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Abstract
We propose two families of tests for the classical goodness-of-fit problem to univariate
normality. The new procedures are based on L2-distances of the empirical zero-bias
transformation to the empirical distribution or the normal distribution function. Weak
convergence results are derived under the null hypothesis, under contiguous as well
as under fixed alternatives. A comparative finite-sample power study shows the com-
petitiveness to classical procedures.
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1 Introduction

Testing normality is commonly known as the most used and discussed goodness-of-fit
technique, justified by the model assumption of normality in classical models. To be
specific, let X , X1, X2, . . . be real-valued independent and identically distributed (iid.)
random variables. The problem of interest is to test the hypothesis

H0 : PX ∈ N = {N (μ, σ 2) | (μ, σ 2) ∈ R × (0,∞)} (1)

against general alternatives. So far, a great variety of goodness-of-fit tests have been
proposed, and research is of ongoing interest, as witnessed by the recent papers of
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Bera et al. (2016), Villaseñor-Alva and González-Estrada (2015) and comparative
studies like from Romão et al. (2010), Yap and Sim (2011). Classical procedures in
goodness-of-fit methodology such as the Kolmogorov–Smirnov and the Cramér–von
Mises test approach the testing problem by measuring the distance of the empirical
distribution function to the estimated representative ofN . For a theoretical approach to
goodness-of-fit tests to a family of distributions, see del Barrio et al. (2000), Neuhaus
(1979). Other methods are based on skewness and kurtosis, as, for instance, proposed
by Pearson et al. (1977) (known to lead to inconsistent procedures), the empirical
characteristic function, see Epps and Pulley (1983), the Wasserstein distance, see
del Barrio et al. (2000), del Barrio et al. (1999), the sample entropy, see Vasicek
(1976), the integrated empirical distribution function, see Klar (2001), or correlation
and regression tests, as the famous Shapiro–Wilk test, see Shapiro and Wilk (1965),
among others. For a survey of classical methods, see del Barrio et al. (2000), Sect. 3,
and Henze (1994), and for the problem of testing multivariate normality, we refer to
Henze (2002), Mecklin and Mundfrom (2004).

Another natural approach to assess the distance of the distribution of a real-valued
random variable X to the normal distribution is to calculate the difference between
Eh(X) and Eh(N ), where P

N = N (0, 1), over some large class of functions h :
R → R. With the class {x �→ eitx | t ∈ R} leading to the characteristic functions,
one heavily relies on the assumption of independence when proving limit theorems.
In an attempt to give an alternative proof of the central limit theorem, Charles Stein
considered a different class of test functions (see, e.g. Stein 1972). Stating that X has
a standard normal distribution if, and only if,

E
[
f ′(X)

] = E
[
X f (X)

]
(2)

holds for each absolutely continuous function f for which the expectations exist,
it appears reasonable to regard E

[
f ′(X) − X f (X)

]
, for a suitable function f , as

an estimate of Eh(X) − Eh(N ) since both terms ought to be small whenever the
distribution of X is close to standard normal. In practice, solving the differential
equation

f ′(x) − x f (x) = h(x) − Eh(N ) (3)

for absolutely continuous functions h, evaluating at X and taking expectations, the
problem reduces to appraising E

[
f ′
h(X)− X fh(X)

]
, with fh being the solution of (3).

A commonly used tool to handle these terms is the so-called zero-bias transformation
introduced by Goldstein and Reinert (1997). Namely, if EX = 0 and V(X) = 1, a
random variable X∗ is said to have the X -zero-bias distribution if

E
[
f ′(X∗)

] = E
[
X f (X)

]
(4)

holds for all absolutely continuous functions f for which these expectations exist. The
use of this distribution, if it exists, lends itself easily to the purpose of distributional
approximation. For instance, starting with the solution of (3), the mean value theorem
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gives

|Eh(X) − Eh(N )| = |E[ f ′
h(X) − f ′

h(X
∗)]| ≤ ∥∥ f ′′

h

∥∥∞ E|X − X∗|.

Thus, the problem reduces to bounding the derivatives of the solution fh of (3) and
constructing X∗ such that E|X − X∗| is accessible. Bounds on fh and its derivatives
are well known, and a comprehensive treatment as well as explicit constructions for
X∗ may be found in Chen et al. (2011) (for the bounds, see also Stein 1986). For a
general introduction to Stein’s method, see Chen et al. (2011), Ross (2011). One of the
main reasons Stein’s method, particularly for the normal distribution, has been studied
to a remarkable extent are various central limit type results, also giving convergence
rates, even in dependency settings.

It seems reasonable to ask whether Stein’s characterization (2) may be used to
construct a goodness-of-fit statistic. Apparently, we can hardly evaluate a quantity for
all absolutely continuous functions which makes the direct application of equation
(2) rather complicated (cf. Liu et al. 2016). Instead, we propose a test based on the
zero-bias distribution. To this end, we first recall the explicit formula for the density
and distribution function of the zero-bias distribution.

Lemma 1 If X is a centred, real-valued random variable with V(X) = 1, the X-
zero-bias distribution exists and is unique. Moreover, it is absolutely continuous with
respect to the Lebesgue measure with density

dX (t) = E[X1{X > t}] = −E[X 1{X ≤ t}]

and distribution function

F X (t) = E[X(X − t)1{X ≤ t}].

A proof can be found in Chen et al. (2011) or in the original treatment (Goldstein and
Reinert 1997). Now, interpreting (4) as a distributional transformation P

X �→ P
X∗
,

the standard normal distribution is characterized as the unique fixed point of this
transformation [see also Goldstein and Reinert 1997, Lemma 2.1 (i)]. Writing this in
terms of the formula from Lemma 1, the characterization reads as follows.

Theorem 1 A random variable X with distribution function F andEX = 0,V(X) = 1
has the standard normal distribution if, and only if,

F X = F

which in turn holds if, and only if,

F X = Φ,

where Φ is the distribution function of the standard normal distribution.
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Proof By Lemma 1 and the presumptions on X , the zero-bias distribution P
X∗

of PX

exists, is unique and has distribution function FX . Hence, if PX is the standard normal
distribution, (2) is satisfied and the definition of the zero-bias distribution through
formula (4) and its uniqueness imply P

X∗ = P
X , that is, FX = F . Conversely, if

FX = F , Lemma 1 implies PX∗ = P
X and Stein’s characterization (2) yields that X

is standard Gaussian.
For the second equivalence note that if X follows the standard normal law, FX =

F = Φ by the first part. Finally, assume that FX = Φ. Since FX is the distribution
function of X∗, PX∗

is the standard normal distribution, so

E
[
f ′(X∗)

] = E
[
X∗ f (X∗)

]

holds for each absolutely continuous function f for which these expectations exist.
The definition of the zero-bias distribution implies that for any such function f ,

E
[
X f (X)

] = E
[
X∗ f (X∗)

]
.

Noticing that these functions include anymonomial (since X∗ has the standard normal
distribution for which moments of all orders exist) and that the normal distribu-
tion is uniquely determined through its sequence of moments (see Theorem 30.1 of
Billingsley 1995), this last equation shows PX = P

X∗ = N (0, 1). 	

This theorem paves the way for the construction of goodness-of-fit tests using a

measure of deviation between an empirical version of FX and Φ or the empirical
distribution, respectively. Heuristically, the above characterization indicates that the
difference between these empirical quantities ought to be small when the underlying
sample comes from a normal distribution and large whenever it does not. Thus, tests
based on this characterization should be able to detect deviations from the normality
hypothesis (1).

In Sect. 2, we use a weighted L2-measure to construct two statistics for our testing
problem (1). We derive the limit null distributions in Sect. 3 and study the behaviour
under contiguous alternatives in Sect. 4. The consistency of these classes of tests is
established in Sect. 5, and we obtain the limit distributions of the statistics under fixed
alternatives. To analyse the actual performance, empirical results in form of a power
study are presented in Sect. 6. Conclusions and outlines complete the article.

2 The new test statistics

Let X , X1, X2, . . . be real-valued iid. random variables defined on an underlying prob-
ability space (Ω,A,P). Further, let F be the distribution function of X and assume
thatE[X2] < ∞. To reflect the invariance of the family of normal distributionsN with
respect to affine transformations, the proposed statistics only depend on the so-called
scaled residuals, namely Yn,1, . . . ,Yn,n ,

Yn, j = X j − Xn

Sn
,
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Testing normality via a distributional fixed point… 109

where Xn = n−1∑n
k=1 Xk and S2n = n−1∑n

k=1(Xk − Xn)
2 are the sample mean and

variance, respectively. This way, the values of our statistics themselves and thus the
tests based on them are invariant under affine transformations of the data. We note that
if X has a normal distribution with some parameters μ and σ 2, Yn,1 is approximately
standard normal since (Xn, S2n ) is a strongly consistent estimator of (μ, σ 2). Due to
the affine invariance, we assume, w.l.o.g., EX = 0 and V(X) = 1.

In viewofTheorem1 and the heuristics given thereafter,we suggest theCramér–von
Mises-type (or weighted L2-type) test statistics

G(1)
n = n

∫

R

⎛

⎝1

n

n∑

j=1

Yn, j (Yn, j − t)1{Yn, j ≤ t} − 1

n

n∑

j=1

1{Yn, j ≤ t}
⎞

⎠

2

ω(t) dt (5)

and

G(2)
n = n

∫

R

⎛

⎝1

n

n∑

j=1

Yn, j (Yn, j − t)1{Yn, j ≤ t} − Φ(t)

⎞

⎠

2

ω(t) dt . (6)

Here, n−1∑n
j=1 Yn, j (Yn, j − t)1{Yn, j ≤ t} is an empirical version of the zero-bias

distribution function and n−1∑n
j=1 1{Yn, j ≤ t} is the empirical distribution function

of Yn,1, . . . ,Yn,n . By ω : R → R, we denote a positive, continuous weight function
satisfying

∫

R

t6 ω(t) dt < ∞ (7)

and

n
∫

R

∣∣∣∣
∣
ω

(
s − Xn

Sn

)

− ω(s)

∣∣∣∣
∣

3
(
ω(s)

)−2ds = oP(1), (8)

where oP(1) denotes convergence to 0 in probability as n → ∞. A test based on G(1)
n

or G(2)
n rejects H0 for large values of the statistic. For the implementation of our tests,

we need to specify the weight function ω. To that end, we use the density function of
a centred normal distribution

ωa(t) = 1√
2πa

e− t2
2a ,

where the variance is chosen to be some tuning parameter a > 0.We prove in Lemma 2
of “Appendix A” that ωa satisfies the above conditions. Note that this type of weight
has also been employed by Henze and Zirkler (1990). For this explicit function, our
statistics have the expressions

123



110 S. Betsch, B. Ebner

G(1)
n,a = 2

n

∑

1≤ j<k≤n

{(
1 − Φ

(
Y(k)√
a

)) (
(Y 2

( j) − 1)(Y 2
(k) − 1) + aY( j)Y(k)

)

+ a√
2πa

exp

(
−Y 2

(k)
2a

)(
−Y 2

( j)Y(k) + Y(k) + Y( j)

)}

+ 1

n

n∑

j=1

{(
1 − Φ

(
Y j√
a

)) (
Y 4
j + (a − 2)Y 2

j + 1
)

+ a√
2πa

exp

(
−Y 2

j
2a

)(
2Y j − Y 3

j

)}
(9)

and

G(2)
n,a = 2

n

∑

1≤ j<k≤n

{
Y( j)Y(k)

[(
Y( j)Y(k) + a

) (
1 − Φ

(
Y(k)√
a

))
− aY( j) ωa(Y(k))

]}

+
n∑

j=1

{Y 2
j

n

[
(Y 2

j + a)
(
1 − Φ

(
Y j√
a

))
− aY j ωa(Y j )

]

− 2Y j

[
Y j

∫ ∞

Y j

Φ(t) ωa(t) dt − aΦ(Y j ) ωa(Y j )

− a√
2π(1 + a)

(
1 − Φ

(√
1+a
a Y j

))]}

+ n
∫

R

Φ(t)2 ωa(t) dt, (10)

where Y1, . . . ,Yn is shorthand for the normalized sample Yn,1, . . . ,Yn,n and Y(1) ≤
· · · ≤ Y(n) is the ordered sample. Those expressions make the statistics amenable to
computations and, with critical values like those given in Sect. 6, the tests can be
implemented immediately for any fixed a > 0.

The tuning parameter a determines the decay of the weight function. For tests based
on theLaplace or theFourier transform, the properties that those transformations reflect
on the underlying distribution often give a good heuristic for which values of the tuning
parameter lead to a high power of the test (see Baringhaus et al. 2000 for examples and
explanations). Since the zero-bias transformation is known to preservemany properties
of the original distribution, we expect that, at least for our first statistic, the tuning
parameter will have little influence on the power for most alternative distributions.
Indeed, we will observe that both tests are very stable in this regard. Nevertheless,
for some (symmetric) alternative distributions the choice of the tuning parameter is
crucial; therefore, we additionally implement our test with an adaptive, data-dependent
choice as proposed by Allison and Santana (2015). Particularly interesting is the case
a ↘ 0. Here, Baringhaus et al. (2000) have shown that, after suitable rescaling, this
limit can be obtained explicitly for many test statistics by using anAbelian theorem for
the Laplace transform. (Note that due to different parametrization they let a → ∞.)
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For our statistics, we have

2n lim
a ↘ 0

G(1)
n,a =

⎛

⎝
n∑

j=1

(Y 2
j − 1)1{Y j ≤ 0}

⎞

⎠

2

+
⎛

⎝
n∑

j=1

(Y 2
j − 1)1{Y j < 0}

⎞

⎠

2

(11)

and

2n lim
a ↘ 0

G(2)
n,a =

⎛

⎝n

2
−

n∑

j=1

Y 2
j 1{Y j ≤ 0}

⎞

⎠

2

+
⎛

⎝n

2
−

n∑

j=1

Y 2
j 1{Y j < 0}

⎞

⎠

2

, (12)

that is, in the limit a ↘ 0, G(1)
n,a and G(2)

n,a reject the normality hypothesis for large
values of the respective limits in (11) and (12). A proof of those limit relations is
given in “Appendix C”. If the underlying distribution of X is continuous, the indicator
functions in the above limits are equal almost surely, and the terms can be simplified.
A related question is the limit for a → ∞. Starting from (9), direct but tedious
calculations, mostly involving L’Hospital’s rule, give

√
2π n lim

a → ∞
√
a G(1)

n,a =
∑

1≤ j<k≤n

{
2Y 2

( j)Y(k) − Y( j)Y
2
(k) + 1

3
Y( j)Y

4
(k) − Y 2

( j)Y
3
(k)

}

+
n∑

j=1

{
−1

3
Y 5

( j) + j Y 3
( j) − 2( j − 1)Y( j)

}

We omit the calculations as they provide no further insight. It remains open if a similar
limit exists for the second statistic G(2)

n,a .
Having discussed the framework for the implementation of our tests, it remains to

introduce the setting for our theoretical studies. Namely, to develop the asymptotic
theory, we let B be the Borel-σ -field of R and L1 the Lebesgue measure on R, and
consider the Hilbert space

H = L2(R,B, ω dL1)

of measurable, square-integrable functions f : R → R. Notice that the functions fig-
uring within the integral in the definition ofG(1)

n andG(2)
n are (A ⊗ B,B)-measurable

and random elements of H. We denote by

‖ f ‖H =
(∫

R

∣∣ f (t)
∣∣2 ω(t) dt

)1/2

, 〈 f , g〉H =
∫

R

f (t)g(t) ω(t) dt

the usual norm as well as the usual inner product inH. Furthermore, we write Un(s) ≈
Vn(s) whenever

‖Un − Vn‖H = oP(1).
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Here, Un and Vn are random elements of our Hilbert space. For the approximations
associated with this notation, Lemma 3 stated in “Appendix A” will be essential. We
have also deferred some asymptotic expansions to “Appendix B” so it is easier to grasp
the main ideas of the proofs. In the following, we denote convergence in distribution

by
D−→ and write OP(1) for boundedness in probability.

3 The limit null distributions

Our first results for the statistics concern the study of their behaviour under the hypoth-
esis. In particular, we derive the limit distributions for n → ∞ when the normality
hypothesis (1) holds. Therefore, we assume in this section that X , X1, X2, . . . are iid.
random variables with P

X = N (0, 1). By ϕ, we denote the density function of the
standard normal law.

Theorem 2 There exists a centredGaussian elementW(2) ofHwith covariance kernel

K(2)(s, t) = (
2(s + t) − (st + 3)(s ∧ t) + (s + t)(s ∧ t)2 − (s ∧ t)3

)
ϕ(s ∧ t)

+ (st + 3)
(
Φ(s ∧ t) − Φ(s)Φ(t)

)+ (t − 2s)ϕ(t)Φ(s)

+ (s − 2t)ϕ(s)Φ(t) − st

2
ϕ(s)ϕ(t) − 4ϕ(s)ϕ(t), s, t ∈ R,

where s ∧ t = min{s, t}, such that

G(2)
n

D−→
∥∥∥W(2)

∥∥∥
2

H , as n → ∞.

Proof Note that a simple change of variable in the integral gives

G(2)
n = 1

Sn

∫

R

∣∣√n Un(s)
∣∣2 ω

(
s − Xn

Sn

)

ds, (13)

where

Un(s) = F̂ X
n (s) − Φ

(
s − Xn

Sn

)

and

F̂ X
n (s) = 1

n

n∑

j=1

X j − Xn

S2n
(X j − s)1{X j ≤ s}, s ∈ R.

The idea of the proof is to show thatUn converges weakly to the Gaussian element of
H stated in the theorem and to use Lemma 3 from “Appendix A” to replace the shifted

123



Testing normality via a distributional fixed point… 113

weight function in the integral above by ω(s). Indeed, with (26) from Lemmata 4 and
5 we have

√
n Un(s) ≈ 1

S2n

√
n

⎧
⎨

⎩
1

n

n∑

j=1

X j (X j − s)1{X j ≤ s} − Xn E
[
(X − s)1{X ≤ s}]

−1

n

n∑

j=1

X2
j Φ(s) − Sn ϕ(s)

(
(1 − Sn) · s − Xn

)
⎫
⎬

⎭
.

Since

√
n (1 − Sn) = 1√

n

n∑

j=1

1

2

(
1 − X2

j

)
+ oP(1),

we obtain

√
n Un(s) ≈ 1

S2n

1√
n

n∑

j=1

Wj (s), (14)

where

Wj (s) = X j (X j − s)1{X j ≤ s} + X j
(
ϕ(s) + sΦ(s)

)

− X2
j Φ(s) −

(
1
2 (1 − X2

j ) · s − X j

)
ϕ(s).

Notice that W1, . . . ,Wn are iid. random elements of H with EW1 = 0 (as FX = Φ

under H0, cf. Theorem 1) andE ‖W1‖2H < ∞. The central limit theorem for separable
Hilbert spaces, see Corollary 10.9 in Ledoux and Talagrand (2011), provides the
existence of a centred Gaussian element W(2) ∈ H with

1√
n

n∑

j=1

Wj (·) D−→ W(2)(·).

By (14),
∥∥√n Un

∥∥H = OP(1) and Lemma 4 implies sups ∈R

∣∣Un(s)
∣∣ ≤ 2 P-almost

surely (a.s.) for each n ∈ N. Thus, with Lemma 3, (13) reads as

G(2)
n = ∥∥√n Un

∥∥2H + oP(1).

The continuous mapping theorem and Slutsky’s lemma imply

G(2)
n

D−→
∥∥∥W(2)

∥∥∥
2

H .
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Since the function K(2) defined in the statement of the theorem satisfies K(2)(s, t) =
E[W1(s)W1(t)], it is the covariance kernel of W(2) and we are done. 	


For G(1)
n , the limit distribution under the hypothesis can be obtained in a similar

manner. Starting with

G(1)
n = n

Sn

∫

R

⎛

⎝F̂ X
n (s) − 1

n

n∑

j=1

1{X j ≤ s}
⎞

⎠

2

ω

(
s − Xn

Sn

)

ds, (15)

the reasoning closely parallels that of the proof of Theorem 2.

Corollary 1 There exists a centredGaussian elementW(1) ofHwith covariance kernel

K(1)(s, t) = (
(s + t) − (st + 1)(s ∧ t) + (s + t)(s ∧ t)2 − (s ∧ t)3

)
ϕ(s ∧ t)

+ (st + 2)
(
Φ(s ∧ t) − Φ(s)Φ(t)

)− sΦ(s)ϕ(t) − tΦ(t)ϕ(s)

− ϕ(s)ϕ(t), s, t ∈ R,

such that

G(1)
n

D−→
∥∥∥W(1)

∥∥∥
2

H , as n → ∞.

Remark The distribution of
∥∥W(k)

∥∥2H, k = 1, 2, that is, the limit distribution of G(k)
n

under the hypothesis, is that of
∑∞

j=1 λ
(k)
j N 2

j . Here, N1, N2, . . . are independent stan-

dard Gaussian random variables and λ
(k)
1 , λ

(k)
2 , . . . are the nonzero eigenvalues of the

operator

H → H, f �−→
∫

R

K(k)(·, t) f (t) ω(t) dt,

k = 1, 2. Considering the complexity of K(k), it does not seem possible to determine
λ

(k)
j explicitly. Thus, in practice, critical values are obtained by simulation rather than

by using asymptotic results. An alternative approach to gain theoretically justified
(approximate) critical values is to calculate the first four moments of the limit null
distribution and fit a representative of the Pearson- or Johnson-family of distributions
to those moments (see Henze 1990 for an example). Since we do not face any compli-
cations in computing the critical values, we will only pursue the empirical approach.

4 Contiguous alternatives

Adjusting the argumentation of Henze and Wagner (1997), we will derive non-
degenerate limit distributions for our statistics under contiguous alternatives converg-
ing to the normal distribution at rate n−1/2. To this end, we introduce a triangular array
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of row-wise iid. random variables Xn,1, . . . , Xn,n , n ∈ N, with Lebesgue density

pn(x) = ϕ(x) ·
(
1 + 1√

n
c(x)

)
, x ∈ R.

Here, c : R → R is a measurable, bounded function satisfying

∫

R

c(x) ϕ(x) dx = 0.

Notice that, by the boundedness of c, we may assume n to be large enough to ensure
pn ≥ 0. We set

μn =
n⊗

j=1

(ϕL1), νn =
n⊗

j=1

(pnL1)

which are measures on (Rn,Bn), where Bn is the Borel-σ -field of Rn . Apparently, νn
is absolutely continuous with respect toμn andwe can look upon the Radon–Nikodym
derivative Ln = dνn

dμn
. By a Taylor expansion,

log
(
Ln(Xn,1, . . . , Xn,n)

) =
n∑

j=1

log

(
1 + 1√

n
c(Xn, j )

)

=
n∑

j=1

(
1√
n
c(Xn, j ) − 1

2n
c(Xn, j )

2
)

+ oP(1)

whenever (Xn,1, . . . , Xn,n) has distribution μn . (Note that in this case the triangu-
lar array essentially reduces to a sequence of iid. random variables with density ϕ.)
Therefore, viewing Ln as a random element (Rn,Bn, μn) → (R,B), the central limit
theorem and the law of large numbers give

log (Ln)
Dμn−−→ N

(
−τ 2

2
, τ 2
)

,

where

τ 2 =
∫

R

c(x)2 ϕ(x) dx

and
Dμn−−→ denotes convergence in distribution under μn . By LeCam’s first Lemma

(see, for instance, Hájek et al. 1999, p. 253, Corollary 1), νn is contiguous to μn .
Interpreting Un from the proof of Theorem 2 as Un : Rn → H, we have shown that
G(2)

n = ∥∥√n Un
∥∥2H + oμn (1) and (14) reads as

∥∥√n Un − W ∗
n

∥∥2H = oμn (1),
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where W ∗
n (s) = 1√

n

∑n
j=1 Wn, j (s) and

Wn, j (s) = Xn, j (Xn, j − s)1{Xn, j ≤ s} + (Xn, j · s − X2
n, j

)
Φ(s)

+
(
2Xn, j − 1

2 (1 − X2
n, j ) · s

)
ϕ(s).

Thus, by contiguity,
∥∥√n Un − W ∗

n

∥∥2H = oνn (1) and, in particular,

G(2)
n = ∥∥W ∗

n

∥∥2H + oνn (1). (16)

Defining

η(x, s) = x(x − s)1{x ≤ s} +
(
x · s − x2

)
Φ(s) +

(
2x − 1

2 (1 − x2) · s
)

ϕ(s),

we have, under μn ,

Cov
(
Wn,1(s), c(Xn,1)

) =
∫

R

η(x, s) c(x) ϕ(x) dx = ζ(s),

with ζ ∈ H. Consequently, for any k ∈ N, v ∈ R
k and s1, . . . , sk ∈ R, the multivariate

central limit theorem, the law of large numbers and Slutsky’s lemma imply

1√
n

n∑

j=1

{(
v1 Wn, j (s1) + · · · + vk Wn, j (sk)

c(Xn, j ) − 1
2
√
n
c(Xn, j )

2

)

−
(

0

− τ 2

2
√
n

)}

Dμn−−→ N2

(
0,
(

v�Σv v�ζk
ζ�
k v τ 2

))
.

Here, Σ = (K(2)(si , s j )
)
1≤i, j≤k , with K(2) the covariance kernel of W(2) from

Theorem 2, and ζk = (ζ(s1), . . . , ζ(sk)
)�. Therefore,

(
v1 W ∗

n (s1) + · · · + vk W ∗
n (sk)

log(Ln)

) Dμn−−→ N2

((
0

− τ 2

2

)
,

(
v�Σv v�ζk

ζ�
k v τ 2

))

and LeCam’s third Lemma (see Hájek et al. 1999, p. 259, Lemma 2) implies

W ∗
n

Dνn , f idi−−−−−→ W(2) + ζ, (17)

where
Dνn , f idi−−−−−→ denotes convergence of the finite-dimensional distributions (under

νn). In the proof of Theorem 2, we have shown that W ∗
n

Dμn−−→ W(2) which entails
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the tightness of {W ∗
n | n ∈ N} under μn . As {W ∗

n | n ∈ N} remains tight under νn by
contiguity, (17) yields

W ∗
n

Dνn−−→ W(2) + ζ.

Combining this with (16), we have shown the following theorem.

Theorem 3 Under the triangular array Xn,1, . . . , Xn,n with PXn,1 = pnL1, we have

G(2)
n

D−→
∥∥∥W(2) + ζ

∥∥∥
2

H .

Since Corollary 1 is obtained with the same line of proof used in Theorem 2, we
can likewise conclude

G(1)
n

D−→
∥∥∥W(1) + ζ̃

∥∥∥
2

H ,

where ζ̃ (s) = ∫ η̃(s, x) c(x) ϕ(x) dx and

η̃(s, x) = (x(x − s) − 1
)
1{x ≤ s} +

(
1 + x · s − x2

)
Φ(s) + xϕ(s).

From these statements, we discern that tests based on any of our statistics are able
to detect contiguous alternatives which converge, at rate n−1/2, to the class of normal
distributions. For further insights on contiguity, we refer to Roussas (1972) and Sen
(1981).

5 Consistency and limit distributions under fixed alternatives

The major goal of this section is to establish that our test procedures can detect any
fixed alternative satisfying a weak moment condition. For some of those distributions,
we can even extend the consistency results and derive weak limits of our statistics.

We return to the nonparametric setting of Sect. 2 and let X , X1, X2, . . . be iid.
random variables with distribution function F and E[X2] < ∞. Further, we assume
EX = 0 and V(X) = 1.

Theorem 4 As n → ∞, we have

G(1)
n

n
−→

∫

R

(
FX (s) − F(s)

)2
ω(s) ds =

∥
∥∥FX − F

∥
∥∥
2

H = Δ(1)

and

G(2)
n

n
−→

∫

R

(
FX (s) − Φ(s)

)2
ω(s) ds =

∥∥∥FX − Φ

∥∥∥
2

H = Δ(2),

where each convergence is in probability.
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Proof We denote by F̂n the empirical distribution function of X1, . . . , Xn . By the
classical Glivenko–Cantelli theorem and (25) from Lemma 4,

∣∣∣∣
∥∥∥F̂ X

n − F̂n
∥∥∥
2

H − Δ(1)
∣∣∣∣

≤ 4

(
sup
s ∈R

∣∣
∣F̂ X

n (s) − FX (s)
∣∣
∣+ sup

s ∈R

∣∣
∣F̂n(s) − F(s)

∣∣
∣
) ∫

R

ω(s) ds

−→ 0

P-a.s., as n → ∞. RewritingG(1)
n as in (15) and applying the second part of Lemma 3,

we have

G(1)
n

n
=
∥
∥∥F̂ X

n − F̂n
∥
∥∥
2

H + oP(1).

The proof of the second claim is almost identical. 	


We recall that a level-α-test based on G(k)
n , k = 1, 2, rejects the hypothesis if

G(k)
n > c(k)

n , where c(k)
n is the (1 − α)-quantile of the distribution of G(k)

n under H0.
Theorem 2 (and Corollary 1) ensures that supn ∈N c(k)

n < ∞. Now, by Theorem 1,
the limits Δ(1) and Δ(2) figuring in Theorem 4 are positive if X has a non-normal
distribution. Consequently,

P

(
G(k)

n > c(k)
n

)
≥ P

(
n−1G(k)

n > n−1 sup
n ∈N

c(k)
n

)
−→ 1,

as n → ∞, and a level-α-test based on G(1)
n or G(2)

n is consistent against each alter-
native with existing second moment.

The following theorem concerns the limit distributions of our statistics under fixed
alternatives.

Theorem 5 Let X , X1, X2, . . . be iid., non-normal random variables with distribution
function F and EX4 < ∞. Assume that X has a continuously differentiable density
function p satisfying sups ∈R |p(s)| ≤ K1 < ∞ and sups ∈R |p′(s)| ≤ K2 < ∞.
W.l.o.g., EX = 0 and V(X) = 1. Then, as n → ∞,

√
n

(
G(1)

n

n
− Δ(1)

)
D−→ N

(
0, τ 2(1)

)
, (18)

where

τ 2(1) = 4
∫

R

∫

R

C(1)(s, t)
(
FX (s) − F(s)

) (
FX (t) − F(t)

)
ω(s) ω(t) ds dt
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with

C(1)(s, t) = E
[
C (1)(s)C (1)(t)

]
, s, t ∈ R,

and

C (1)(s) =(X(X − s) − 1
)
1{X ≤ s} − X2FX (s) + (1 + X · s)F(s)

−
(
1
2 (1 − X2) · s − X

)
p(s) +

(
2X − 1

2 (1 − X2) · s
)
dX (s), s ∈ R.

Proof Setting

Vn(s) = F̂ X
n (s) − 1

n

n∑

j=1

1{X j ≤ s} − FX

(
s − Xn

Sn

)

+ F

(
s − Xn

Sn

)

, s ∈ R,

a change of variable in both integrals and an integral decomposition, as used by
Chapman (1958), gives

√
n

(
G(1)

n

n
− Δ(1)

)

= 1

Sn

{
2
∫

R

√
n Vn(s) ·

[
FX (̃s) − F (̃s)

]
ω(̃s) ds

+ 1√
n

∫

R

∣
∣√n Vn(s)

∣
∣2 ω(̃s) ds

}
,

where s̃ = (s−Xn)/Sn . Under the assumption
∥∥√n Vn

∥∥H = OP(1), Hölder’s inequal-
ity, Lebesgue’s theorem and Slutsky’s lemma give

∣∣∣∣

∫

R

√
n Vn(s) ·

[
FX (̃s) − F (̃s)

]
ω(s) ds − 〈√n Vn, FX − F

〉
H

∣∣∣∣

≤ ∥∥√n Vn
∥∥H

(∫

R

∣∣FX (̃s) − FX (s) + F(s) − F (̃s)
∣∣2ω(s) ds

)1/2

= oP(1).

Here, we used that both FX and F are continuous distribution functions. Using that
sups ∈R

∣
∣Vn(s)

∣
∣ ≤ 4 P-a.s. for each n ∈ N (note that F̂ X

n is a distribution function as
well by Lemma 4), Lemma 3 from “Appendix A” yields

√
n

(
G(1)

n

n
− Δ(1)

)

= 2
〈√

n Vn, FX − F
〉
H + 1√

n

∥
∥√n Vn

∥
∥2H + oP(1). (19)
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To verify the above assumption, we show that
√
n Vn converges in distribution in H.

In this regard, (26) and Lemma 5 imply

√
n Vn(s) ≈

√
n

S2n

⎧
⎨

⎩
1

n

n∑

j=1

X j (X j − s)1{X j ≤ s} − Xn E
[
(X − s)1{X ≤ s}]

−S2n

⎛

⎝1

n

n∑

j=1

1{X j ≤ s} − F(s)

⎞

⎠− 1

n

n∑

j=1

X2
j F

X (s)

−Sn
(
(1 − Sn) · s − Xn

) (
dX (s) − p(s)

)
⎫
⎬

⎭
.

By the classical Glivenko–Cantelli theorem and
√
n (S2n − 1) = OP(1),

√
n S2n

⎛

⎝1

n

n∑

j=1

1{X j ≤ s} − F(s)

⎞

⎠ ≈ 1√
n

n∑

j=1

(
1{X j ≤ s} − F(s)

)
.

Together with the expansion
√
n (1− Sn) = n−1/2∑n

j=1
1
2 (1− X2

j )+oP(1), we have

√
n Vn(s) ≈ 1

S2n

1√
n

n∑

j=1

Z j (s), (20)

where

Z j (s) = X j (X j − s)1{X j ≤ s} + X j

(
dX (s) + sF(s)

)
− X2

j F
X (s)

− 1{X j ≤ s} + F(s) −
(
1
2 (1 − X2

j ) · s − X j

) (
dX (s) − p(s)

)
.

Since Z1, . . . , Zn are iid. random elements ofHwith EZ1 = 0 as well as E ‖Z1‖2H <

∞, the central limit theorem for separable Hilbert spaces implies

1√
n

n∑

j=1

Z j (·) D−→ Z(·),

where Z ∈ H is a centred Gaussian element. In particular,
∥∥√n Vn

∥∥H is bounded in
probability by (20), and (19) holds. The continuous mapping theorem and Slutsky’s
Lemma imply

√
n

(
G(1)

n

n
− Δ(1)

)
D−→ 2

〈Z, FX − F
〉
H.
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Denoting the covariance kernel of Z by

C(1)(s, t) = E
[Z(s)Z(t)

]
,

the limiting random variable 2
〈Z, FX − F

〉
H has the normal distributionN (0, τ 2(1)),

where

τ 2(1) = 4E
[〈Z, FX − F

〉2
H
]

= 4
∫

R

∫

R

C(1)(s, t)
(
FX (s) − F(s)

) (
FX (t) − F(t)

)
ω(s) ω(t) ds dt .

	

Applying the reasoning of Theorem 5 to G(2)

n , Φ will drop out when considering
the decomposition of the integrals. Proceeding with the remaining terms exactly as
before, we obtain an analogous statement for the second statistic under slightly weaker
conditions.

Corollary 2 Let X , X1, X2, . . . be iid., non-normal random variables with distribution
function F, Lebesgue density p and EX4 < ∞. Further, assume sups ∈R |p(s)| < ∞
and EX = 0, V(X) = 1. Then, as n → ∞,

√
n

(
G(2)

n

n
− Δ(2)

)
D−→ N

(
0, τ 2(2)

)
, (21)

where

τ 2(2) = 4
∫

R

∫

R

C(2)(s, t)
(
FX (s) − Φ(s)

) (
FX (t) − Φ(t)

)
ω(s) ω(t) ds dt

with

C(2)(s, t) = E
[
C (2)(s)C (2)(t)

]
, s, t ∈ R,

and

C (2)(s) = X(X − s)1{X ≤ s} − X2 FX (s) + X · sF(s)

+
(
2X − 1

2 (1 − X2) · s
)
dX (s), s ∈ R.

Remark Note that for Theorem 5, we redeployed a line of proof put forward by Bar-
inghaus et al. (2017). The asymptotic normality also qualifies our statistics for the
applications they propose (see also Baringhaus and Henze 2017).

First, we fix α ∈ (0, 1) and denote by qα = Φ−1(1 − α/2) the (1 − α/2)-quantile
of the standard normal distribution. Letting

τ̂ 2(k),n = τ̂ 2(k),n(X1, . . . , Xn)
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be a (weakly) consistent estimator of τ 2(k), k = 1, 2, figuring in Theorem 5 and Corol-
lary 2, respectively, (18) and (21) immediately indicate that

In =
[
G(k)

n

n
− qα τ̂(k),n√

n
,
G(k)

n

n
+ qα τ̂(k),n√

n

]

(22)

is an asymptotic confidence interval for Δ(k) = Δ(k)(F) at level 1 − α. Here, F
satisfies the assumptions of Theorem 5 (or Corollary 2). As was briefly explained
in the introduction, one objective of Stein’s method for the normal distribution is to
assess how close a given distribution is to being normal. Thus, seeing Δ(1)(F) and
Δ(2)(F) as ’measures’ of how far F differs from the standard normal distribution, we
also developed a procedure for empirical assessments of this kind.

Second, we emphasize that our statistics can be employed for inverse testing prob-
lems. Namely, if Δ0 > 0 is a given distance of tolerance, tests that reject HΔ0 if

G(k)
n

n
≤ Δ0 − τ̂(k),n√

n
Φ−1(1 − α)

are asymptotic level-α-tests for the problem

HΔ0 : Δ(k)(F) ≥ Δ0 against KΔ0 : Δ(k)(F) < Δ0.

These tests are consistent against each alternative and aim at validating a whole non-
parametric neighbourhood of the hypothesized, underlying normality. Unfortunately,
the direct approach to obtain estimators for τ 2(k) does not lead to feasible results.

Finally, we suppose {c(k)
n } ⊂ (0,∞) is the sequence of critical values for a level-α-

test based on G(k)
n , k = 1, 2. For an alternative distribution F satisfying the relevant

prerequisites of Theorem 5 or Corollary 2, we can approximate the power of the test
against this alternative by

PF

(
G(k)

n > c(k)
n

)
= PF

(√
n

τ(k)

{
G(k)

n

n
− Δ(k)

}

>

√
n

τ(k)

{
c(k)
n

n
− Δ(k)

})

∼= 1 − Φ

(√
n

τ(k)

{
c(k)
n

n
− Δ(k)

})

. (23)

Note that this last application does (in theory) not need an estimator of τ 2(k). Instead,

τ 2(k) and Δ(k) have to be calculated for the particular fixed alternative.

6 Empirical results

In this section, we investigate the behaviour of our two statistics given through the
explicit formulas (9) and (10). It is organized as follows: First, we compare the two
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Table 1 Empirical 0.95

quantiles for G(1)
n,a under H0

(100,000 replications)

n\a 0.1 0.25 0.5 1 1.5 2 3

20 1.027 0.891 0.754 0.609 0.525 0.469 0.396

50 1.066 0.928 0.789 0.642 0.555 0.497 0.421

100 1.062 0.927 0.791 0.643 0.558 0.499 0.423

Table 2 Empirical 0.95

quantiles for G(2)
n,a under H0

(100,000 replications)

n\a 0.1 0.25 0.5 1 1.5 2 3

20 0.391 0.380 0.357 0.315 0.284 0.261 0.227

50 0.420 0.408 0.384 0.342 0.309 0.284 0.247

100 0.424 0.413 0.389 0.347 0.315 0.290 0.253

tests over a range of possible tuning parameters and alternative distributions. Based on
these results, we choose our final procedure and describe its implementation. Then,
a brief summary of the competing tests for an empirical power study is given. We
display the performance of our test in comparison with the established tests in a finite-
sample power study. Finally, we add results for the applications from the last section
(as described in the Remark) for three alternative distributions. The simulations are
performed using the statistical computing environment R, see R Core Team (2017).
Notice that there are several comparative simulation studies for testing normality in
the literature, as witnessed by Baringhaus et al. (1989), Farrell and Rogers-Stewart
(2006), Landry and Lepage (1992), Pearson et al. (1977), Romão et al. (2010), Shapiro
et al. (1968), Yap and Sim (2011) and others.

Since we consider two new families of tests both depending on the choice of the
tuning parameter a, we will calculate the finite-sample power for a range of different
parameters. In each simulation, we consider the sample sizes n = 20, n = 50 and
n = 100, and fix the nominal level of significance α to 0.05. To implement the tests
for any of the (fixed) values a ∈ {0.1, 0.25, 0.5, 1, 1.5, 2, 3}, we calculate the critical
values by a Monte Carlo simulation with 100,000 repetitions. These critical values for
G(k)

n,a , k = 1, 2, can be found in Tables 1 and 2 and are taken from there throughout
the simulations.

We choose the alternative distributions to fit the extensive power study of normality
tests by Romão et al. (2010), in order to ease the comparison to other tests. Namely,
we choose as symmetric distributions the Student tν-distribution with ν ∈ {3, 5, 10}
degrees of freedom, as well as the uniform distribution U(−√

3,
√
3). The asym-

metric distributions are the χ2
ν -distribution with ν ∈ {5, 15} degrees of freedom, the

Beta distributions B(1, 4) and B(2, 5), the Gamma distributions Γ (1, 5) and Γ (5, 1)
parametrized by their shape and rate parameter, the Gumbel distribution Gum(1, 2)
with location parameter 1 and scale parameter 2, the lognormal distribution LN(0, 1)
as well as the Weibull distributionW (1, 0.5) with scale parameter 1 and shape param-
eter 0.5. As representatives of bimodal distributions, we take the mixture of normal
distributions MixN (p, μ, σ 2), where the random variables are generated by

(1 − p)N (0, 1) + pN (μ, σ 2), p ∈ (0, 1), μ ∈ R, σ > 0.
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Each entry in Table 3 referring to the finite-sample power of the tests is based on 10,000
replications. From the results in this table, we infer that for asymmetric alternative
distributions our tests perform almost identical and are extremely stable over the range
of tuning parameters. For the symmetric and bimodal alternatives however, the choice
of a can have considerable influence on the power of the test.Moreover, with particular
focus on the uniformdistribution and the normalmixtures, the test based onG(1)

n,a shows
a significantly better performance than G(2)

n,a .
Taking this superiority of G(1)

n,a , and the fact that the choice of tuning parameter
influences the power, into account, we propose as a final procedure a test based on
G(1)

n,a calculated by (9) with a data-dependent choice of the tuning parameter a. To
implement the latter, we use the algorithm from Allison and Santana (2015), which
has already been applied in the recent simulation study by Allison et al. (2017) for
tests of exponentiality. Given the standardized sample Y1, . . . ,Yn as in Sect. 2, our
test is carried out as follows:

(a) Fix a grid of possible tuning parameters a ∈ {a1, . . . , a�} (here: a ∈
{0.1, 0.25, 0.5, 1, 1.5, 2, 3}).

(b) Sample from Y1, . . . ,Yn with replacement and, for the obtained bootstrap sample,
calculate G(1)

n,ai , i = 1, . . . , �, via (9).
(c) Repeat step (b) B times (here: B = 400) and denote the resulting values of the

statistic by G∗
1,ai

, . . . ,G∗
B,ai

, i = 1, . . . , �.

(d) Calculate the bootstrap powers by P̂ai = B−1∑B
b=1 1{G∗

b,ai
> cn,ai (α)}, i =

1, . . . , �, where cn,ai (α) is the critical value for a level-α-test based on G(1)
n,ai (for

the Monte Carlo approximations, see Table 1).
(e) Choose as the tuning parameter â = argmax{P̂a |a ∈ {a1, · · · , a�}} and apply the

test based on G(1)
n,̂a to Y1, . . . ,Yn .

We consider the following competitors to this test. As classical and well-known
tests, we include the Shapiro–Wilk test (SW), see Shapiro and Wilk (1965), the
Shapiro–Francia test (SF), see Shapiro and Francia (1972), and the Anderson–Darling
test (AD), see Anderson and Darling (1952). For the implementation of these tests
in R, we refer to the package nortest by Gross and Ligges (2015). Tests based on
the empirical characteristic function are represented by the Baringhaus–Henze–Epps–
Pulley test (BHEP), see Baringhaus and Henze (1988), Epps and Pulley (1983). The
BHEP test with tuning parameter β > 0 is based on

BHEP =1

n

n∑

j,k=1

exp

(
−β2

2

(
Y j − Yk

)2
)

− 2
√
1 + β2

n∑

j=1

exp

(
− β2

2(1 + β2)
Y 2
j

)
+ n
√
1 + 2β2

,

where Y1, . . . ,Yn is the standardized sample. We fix β = 1 and take the critical values
from Henze (1990) but also restate them in Table 4.
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Table 3 Empirical rejection rates for G(k)
n,a , k = 1, 2 (α = 0.05, 10,000 replications)

Alt. G(1)
n,a G(2)

n,a

n\a 0.1 0.25 0.5 1 1.5 2 3 0.1 0.25 0.5 1 1.5 2 3

N (0, 1) 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5

50 5 5 5 5 5 5 5 5 5 5 5 5 5 5

100 5 5 5 5 5 5 5 5 5 5 5 5 5 5

MixN (0.3, 1, 0.25) 20 25 25 24 24 23 23 23 22 22 21 20 20 19 19

50 56 57 57 56 56 55 55 50 50 49 48 47 46 46

100 86 87 87 87 86 86 86 80 80 79 78 77 77 76

MixN (0.5, 1, 4) 20 34 35 35 36 37 37 37 32 32 33 33 33 33 34

50 52 56 60 63 64 64 65 42 43 44 46 47 48 49

100 75 84 89 91 92 92 92 55 57 60 66 68 70 71

t3 20 30 31 33 34 35 35 35 32 32 33 34 34 35 35

50 41 46 50 54 56 57 58 44 45 47 50 52 53 54

100 54 63 70 76 78 79 81 53 56 61 67 70 72 74

t5 20 16 17 18 19 19 19 20 18 18 19 19 19 19 20

50 22 25 27 29 31 31 32 26 26 27 29 30 31 31

100 27 31 36 41 43 44 46 30 31 34 37 39 41 42

t10 20 9 9 10 10 10 10 10 10 10 10 10 11 11 11

50 11 11 12 13 14 15 15 13 13 13 14 15 15 16

100 11 12 14 16 17 17 18 14 14 15 16 17 17 18

U(−√
3,

√
3) 20 4 4 3 3 3 3 3 2 2 2 2 1 1 1

50 3 4 5 7 7 8 8 2 2 2 2 1 1 1

100 5 10 19 32 38 41 45 2 2 3 3 3 3 3

χ2
5 20 44 45 45 45 44 44 44 45 45 44 44 43 43 43

50 84 86 87 87 87 87 87 87 87 87 87 87 87 87

100 99 99 99 99 99 99 99 99 99 99 99 99 99 99

χ2
15 20 18 18 19 19 19 19 19 19 19 19 19 19 19 19

50 44 45 46 46 46 46 46 47 47 47 47 46 46 46

100 74 76 77 78 78 78 78 78 78 79 78 78 78 78

B(1, 4) 20 49 51 51 51 51 50 50 49 49 49 48 47 47 46

50 90 93 94 94 94 94 94 92 92 92 92 92 92 92

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

B(2, 5) 20 15 16 15 15 15 15 15 15 15 15 15 14 14 14

50 40 42 43 44 44 43 43 42 42 42 42 41 41 41

100 73 77 79 80 81 81 81 76 77 78 78 78 78 78

Γ(1, 5) 20 76 78 78 78 78 78 78 77 77 76 76 75 75 74

50 99 100 100 100 100 100 100 99 99 100 100 100 100 99

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Γ(5, 1) 20 25 25 25 25 25 25 25 26 26 26 25 25 25 25

50 58 60 61 61 61 61 61 62 62 62 62 62 61 61

100 88 90 90 91 91 91 91 91 91 91 91 91 91 91
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Table 3 continued

Alt. G(1)
n,a G(2)

n,a

n\a 0.1 0.25 0.5 1 1.5 2 3 0.1 0.25 0.5 1 1.5 2 3

W (1, 0.5) 20 76 78 78 78 78 78 78 77 77 77 76 75 75 75

50 99 100 100 100 100 100 100 99 99 100 100 99 99 99

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gum(1, 2) 20 32 33 33 33 33 33 33 34 34 34 33 33 33 33

50 70 71 72 72 72 72 72 73 73 73 72 72 72 72

100 94 95 95 95 96 96 96 96 96 96 96 96 96 96

LN(0, 1) 20 90 91 91 91 91 91 91 90 90 90 90 90 89 89

50 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Furthermore, we include the quantile correlation test of del Barrio–Cuesta–
Albertos–Mátran–Rodríguez–Rodríguez (BCMR) based on the L2-Wasserstein dis-
tance, see del Barrio et al. (1999) and Sect. 3.3 of del Barrio et al. (2000). The BCMR
statistic is given by

BCMR = n

⎛

⎝1 − 1

S2n

(
n∑

k=1

X(k)

∫ k
n

k−1
n

Φ−1(t) dt

)2
⎞

⎠−
∫ n

n+1

1
n+1

t(1 − t)
(
ϕ
(
Φ−1(t)

))2 dt,

where X(k) is the k-th order statistic of X1, . . . , Xn , S2n is the sample variance and
Φ−1 is the quantile function of the standard normal distribution. Simulated critical
values be found in the work of Krauczi (2009), or in Table 4.

The Henze–Jiménez-Gamero test (HJG), see Henze and Jiménez-Gamero (2018),
uses a weighted L2-distance between the empirical moment-generating function of
the standardized sample and the moment-generating function of the standard normal
distribution. The test is based on

HJGβ = 1

n
√

β

n∑

j,k=1

exp

(
(Y j + Yk)2

4β

)
− 2√

β − 1/2

n∑

j=1

exp

(
Y 2
j

4β − 2

)

+ n√
β − 1

with β > 2. We consider the tuning parameters β ∈ {2.5, 5, 10}. Since Henze and
Jiménez-Gamero (2018) did not simulate critical values in the univariate case, the
empirical critical values can be found in Table 4. This test was proposed recently, so
it is not yet included in any other power study. All of the simulated critical values
displayed in Table 4 have been confirmed in a simulation with 100,000 replications
(compare to Henze 1990; Krauczi 2009).

In Table 5, we display the results of the competitive simulation study, where our
test based on the steps (a)–(e) (with bootstrap size B = 400 and values for a as
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Table 4 Empirical 0.95 quantiles for BCMR, BHEP and HJGβ under H0 (100,000 replications)

n\Test BCMR BHEP HJG2.5 HJG5 HJG10

20 0.31 0.368 0.1503 0.2568 0.3258

50 0.30 0.374 6.349e−3 8.568e−3 9.556e−3

100 0.29 0.376 4.001e−4 4.988e−4 5.369e−4

Table 5 Empirical rejection rates for competing procedures (α = 0.05, 10,000 replications)

Alt. n BEâ SW BCMR BHEP AD SF HJG2.5 HJG5 HJG10

N (0, 1) 20 5 5 5 5 5 5 5 5 5

50 5 5 5 5 5 5 5 5 5

100 5 5 5 5 5 5 5 5 5

MixN (0.3, 1, 0.25) 20 23 28 28 27 30 25 11 13 14

50 54 60 60 62 68 57 16 26 32

100 85 89 89 90 94 88 28 49 58

MixN (0.5, 1, 4) 20 36 40 43 42 46 48 34 33 33

50 64 78 80 80 86 83 49 49 46

100 92 97 98 98 99 98 69 68 61

t3 20 34 35 37 34 33 40 38 37 36

50 57 64 65 61 60 69 64 62 59

100 81 88 89 86 85 91 86 84 78

t5 20 20 19 20 18 17 22 22 22 21

50 31 35 37 32 31 41 40 38 36

100 46 56 58 50 48 63 59 55 50

t10 20 11 10 11 9 9 12 12 12 12

50 14 16 17 13 12 20 20 19 18

100 19 22 24 16 15 28 28 26 23

U(−√
3,

√
3) 20 3 21 17 13 17 8 0 0 0

50 8 75 70 55 58 47 0 0 0

100 45 100 99 95 95 97 0 0 0

χ2
5 20 44 44 44 42 38 42 33 36 39

50 87 89 88 84 80 85 65 76 80

100 100 100 100 99 99 100 91 98 99

χ2
15 20 19 18 18 17 16 18 16 17 18

50 45 42 42 39 33 40 32 38 41

100 77 75 74 68 61 71 54 68 73

B(1, 4) 20 50 59 58 52 51 53 28 34 38

50 94 98 98 94 95 97 57 76 83

100 100 100 100 100 100 100 89 99 100
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Table 5 continued

Alt. n BEâ SW BCMR BHEP AD SF HJG2.5 HJG5 HJG10

B(2, 5) 20 15 16 16 16 14 14 9 11 12

50 43 50 47 45 39 40 16 25 30

100 81 90 89 80 76 82 29 54 64

Γ (1, 5) 20 77 83 83 77 77 80 57 63 67

50 100 100 100 100 100 100 91 97 98

100 100 100 100 100 100 100 100 100 100

Γ (5, 1) 20 25 24 24 23 20 24 20 22 23

50 61 59 59 55 49 56 42 51 55

100 91 90 90 85 81 88 69 83 87

W (1, 0.5) 20 100 84 83 78 77 80 58 64 67

50 100 100 100 100 100 100 91 97 98

100 100 100 100 100 100 100 100 100 100

Gum(1, 2) 20 34 31 32 31 28 32 28 30 31

50 72 69 69 66 60 67 55 64 67

100 96 94 94 91 89 93 83 92 94

LN(0, 1) 20 91 93 93 91 90 91 78 83 85

50 100 100 100 100 100 100 99 100 100

100 100 100 100 100 100 100 100 100 100

before) is denoted by BEâ . Each entry is based on 10,000 Monte Carlo replications,
and the best-performing test for each distribution and sample size is highlighted for
easy reference.

Starting with the symmetric distributions, we see that the SF and SW tests perform
best for these models. Interestingly, the HJGβ test has the highest power against
Students t10-distribution but completely fails to detect the uniform alternative. The
finite-sample power of our new test for the tν-distributions is comparable to the BHEP
test, but the uniform distribution seems to be a weak spot. Bimodal distributions are
best detected by the AD test. The performance of the SW, BCMR, BHEP and SF
tests is comparable, while the new BEâ procedure has a slightly weaker power and
the HJGβ test is clearly inferior for those distributions. Considering the asymmetric
alternatives, our new procedure shows its potential by dominating all other procedures
for the χ2-, the Gamma as well as the Gumbel distributions. All procedures do a good
job in rejecting the Weibull and the lognormal alternatives.

To conclude the simulation study, we investigate the confidence interval (22)
and the power approximation in (23) for the fixed tuning parameter a = 1.
As an example, we examine three alternatives also partially considered by Bar-

inghaus et al. (2017), namely the uniform distribution U
(
−√

3,
√
3
)

and the

Laplace distribution L
(
0, 1/

√
2
)

with density p(x) = exp
(
−√

2|x |
)
, x ∈

R, as well as the Logistic distribution Lo
(
0,

√
3/π

)
with density p(x) =
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Table 6 Empirical power and approximation (23) against three alternatives

U
(
−√

3,
√
3
)

L
(
0, 1/

√
2
)

Lo
(
0,

√
3/π

)

G(1)
n,1 G(2)

n,1 G(1)
n,1 G(2)

n,1 G(1)
n,1 G(2)

n,1

n MC Apr MC Apr MC Apr MC Apr MC Apr MC Apr

20 3 0 2 0 25 6 25 0 12 0 13 0

50 7 0 2 0 40 27 34 10 16 0 16 0

100 32 10 3 0 62 53 44 57 21 0 20 0

π exp
(
−πx/

√
3
)

/
√
3
(
1 + exp

(
−πx/

√
3
))2

, x ∈ R. Notice that these alterna-

tives are standardized. The values ofΔ(k) are 0.004167 (k = 1) and 0.000985 (k = 2)

for U
(
−√

3,
√
3
)
, 0.005225 (k = 1) and 0.001367 (k = 2) for L

(
0, 1/

√
2
)
, and

0.000819 (k = 1) and 0.000241 (k = 2) for Lo
(
0,

√
3/π

)
.

Note that the uniform and the Laplace distribution do not satisfy the differentiability
condition of Theorem 5, but since they do satisfy all conditions of Corollary 2, we
include simulations for G(1)

n,1 in those cases as well. The results in Tables 6 and 7

however, when compared to the Logistic distribution or the second statisticG(2)
n,1 where

all requirements are formally fulfilled, indicate that Theorem 5 should also cover the
uniform and, in particular, the Laplace distribution, and thus the result might hold
under weaker conditions.

Since the limit variance τ 2(k), k = 1, 2, seems inaccessible by computation in each

case, we decided to estimate τ 2(k), k = 1, 2, by means of simulation. For a sample size
of n = 1000 with 10,000 repetitions, the estimated values are 0.000302 (k = 1) and

0.000016 (k = 2) for U
(
−√

3,
√
3
)
, 0.002452 (k = 1) and 0.000565 (k = 2) for

L
(
0, 1/

√
2
)
, as well as 0.000430 (k = 1) and 0.000125 (k = 2) for Lo

(
0,

√
3/π

)
.

Table 6 displays the empirical power (in %) of G(1)
n,1 and G(2)

n,1 against the three alter-
natives. The nominal level is 1 − α = 0.95 which explains the considerably smaller
power compared to Table 2 from Baringhaus et al. (2017). The columns denoted by
’Apr’ show the corresponding approximations given by (23), while ’MC’ stands for
the empirical rejection rates for 10,000 repetitions. Table 6 shows that the approximate
power function (23) often appears as a lower bound to the power of the test statistics,
confirming the observations by Baringhaus et al. (2017).

Because no consistent estimator τ̂ 2(k),n(X1, . . . , Xn) of τ 2(k), k = 1, 2, is known,
a nonparametric bootstrap procedure with B = 500 bootstrap samples (drawn with
repetition) is implemented to calculate the empirical coverage probabilities shown
in Table 7. The confidence level is set to 1 − α = 0.9, and each value is based on
10,000 repetitions. Obviously the empirical coverage probabilities are higher than
the confidence level, indicating that the approximate lower and upper bounds of the
confidence intervals are too conservative. This might be an effect of the bootstrap
variance estimation procedure, but regarding the results of the power approximation,

123



130 S. Betsch, B. Ebner

Table 7 Empirical coverage
probabilities of In from (22) for
Δ(k), k = 1, 2, (at nominal level
0.9, with 10,000 replications)

U
(
−√

3,
√
3
)

L
(
0, 1/

√
2
)

Lo
(
0,

√
3/π

)

n Δ(1) Δ(2) Δ(1) Δ(2) Δ(1) Δ(2)

20 99 100 92 91 95 96

50 99 100 96 96 98 98

100 97 100 98 98 99 99

we rather think that an appropriate error-correction term in (22) and (23) will lead to
better results.

7 Conclusions and outlines

Starting with Charles Stein’s insight that a random variable X has a standard normal
distribution if, and only if,

E
[
f ′(X)

] = E
[
X f (X)

]

holds for any absolutely continuous function, we developed two classes of goodness-
of-fit statistics for testing the normality hypothesis. We utilized the zero-bias
transformation to bypass the problem of calculating an empirical property for all
absolutely continuous functions. An advantage of the underlying zero-bias identity
over many other types of transformation applied in goodness-of-fit testing, like the
characteristic function or the Laplace transform, is that the distribution inserted into
the mapping is not associated with a purely analytic quantity but is mapped to another
distribution and, thereby, stays accessible to a stochastically intuitive examination (cf.
Lemmata 1 and 4). The conducted power study suggests that our tests are serious com-
petitors to established tests and even set new markers in terms of the highest power
achieved for many asymmetrical alternatives. Both procedures are consistent against
any alternative distribution satisfying a weak moment condition.

We want to emphasize that some problems remain open for further research. One
issue concerns our choice of weight function. The integrals figuring in the second
sum of G(2)

n,a in (10), though they are accessible to stable numerical integration, are a
slight drawback in terms of calculation time as compared to G(1)

n,a . It is conceivable to
replace the term ω(t)dt in (5) and (6) by dF(t) and to estimate F by the empirical
distribution function. However, this type of test is not included in the framework for
our theoretical results. Another question is whether there is some limiting statistic, as
a → ∞, when considering G(2)

n,a from Sect. 2. Finally, since we have not succeeded
in calculating consistent estimators for τ 2(1) and τ 2(2) (see the Remark in Sect. 5), it
remains to derive appropriate estimators and, in view of the results in Tables 6 and 7,
to find better power approximations as well as suitable confidence intervals.

Acknowledgements The authors thank Norbert Henze for useful comments and also express their gratitude
to three anonymous referees for careful reading and suggestions that helped improve the article.
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A Preliminary results concerning the weight functions

Wefirst prove that the density function of a centred normal distribution is an admissible
weight function. Then, we give a general result for the asymptotic behaviour of integral
terms involving weight functions of the type we consider. In the whole section, we
adopt the setting and notation from Sect. 2.

Lemma 2 The functions ωa(s) = (2πa)−1/2 exp(−s2/(2a)), s ∈ R, a > 0, satisfy
the weight function conditions stated in Sect. 2.

Proof The only non-trivial statement is that ωa satisfies (8). Let 0 < ε < 1/8 be
arbitrary. In the case |S−1

n − 1| ≤ ε and |Xn|/Sn ≤ ε, a Taylor expansion gives

ωa

(
s − Xn

Sn

)

− ωa(s) = ω′
a

(
ξn(s)

)
(
s − Xn

Sn
− s

)

, (24)

where
∣∣ξn(s) − s

∣∣ ≤ ∣∣(s − Xn)/Sn − s
∣∣ ≤ (|s| + 1)/8. Consequently,

(
ξn(s)

)2−s2 ≥ min

{∣∣∣∣s − |s| + 1

8

∣
∣∣∣ ,

∣
∣∣∣s + |s| + 1

8

∣
∣∣∣

}2
− s2

= −15

64
s2 − 7

32
|s| + 1

64

from which we conclude

∣∣ω′
a

(
ξn(s)

)∣∣3
(
ωa(s)

)2 =
∣∣ξn(s)

∣∣3

a3
√
2πa

exp

(
− 3

2a

((
ξn(s)

)2 − s2
)

− 1

2a
s2
)

≤ 1

a3
√
2πa

(
2|s| + 1

)3 exp
(

− s2

8a
+ |s|

a

)
.

Combining this with (24),

n
∫

R

∣∣∣
∣∣
ωa

(
s − Xn

Sn

)

− ωa(s)

∣∣∣
∣∣

3
(
ωa(s)

)−2ds

≤ ε

∫

R

n

∣∣∣∣
∣

(
1

Sn
− 1

)
s − Xn

Sn

∣∣∣∣
∣

2 (
2|s| + 1

)4

a3
√
2πa

exp

(
− s2

8a
+ |s|

a

)
ds.

As εwas arbitrary, the claim follows from the boundedness in probability of
√
n
(
S−1
n −

1
)
and

√
n
(
Xn/Sn

)
. 	
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Lemma 3 Let Un be a random element of H, n ∈ N, such that
∥∥√n Un

∥∥H = OP(1).
Then,

∫

R

∣∣√n Un(s)
∣∣

∣
∣∣∣∣
ω

(
s − Xn

Sn

)

− ω(s)

∣
∣∣∣∣
ds = oP(1).

If in addition sups ∈R

∣∣Un(s)
∣∣ ≤ C P-a.s. for each n ∈ N and some C > 0,

∫

R

∣∣√n Un(s)
∣∣2 ω

(
s − Xn

Sn

)

ds = ∥∥√n Un
∥∥2H + oP(1).

Proof By Hölder’s inequality (p = q = 2) and Slutsky’s lemma

∫

R

∣∣√n Un(s)
∣∣

∣∣
∣∣∣
ω

(
s − Xn

Sn

)

− ω(s)

∣∣
∣∣∣
ds

≤ ∥∥√n Un
∥
∥H

⎛

⎝
∫

R

∣∣
∣∣∣
ω

(
s − Xn

Sn

)/
ω(s) − 1

∣∣
∣∣∣

2

ω(s) ds

⎞

⎠

1/2

= oP(1),

where we used the assumption on Un and the fact that (8) implies

∫

R

∣∣∣∣
∣
ω

(
s − Xn

Sn

)/
ω(s) − 1

∣∣∣∣
∣

2

ω(s) ds

≤
⎛

⎝
∫

R

∣∣∣∣
∣
ω

(
s − Xn

Sn

)/
ω(s) − 1

∣∣∣∣
∣

3

ω(s)ds

⎞

⎠

2/3 (∫

R

ω(s) ds

)1/3

= oP(1).

The second claim also follows from Hölder’s inequality (p = 3/2, q = 3) and (8)
since

∣∣∣∣
∣

∫

R

∣∣√n Un(s)
∣∣2 ω

(
s − Xn

Sn

)

ds − ∥∥√n Un
∥∥2H

∣∣∣∣
∣

≤ n
∫

R

∣∣Un(s)
∣∣2(ω(s)

)2/3
∣∣∣∣∣
ω

(
s − Xn

Sn

)
/

ω(s) − 1

∣∣∣∣∣
(
ω(s)

)1/3 ds

≤ n2/3
(∫

R

∣∣Un(s)
∣∣3ω(s)ds

)2/3

n1/3

⎛

⎝
∫

R

∣∣∣∣∣
ω

(
s−Xn

Sn

)
/

ω(s) − 1

∣∣∣∣∣

3

ω(s) ds

⎞

⎠

1/3
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≤ C2/3
∥∥√n Un

∥∥4/3H

⎛

⎝n
∫

R

∣
∣∣∣∣
ω

(
s − Xn

Sn

)

− ω(s)

∣
∣∣∣∣

3
(
ω(s)

)−2ds

⎞

⎠

1/3

= oP(1). 	


B Asymptotic expansions

Weadopt the setting fromSect. 2, that is, we let X , X1, X2, . . . be iid. randomvariables
with distribution function F and E[X2] < ∞ as well as EX = 0, V(X) = 1. The
following lemma collects basic facts about a quantity closely related to the empirical
zero-bias distribution function.

Lemma 4 The function

F̂ X
n (s) = 1

n

n∑

j=1

X j − Xn

S2n
(X j − s)1{X j ≤ s}, s ∈ R,

is a continuous distribution function for each n ∈ N (and on a set of measure one).
Furthermore,

sup
s ∈R

∣∣∣F̂ X
n (s) − FX (s)

∣∣∣ −→ 0 (25)

P-a.s., as n → ∞, and

√
n F̂ X

n (s) ≈
√
n

S2n

⎧
⎨

⎩
1

n

n∑

j=1

X j (X j − s)1{X j ≤ s} − Xn E
[
(X − s)1{X ≤ s}]

⎫
⎬

⎭
.

(26)

Proof We fix n ∈ N and notice that

d̂ X
n (s) = 1

n

n∑

j=1

X j − Xn

S2n
1{X j > s} = −1

n

n∑

j=1

X j − Xn

S2n
1{X j ≤ s} (≥ 0).

Using the first representation when integrating over (Xn,∞) and the second for
(−∞, Xn], we obtain

∫

R

d̂ X
n (t) dt = 1

S2n

⎛

⎝1

n

n∑

j=1

(
X j − Xn

)2
⎞

⎠ = 1.
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Now, we conclude from

∫ s

−∞
d̂ X
n (t) dt = −1

n

n∑

j=1

X j − Xn

S2n

∫ s

−∞
1{X j ≤ t} dt = F̂ X

n (s)

that F̂ X
n is a continuous distribution function. By the strong law of large numbers and

the almost sure convergence (Xn, S2n ) → (0, 1), we have

F̂ X
n (s) = 1

S2n
· 1
n

n∑

j=1

X j (X j − s)1{X j ≤ s}

− Xn

S2n
· 1
n

n∑

j=1

(X j − s)1{X j ≤ s}

−→ FX (s)

P-a.s., as n → ∞, for any fixed s ∈ R. The proof of the classical Glivenko–Cantelli
theorem applies to F̂ X

n which yields (25). For the last claim, we set

An(s) = 1

n

n∑

j=1

(X j − s)1{X j ≤ s} − E
[
(X − s)1{X ≤ s}], s ∈ R.

Straightforward calculations using Tonelli’s theorem and the integrability condition
(7) give

E

[∫

R

An(s)
2 ω(s) ds

]
−→ 0, as n → ∞,

so ‖An‖2H = oP(1). Together with
√
n Xn = OP(1) and Slutsky’s lemma, this implies

(26). 	


We proceed by proving further asymptotic expansions of the same type as (26).

Lemma 5 Assume, in addition to the above prerequisites, that X has a continuously
differentiable density function p with

sups ∈R

∣∣p(s)
∣∣ ≤ K1 < ∞ and sups ∈R

∣∣p′(s)
∣∣ ≤ K2 < ∞.

We have

√
n F

(
s − Xn

Sn

)

≈ √
n

{

F(s) + p(s)

((
1

Sn
− 1

)
s − Xn

Sn

)}
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and, with F X as in Lemma 1,

√
n FX

(
s − Xn

Sn

)

≈ √
n

{

FX (s) + dX (s)

((
1

Sn
− 1

)
s − Xn

Sn

)}

.

Moreover,

√
n S2n F X (s) ≈ 1√

n

n∑

j=1

X2
j F

X (s)

which reads as
√
n S2n Φ(s) ≈ n−1/2∑n

j=1 X
2
j Φ(s) when P

X = N (0, 1)
(cf. Theorem 1).

Proof By Taylor’s theorem,

√
n F

(
s − Xn

Sn

)

= √
n

{

F(s) + p(s)

(
s − Xn

Sn
− s

)}

+ Rn(s),

where

Rn(s) = √
n
p′(ξn(s)

)

2

(
s − Xn

Sn
− s

)2

and
∣∣ξn(s) − s

∣∣ ≤ ∣∣(s − Xn)/Sn − s
∣∣. Condition (7) assures that Rn ∈ H P-a.s. and

with
√
n
(
S−1
n − 1

) = OP(1),
√
n Xn = OP(1) we conclude

‖Rn‖2H ≤ K 2
2

4

∫

R

n

∣∣∣∣∣

(
1

Sn
− 1

)
s − Xn

Sn

∣∣∣∣∣

4

ω(s) ds = oP(1).

Now, let 0 < ε < 1 be arbitrary. In the case
∣∣S−1

n − 1
∣∣ ≤ ε and

∣∣Xn
∣∣/Sn ≤ ε, we have

√
n FX

(
s − Xn

Sn

)

= √
n

{

FX (s) + dX (s)

(
s − Xn

Sn
− s

)}

+ R̃n(s),

where

R̃n(s) = −
√
n

2
ξ̃n(s) p

(
ξ̃n(s)

)
(
s − Xn

Sn
− s

)2
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and
∣
∣̃ξn(s) − s

∣
∣ ≤ ∣∣(s − Xn)/Sn − s

∣
∣ ≤ |s| + 1. Using

(
ξ̃n(s)

)2 ≤ (2|s| + 1)2, we get

∥∥R̃n
∥∥2H ≤ K 2

1

4

∫

R

n

∣∣∣∣
∣
s − Xn

Sn
− s

∣∣∣∣
∣

4
(
2|s| + 1

)2
ω(s) ds

≤ ε2K 2
1

4

∫

R

n

∣∣∣∣
∣

(
1

Sn
− 1

)
s − Xn

Sn

∣∣∣∣
∣

2
(
2|s| + 1

)4
ω(s) ds.

Since
√
n
(
S−1
n − 1

)
and

√
n
(
Xn/Sn

)
are bounded in probability and ε was arbitrary,

||R̃n||2H = oP(1). The last claim of the lemma follows from

∥∥∥∥
∥∥

√
n S2n F X − 1√

n

n∑

j=1

X2
j F

X

∥∥∥∥
∥∥H

= √
n X

2
n

∥∥∥FX
∥∥∥H = oP(1).

	


C Proof of the limit relations in (11) and (12)

We will give the proof of (11), using the notation from Sect. 2. The limit in (12) is
obtained by the same argument. Set

g(s) = s−1/2

⎛

⎝1

n

n∑

j=1

(
Y j (Y j − √

2s) − 1
)
1{Y j ≤ √

2s}
⎞

⎠

2

, s > 0,

as well as

g̃(s) = s−1/2

⎛

⎝1

n

n∑

j=1

(
Y j (Y j + √

2s) − 1
)
1{Y j ≤ −√

2s}
⎞

⎠

2

, s > 0.

Splitting the integral in the definition of G(1)
n,a (see (5)) into integrals over (−∞, 0]

and (0,∞), simple changes of variable yield

lim
a ↘ 0

G(1)
n,a = lim

a ↘ 0

n

2
√

π

(
a−1/2

∫ ∞

0
g(s) e−s/a ds + a−1/2

∫ ∞

0
g̃(s) e−s/a ds

)

= lim
a → ∞

n

2
√

π

(
a1/2

∫ ∞

0
g(s) e−as ds + a1/2

∫ ∞

0
g̃(s) e−as ds

)
.
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Since the integrals on the right-hand side of the above equation are Laplace transforms,
and since we have

lim
s ↘ 0

Γ (1/2) s1/2g(s) = √
π

⎛

⎝1

n

n∑

j=1

(Y 2
j − 1)1{Y j ≤ 0}

⎞

⎠

2

and

lim
s ↘ 0

Γ (1/2) s1/2 g̃(s) = √
π

⎛

⎝1

n

n∑

j=1

(Y 2
j − 1)1{Y j < 0}

⎞

⎠

2

,

anAbelian theorem for theLaplace transform, as stated on p. 182 in the book byWidder
(1959) (see also Baringhaus et al. 2000), implies the claim. Here, Γ (1/2) = √

π

denotes the Gamma function evaluated at 1/2.
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