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Abstract
We consider a goodness-of-fit test for certain parametrizations of conditionally het-
eroscedastic time series with unobserved components. Our test is quite general in that
it can be employed to validate any given specification of arbitrary order and may even
be invoked for testing not just GARCH models but also some related models such
as autoregressive conditional duration models. The test statistic utilizes the charac-
terization of Bierens (J Econom 20:105–134, 1982) and may be written down in a
convenient closed-form expression. Consistency of the test is proved, and the asymp-
totic distribution of the test statistic under the null hypothesis is studied. Since this
distribution depends on unknown quantities, two bootstrap resampling schemes are
investigated and compared in order to approximate critical points and actually carry
out the test. Finite-sample results are presented as well as applications of the proposed
procedures to real data from the financial markets.
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1 Introduction

Consider a multiplicative strictly stationary process

xt = σtεt , (1)

where εt and σt are independent, {εt }t∈Z is a sequence of independent and identically
distributed (IID) random variables with mean zero and unit variance, and suppose
σ 2
t = Var(xt |It−1), where It denotes the information available at time t . A GARCH

model is a specification of the conditional variance which takes the general form

σ 2
t = h(ϒ t,p,q), (2)

where ϒ t,p,q = (xt−1, . . . , xt−p, log(σ 2
t−1), . . . , log(σ

2
t−q))

′ and h : R
r �→ R, with

r = p + q, being p ≥ 1 and q ≥ 0. The classical GARCH corresponds to

h(ϒ t,p,q) = ω +
p∑

j=1

γ j x
2
t− j +

q∑

j=1

β jσ
2
t− j , t ∈ Z (3)

Although (3) is indeed the most popular specification of the function h(·) in (2)
for the multiplicative time series in (1), there exist numerous alternative instances of
(2), such as the asymmetric log-GARCH, the QGARCH and the EGARCH models,
among many others, which have proved useful in applications. Some of these models
are considered in our Monte Carlo study in Sect. 6. For more information, the reader is
referred to Rachev and Mittnik (2000), Francq and Zakoïan (2010), Teräsvirta (2009)
and Jondeau et al. (2007).

In this paper, we construct goodness-of-fit tests for correct specification of the
function h(·) in (2) in the context of model (1). This problem has been considered by
Berkes et al. (2003a), Hong and Lee (2003), Escanciano (2008), Halunga and Orme
(2009), Leucht et al. (2015), Zheng et al. (2018) and Francq et al. (2018), among
others.

A number of such tests are based on the following idea: If model (2) is correctly
specified, then the sets {εt = xt/h(ϒ t,p,q)

1/2} and {εt } coincide; therefore, the random
variables in {εt = xt/h(ϒ t,p,q)

1/2}must be IID. For instance, the tests in Berkes et al.
(2003a), Zheng et al. (2018) and Francq et al. (2018) are portmanteau-type tests based
on a finite number of correlations of some functions of the residuals. It is well known
that these tests are not globally consistent.

Now, when it comes to testing independence in a time series, methods based on
characteristic functions such as the tests of Hong (1999) and the tests based on the
so-called distance (auto)covariance originally suggested by Székely et al. (2007) and
adapted to serial correlation by Fokianos and Pitsillou (2018) and Davis et al. (2018),
all with observable data, are quite suitable. Davis et al. (2018) also applied such
distance to the residuals of an autoregressive process. Hong and Lee (2003) adapted
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684 M. D. Jiménez-Gamero et al.

the method in Hong (1999) for unobservable innovations {εt } in linear and nonlinear
time series models. This proposal is not consistent against all alternatives since it is
centered on the pairwise independence of εt and εt+s , for all s, which is weaker than
the independence of all innovations. We nevertheless revisit this test in our Monte
Carlo study.

The relation to characteristic function-based methods with our method lies entirely
in the weighting scheme which uses the complex exponential function, but further
discussion on this issue is postponed till Remark 2. In fact, as it will be seen further
down the paper, ourmethod deals with the specification problem not via independence,
but directly targeting correct specification of the conditional variance. As such, the
starting point of our method is in the same spirit as the methods of Halunga and
Orme (2009), Leucht et al. (2015) and Escanciano (2008). Nevertheless, Escanciano’s
method is in the frequency domain, which is rather different from ours. Halunga and
Orme’s approach is based on the fact that under model (2), εt and ϒ t,p,q must be
uncorrelated, and their tests are not universally consistent. Finally, the test in Leucht
et al. (2015) is restricted to the GARCH(1,1) case. On the other hand, our method is
applicable to a wide range of models of general (fixed) order, and by virtue of Bierens
characterization, it is consistent against all fixed alternative specifications of the model
under test.

The remainder of the paper is outlined as follows. In Sect. 2, we introduce the
new test statistic and discuss some computational aspects. Section 3 is devoted to the
asymptotic properties of the proposed method. Specifically, we derive the limit (in
probability) of the proposed test statistic as well as its asymptotic null distribution and
show that the test which rejects the null hypothesis for large values of the test statistic is
consistent against fixed alternatives. Because the asymptotic null distribution depends
on certain unknown quantities, Section 4 studies in detail a consistent approximation
to the null distribution. Specifically, we propose to approximate the null distribution by
means of a weighted bootstrap estimator. Section 5 shows that the conditions required
for the consistency of the weighted bootstrap estimator are met for certain popular
specifications of (2), including conditional duration models. Section 6 summarizes a
MonteCarlo experiment carried out to study thefinite-sample properties of themethod,
along with empirical applications. Finally, we end in Section 7 with conclusions and
discussion. All proofs are included in Supplementary Material.

Throughout the paper, we will make use of the following notation: all vectors are
column vectors; for any vector v, vk denotes its kth coordinate, ‖v‖ its Euclidean
norm and v′ its transpose; if A = (a jk) is a matrix, then ‖A‖ = ∑

j,k |a jk |; for
any complex number x = a + ib, x̄ = a − ib and |x | = √

a2 + b2 = √
x x̄ , with

i = √−1; P0 denotes probability by assuming that the null hypothesis is true; P∗, E∗
and Cov∗ denote the conditional probability law, expectation and covariance, given
the data, respectively; all limits in this paper are taken when T → ∞, where T denotes

the sample size;
L→ denotes convergence in distribution;

P→ denotes convergence in
probability;

a.s.→ denotes the almost sure convergence; L2
w stands for the space of all

L2 functions defined on the measure space (Rr ,Br , μ), where Br denotes the σ -field
of Borel subsets of R

r , and the measure μ has density w: dμ(u) = w(u)du, that
is, L2

w = { f : R
r �→ C : ‖ f ‖2w = ∫ | f (u)|2w(u)du < ∞}, where an unspecified
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integral denotes integration over R
r ; 〈·, ·〉w denotes the scalar product in the Hilbert

space L2
w.

2 The test statistic

Let xt , 1 ≤ t ≤ T , be observations on the process (1). On the basis of these observa-
tions, we wish to test the null hypothesis

H0 : σ 2
t = hϑ (ϒ t,p,q), for some ϑ ∈ � ⊆ R

v, (4)

where hϑ (·) denotes a specific function incorporating a multidimensional parameter
ϑ .

In order to formulate our procedure, let σ 2
t (ϑ) := hϑ (ϒ t,p,q) and notice that,

under the null hypothesis H0, we have E(x2t |ϒ t,p,q) = σ 2
t (ϑ). In this connection,

recall the characterization of Bierens (1982) that for real x and a given vector y of
dimension r , E(x |y) = 0 holds if and only if E(xeiu

′y) = 0, for all u ∈ R
r . In view

of this characterization, let ε̂t := xt/σt (ϑ̂T ) be the residuals, where ϑ̂T is a consistent
estimator of the parameter ϑ . Recall that σ 2

t (ϑ) depends on {xk, −∞ < k ≤ t − 1},
whereas we observe x1, . . . , xT . So, in order to calculate the residuals, instead of
σ 2
t (ϑ̂T ), we consider σ̃ 2

t (ϑ̂T ) defined as σ 2
t (ϑ̂T ) on the basis of initial values ϒ̃1 :=

(x̃0, . . . , x̃1−p, log(σ̃ 2
0 ), . . . , log(σ̃ 2

1−q))
′. Thus, in practice, instead of ε̂t , we consider

ε̃t := xt/σ̃t (ϑ̂T ), 1 ≤ t ≤ T .
With this notation, our core test-process is defined as

ST (u) = 1

T − m

T∑

t=m+1

(
ε̃2t − 1

)
eiu

′ϒ̃ t , u ∈ R
r , (5)

where ϒ̃ t := (xt−1, . . . , xt−p, log(̃σ 2
t−1(ϑ̂T )), . . . , log(̃σ 2

t−q(ϑ̂T )))′, m=max{p, q}.
Under H0, it is expected that ST (u) will be close to zero for large sample size T ,
∀u ∈ R

r . We consider as test statistic the normalized integrated process

QT ,w = (T − m)

∫
|ST (u)|2w(u)du = (T − m)‖ST ‖2w, (6)

where w(·) denotes a weight function whose choice is discussed below. Rejection of
the null hypothesis H0 is for large values of QT ,w.

We would like to underline the computational simplicity of the test statistic in (6):
by straightforward algebra, from (5)

|ST (u)|2 = 1

(T − m)2

T∑

t,s=m+1

(
ε̃2t − 1

) (
ε̃2s − 1

)
cos{u′(ϒ̃ t − ϒ̃s)},

which makes it possible to express the test statistic as

QT ,w = 1

T − m

T∑

t,s=m+1

(
ε̃2t − 1

) (
ε̃2s − 1

)
Iw(ϒ̃ t − ϒ̃s), (7)
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686 M. D. Jiménez-Gamero et al.

where

Iw(x) =
∫

Rr
cos(u′x)w(u)du. (8)

The computation is further simplifiedby considering specific instances of theweight
function w(·) in (8). For instance, if we choose the density of the spherical stable
distribution [see Nolan (2013)], then we readily obtain from (8), Iw(x) = e−‖x‖γ

,
where 0 < γ ≤ 2 stands for the characteristic exponent of the spherical stable law.
The resulting test statistic in (7) reduces to

QT ,γ = 1

T − m

T∑

t,s=m+1

(
ε̃2t − 1

) (
ε̃2s − 1

)
e−‖ϒ̃ t−ϒ̃s‖γ

. (9)

Here, we only employ the Gaussian density as weight function, leading to the test
statistic in (9) with γ = 2, since this is the only member of the spherical stable class
satisfying Assumption 7 which is instrumental in deriving the asymptotic results of
the next section.

Remark 1 The null hypothesisH0 states, among other things, that σ 2
t depends on It−1

throughϒ t,p,q . Obviously,ϒ t,p,q could be replaced with any one-to-one transform of
it (by properly modifying the expression of hϑ (·)). The motivation of our choice for
ϒ t,p,q is of pure technical nature: a commonly used estimator for the parameter ϑ in
GARCHmodels is the quasimaximum likelihood estimator (QMLE)whichminimizes,
with respect to ϑ

T∑

t=1

	̃t (ϑ), where 	̃t (ϑ) = x2t
σ̃ 2
t (ϑ)

+ log σ̃ 2
t (ϑ).

The conditions required for the QMLE to be a consistent and asymptotically normal
estimator of ϑ coincide with those required to derive asymptotic properties of the test
statistic (6) with our choice of ϒ t,p,q .

3 Asymptotic properties

In the asymptotics, C (with C > 0) and 
 (with 0 < 
 < 1) will denote generic
constants whose exact values are unimportant and may vary across the text. Also let
σ̇ 2
t (ϑ) = ∂

∂ϑ
σ 2
t (ϑ) and σ̈ 2

t (ϑ) = ∂2

∂ϑ∂ϑ ′ σ 2
t (ϑ).

Assumption 1 {xt }t∈Z is a strictly stationary and ergodic process.

Assumption 2 (a) ϑ̂T
P−→ ϑ0, for some ϑ0 that belongs to the interior of �, ϑ0

being the true parameter value when H0 is true.

(b) E

[{
x2t

σ 2
t (ϑ0)

}(1+δ)
]

< ∞, for some δ > 0.
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Assumption 3 sup
ϑ∈�

∣∣∣∣
1

σ 2
t (ϑ)

− 1

σ̃ 2
t (ϑ)

∣∣∣∣ ≤ Cρt , sup
ϑ∈�

∣∣∣log{σ 2
t (ϑ)} − log{σ̃ 2

t (ϑ)}
∣∣∣ ≤

Cρt .

Assumption 4 E|x0|s < ∞, for some s > 0.

Assumption 5 For any k > 0, there exists a neighborhood �k of ϑ0 such that

E

[
sup

ϑ∈�k

{
σ 2
t (ϑ0)

σ 2
t (ϑ)

}k
]

< ∞.

Assumption 6 The function ϑ �→ σ 2
t (ϑ) is twice continuously differentiable, and the

derivatives satisfy: for any k > 0, there exists a neighborhood �k of ϑ0 such that

E

[
sup

ϑ∈�k

∥∥∥∥
σ̇ 2
t (ϑ)

σ 2
t (ϑ)

∥∥∥∥
k
]

< ∞, E

[
sup

ϑ∈�k

∥∥∥∥
σ̈ 2
t (ϑ)

σ 2
t (ϑ)

∥∥∥∥
k
]

< ∞.

Assumption 7 w : R
r �→ (0,∞) is an even function: w(u) = w(−u), ∀u ∈ R

r ,
satisfying

∫
(1 + ‖u‖2)w(u)du < ∞.

Notice that the neighborhoods in Assumptions 5 and 6 may not coincide. Never-
theless, without loss of generality, we can assume that they do coincide and thus use
the same symbol to denote both neighborhoods.

Assumption 1 is a condition on the data generation process. Assumption 2 will
be required to derive the limit (in probability) of the statistic (T − m)−1QT ,w. This
assumption is also employed by Leucht et al. (2015) for testing goodness-of-fit to
the linear GARCH(1,1) model. It is required to get a closed-form expression of such
limit under alternatives. Notice that under the null hypothesis, Assumption 2 typically
holds true: part (a) is satisfied by the QMLE and part (b) entails that E{ε2(1+δ)} <

∞, for some δ > 0, which is usually assumed for the asymptotic normality of the
QMLE. Assumption 3 is required to ensure that the choice of the initial values ϒ̃1 :=
(x̃0, . . . , x̃1−p, log(σ̃ 2

0 ), . . . , log(σ̃ 2
1−q))

′ is unimportant for the asymptotic behavior
of the test statistic. Assumption 4 is a mild moment condition on the data generation
process. Assumptions 5 and 6 are conditions on the model under the null hypothesis
that must be checked for each particular model.

As mentioned in Sect. 2, rejection of the null hypothesis H0 is for large values
of QT ,w. The next result gives a sound justification for such assertion. Let ϒ t (ϑ) =
(xt−1, . . . , xt−p, log{σ 2

t−1(ϑ)}, . . . , log{σ 2
1−q(ϑ)})′.

Theorem 1 Suppose that Assumptions 1–7 hold. Then,

QT ,w

T − m
P−→ κ =

∫

Rr
|E0(u)|2 w(u)du, (10)
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688 M. D. Jiménez-Gamero et al.

where E0(u) := Eϑ0(u) with

Eϑ (u) = E

{(
x2t

σ 2
t (ϑ)

− 1

)
eiu

′ϒ t (ϑ)

}
.

Theorem 1 states that 1
T−m QT ,w converges in probability to a nonnegative constant

κ ≥ 0 which, from Bierens characterization, satisfies that κ = 0 iff the null hypoth-
esis is true. Thus, a reasonable test of H0 should reject the null hypothesis for large
values of QT ,w. Now, to determine what are large values we must calculate its null
distribution, or at least an approximation to it. The exact null distribution of QT ,w is
clearly unknown. As an approximation, we will derive its asymptotic null distribution.
With this aim, a further assumption is needed, which is listed below.

Assumption 8 Under the null hypothesis,

ϑ̂T = ϑ0 + 1

T

T∑

t=1

Lt (ϑ0) + oP (T−1/2),

with Lt (ϑ0) = (g1(εt )l1(εt−1, εt−2, . . .), . . . , gv(εt )lv(εt−1, εt−2, . . .))
′, 1 ≤ t ≤

T , satisfying E{gu(ε0)} = 0, E{gu(ε0)2} < ∞, E{lu(ε−1, ε−2, . . .)
2} < ∞, 1 ≤ u ≤

v.

First, next theorem derives an asymptotic approximation for QT ,w.

Theorem 2 Suppose that Assumptions 1–8 hold and that E(ε40) < ∞. IfH0 is true,

QT ,w = ‖WT (·;ϑ0)‖2w + oP (1),

where

WT (u;ϑ) = 1√
T − m

T∑

t=m+1

Ht (u;ϑ),

Ht (u;ϑ) = (ε2t − 1)
[
cos{u′ϒ t (ϑ)} + sin{u′ϒ t (ϑ)}] − G(u;ϑ)′Lt (ϑ),

G(u;ϑ) = E

(
σ̇ 2
0 (ϑ)

σ 2
0 (ϑ)

[
cos{u′ϒ0(ϑ)} + sin{u′ϒ0(ϑ)}]

)
.

Next, as a consequence of the result in Theorem 2, the following corollary provides
the asymptotic null distribution of QT ,w.

Corollary 1 Suppose that the assumptions of Theorem 2 hold. Then,

QT ,w
L−→ ‖Z‖2w,

where {Z(u), u ∈ R
r } is a zero-mean Gaussian random element in L2

w with covari-
ance kernel 
0(u, v) = E{H0(u;ϑ0)H0(v;ϑ0)}, ∀u, v ∈ R

r .
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As an immediate consequence of Theorem 1 and Corollary 1, it follows that the test
that rejects the null hypothesis for large values of the test statistic QT ,w is consistent
against any fixed alternative such that E

(
x2t | ϒt,p,q

) �= hϑ (ϒt,p,q).

Remark 2 In general, Bierens characterization involvingE{x g(y,u)}, holds for a wide
range of “instrument” functions g(·, ·). For a thorough discussion on the possible
choice of instruments, the reader is referred to Stinchcombe and White (1998). Here,
we have restricted ourselves to the exponential function g(y,u) = eiu

′y which was the
original instrument considered in Bierens (1982). There are several reasons for this
choice such as computational convenience (see Sect. 2) and power considerations.
In this connection, we refer to Escanciano (2008), where the resulting tests for this
choice of g exhibit favorable performance in finite samples. Nevertheless, as it will
become evident from the proofs in Supplementary Material, all results still hold true
for arbitrary instruments, provided that the associated function g(·, ·) is bounded and
satisfies

|g(x,u) − g(y,u)| ≤ C‖u‖‖x − y‖, (11)

for some positive constant C > 0.

Remark 3 As an anonymous referee observed, the test statistic is not scale invariant.
The reason is that properly specified GARCH models contain a scale-free error term
and thus model the scale of the data (either directly the variance, or otherwise some
form of volatility) via a certain regression-type function. In turn, this regression func-
tion is in most cases itself not scale equivariant, and consequently, the model itself,
as well as the corresponding parameter estimates, is not scale equivariant. Hence, the
notion of scale equivariance does not apply to GARCH models, and therefore, the
corresponding goodness-of-fit tests do depend on the scale of the data

Going back to Corollary 1, we note that besides its dependence on ϑ0 and the
corresponding estimator, the asymptotic null distribution of the test statistic QT ,w also
depends on the unknown distribution of the innovations. Therefore, the asymptotic null
distribution does not provide a useful approximation to the null distribution of QT ,w.
In the next section, we circumvent this problem by proposing a resampling scheme
that consistently estimates the limit law of QT ,w.

4 Approximating the null distribution usingmultipliers

The tests proposed in Leucht et al. (2015) for testing goodness-of-fit to a linear
GARCH(1,1) model is, in a sense, similar to our proposal (it can be seen as a particular
case of our proposal if instead of taking the exponential function, a general function
g(·, ·) satisfying (11) is considered). These authors proposed a residual-based boot-
strap to approximate the null distribution of their test statistic. We could also consider
a residual-based bootstrap procedure to approximate the null distribution of our test
statistic but, as noted in Jeong (2017), the residual-based bootstrap actively employs the
specific dependence structure of the model. In addition, the residual-based bootstrap
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690 M. D. Jiménez-Gamero et al.

is very time-consuming, since the parameter must be estimated with each resample.
Because of these reasons, next we prove the consistency of a widely applicable boot-
strap method, the weighted bootstrap, also called the multipliers method. This method
has been used effectively in the context of testing goodness-of-fit for the error dis-
tribution in linear GARCH models for methods based on the empirical distribution
function in Ghoudi and Rémillard (2014, 2018), as well as for methods based on the
empirical characteristic function in Jiménez-Gamero and Pardo-Fernández (2017).

In order to discuss the implementation of the multipliers method for approximating
the null distribution of QT ,w, recall that Theorem2 states that QT ,w = Q1,T ,w+op(1),
with

Q1,T ,w = ‖WT (·;ϑ0)‖2w .

Let ξm+1, . . . , ξT be IID copies of a random variable ξ withE(ξ) = 0 andVar(ξ) =
1, independent of x1, . . . , xT . Let us consider the followingweighted bootstrap version
of Q1,T ,w,

Q∗
1,T ,w = ∥∥W ∗

1,T (·;ϑ0)
∥∥2

w
,

with

W ∗
1,T (u;ϑ0) = 1√

T − m

T∑

t=m+1

Ht (u;ϑ0)ξt .

The following result gives the large-sample conditional distribution of Q∗
1,T ,w,

given x1, . . . , xT .

Theorem 3 Suppose that Assumptions 1 and 6–8 hold and that E(ε40) < ∞. Then,

sup
x

∣∣∣P∗
(
Q∗

1,T ,w ≤ x
) − P

(
‖Z1‖2w ≤ x

)∣∣∣ P−→ 0,

where {Z1(u), u ∈ R
r } is a zero-mean Gaussian random element in L2

w having
covariance kernel 
(u, v) = E{H0(u;ϑ0)H0(v;ϑ0)}, ∀u, v ∈ R

r .

As an immediate consequence of Theorem 3, the following corollary states that
whenH0 is true, the conditional distribution of Q∗

1,T ,w, given x1, . . . , xT , provides a
consistent estimator of the null distribution of QT ,w.

Corollary 2 Suppose that the assumptions of Theorem 2 hold. Then,

sup
x

∣∣P∗
(
Q∗

1,T ,w ≤ x
) − P0

(
QT ,w ≤ x

)∣∣ P−→ 0.

Although the conditional distribution, given x1, . . . , xT , of Q∗
1,T ,w provides a con-

sistent estimator of the null distribution of QT ,w, it presents the same drawbacks
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as the asymptotic null distribution of QT ,w, since this distribution depends on the
unknown values of Hm+1(u;ϑ0), . . . , HT (u;ϑ0). These quantities depend on ϑ0, on
the function G(u;ϑ0), as well as on the unobservable innovations. In addition, Lt (ϑ)

in Assumption 8 is usually unknown. Thus, Q∗
1,T ,w cannot be used in practice. To

overcome this problem, we replace εt by ε̃t , (m + 1 ≤ t ≤ T ), G(u;ϑ0) by

G̃(u; ϑ̂T ) = 1

T − m

T∑

t=m+1

Ãt (ϑ̂T )
{
cos(u′ϒ̃ t ) + sin(u′ϒ̃ t )

}
,

with

Ãt (ϑ) = ∂

∂ϑ
log{̃σ 2

t (ϑ)}, (12)

and Lt (ϑ0) by L̂ t (ϑ0) satisfying

1

T − m

T∑

t=m+1

‖Lt (ϑ0) − L̂ t (ϑ0)‖2 P−→ 0. (13)

A candidate for L̂ t (ϑ0) will be discussed in Sect. 5 for some special cases of
specifications inH0. So, instead of Q∗

1,T ,w we consider

Q∗
T ,w = ∥∥W ∗

T (·; ϑ̂T )
∥∥2

w
,

with

W ∗
T (u; ϑ̂T ) = 1√

T − m

T∑

t=m+1

H̃t (u; ϑ̂T )ξt ,

and

H̃t (u; ϑ̂T ) = (̃ε2t − 1)
{
cos(u′ϒ̃ t ) + sin(u′ϒ̃ t )

} − G̃(u; ϑ̂T )′ L̂ t (ϑ0).

The next result shows that Q∗
T ,w and Q∗

1,T ,w both have the same conditional limit
distribution, given the observations. The main advantage of Q∗

T ,w over Q∗
1,T ,w is that

the former does not depend on unknown quantities, and thus, at least in principle, its
distribution can be calculated. This practical issue will be dealt with at the end of the
section. From now on, the conditional distribution of Q∗

T ,w, given the data, will be
called the weighted bootstrap distribution of QT ,w.

Assumption 9

1

T − m

T∑

t=m+1

‖At (ϑ0) − Ãt (ϑ̂T )‖ P−→ 0.
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Theorem 4 Suppose that Assumptions 1–9 and (13) hold. Then

sup
x

∣∣P∗
(
Q∗

T ,w ≤ x
) − P

(
Q∗

1,T ,w ≤ x
)∣∣ P−→ 0.

Note that the result in Theorem 4 is valid whether or not the null hypothesis is true.
Two immediate consequences follow.

Corollary 3 IfH0 is true and the assumptions of Theorem 4 hold, then

sup
x

∣∣P∗
(
Q∗

T ,w ≤ x
) − P0

(
QT ,w ≤ x

)∣∣ P−→ 0.

In view of Corollary 3 and for α ∈ (0, 1), we consider the test function

�∗ = �∗(x1, . . . , xT ) =
{
1, if QT ,w ≥ q∗

α,

0, otherwise,

where q∗
α is the 1 − α percentile of the conditional distribution of Q∗

T ,w, given
x1, . . . , xT , or equivalently, �∗ = 1 if p∗ ≤ α, where p∗ = P∗{Q∗

T ,w ≥ QT ,w,obs},
QT ,w,obs being the observed value of the test statistic QT ,w. The result in Corollary 3
states that the test �∗ is asymptotically correct, in the sense that its type I error is
asymptotically equal to the nominal level α. In the next corollary, we prove that �∗ is
asymptotically able to detect any fixed alternative.

Corollary 4 If H0 is not true and the assumptions of Theorem 4 hold, then P(�∗ =
1) → 1.

The calculation of the exact weighted bootstrap distribution of QT ,w is, from a
practical point of view, not feasible. Nevertheless, the weighted bootstrap p-value can
be approximated by simulation, following the steps in next algorithm. Let M = (Mt,s)

denote the (T − m) × (T − m)-matrix with elements

Mt,s =
∫

H̃m+t (u; ϑ̂T )H̃m+s(u; ϑ̂T )w(u)du, 1 ≤ t, s ≤ T − m.

Algorithm

1. Compute the test statistic QT ,w,obs .
2. For some large integer B, repeat for every b ∈ {1, . . . , B}:

(a) Generate ξb = (ξbm+1, . . . , ξ
b
T )′.

(b) Calculate Q∗b
T ,w = ξb

′
Mξb/(T − m).

3. Approximate the p-value corresponding to QT ,w,obs by p̂∗ = 1
B

∑B
b=1 I {Q∗b

T ,w >

QT ,w,obs}.
Before moving to applications, we reiterate that in the weighted bootstrap algorithm,
the parameter ϑ needs to be estimated only once, while the residual-based bootstrap
counterpart requires estimation of this parameter for each resample.
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5 Applications

The theory so far developed for testingH0 is very general. This section discusses the
applicability of the proposed procedure to testing for some special models.

5.1 Testing for the linear GARCH(p,q) model

Let us now consider the problem of testing for the linear GARCH model defined in
(3), for some p ≥ 1, q ≥ 0. The consistency and the asymptotic normality of the
QMLE in this model were first studied in Berkes et al. (2003b). Then, Francq and
Zakoïan (2004) derived those properties under somewhat weaker assumptions, so we
will follow the approach in the latter paper.

Francq and Zakoïan (2004) have given a necessary and sufficient condition for
Assumption 1 to hold. If such a condition holds, then Assumption 4 is met (ibid.
Proposition 1). Let ϑ = (ω, γ1, . . . , γq , β1, . . . , βq)

′ ∈ � ⊂ (0,∞) × [0,∞)p+q ,
for some compact set�. Assume that ϑ0 = (ω0, γ01, . . . , γ0q , β01, . . . , β0q)

′ belongs
to the interior of�, ε2t has a non-degenerate distribution satisfyingE(ε40) < ∞, {xt } is
stationary and ergodic,

∑q
j=1 β0 j < 1 and that the parameter ϑ0 is identifiable. Then,

the QMLE of ϑ satisfies Assumption 8 with

L j = L j (ϑ) = (ε2j − 1)At (ϑ)J−1, 1 ≤ t ≤ T ,

J = E{A1(ϑ)A1(ϑ)′}
At (ϑ) = σ̇ 2

t (ϑ)

σ 2
t (ϑ)

, 1 ≤ t ≤ T ,

(14)

(ibid. Theorem 2.2). Under these conditions, it follows that Assumptions 3, 5 and 6
hold (ibid. Theorems 2.1 and 2.2).

For the consistency of the weighted bootstrap distribution estimator of QT ,w, we

also need L̂ t (ϑ0) satisfying (13). Let

L̂ t = (ε̃2j − 1) Ã j (ϑ̂T ) Ĵ−1, 1 ≤ t ≤ T ,

Ĵ = 1

n

T∑

t=1

Ãt (ϑ̂T ) Ãt (ϑ̂T )′,
(15)

and Ã j (ϑ) as defined in (12). Proposition 7.1 in Jiménez-Gamero andPardo-Fernández
(2017) shows that {L̂ t , 1 ≤ t ≤ T } satisfies (13), while Lemma B.1 (f) of the same
paper guarantees that Assumption 9 holds. Therefore, our procedure can be applied
to testing for the linear GARCH model when the parameter is estimated by means of
the QMLE.

We note that asymptotic results in Leucht et al. (2015) for the special case of the
linear GARCH(1,1) model are obtained under the same assumptions, but the cor-
responding residual-based bootstrap resampling scheme employed requires stronger
assumptions than our proposal. As it was mentioned in Introduction, the approach in
Escanciano (2008) is rather different from ours, even the required assumptions are not
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comparable: although that paper does not assume that the innovations are IID, when
the test in that paper is applied to test for H0, it requires E{(x20 − σ 2

0 )2} < ∞, which
is ensured if E{x40 } < ∞ and E{σ 4

0 } < ∞. From Theorem 2.9 in Francq and Zakoïan
(2010), the existence of such moments entails certain restrictions on the parametric
space �.

5.2 Testing for the asymmetric log-GARCH(p,q) model

Although the linear GARCH model is the most popular, it possesses some limita-
tions such as (i) the positivity of the components of ϑ which complicates estimation
procedures, (ii) the assumption that volatility is bounded from below and (iii) the
lack of the leverage effect whereby negative observations tend to have more impact
on volatility than positive observations of the same magnitude. Because of these rea-
sons, some alternative models have been suggested. Here, we consider the asymmetric
log-GARCH(p,q) model, whose specification of the function h(·) in (2) is given by

h(ϒt,p,q) = exp

⎧
⎨

⎩ω +
p∑

j=1

[
γ j+ I (xt− j > 0) + γ j− I (xt− j < 0)

]
log(x2t− j )

+
q∑

j=1

β j log(σ
2
t− j )

⎫
⎬

⎭ , ∀t = 1, 2, . . . .

For recent works on this class of models, the reader is referred to Francq et al. (2013,
2018), and the references therein.

Theorem 2.1 in Francq et al. (2013) gives a sufficient condition for Assumption 1
to hold. Theorem 3.1 (see also Proposition 3.3 for the case p = q = 1) in that paper
gives a sufficient condition for Assumption 4 to hold. Expressions (7.6) and (7.8) in
the proof of Theorem 4.1 in Francq et al. (2013) show that, under the assumptions of
that theorem, Assumption 3 is also met. Under those assumptions, our Assumptions 5
and 6 also hold (ibid. Theorem 4.2). Also the QMLE of ϑ satisfies Assumption 8 with
L j (ϑ) as in (14).

For the consistency of the weighted bootstrap distribution estimator of QT ,w, we

also need L̂ t (ϑ0) satisfying (13). With this aim, we can use the approximation defined
in (15). Then,

sup
ϑ

∥∥∥∥
∂

∂ϑ
log{σ 2

t (ϑ)} − ∂

∂ϑ
log{σ̃ 2

t (ϑ)}
∥∥∥∥ ≤ Cρt ,

(ibid. Theorem 4.2), which implies that Assumption 9 holds. Then, Proposition 7.1 in
Jiménez-Gamero and Pardo-Fernández (2017) shows that {L̂ t , 1 ≤ t ≤ T } satisfies
(13), since the proof is based on the assumptions made, and not on the particular
specification of the linear GARCH. Therefore, our procedure can be applied to testing
for the asymmetric log-GARCH model when the parameter is estimated by means of
the QMLE.
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5.3 Testing for specification of durationmodels

Engle and Russell (1998) proposed the linear autoregressive conditional duration
model to analyze high-frequency data on durations between successive financial mar-
ket trades. Later on, since the linear specification is so restrictive in practice, as pointed
out by Dufour and Engle (2000), various alternative nonlinear conditional duration
models have been proposed (for example, Bauwens and Giot (2003) proposed loga-
rithmic autoregressive conditional duration models).

Let us consider the autoregressive conditional duration model

yt = ψtεt ,

ψt = hϑ (�t,p,q),

where �t,p,q = (yt−1, . . . , yt−p, logψt−1, . . . , logψt−q)
′, and {hϑ : ϑ ∈ �}

denotes a specific parametric family of nonnegative functions that involves a parame-
ter vector ϑ , and {εi }i∈Z is a sequence of IID positive random variables with Eε0 = 1
and Eε20 < ∞.

In practice, yt is the duration between two consecutive events such as the quote,
price change with ψt being the conditional expected value given past observations.

Notice that an autoregressive conditional duration model has the dynamics of the
square of a GARCH model. Since our procedure, initially designed for testing model
specification in GARCHmodels, depends on the square of the data and on the specifi-
cation for σ 2

t , all results carry over to the present model, and thus, specification testing
may be carried out just by replacing x2t and σ 2

t by yt and ψt , respectively.

6 Monte Carlo and real data applications

6.1 Monte Carlo results

This section is devoted to the study of the finite-sample performance of the proposed
tests in terms of level approximation and power. With this purpose, a Monte Carlo
simulation study was conducted. In all cases, the innovations are sequences of IID
variables having a standard normal distribution and the parameters were estimated
by means of the QMLE. The results displayed in the tables are the empirical pow-
ers obtained by generating in each case 1000 samples of size T = 500. As weight
function w(·), we took the density function of a (p + q)-variate normal distribution
which yields Iw(x) = exp{−(1/a)‖x‖2} for several values of a > 0, which meets
Assumption 7. The nominal significance levels are α = 0.05 and α = 0.10. With
the aim of comparing the behavior of the approximations provided by the weighted
bootstrap (WB in the tables) studied in Sect. 4 and the residual-based bootstrap (RB
in the tables) as defined in Leucht et al. (2015), we calculated both of them with
B = 1000 for the weighted bootstrap and by generating B = 500 bootstrap samples
for the residual-based bootstrap, as in Leucht et al. (2015). All computations in this
paper have been performed by using programswritten in the R language (RCore Team
2018).
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Table 1 Percentages of rejections underH0,lin for T = 500 (level)

(ω, γ, β) Proposed test Portm. HL

WB RB

a 5% 10% 5% 10% k 5% 10% p 5% 10%

(0.1, 0.1, 0.3) 0.5 4.4 10.6 4.9 10.1 8 2.8 5.0 3 3.6 6.1

1.0 4.7 10.6 4.4 9.8 16 3.8 6.7 6 3.0 6.1

1.5 5.0 10.9 4.6 10.0 24 4.2 7.6 9 3.3 6.1

(0.1, 0.1, 0.5) 0.5 4.4 9.5 4.5 9.3 8 3.0 5.4 3 3.6 6.2

1.0 4.7 10.2 4.5 9.3 16 4.4 7.2 6 3.1 6.3

1.5 5.4 10.2 4.9 9.4 24 4.5 8.1 9 3.1 6.7

(0.1, 0.1, 0.7) 0.5 4.6 9.1 4.0 7.9 8 4.4 8.4 3 3.6 6.1

1.0 4.3 9.6 4.0 8.2 16 4.7 7.2 6 3.3 6.4

1.5 4.4 9.9 4.0 8.5 24 4.9 8.9 9 2.8 6.8

(0.1, 0.1, 0.8) 0.5 7.1 11.3 3.4 7.1 8 14.0 18.6 3 3.8 6.5

1.0 7.9 12.7 3.5 6.2 16 12.0 16.5 6 4.1 7.0

1.5 7.8 13.3 3.2 6.3 24 11.3 15.0 9 4.6 8.4

We first considered the problem of testing goodness-of-fit for a linear GARCH(1,1)
model, that is,

H0,lin : σ 2
t = ω + γ x2t−1 + βσ 2

t−1.

The parameter (ω, γ, β)was estimated by the QMLE by using the function garch
of the R package tseries. In addition to the proposal in this paper, we tried the
portmanteau-type test in Berkes et al. (2003a) (headed as Portm. in the tables) for
several values of the number of lags considered, k, and the test in Hong and Lee
(2003) (headed as HL in the tables) for several values of the bandwidth, p. Table 1
displays the results for the level. For the test proposed in this paper, when β ≤ 0.7,
both approximations give actual levels which are quite close to the nominal ones; for
β = 0.8, the weighted bootstrap approximation is a bit liberal, and the residual-based
bootstrap approximation becomes very conservative. Unreported simulation results
indicate that for both methods a sample size as large as T = 1000 is required in
order to obtain empirical levels close to the nominal values for β = 0.8 and that even
higher samples sizes are required for more persistent models. Motivated by a real data
set application, we also tried the weighted bootstrap approximation for T = 3300,
ω = 0.02, γ = 0.04 and β = 0.95. For this sample size, the residual-based bootstrap
approximation becomes unaffordable. Table 2 displays the results, showing that when
the model is very persistent, but the sample size is large, the weighted bootstrap
provides an adequate approximation.

The test in Berkes et al. (2003a) is conservative for small values of β and rather
liberal for large β. In unreported simulations, we observed that such behavior for
large β persists even for larger sample sizes. We also observe that the actual level
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Table 2 Percentages of
rejections underH0,lin for
T = 3300 with the weighted
bootstrap approximation (level)

(ω, γ, β) α (%) a

0.5 1.0 1.5

(0.02, 0.04, 0.95) 5 5.2 4.9 4.4

10 8.8 8.4 8.9

strongly depends on the number of lags considered. The test in Hong and Lee (2003)
is conservative for all bandwidths considered, and its level is robust to the choice of
the bandwidth, as also observed by the authors in their paper.

As alternatives, we considered the QGARCH(1,1) defined through Eq. (1) with

σ 2
t = ω + γ x2t−1 + βσ 2

t−1 + δxt−1,

and the asymmetric log-GARCH(1,1), as defined in Sect. 5.2. Table 3 displays the
obtained results for the power. It also includes the test in Leucht et al. (2015) (labeled
as LNK in Table 3) with the same choices for the functions involved in the definition of
their test statistic as those considered in their simulations. For the proposal in this paper
and QGARCH alternative, the test based on the weighted bootstrap approximation
and the one based on the residual-based bootstrap approximation exhibit quite close
powers, but for the asymmetric log-GARCH alternative the test based on the weighted
bootstrap approximation is clearly more powerful. Although under the null hypothesis
both approximations should be close (at least for large sample sizes), under alternatives
they may be rather different, and thus, the powers may considerably differ. In all tried
cases, the test proposed in this paper outperforms the ones in Leucht et al. (2015).
Berkes et al. (2003a) and Hong and Lee (2003).

We also considered the problem of testing goodness-of-fit for the asymmetric log-
GARCH(1,1) model, that is,

H0,alog : log(σ 2
t ) = ω + {γ+ I (xt−1 > 0) + γ− I (xt−1 < 0)} log(x2t− j ) + β log(σ 2

t−1).

As before, in addition to the proposal in this paper, we tried (an adaptation of)
the portmanteau-type test in Francq et al. (2018) (headed as Portm. in the tables)
for several values of the number of lags considered, k, and again the test in Hong
and Lee (2003) (headed as HL in the tables) for several values of the bandwidth, p.
Table 4 displays the results for the level. As for the test proposed in this paper, both
approximations give actual levels which are quite close to the nominal ones.Motivated
by a real data set application, we also tried the weighted bootstrap approximation for
T = 3300, ω = 0.04, γ+ = 0.03, γ− = 0.02 and β = 0.96. For this sample size,
the residual-based bootstrap approximation becomes unaffordable. Table 5 displays
the results obtained. The empirical levels are quite close to the nominal values. The
portmanteau-type test gives actual levels close to the nominal values for large k. The
test in Hong and Lee (2003) is conservative for all bandwidths considered.

As alternative, we considered the QGARCH(1,1) model. Table 6 displays the
obtained power results. As noticed before, for the proposal in this paper, the tests
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Table 3 Percentages of rejections under alternatives for testing H0,lin for T = 500 (power)

Proposed test Portm. HL

QGARCH(1,1)

WB RB

(ω, γ, β, δ) a 5% 10% 5% 10% k 5% 10% p 5% 10%

(0.1, 0.1, 0.3, 0.05) 0.5 34.7 46.6 34.7 45.7 8 2.6 5.4 3 11.1 14.4

1.0 35.7 47.7 35.9 46.6 16 4.0 6.9 6 8.3 11.8

1.5 36.8 48.2 35.0 46.5 24 4.7 8.2 9 6.2 10.4

LKN 26.2 41.0

(0.1, 0.1, 0.3, 0.10) 0.5 89.4 94.6 89.0 94.3 8 2.9 5.7 3 47.6 55.1

1.0 91.0 95.1 90.5 94.9 16 3.8 7.0 6 36.9 46.1

1.5 91.2 95.2 90.9 95.0 24 4.5 7.6 9 29.8 37.8

LKN 81.3 91.1

Asymmetric log-GARCH(1,1)

WB RB

(ω, γ+, γ−, β) a 5% 10% 5% 10% k 5% 10% p 5% 10%

(0.1, 0.1, 0.15, 0.3) 0.5 31.0 44.5 21.1 33.3 8 2.6 5.0 3 5.6 7.9

1.0 22.5 35.0 12.8 21.9 16 3.0 5.7 6 4.1 7.4

1.5 18.4 29.4 8.2 16.6 24 4.1 7.6 9 4.2 7.5

LKN 2.3 7.9

(0.1, 0.1, 0.15, 0.5) 0.5 28.8 41.0 16.9 25.2 8 3.8 6.8 3 6.0 8.3

1.0 22.1 32.2 10.9 19.4 16 4.1 7.4 6 5.5 9.5

1.5 19.2 27.6 7.2 15.7 24 4.8 8.0 9 5.6 9.4

LKN 2.7 7.9

based on the considered approximations to the null distribution may have different
powers. In this case, the test based on the residual-based bootstrap approximation is a
bit more powerful than the one based on the weighted bootstrap approximation. In all
tried cases, the new test outperforms the portmanteau-type test and the one in Hong
and Lee (2003).

We also compared both approximations in terms of the required CPU. Table 7
shows the average CPU time in seconds to get one p-value for testingH0,lin for T =
500, 1000, by generating B = 1000 resamples in each case. The quantities in the table
clearly show the computational efficiency of the weighted bootstrap in comparison
with the residual-based bootstrap. This advantage of the weighted bootstrap over the
residual-based bootstrap comes from the fact that the former does not re-estimate the
GARCH parameters and the residuals at each iteration.

6.2 Real data fits to GARCH and durationmodels

This subsection reports the results of three real data set applications.
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Table 4 Percentages of rejections underH0,alog for T = 500 (level)

(ω, γ+, γ−, β) Proposed test Portm. HL

a WB RB

5% 10% 5% 10% k 5% 10% p 5% 10%

(0.1, 0.1, 0.15, 0.3) 0.5 4.5 9.0 5.6 10.2 8 3.4 5.9 3 3.5 5.9

1.0 5.5 9.5 5.9 10.3 16 5.1 8.0 6 3.1 6.0

1.0 5.5 10.0 6.1 10.4 24 5.8 10.4 9 2.8 6.4

(0.1, 0.1, 0.15, 0.5) 0.5 4.3 9.2 6.1 10.3 8 3.5 6.0 3 3.4 6.0

1.0 5.1 9.6 6.3 10.5 16 4.8 7.7 6 3.4 6.3

1.5 5.7 10.2 5.9 11.2 24 5.7 10.2 9 3.1 7.2

(0.1, 0.1, 0.15, 0.7) 0.5 3.2 6.6 4.5 9.7 8 3.7 6.6 3 3.7 6.2

1.0 4.2 9.0 5.4 10.1 16 4.6 7.1 3 3.5 6.3

1.5 4.5 9.4 5.5 10.2 24 6.2 10.4 3 3.1 6.7

(0.1, 0.1, 0.15, 0.8) 0.5 2.9 7.2 3.3 8.1 8 3.9 7.1 3 3.6 6.0

1.0 3.5 8.7 4.1 9.6 16 4.7 8.3 6 3.3 6.2

1.5 4.1 9.4 4.6 8.9 24 6.4 10.1 9 2.9 6.3

Table 5 Percentages of
rejections underH0,alog for
T = 3300 with the weighted
bootstrap approximation (level)

(ω, γ+, γ−, β) α a

0.5 1.0 1.5

(0.04, 0.03, 0.02, 0.96) 5% 5.0 4.8 4.6

10% 9.0 9.4 9.0

Table 6 Percentages of rejections under alternatives for testing H0,alog for T = 500 (power)

(ω, γ, β, δ) Proposed test Portm. HL

WB RB

a 5% 10% 5% 10% k 5% 10% p 5% 10%

(0.1, 0.1, 0.3, 0.02) 0.5 11.1 18.6 15.1 24.2 8 9.0 14.1 3 4.9 6.7

1.0 10.6 17.8 15.2 24.3 16 8.8 13.4 6 3.6 7.0

1.5 10.0 17.6 15.3 23.3 24 9.3 14.6 9 3.3 6.2

(0.1, 0.1, 0.3, 0.05) 0.5 29.8 42.9 36.3 48.3 8 9.4 14.3 3 7.8 12.0

1.0 31.1 43.0 39.3 49.9 16 8.7 14.6 6 6.2 10.0

1.5 30.6 42.9 39.9 50.6 24 9.9 15.1 9 4.8 9.2

(0.1, 0.1, 0.3, 0.10) 0.5 80.4 88.0 85.4 90.4 8 9.5 14.9 3 29.7 36.3

1.0 81.1 89.0 87.3 91.7 16 8.9 15.3 6 23.0 29.6

1.5 82.3 89.3 87.5 92.4 24 9.5 16.2 9 18.2 25.1
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Table 7 CPU time consumed for
the calculation of one p-value
(in seconds)

WB RB

T 500 1000 500 1000

Time 1.37 5.96 106.61 400.09

6.2.1 S&P500 daily stock index

First,we appliedourmethodology to the extensively studiedS&P500daily stock index.
Specifically, we considered two periods: the first from January 2, 1990, to December
31, 1993, and the second from January 2, 1998, to August 28, 2002. Figures 1 and
2 in Supplementary Material display the original time series and the time series of
the log returns for each period. The number of observations in these periods is 1013
and 1170, respectively. The reason for choosing such periods is that, according to the
results obtained in Hlávka et al. (2017), the S&P500 return series associated with each
period is a martingale difference sequence. So we could go a step beyond and test for
some GARCH-type specification.

We tested the null hypothesisH0,lin. The QMLE of the parameters are: (ω̂, γ̂ , β̂) =
(7.0185×10−9, 1.7753×10−2, 9.8129×10−1), for the first period, and (ω̂, γ̂ , β̂) =
(7.1723× 10−6, 9.4489× 10−2, 8.6811× 10−1), for the second one. Since from the
simulations we know that for the sample size at hand, the resulting test is a bit liberal
under persistent models, we refrain from applying the weighted bootstrap approxima-
tion to calculate the p-value for the fitted GARCH(1,1) model of the first period. The
residual-based bootstrap p-values for the proposed test and the test in Leucht et al.
(2015) are 0.014 (for a = 0.5, 1.0 and 1.5) and 0.080, respectively, showing that the
GARCH(1,1) specification for the conditional variance is not adequate for the first
period. For the second period, we got the weighted bootstrap p-values: 0.581, 0.564,
0.544, and the residual-based bootstrap p-values: 0.302, 0.334 and 0.350 for a = 0.5,
1.0 and 1.5, respectively, and 0.204 for the test in Leucht et al. (2015). No test rejects
H0,lin for the second period. A visual inspection of Figure 1 in Supplementary Mate-
rial suggests a possibility of dispersion change for the first period, whereas Figure 2
in Supplementary Material shows more stability for the second period.

6.2.2 Daily exchange rates

We consider returns series of the daily exchange rates of the American Dollar (USD),
the Japanese Yen (JPY), the British Pound (GBP), the Swiss Franc (CHF) and Cana-
dian Dollar (CAD) with respect to the Euro, from January 5, 1999, to January 18,
2012, which corresponds to 3344 observations. The data were obtained from the web
site http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html. These datawere
analyzed in Francq et al. (2013), where the authors fitted a log-GARCH(1,1) model
to each exchange rate. Here, we test for the adequacy of such a model as well as of
the (linear) GARCH(1,1). Table 8 displays the parameter estimators for each model
and each exchange rate (although Table 1 in Francq et al. (2013) displays the fitted
parameters for the log-GARCH(1,1) model, we decided to include them here for the
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Table 8 Fitted parameter values for the GARCH(1,1) and the log-GARCH(1,1) models on daily returns of
exchange rates and weighted bootstrap p-values for testing goodness-of-fit to these models

GARCH(1,1)

p-value

ω̂ γ̂ β̂ a = 0.5 a = 1.0 a = 1.5

USD 0.0016 0.0304 0.9663 0.0045 0.0060 0.0120

JPY 0.0032 0.0601 0.9363 0.0000 0.0000 0.0000

GBP 0.0015 0.0537 0.9416 0.2370 0.2885 0.3070

CHF 0.0008 0.0914 0.9050 0.0915 0.0960 0.1305

CAD 0.0037 0.0320 0.9599 0.2800 0.1095 0.0705

log-GARCH(1,1)

p-value

ω̂ γ̂+ γ̂− β̂ a = 0.5 a = 1.0 a = 1.5

USD 0.0242 0.0271 0.0160 0.9705 0.0595 0.0775 0.1060

JPY 0.0506 0.0372 0.0424 0.9517 0.0015 0.0025 0.0025

GBP 0.0316 0.0299 0.0290 0.9643 0.5070 0.2540 0.1785

CHF 0.0574 0.0461 0.0355 0.9543 0.0000 0.0010 0.0010

CAD 0.0210 0.0246 0.0175 0.9685 0.0440 0.0170 0.0105

sake of completeness) and the weighted bootstrap p-values for testing goodness-of-fit
for each model based on 2000 replications. Looking at the results in this table, we
conclude that the log-GARCH(1,1) provides an adequate fit only for the USD and the
GBP series. On the other hand, the GARCH(1,1) model is adequate for the GBP, the
CHF and the CAD series, while no model provides a good description of the JPY data.

6.2.3 Exxon price duration

In our third application, we use NYSE price duration data to assess the performance
of the linear ACD(1,1) model

ψt = ω + γ yt−1 + βψt−1,

to the adjusted Exxon price durations, which comprises n = 2716 observations (see
Fernandes and Gramming (2005) for a detailed description of the data). Figure 3 in
Supplementary Material displays duration plot and histogram. Fernandes and Gram-
ming (2005) and Meintanis et al. (2018) tested goodness-of-fit for the innovation
distribution by assuming a linear ACD(1,1) model. In estimating the parameters, we
employed the QMLE with a unit exponential distribution innovation distribution. The
resulting estimates are (ω̂, γ̂ , β̂) = (0.0695, 0.0507, 0.8801), yieldingweighted boot-
strap p-values: 0.453, 0.544 and 0.545, and the corresponding residual-based bootstrap
p-values: 1.0, 1.0 and 1.0 for a = 0.5, 1.0 and 1.5, respectively, indicating that a linear
ACD(1,1) model cannot be rejected.
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7 Conclusion

We suggest a goodness-of-fit test for general conditional moment specificationmodels
of arbitrary (but finite) memory, which is consistent against any deviation from the null
model andwhichmaybe readily computedwithout approximate numerical techniques.
The new procedure was implemented by suitable bootstrap resampling and found to
perform well in finite samples for GARCH models as well as for conditional duration
models. Thus, our approach suits well practitioners’ purposes since it can be readily
be adapted to a wide range of GARCH-type models with applications in diverse fields.

Although not handled here, our method can be readily extended to Poisson autore-
gressive models for time series of counts, wherein the conditional mean-adjusted
observations play the same role as the error terms in GARCH models. An entirely
different question is whether the present method can be adapted to test goodness-of-fit
to continuous volatility models such as the models tested in Monsalve-Cobis et al.
(2011) and González-Manteiga et al. (2017). This issue, however, requires separate
investigation.
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