 7 the average norm of the bias of parameters {πi , Bi ,Ψ i }3i , since their true
values are known, summarized over 500 replications along with the standard devia-
tions in parentheses. For a specific parameter vector θ of length d with true values
(θ1, . . . , θd), the norm of the bias is defined as {(θ̂ (r)

1 − θ1)
2 + · · ·+ (θ̂

(r)
d − θd)

2)}1/2,
where θ̂

(r)
s is the estimate of θs , for s = 1, . . . d, obtained at the r th replication. The

final converged BIC values and consumed CPU time are also shown in the last two
columns for the sake of comparison. From the numerical results listed in Table 7, the
four algorithms produce very similar estimation accuracy and the AMFA algorithm
demands the lowest computational cost in all cases. Notice that the EM algorithm is
slowest, while the AECM algorithm gives slightly lower accuracy for some cases. It
is also noteworthy that the norm of the bias as well as the standard deviations for all
parameter vectors is getting smaller when the sample size increases. This indicates
empirical evidence that the estimates obtained by the four estimating procedures have
desirable asymptotic properties. Although the above simulation experiment is some-
what limited, it demonstrates the AMFA algorithm can yield comparable parameter
estimates and converged log-likelihood to the two-stage methods which may demand
a prohibitively higher computational burden.

7 Conclusion

We have devised a one-stage AMFA procedure that seamlessly integrates the selection
of the number of factors into parameter estimation for fast learning MFA model with
possibly missing values. The efficiency of such an automatic scheme stems from less
amount of missing information and quick determination of factor dimensions based
on the eigendecomposition of local sample covariance matrices. Two auxiliary permu-
tation matrices are incorporated into all considered estimating procedures that allow
for ease of algorithmic representation and computer coding. We have further explic-
itly derived the Hessian matrix of the MFA model with missing information; thereby,
the asymptotic standard errors of the ML estimates can be directly obtained without
having to resort to computationally intensive bootstrap methods (Efron and Tibshirani
1986). Experiments with real and synthetic examples reveal that the AMFA algorithm
performs comparably to the two-stage methods, but the computational demands are
much lower, particularly for data involving a higher proportion of missing outcomes.

The proposed one-stage approach is limited to fast learning MFA under a given
number of components (g). Although pointed out by many researchers, it is still an
open question to develop an automated algorithm for fast determination of the best
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pair (g, q)without sacrificing toomuch computational complexity. TheBIC is adopted
to choose the most plausible q due to its consistence in model selection. However,
other criteria such as the integrated completed likelihood (ICL; Biernacki et al. 2000)
or approximate weight of evidence (AWE; Banfield and Raftery 1993) can also be
used and might perform better than BIC in discovering the true numbers of factors or
clusters. Nevertheless, all these criteria suffer from the problem of over-penalization
in dealing with incomplete data when the rate of missingness gets large (Ibrahim et al.
2008). It would be a worthwhile future task to develop an improved procedure that can
take the aforementioned issues into account. In the formulation ofMFA, the number of
local factors per component is assumed to be equal to guarantee the global structural
identifiability. However, such a restriction might cause an overlearning effect when
the number of component (g) or factors (q) increases. To remedy this deficiency, an
attempt on the extension of our current approach allowing for automatic determination
of varying dimensions of local factors {qi }gi=1 deserves further attention. Finally, it is of
interest to extend the current approach to the mixture of t factor analyzers (McLachlan
et al. 2007; Wang and Lin 2013) for modeling incomplete high-dimensional data that
have heavy-tailed behavior in a more efficient manner.
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