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Abstract
We investigate the errors in covariates issues in a generalized partially linear model.
Different from the usual literature (Ma andCarroll in J AmStat Assoc 101:1465–1474,
2006), we consider the case where the measurement error occurs to the covariate that
enters the model nonparametrically, while the covariates precisely observed enter the
model parametrically. To avoid the deconvolution type operations, which can suffer
from very low convergence rate, we use the B-splines representation to approximate
the nonparametric function and convert the problem into a parametric form for oper-
ational purpose. We then use a parametric working model to replace the distribution
of the unobservable variable, and devise an estimating equation to estimate both the
model parameters and the functional dependence of the response on the latent variable.
The estimation procedure is devised under the functional model framework without
assuming any distribution structure of the latent variable.We further derive theories on
the large sample properties of our estimator. Numerical simulation studies are carried
out to evaluate the finite sample performance, and the practical performance of the
method is illustrated through a data example.
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1 Introduction

Generalized partially linear models have been widely used in statistics. Such models
enrich the more classic generalized linear models by allowing a covariate to enter
the link function through a nonparametric form. This is useful when the dependence
of the response to some covariates, even after transformation through a suitable link
function, is still not linear and difficult to specify. At the same time, the model also
allows themore classic generalized linear dependence on some other covariates. Many
works exist in the literature for estimation and inference for generalized partially linear
models, see, for example, Carroll et al. (1995), Liang et al. (2009), Apanasovich et al.
(2009), and Yu and Ruppert (2012).

When one of the covariates involved in the generalized partially linearmodel cannot
be measured precisely, the problem becomes much more difficult. In fact, most of the
works in handling measurement error issues in the generalized partially linear model
considered only the case that measurement error occurs to a covariate involved in
the linear component (Ma and Carroll 2006; Liu et al. 2017; Liang and Ren 2005;
Liu 2007; Liang and Thurston 2008). When the model degenerates to simply the
generalized linear model, even more literatures exist to handle the measurement error
issues (Carroll et al. 2006; Stefanski and Carroll 1985, 1987; Huang and Wang 2001;
Ma and Tsiatis 2006; Buonaccorsi 2010; Xu and Ma 2015). When handled properly,
it can be shown that the parameters can be estimated at the root-n convergence rate
despite of the presence of the measurement error and the possible presence of the
nonparametric function in themodel. However, it is a different storywhen the covariate
inside the nonparametric function itself is measured with error. We conjecture that
this is because as soon as the covariate inside an unknown function is subject to error,
the problem falls into the general framework of nonparametric measurement error
models and the standardpractice for estimation and inference is throughdeconvolution.
Deconvolution method is widely used in handling latent components and has been
used to show that nonparametric regression with errors in covariates can have very
slow convergence rate. Possibly due to these inherent difficulties, generalized partially
linear models with errors in the covariate inside the nonparametric function have not
been studied systematically.

We tackle this difficult problem where the error occurs to the covariate inside the
nonparametric component of the generalized partially linear model through a novel
approach that avoids the deconvolution treatment completely. Two key ideas lead to
our success in this endeavor. The first is the idea of using B-splines expansion to
approximate the nonparametric function of the latent covariate. The B-spline nature
allows us towrite out the approximation formwithout having to perform the estimation
simultaneously. This is different from nonparametric estimation via kernel method,
where the approximation and estimation is integrated and inseparable. The second
idea is the recognition that after the B-spline approximation, the error-free model is
effectively a parametric model, or at least a parametric model in terms of operation,
hence the only nonparametric component in the measurement error model is the distri-
bution of the latent covariate. This implies that the semiparametric approach in Tsiatis
and Ma (2004) can be adopted here to help establishing the estimation procedure.
The encouraging discovery is that we not only can bypass the difficulties caused by
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nonparametric function of a covariate measured with error in terms of estimation, we
also prove that the procedure can retain the root-n convergence rate of the parameter
estimation in the original model.

The structure of this paper is as follows. We describe the model and the estimation
methodology in Sect. 2, following with establishing the large sample properties of
the parameter estimation in Sect. 3. Two simulation studies are conducted in Sect. 4,
and we analyze the AIDS Clinical Trials Group (ACTG) study in Sect. 5. We finish
the paper with some discussions in Sect. 6. All the technical details and proofs are
provided in “Appendix”.

2 Main results

2.1 Themodel

We work in a measurement error model framework, sometimes also referred to as
errors-in-covariate model. It is different from the standard regression model; in that,
at least one of the covariates is not directly observable. Instead, a measurement of
this covariate that contains error is observed only. Generally speaking, in a standard
regression problem, we would observe independent and identically distributed (i.i.d.)
observations (Xi ,Zi ,Yi ), i = 1, . . . , n, where (Xi ,Zi ) is the covariate and Yi is the
response. Then, with a specific model of Yi given Xi and Zi , we can then proceed to
estimate the unknown components in this regression relation. However, in a measure-
ment error model, Xi is no longer available, instead, only an errored version of Xi ,
say Wi is observed. Thus, the goal is to still perform the estimation of the parameters
in the model of Yi given (Xi ,Zi ), but using (Wi ,Zi ,Yi )’s, instead of (Xi , Zi ,Yi )’s.

In this paper, we study the generalized partially linear model

fY |X ,Z(y, x, z,α,β, g) = f {y, zTβ + g(x),α}. (1)

Here, Y is the univariate response variable and X and Z are covariates. We assume the
univariate variable X to be compactly supported. Without loss of generality, let the
support be [0, 1]. We assume Z ∈ R pz , pz ≥ 1. The unknown components in (1) are
β ∈ R pz and α, whose estimation and inference are of the main interest to us, and
the nuisance function g(·), which contributes to the name “partially linear.” The link
function f (·) is assumed to be known. Here, the parameter β describes the linear effect
of the covariate in Z, g(·) describes the unspecified effect of X and α arises according
to the link function f . For example, f (·) can be the inverse logit link function f (·) =
1−1/{exp(·)+1} or the normal link function f (·) = exp{−(·)2/(2α2)}/{(2πα2)1/2}.
Note that in the logistic example, the parameter α does not appear, while in the normal
example, α captures the standard error of Y . Now, although Y and Z’s are observable,
X is not. Instead, X is a random variable measured with error. Thus, lieu of observing
X , we observe W , where

W = X +U , (2)
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andU is a normal random error independent of X and Z with mean zero and variance
σ 2
U . For ease of the presentation of the main methodology, we assume σ 2

U is known.
Whenσ 2

U is unknown, a common approach is to use repeatedmeasurements to estimate
σ 2
U first and then plug in. The observed data are (Wi ,Zi ,Yi ), i = 1, . . . , n, which are

iid. Our goal is to estimate α, β, together with g(·) hence to understand the dependence
of Y on the covariates (X ,Z).

2.2 Efficient score derivation

For preparation, we first approximate g(x)with a B-spline representation, i.e., g(x) ≈
B(x)Tγ . Under this approximation, model (1) becomes

fY |X ,Z(y, x, z,α,β, g) ≈ fY |X ,Z(y, x, z, θ) ≡ f {y, zTβ + B(x)Tγ ,α}, (3)

which is a complete parametric model with unknown parameters θ ≡ (αT,βT, γ T)T.
This model falls in the general framework of Tsiatis and Ma (2004), hence their
estimation procedure can be adopted here. Specifically, the joint distribution of the
observed variables conditional on Z is

fW ,Y |Z(y, w, z, θ) =
∫

f {y, zTβ + B(x)Tγ ,α} fW |X (w, x) fX |Z(x, z)dμ(x),

with the condition distribution function fX |Z(x, z) being a nuisance parameter. The
nuisance tangent space Λ and its orthogonal complement Λ⊥ can be written as

Λ = [E{a(X ,Z)|Y ,W ,Z} : E{a(X ,Z) | Z} = 0],
Λ⊥ = [h(Y ,W ,Z) : E{h(Y ,W ,Z) | X ,Z} = 0 almost everywhere].

The efficient score for θ is the residual of its score vectorSθ (y, w, z) after projecting
it on to the nuisance tangent space Λ, denoted by

Sres(y, w, z, θ) ≡ Sθ (y, w, z, θ) − Π{Sθ (Y ,W ,Z, θ)|Λ},

where Sθ (y, w, z, θ) ≡ ∂ log fW ,Y |Z(y, w, z, θ)/∂θ . Here, “res” stands for residual.
The detailed form of Sres(y, w, z, θ) is given as

Sres(Y ,W ,Z, θ) = Sθ (Y ,W ,Z, θ) − E{a(X ,Z, θ)|Y ,W ,Z}, (4)

where a(X ,Z, θ) satisfies

E{Sθ (Y ,W ,Z, θ) | X ,Z} = E[E{a(X ,Z, θ)|Y ,W ,Z} | X ,Z]. (5)

Now, noting that the above derivation is obtained from the approximate model (3),
we hence perform some further analysis. Separating the components corresponding to
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α,β and γ in θ , we can write Sθ (y, w, z, θ) = {Sα,β(y, w, z, θ)T,Sγ (y, w, z, θ)T}T,
which leads to the corresponding relation as follows:

Sres(y, w, z, θ) = {Sres1(y, w, z, θ)T,Sres2(y, w, z, θ)T}T.

The estimating equation of the approximate model can be written as

n∑
i=1

Sres(Yi ,Wi ,Zi , θ) =
n∑

i=1

{Sres1(Yi ,Wi ,Zi , θ)T,Sres2(Yi ,Wi ,Zi , θ)T}T = 0.

(6)

Remember that our original model contains an unknown function g(z). Thus, for
the estimation of α,β, it is beneficial to treat g as a nuisance parameter as well first,
and estimate α,β using profiling. We then plug in the estimated values of α and
β and estimate g via the B-spline approximation. Of course, in addition to g, the
distribution of the unobservable covariate conditional on the observable covariate Z
is also a nuisance component and still has to be taken into account.

Let δ ≡ (αT,βT)T be a p-dimensional parameter. We propose to solve for γ from∑n
i=1 Sres2(Yi ,Wi ,Zi , θ) = 0 to obtain γ̂ (δ) first. Now from

fW ,Y |Z(w, z, y, δ, g, fX ) =
∫

f {y, zTβ + g(x),α} fW |X (w, x) fX |Z(x, z)dμ(x),

we can construct the nuisance tangent space as Λ = Λ fX + Λg , where

Λ fX = [E{a(X ,Z)|Y ,W ,Z} : E{a(X ,Z) | Z} = 0]
Λg =

(
E

[
s{Y ,ZTβ + g(X),α}b(X)|Y ,W ,Z

]
: ∀b(X)

)
,

where s(y, t,α) ≡ ∂ log f (y, t,α)/∂t . Note that Λ fX and Λg are not orthogonal to
each other. We can further verify that

Λ⊥
fX = [h(Y ,W ,Z) : E{h(Y ,W ,Z) | X ,Z} = 0 a.e.],

Λ⊥
g = (

h(Y ,W ,Z) : E[
h(Y ,W ,Z)s{Y ,ZTβ + g(X),α} | X ,Z

] = 0 almost everywhere
)
.

The efficient score for δ is now the residual of the score vector Sδ after projecting it
on to the nuisance tangent space Λ, denoted by

Seff(Y ,W ,Z, δ, g) ≡ Sδ(Y ,W ,Z, δ, g) − Π{Sδ(Y ,W ,Z, δ, g) | Λ}. (7)

Its explicit form is given as

Seff(Y ,W ,Z, δ, g) = Sδ(Y ,W ,Z, δ, g) − E{a(X ,Z)|Y ,W ,Z}
− E

[
s{Y ,ZTβ + g(X),α}b(X)|Y ,W ,Z

]
,
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where a(X ,Z) and b(X) satisfy

E{Sδ(Y ,W ,Z, δ, g) | X ,Z}
= E[E{a(X ,Z)|Y ,W ,Z} | X ,Z]]

+ E(E[s{Y ,ZTβ + g(X),α}b(X)|Y ,W ,Z] | X ,Z)

and

E[Sδ(Y ,W ,Z, δ, g)s{Y ,ZTβ + g(X),α} | X ,Z]
= E[E{a(X ,Z)|Y ,W ,Z}s{Y ,ZTβ + g(X),α} | X ,Z]

+ E(E[s{Y ,ZTβ + g(X),α}b(X)|Y ,W ,Z]s{Y ,ZTβ + g(X),α} | X ,Z).

(8)

We can then form the estimating equation
∑n

i=1 Seff {Yi ,Wi ,Zi , δ, γ̂ (δ)} = 0 to solve
for δ̂ as the estimator, where a(X ,Z),b(X) are the solutions to the integral equations
in (8).

2.3 Estimation under workingmodel

The above derivations are based on efficient score calculation and hence will yield
the efficient estimator. However, a close look at the procedure reveals that the pro-
cedure is not practical because the implementation relies on the unknown function
fX |Z(x, z). Thus, our estimator needs to be calculated under a posited working model
of f∗X |Z(x, z). The procedure is described below, where we use ∗ to denote a quantity
whose calculation is carried out using f∗X |Z(x, z) instead of fX |Z(x, z).

1. Posit a working model f∗X |Z(x, z).
2. Solve for γ from

∑n
i=1 Sres

∗
2(Yi ,Wi ,Zi , θ) = 0 to obtain γ̂ (δ).

3. Calculate the score functionS∗
δ (Y ,W ,Z, δ, g)under theworkingmodel f∗X |Z(x, z).

4. Solve the integral equation (8) to get a(X ,Z) and b(X).
5. Calculate the approximate efficient score function S∗

eff(Y ,W ,Z, δ, ĝ) following
(7), where ĝ(·) = B(·)Tγ̂ (δ).

6. Solve the estimating equation
∑n

i=1 S
∗
eff(Yi ,Wi ,Zi , δ, ĝ) = 0 to obtain δ̂.

When we calculate a(X ,Z) at each observed z value and calculate b(X), we dis-
cretize the distribution of X on m equally spaced points on the support of fX |Z(x, z)
and calculate the probability mass function π j (Z) at each of the m points. We of
course normalize the π j (Z) in order to ensure

∑m
j=1 π j (Z) = 1. Note that using the

discretization,

f ∗
X ,Y ,W |Z(x j , y, w, z) ≈ f {y, zTβ + g(x j ),α} fW |X=x j (w, x j )π j (Z).

Further, S∗
δ(Y ,W ,Z, δ, g), E∗{a(X ,Z)|Y ,W ,Z} and E∗[s{Y ,ZTβ + g(X , δ),α}

b(X)|Y ,W ,Z] can be approximated by
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S∗
δ(Y ,W ,Z, δ, g)

≈ ∂ log[∑m
i=1 f {y, zTβ + g(xi ),α} fW |X (w, xi )πi (Z)]

∂δ
,

E∗{a(X ,Z)|Y ,W ,Z}
≈

∑m
i=1 a(xi ,Z) f ∗

X ,Y ,W |Z(xi ,Y ,W ,Z)∑m
i=1 f ∗

X ,Y ,W |Z(xi ,Y ,W ,Z)
,

E∗[s{Y ,ZTβ + g(X),α}b(X)|Y ,W ,Z]

≈
∑m

i=1 s{Y ,ZTβ + g(xi ),α}b(xi ) f ∗
X ,Y ,W |Z(xi ,Y ,W ,Z)∑m

i=1 f ∗
X ,Y ,W |Z(xi ,Y ,W ,Z)

.

Let A(X ,Z) ≡ {a(x1,Z), . . . , a(xm,Z)}T and B(X) ≡ {b(x1), . . . ,b(xm)}T. Let
M1(X ,Z) ≡ {m1(x1,Z), . . . ,m1(xm,Z)}T be a m × pδ matrix, where pδ is the
length of δ and m1(xi ,Z) ≡ E{S∗

δ(Y ,W ,Z, δ, g) | xi ,Z}. Further, let M2(X ,Z) ≡
{m2(x1,Z), . . . ,m2(xm,Z)}T be a m × pδ matrix, where we define m2(xi ,Z) ≡
E

[
S∗

δ(Y ,W ,Z, δ, g)s{Y ,ZTβ + g(xi )} | xi ,Z
]
. Finally, let C(X ,Z) be a m × m

matrix with the (i, j) block equal to

E

{
f ∗
X ,Y ,W |Z(x j ,Y ,W ,Z)∑m

i=1 f ∗
X ,Y ,W |Z(xi ,Y ,W ,Z)

| xi ,Z
}

,

let D(X ,Z) be an m × m matrix with the (i, j) block equal to

E

[
s{Y ,ZTβ + g(x j ),α} f ∗

X ,Y ,W |Z(x j ,Y ,W ,Z)∑m
i=1 f ∗

X ,Y ,W |Z(xi ,Y ,W ,Z)
| xi ,Z

]
,

let F(X ,Z) be an m × m matrix with the (i, j) block equal to

E

[
f ∗
X ,Y ,W |Z(x j ,Y ,W ,Z)s{Y ,ZTβ + g(xi )}∑m

i=1 f ∗
X ,Y ,W |Z(xi ,Y ,W ,Z)

| xi ,Z
]
,

and let G(X ,Z) be an m × m matrix with the (i, j) block

E

[
s{Y ,ZTβ + g(x j ),α} f ∗

X ,Y ,W |Z(x j ,Y ,W ,Z)s{Y ,ZTβ + g(xi )}∑m
i=1 f ∗

X ,Y ,W |Z(xi ,Y ,W ,Z)
| xi ,Z

]
.

We can then get a(xi ,Z) and b(xi ) by solving

[
C(X ,Z) D(X ,Z)

F(X ,Z) G(X ,Z)

][
A(X ,Z)

B(X)

]
=

[
M1(X ,Z)

M2(X ,Z)

]
.
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3 Asymptotic properties

Let Sres2(Yi ,Wi ,Zi ,α,β, g) be Sres2(Yi ,Wi ,Zi ,α,β, γ ) with all the appearance of
B(X)Tγ in it replaced by g(X). We first list the set of regularity conditions required
for establishing the large sample properties of our estimator.

(C1) The true density fX (x) is bounded with compact support. Without loss of gen-
erality, we assume the support of fX (x) is [0, 1].

(C2) The function g(x) ∈ Cq([0, 1]), q > 1, is bounded.
(C3) The spline order r ≥ q.
(C4) Define the knots t−r+1 = · · · = t0 = 0 < t1 < · · · < tN < 1 = tN+1 =

· · · = tN+r , where N is the number of interior knots that satisfies N → ∞,
N−1n(log n)−1 → ∞ and Nn−1/(2q) → ∞ as n → ∞. Denote the number of
spline bases dγ , i.e., dγ = N + r .

(C5) Let h j be the distance between the j th and ( j − 1)th interior knots. Let hb =
max1≤ j≤N h j and hs = min1≤ j≤N h j . There exists a constant ch ∈ (0,∞) such
that hb/hs < ch . Hence, hb = Op(N−1) and hs = Op(N−1).

(C6) γ 0 is a dγ -dimensional spline coefficient vector such that supx∈[0,1] |B(x)Tγ 0 −
g(x)| = Op(h

q
b).

(C7) The equation set

E{S∗
eff(Yi ,Wi ,Zi , δ, γ )} = 0,

E{Sres∗2(Yi ,Wi ,Zi , δ, γ )} = 0

has unique root for θ in the neighborhood of θ0. Recall that θ = (αT,βT, γ T)T

and δ = (αT,βT)T. The derivatives with respect to θ of the left-hand side are
smooth functions of θ , with its singular values bounded and bounded away from
0. Let the unique root be θ∗. Note that θ0 and θ∗ are functions of N , that is, for
any sufficiently large N , there is a unique root θ∗ in the neighborhood of θ0.

(C8) The maximum absolute row sum of the matrix ∂S∗
eff(Yi ,Wi ,Zi , δ0, γ 0)/∂γ T

0 ,
i.e., ‖∂S∗

eff(Yi ,Wi ,Zi , δ0, γ 0)/∂γ T
0‖∞, is integrable.

The conditions listed above are all standard bounded, smoothness conditions on
functions and some classical conditions imposed on the spline order and number of
knots. These are commonly used conditions in spline approximation and semipara-
metric regression literature. We now establish the consistency of δ̂n and γ̂ n as well as
the asymptotic distribution property of δ̂n .

Theorem 1 Assume Conditions (C1)−(C7) to hold. Let θ̂n satisfy

1

n

n∑
i=1

S∗
eff(Yi ,Wi ,Zi , δ̂n, γ̂ n) = 0

1

n

n∑
i=1

Sres∗2(Yi ,Wi ,Zi , δ̂n, γ̂ n) = 0.

Then, θ̂n − θ0 = op(1) element-wise.

123



Locally efficient estimation in generalized partially… 561

The result in Theorem 1 is used to further establish the asymptotic properties of the
estimator of the parameters of interest δ̂n and the estimator of the function of interest
B(·)Tγ̂ n .

Theorem 2 Assume Conditions (C1) − (C8) to hold and let

Q ≡ E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂δT0

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
.

Then,

√
n(̂δn − δ0) = −Q−1 1√

n

n∑
i=1

S∗
eff(Yi ,Wi ,Zi , δ0, g) + op(1).

Consequently,
√
n(̂δn − δ0) → N (0,V) in distribution when n → ∞, where

V = Q−1var{S∗
eff(Yi ,Wi ,Zi , δ0, g)}(Q−1)T.

Theorem 2 indicates that δ is estimated at the root-n rate. The proofs of Theorems 1
and 2 are given in “Appendix.” Because the B-spline estimation of g(·) is at a slower
rate than root-n, the estimation of δ does not have any impact on the first-order asymp-
totic properties of ĝ. Thus, for the analysis of the asymptotic properties of ĝ, we can
treat δ as known. Then, the proof of Theorem 2 in Jiang andMa (2018) can be directly
used. We skip the details of the proof and provide the specific convergence property
of the estimation of g in Theorem 3.

Theorem 3 Assume Conditions (C1) − (C8) to hold and let

P ≡ E

{
∂Sres∗2(Yi ,Wi ,Zi , δ0, γ )

∂γ T

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
.

Then, ‖γ̂ n − γ 0‖2 = Op{(nhb)−1/2}. Further,

γ̂ n − γ 0 = −P−1n−1
n∑

i=1

Sres∗2(Yi ,Wi ,Zi , δ0, γ ){1 + op(1)}.

This leads to that ĝ(x), which equals B(x)Tγ̂ n, satisfies supx∈[0,1] |̂g(x) − g(x)| =
Op{(nhb)−1/2}. Specifically, bias{ĝ(x)} = E{ĝ(x) − g(x)} = O(hq−1/2

b ) and

√
nhb [̂g(x) − g(x) − bias{ĝ(x)}]

= √
nhbB(x)T

{
−P−1n−1

n∑
i=1

Sres∗2(Yi ,Wi ,Zi , δ0, g)

}
+ op(1).
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4 Numerical study

In our first simulation, we generated the observations (Wi ,Zi ,Yi ) from the model

pr(Yi = 1|Xi = xi , Zi = zi ) = H{g(xi ) + β1z1i + β2z2i + β3z3i + β4z4i }, (9)

where W = X + U and U = normal(0, 0.03). The true function is: g(x) =
−5 exp{− 0.8(x − 2.5)2} and H(t) is the inverse logit link function. We set β1 = 1,
β2 = 0.5, β3 = 1 and β4 = −0.3. The sample size is 1000, and we run 1000 simula-
tions. Xi is generated from a truncated normal distribution with mean 0.5 and variance
1/36 on [0,1] independently ofZi . We implemented our method using a normal work-
ing model, corresponding to a correct working model case. In order to investigate the
performance of our method under a misspecified working model, we also performed
another study, in which we have Xi generated from a truncated student t distribution
with degrees of freedom 5. Covariates Z1i , Z2i and Z4i are generated from the stan-
dard normal distribution. The covariate Z3i is generated from a uniform distribution
on [−1, 1]. In both studies, we estimated both the parameters β1, β2, β3, β4 and the
function g(x).

In the second simulation, we set the true g function to be g(x) = −5 exp(−0.2x2)+
5, while all other settings remain the same. Similarly to the first simulation, we com-
pared the performance of a correct working model and a misspecified working model
in terms of estimating both β1, β2, β3, β4 and g(x).

In the third simulation, we increase the sample size to 2000 to see the performance
of our method while having a g function that has more nonlinear feature. Specifically,
we set g(x) = sin(2πx), while keep all other settings unchanged.

In simulations 1, 2 and 3, we discretized the distribution of X on [0, 1] to m = 15
equal segments and we use the truncated normal distribution discussed earlier as our
workingmodel.We used quadratic splines with seven equally spaced knots on [0, 1] to
estimate g(x). The number of knots is chosen to be larger than n1/4 to reflect condition
(C4). When we further increase the number of knots, the results do not change much.
The simulation results are shown in Tables 1, 2 and Figs. 1, 2 and 3.

The results in Tables 1 and 2 show little bias for the β estimation, regardless a
correct working model or a misspecified working model is used. Figures 1, 2 and 3
show that the estimators of g(x) have somewhat large bias on the boundary in both
methods, which are within our expectation when factoring in the boundary effect. The
performance of g(x) estimation is satisfactory in the interior of the function domain.
The simulation results show no big difference between the performance of the correct
workingmodel of fX (x) and amisspecified one, confirming our theory on consistency
in both cases.

5 Data analysis

The data set we analyzed is from an AIDS Clinical Trials Group (ACTG) study.
The goal of this study is to compare four different treatments, “ZDV,” “ZDV+ddI,”
“ZDV+ddC” and “ddC,” on HIV-infected adults whose CD4 cell counts were from
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Table 1 Simulation results
under a correct working model

Truth β1 β2 β3 β4
1.0 0.5 1.0 −0.3

Simulation 1

Mean 1.0183 0.5096 1.0106 − 0.3103

Median 1.0125 0.5075 1.010 − 0.3086

SE 0.0955 0.0817 0.1231 0.0792

MSE 0.0095 0.0068 0.0153 0.0064

Simulation 2

Mean 1.0177 0.5052 1.0074 − 0.3051

Median 1.0136 0.5043 1.0068 − 0.3029

SE 0.0858 0.0467 0.0917 0.0425

MSE 0.0077 0.0022 0.0085 0.0018

Simulation 3

Mean 1.0231 0.5127 1.0210 − 0.3105

Median 1.0199 0.5122 1.0144 − 0.3088

SE 0.0846 0.0652 0.0979 0.0666

MSE 0.0077 0.0044 0.0100 0.0045

Table 2 Simulation results
under a misspecified working
model

Truth β1 β2 β3 β4
1.0 0.5 1.0 −0.3

Simulation 1

Mean 1.0145 0.5122 1.0147 − 0.3100

Median 1.0113 0.5117 1.0172 − 0.3087

SE 0.0941 0.0823 0.1240 0.0822

MSE 0.0091 0.0069 0.0156 0.0069

Simulation 2

Mean 1.0149 0.5051 1.0063 − 0.3035

Median 1.0083 0.5038 1.0059 − 0.3017

SE 0.0762 0.0463 0.0882 0.0320

MSE 0.0060 0.0022 0.0078 0.0010

Simulation 3

Mean 1.0279 0.5115 1.0214 − 0.3093

Median 1.0220 0.5105 1.0237 − 0.3080

SE 0.0880 0.0673 0.0992 0.0667

MSE 0.0085 0.0047 0.0103 0.0045

200 to 500 per cubic millimeter. We labeled those treatments as treatment 1, treatment
2, treatment 3 and treatment 4. We used treatment 1 as the base treatment because it
is a standard treatment. There were 1036 patients enrolled in the study and they had
no antiretroviral therapy at enrollment. The criterion that we used to compare the four
treatments is whether a patient has his or her CD4 count drop below 50%, which is an
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Fig. 1 True function (black line), median estimation (green line), mean estimation (red line) and 90%
confidence band (blue line) of g(x) in simulation 1. Correct working model on the left and misspecified
working model on the right (color figure online)

Fig. 2 True function (black line), median estimation (green line), mean estimation (red line) and 90%
confidence band (blue line) of g(x) in simulation 2. Correct working model on the left and misspecified
working model on the right (color figure online)

important indicator for HIV-infected patients to develop AIDS or die. We have Y = 1
if a patient has his or her CD4 count drop below 50%, and Y = 0 otherwise.

Our model has the form:

pr(Yi = 1|Xi = xi , Zi = zi ) = H{g(xi ) + β1z1i + β2z2i + β3z3i }, (10)

where W = X + U and U = normal(0, σ 2
U ). The covariates Z1, Z2 and Z3 are

dichotomous variables. Z1i = Z2i = Z3i = 0 indicates that the i th individual receives
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Fig. 3 True function (black line), median estimation (green line), mean estimation (red line) and 90%
confidence band (blue line) of g(x) in simulation 3. Correct working model on the left and misspecified
working model on the right (color figure online)

Table 3 Real data analysis
results

Estimates β1 β2 β3
−0.8076 −1.0970 −0.5150

Bootstrap mean − 0.7876 −1.1012 − 0.4896

Bootstrap median − 0.7770 −1.0953 − 0.4827

Bootstrap SE 0.3575 0.3133 0.2947

P-value 0.0239 <0.0001 0.0805

treatment 1, the base treatment; Z1i = 1 and Z2i = Z3i = 0 indicates that the i th
individual receives treatment 2; Z1i = 0, Z2i = 1 and Z3i = 0 indicates that the
i th individual receives treatment 3; Z1i = Z2i = 0 and Z3i = 1 indicates that the
i th individual receives treatment 4. The covariate X is the baseline log(CD4 count)
prior to the start of treatment. Because CD4 count cannot be measured precisely,
X is considered as our unobservable covariate. We use the average of two available
measurements of log(CD4 count) as W .

First, we estimated the variance ofU using the two repeated measurements and we
got σ̂ 2

U = 0.3. Then, we constructed our working model of unobservable variance X .
We assume that X follows a truncated normal distribution and estimated its variance
by σ̂ 2

X = σ̂ 2
W − σ̂ 2

U .
Table 3 shows that treatment 2, treatment 3 and treatment 4 are more efficient than

the baseline treatment, i.e., treatment 1, at 90% confidence level according to the P-
values of β1, β2 and β3. The estimated index function g(x) is in Fig. 4. We generated
1000 bootstrapped samples and calculated the bootstrapped mean, median and 90%
confidence band for g(x). It shows that g(x) is an decreasing function, indicating
that a large baseline CD4 count leads to a smaller risk of developing AIDS or having
his/her CD4 counts drop below 50%. Thus, our analysis indicates that in general, the
alternative treatments and a higher baseline CD4 count are beneficial to a patient.
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Fig. 4 Estimated g(x) for real data (black line), median estimation (green line), mean estimation (red line)
and 90% confidence band (blue line) of g(x) from 1000 bootstrapped samples (color figure online)

6 Discussion

We devised a consistent and locally efficient estimation procedure to estimate both
parameters and functions in a generalized partially linear model where the covariate
inside the nonparametric function is subject to measurement error. The method does
not make any assumption on the distribution of the covariate measured with error other
than its finite support, which is easily satisfied in practice. The method is efficient in
terms of estimating the model parameters if a correct working model is used, and
retains its consistency even if this working model is misspecified. The estimation
procedure breaks free from the deconvolution approach, which is the norm of practice
in handling nonparametric problems with measurement errors. Instead, a novel usage
of B-spline approach in combination with semiparametric method is exploited to push
through the analysis.

Many possible extensions can be explored further. Possibilities include handling
multivariate covariates measured with error, via multivariate B-splines, or incorporat-
ing indexmodeling approach or additive structures. Although ourmethod is developed
conceptually for generalized linear models, we did not really make use of the linear
structure, hence any model of the form f (Y , g(X),Z,β) can be treated in a simi-
lar way. To this end, the continuous Y case typically involves normal error and has
been widely studied, while the binary response case is studied in the main text of this
work. When Y is count data, many computational issues arise, and is worth careful
investigation further.

We have assumed the measurement error U to either have a known distribution,
or to have its model parameters estimable from multiple observations. Of course, any
other available information to identify the measurement error distributional model
parameter alsoworks and the plug-in procedure is largely “blind” to how the parameter
is estimated. Of course, the estimated distributional model parameter will alter the
estimation variability of δ, which can be take into account in a standard way (Yi et al.
2015).
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Appendix

A.1 Proof of Theorem 1

From the definitions of S∗
eff(Yi ,Wi ,Zi , δ, g) and Sres∗2(Yi ,Wi ,Zi , δ, γ ), we have

E{S∗
eff(Yi ,Wi ,Zi , δ0, g)|Xi ,Zi } = 0,

Ea{Sres∗2(Yi ,Wi ,Zi , δ0, γ 0)|Xi ,Zi } = 0,

where a here and throughout the text stands for “approximate,” and Ea indicates the
expectation calculated with g(·) replaced by the approximate model B(·)Tγ 0. Taking
another expectation, we get

E{S∗
eff(Yi ,Wi ,Zi , δ0, g)} = 0,

Ea{Sres∗2(Yi ,Wi ,Zi , δ0, γ 0)} = 0.

Using Condition (C6), we further get

E{S∗
eff(Yi ,Wi ,Zi , δ0, γ 0)} = o(1),

E{Sres∗2{Yi ,Wi ,Zi , δ0, γ 0)} = o(1),

component-wise. Condition (C7) ensures that [E{S∗
eff(Yi ,Wi ,Zi , δ, γ )}T,

E{Sres∗2(Yi ,Wi ,Zi , δ, γ )}T]T is invertible near its zero θ∗ as a vector function of
θ , and the first derivative of the inverse function is bounded in the neighborhood of
θ∗. Therefore, ‖θ∗ − θ0‖2 = op(1). On the other hand, since

1

n

n∑
i=1

S∗
eff(Yi ,Wi ,Zi , δ̂n, γ̂ n) = 0,

1

n

n∑
i=1

Sres∗2(Yi ,Wi ,Zi , δ̂n, γ̂ n) = 0,

we have

E{S∗
eff(Yi ,Wi ,Zi , δ̂n, γ̂ n)} = o(1),

E{Sres∗2(Yi ,Wi ,Zi , δ̂n, γ̂ n)} = o(1)

element-wise. Using exactly the same argument as above, we can also obtain ‖̂θn −
θ∗‖2 = op(1). Hence, combining the two results, we get ‖̂θn − θ0‖2 = op(1). ��
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A.2 Proof of Theorem 2

We first write

0 = n−1/2
n∑

i=1

S∗
eff{Yi ,Wi ,Zi , δ̂n, γ̂ n (̂δn)}

= T1 + T2(̃δn)
√
n(̂δn − δ0),

where

T1 = 1√
n

n∑
i=1

S∗
eff{Yi ,Wi ,Zi , δ0, γ̂ n(δ0)},

T2(δ) = T21(δ) + T22(δ)
∂ γ̂ n(δ)

∂δT
,

where

T21(δ) = 1

n

n∑
i=1

∂S∗
eff(Yi ,Wi ,Zi , δ, γ̂ n)

∂δT
,

T22(δ) = 1

n

n∑
i=1

∂S∗
eff{Yi ,Wi ,Zi , δ, γ̂ n(δ)}

∂ γ̂ n(δ)
T ,

and δ̃n is on the line connecting δ0 and δ̂n .
We further expand T1 as a function of γ̂ n(δ0) about γ 0(δ0) to obtain

T1 = T11 + T12{γ̃ n(δ0)}
√
n{γ̂ n(δ0) − γ 0(δ0)},

where

T11 = 1√
n

n∑
i=1

S∗
eff{Yi ,Wi ,Zi , δ0, γ 0(δ0)},

T12{γ (δ0)} = 1

n

n∑
i=1

∂S∗
eff{Yi ,Wi ,Zi , δ0, γ (δ0)}

∂γ (δ0)T
,

and γ̃ n(δ0) is on the line connects γ̂ n(δ0) and γ 0(δ0).
Because of the consistency of B(x)Tγ̃ n to g(x) derived from Condition (C6) and

Theorem 1, and the weak law of large numbers, for arbitrary dγ × p matrix G with
‖G‖2 = 1, we have

T12{γ̃ n(δ0)}G = E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂γ T G

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
{1 + op(1)},
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where

E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂γ T G

⏐⏐⏐⏐
B(·)Tγ=g(·)

}

=
∫ {

∂S∗
eff(yi , wi , zi , δ0, γ )

∂γ T G

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
f (yi , wi , zi , δ0, g, fX )dyidwi dzi

=
∫ {

∂S∗
eff(yi , wi , zi , δ0, γ 0)

∂γ T
0

G + Op(h
q
b)

}{
f (yi , wi , zi , δ0, γ 0, fX )

+ Op(h
q
b)

}
dyidwi dzi

=
∫

∂S∗
eff(yi , wi , zi , δ0, γ 0)

∂γ T
0

G f (yi , wi , zi , δ0, γ 0, fX )dyidwi dzi + Op(h
q
b)

= ∂

∂γ T
0

∫
{S∗

eff(yi , wi , zi , δ0, g) + OP (hqb)}G{ f (yi , wi , zi , β0, g, fX )

+ Op(h
q
b)}dyidwi dzi

−
∫

{S∗
eff(yi , wi , zi , δ0, g) + OP (hqb)}G

∂ f (yi , wi , zi , δ0, γ 0, fX )

∂γ T
0

dyidwi dzi

+ OP (hqb)

= −
∫

S∗
eff(yi , wi , zi , δ0, g)

{
GTSa,γ (yi , wi , zi , δ0, γ 0)

}T

f (yi , wi , zi , δ0, g, fX )dyidwi dzi + Op(h
p
b )

= Op(h
q
b). (A.1)

Here, like before, f (yi , wi , zi , δ0, γ , fX ) stands for f (yi , wi , zi , δ0, g, fX ) with g(·)
replaced by B(·)Tγ , and Sa,γ (yi , wi , zi , δ0, γ 0) ≡ ∂ log f (yi , wi , zi , δ0, γ , fX )/∂γ .
The second equality holds by condition (C6).

The third equality holds because ‖∂S∗
eff(yi , wi , zi , δ0, γ 0)/∂γ T

0‖∞ is integrable by
condition (C8) and f (yi , wi , zi , δ0, γ 0, fX ) is absolutely integrable. The fourth equal-
ity holds also by condition (C6). The fifth equality holds because
E{S∗

eff(yi , wi , zi , δ, g)} = 0. For the last equality, we note that

GTSa,γ (yi , wi , zi , δ0, γ 0) = E[s{yi , zTi β0 + B(X)Tγ 0,α0}GTB(X) | yi , wi , zi ].

ByCondition (C6) and definitions ofΛg andΛa,γ , for any dγ ×pmatrixG, there exists
a functionh(yi , wi , zi , δ0, g) ≡ E[s{yi , zTi β0+g(X),α0}GTB(X) | yi , wi , zi ] ∈ Λg

such that

sup |GTSa,γ (yi , wi , zi , δ0, γ 0) − h(yi , wi , zi , δ0, g)| = OP (hqb).

Further,S∗
eff(yi , wi , zi , δ0, g) is orthogonal to any function inΛg , thus the last equality

holds. Hence, we obtain ‖T12{γ̃ (δ0)}‖2 = Op(h
q
b).
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Based on the asymptotic results of Proposition 4 in Jiang and Ma (2018), we have
‖γ̂ n(δ0) − γ 0(δ0)‖2 = Op{(nhb)−1/2}. Then, we have

‖T12{γ̃ n(δ0)}
√
n{γ̂ n(δ0) − γ 0(δ0)}‖2 = Op(h

q−1/2
b ).

Further, by (C6)we haveT11 = n−1/2 ∑n
i=1 S

∗
eff(Yi ,Wi ,Zi , δ0, g)+Op(n1/2h

q
b).

Since hq−1/2
b = op(n1/2h

q
b), and n1/2hqb = op(1) by conditions (C4) and (C5), then

T1 = n−1/2
n∑

i=1

S∗
eff(Yi ,Wi ,Zi , δ0, g) + op(1). (A.2)

We next consider each term in T2(̃δn). Since γ̂ n(·) satisfies

n−1
n∑

i=1

Sres∗2{Yi ,Wi ,Zi , δ, γ̂ n(δ)} = 0

for any δ,

1

n

n∑
i=1

∂Sres∗2(Yi ,Wi ,Zi , δ, γ̂ n)

∂δT
+ 1

n

n∑
i=1

∂Sres∗2{Yi ,Wi ,Zi , , δ, γ̂ n(δ)}
∂ γ̂ n(δ)

T

∂ γ̂ n(δ)

∂δT
= 0.

Then,

∂ γ̂ n(δ)

∂δT
= −{T23(δ)}−1T24(δ),

where

T23(δ) = 1

n

n∑
i=1

∂Sres∗2{Yi ,Wi ,Zi , , δ, γ̂ n(δ)}
∂ γ̂ n(δ)

T ,

T24(δ) = 1

n

n∑
i=1

∂Sres∗2(Yi ,Wi ,Zi , δ, γ̂ n)

∂δT
.

Hence,

T2(̃δn) = T21(̃δn) − T22(̃δn){T23(̃δn)}−1T24(̃δn).

By the consistency of δ̃n to δ0 and B(x)Tγ̂ n to g(x), we have

T21(̃δn) = E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂δT0

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
{1 + op(1)},
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and

T24(̃δn) = E

{
∂Sres∗2(Yi ,Wi ,Zi , δ0, γ )

∂δT0

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
{1 + op(1)}.

From (A.1), we also have

T22(̃δn) = E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂γ T

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
{1 + op(1)} = Op(h

q
b).

Based on the proof of Proposition 4 in Jiang andMa (2018), we have ‖T23(̃δn)
−1‖2 =

Op(h
−1
b ). Therefore,we haveT22 (̃δn){T23(̃δn)}−1T24(̃δn) = Op(h

q−1
b ), whereq > 1

by condition (C2). Thus,

T2(̃δn) = E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂δT0

⏐⏐⏐⏐
B(·)Tγ=g(·)

}
{1 + op(1)} + O(hq−1

b ).

Therefore,

√
n(̂δn − δ0)

= −
[
E

{
∂S∗

eff(Yi ,Wi ,Zi , δ0, γ )

∂δT0

⏐⏐⏐⏐
B(·)Tγ=g(·)

}]−1
1√
n

n∑
i=1

S∗
eff(Yi ,Wi ,Zi , δ0, g)

+ op(1).

Since n−1/2 ∑n
i=1 S

∗
eff(Yi ,Wi ,Zi , δ0, g) is the sum of zero-mean random vectors,

this will converge in distribution to a multivariate normal distribution with mean 0 and
covariance matrix V given in Theorem 2. ��
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