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Abstract
It is essential to deal with thewithin-subject correlation among repeatedmeasures over
time to improve statistical inference efficiency. However, it is a challenging task to
correctly specify aworking correlation in quantile regressionwith longitudinal data. In
this paper, we first develop an adaptive approach to estimate the within-subject covari-
ance matrix of quantile regression by applying a modified Cholesky decomposition.
Then, weighted kernel GEE-type quantile estimating equations are proposed for vary-
ing coefficient functions.Note that the proposed estimating equations include a discrete
indicator function, which results in some problems for computation and asymptotic
analysis. Thus, we construct smoothed estimating equations by introducing a bounded
kernel function. Furthermore, we develop a smoothed empirical likelihood method to
improve the accuracy of interval estimation. Finally, simulation studies and a real data
analysis indicate that the proposed method has superior advantages over the existing
methods in terms of coverage accuracies and widths of confidence intervals.
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1 Introduction

Varying coefficient models proposed by Hastie and Tibshirani (1993) are fashionable
nonparametric fitting techniques. A salient feature of varying coefficient models is
that the response is linear in the covariates, but the regression coefficients are smooth
nonparametric functions which depend on certain covariates such as the measurement
time. Thus, varying coefficient models can be regarded as a natural extension of mul-
tiple linear regression models. Due to its flexibility to explore the dynamic features,
many procedures had been proposed to estimate the varying coefficient functions.
Wu et al. (1998) obtained kernel estimators of the coefficient functions by minimiz-
ing local least-squares criterion and established its asymptotic normality. Combined
with a polynomial spline, Huang et al. (2002, 2004) considered the estimation of the
coefficient functions by employing the least-squares method. Noh and Park (2010)
developed a regularized estimation procedure for variable selection by linearizing the
group smoothly clipped absolute deviation penalty. Other related literature includes
Wang et al. (2008), Wang and Xia (2009) and Wang and Lin (2015).

An important feature of longitudinal data is that subjects are often measured repeat-
edly over a given period, which results in possible correlations between repeated
measures. Thus, it is important to account for the correlation to improve the efficiency
of statistical inference. However, the mentioned references above did not consider the
correlations, which will result in a great loss of efficiency. Although it is an interesting
topic to estimate the covariance functions in the analysis of longitudinal data, we will
meet some challenges. The reasons are as follows. (i) Longitudinal data are frequently
collected at irregular and possibly subject-specific time points, which leads to different
dimensions of the covariance matrix for each subject. (ii) It involves more parameters
to be estimated in the covariancematrix, and the positive definiteness of the covariance
matrix also needs to be assured. To overcome these difficulties, the modified Cholesky
decomposition approach (Pourahmadi 1999) is developed to decompose the covari-
ance matrix, which has been demonstrated to be effective and attractive. Recently, Ye
and Pan (2006) constructed several sets of parametric generalized estimating equations
by utilizing the modified Cholesky decomposition. In order to relax the parametric
assumption in Ye and Pan (2006), Leng et al. (2010) constructed the joint partially
linear mean–covariance model based on the B-spline basis approximation. Liu and Li
(2015) studied a class of marginal models with time-varying coefficients for longitu-
dinal data by using the modified Cholesky decomposition.

However, these mentioned articles are focused on longitudinal mean regression.
Quantile regression has become a powerful complement to the mean regression. Its
main merits include the following two aspects. On the one hand, it can offer a more
complete description of the entire distribution of the response variable. On the other
hand, it does not require specification of the error distribution, and thus it is a robust
regression approach. So far, quantile regression has become a widely used technique
for analyzing longitudinal data. Tang and Leng (2011) applied the empirical likelihood
(Owen 2001) to account for thewithin-subject correlations,which yieldsmore efficient
estimators than the conventional quantile regression. Leng and Zhang (2014) proposed
a new quantile regression approach to account for correlations through combining
multiple sets of unbiased estimating equations. Tang et al. (2015) extended thismethod
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to composite quantile regression. Yuan et al. (2017) used a similar strategy to construct
a new weighted quantile regression model with longitudinal data. However, the above
literature only considered some commonly used working correlation structures (e.g.,
compound symmetry (CS) and first-order autoregressive [AR(1)]).When the specified
working correlation structure is far from the true one, it seriously affects the estimation
efficiency. However, it is difficult to justify a correct working correlation matrix in
quantile regression with longitudinal data (Leng and Zhang 2014; Fu andWang 2016).
This paper focuses on longitudinal varying coefficient models and proposes a data-
driven approach to estimate the covariance matrix through the modified Cholesky
decomposition. The proposed method does not need to specify a working correlation
structure to improve the efficiency of statistical inference, which is more flexible than
the existing methods.

The confidence interval construction for varying coefficient functions is also an
interesting issue. Empirical likelihood (Owen 2001) is a popular nonparametric infer-
ence method for the interval estimation. The confidence region based on empirical
likelihood has many advantages. On the one hand, it does not require estimating either
the unknown error density function or any covariance matrix. On the other hand, it
does not impose prior constraints on the region shape, and the shape and orientation of
confidence regions are determined entirely by the data. Xue and Zhu (2007) applied
the local empirical likelihood technique to construct confidence intervals for vary-
ing coefficient functions, which is more accurate than the normal approximation and
bootstrap methods. However, they did not consider the possible correlation between
repeated measures, which will result in rough confidence intervals. Meanwhile, they
only consider mean regression rather than quantile regression. Under the framework
of longitudinal quantile regression, we propose an efficient smoothed empirical likeli-
hood procedure to construct more accurate confidence intervals for varying coefficient
functions.

The rest of this paper is organized as follows. In Sect. 2, we propose the smoothed
estimating equations for varying coefficient functions and establish its asymptotic
theories. Furthermore, we define a empirical log-likelihood ratio function and prove
that its asymptotic distribution is a standard Chi-squared under mild conditions. Sec-
tion 3 discusses the bandwidth choice and reports the simulation results. In Sect. 4, the
proposed approach is illustrated by a longitudinal progesterone data. Section 5 ends
the article with a discussion. Finally, the proofs of the main results are provided in
“Appendix.”

2 Methodology

We consider the varying coefficient model with longitudinal data

Yi j = XT
i

(
ti j

)
β
(
ti j

) + εi
(
ti j

)
, i = 1, . . . , n, j = 1, . . . , mi , (1)

where Yi j = Yi
(
ti j

)
, X i

(
ti j

) = (
Xi1

(
ti j

)
, . . . , Xip

(
ti j

))T, ti j ∈ R, β (t) =
(
β1 (t) , . . . , βp (t)

)T, βr (t) are smooth functions of t and βr (t) ∈ R for all
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r = 1, . . . , p, εi (t) are stochastic processes and independent of X i (t). In this paper,
we assume that the designpoints

{
ti j , i = 1, . . . , n, j = 1, . . . , mi

}
are randomand iid

according to an underlying density function fT (·) with respect to the Lebesgue mea-
sure, and S( fT ) is the support of fT . We assume that the random error εi j = εi

(
ti j

)

satisfies P
(
εi

(
ti j

)
< 0 | ti j

) = τ and with an unspecified density function fi j (·).
Then it is easy to show that

E
{
τ − I

(
Yi j − XT

i

(
ti j

)
β
(
ti j

)
< 0

)
| ti j

}
= 0, (2)

where I (·) is a indicator function. Note that the random errors are correlated within
the same subject but independent across the subjects.

2.1 Efficient estimating equations for regression coefficientsˇ
(
t
)

Based on the local constant approximation, the standard quantile regression estimator
β̂ (t; h1) of β (t) can be obtained by minimizing

n∑

i=1

mi∑

j=1

ρτ

(
Yi j − XT

i

(
ti j

)
β (t)

)
Kh1

(
t − ti j

)

with respect to β (t), where Kh1 (·) = K
(·/h1

)
, K (·) is a kernel function and h1 is a

bandwidth, ρτ (u) = u {τ − I (u < 0)} is the quantile loss function. And equivalently,
the resulting estimator β̂ (t; h1) is the solution of the following estimating equations

n∑

i=1

XT
i Ki (t; h1) ψτ (Y i − X iβ (t)) = 0, (3)

where Ki (t; h1) = diag
(
Kh1 (t − ti1) , . . . , Kh1

(
t − timi

))
, X i = (X i (ti1) , . . . ,

X i
(
timi

))T, Y i = (
Yi1, . . . , Yimi

)T, ψτ (u) = τ − I (u < 0) is the quantile score
function and

ψτ (Y i −X iβ (t)) =
{
ψτ

(
Yi1−XT

i (ti1)β (t)
)

, . . . , ψτ

(
Yimi −XT

i

(
timi

)
β (t)

)}T
.

Estimating equations (3) are obtained under the independent working model; hence,
the efficiency of the estimators β̂ (t; h1) can be improved if the within correlations are
incorporated. To incorporate the correlation within subjects, we can use the estimating
equations that take the form

n∑

i=1

XT
i Ki (t; h1)Σ−1

i ψτ (Y i − X iβ (t)) = 0, (4)
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where Σ i = Cov (ψτ (εi )) and εi = (
εi1, . . . , εimi

)T. But we cannot directly obtain
the estimator of β (t) by solving (4) because the estimating equations include the
unknown covariance matrix Σi .

In this paper, we estimate Σ i via the modified Cholesky decomposition. That is,
Σ i = Li Di LT

i , where Li is a lower triangular matrix with 1’s on its diagonal and

Di = diag
(

d2
i1, . . . , d2

imi

)
. Let ei = L−1

i ψτ (εi ) = (
ei1, . . . , eimi

)T with ei j =
ei

(
ti j

)
, we have

ψτ

(
εi j

) =
j−1∑

k=1

li jkeik + ei j , (5)

where li jk are the below diagonal entries of Li . The sum
∑ j−1

k=1 is interpreted as zero
when j = 1 throughout this paper. Note that E (ei ) = 0 and Cov (ei ) = Di =
diag

(
d2

i1, . . . , d2
imi

)
for i = 1, . . . , n. Thus we know that ei j , j = 1, . . . , mi are

uncorrelated and d2
i j = d2

(
ti j

)
is called as innovation variance for j = 1, . . . , mi .

The merit of this decomposition is that the parameters li jk and d2
i j are unconstrained.

In the spirit of Pourahmadi (1999), we construct the following regression models to
estimate li jk and d2

i j

li jk = wT
i jkγ , d2

i j = g
(
ti j

)
, (6)

where γ = (
γ1, . . . , γq

)T, g (t) is an unknown smooth function of t , and wi jk is
usually taken as a polynomial of time difference ti j − tik . Some authors applied similar
parametric models to parsimoniously parameterize the covariance matrix Σ i when
considering the modified Cholesky decomposition (Ye and Pan 2006; Zhang and Leng
2012). Compared with parametric models, we relax the parametric assumption and
propose a nonparametric model to estimate innovation variance d2

i j , which reduce
the risk of model misspecification. Eyeballing (6), we can use regression models
to describe the within-subject correlation among repeated measures. Furthermore,
model-based analysis of li jk and d2

i j permits more accessible statistical inference.

Now we give specific details to estimate li jk and d2
i j . Based on β̂ (t; h1), we can

obtain the estimated residuals

ε̂i j = Yi j − XT
i

(
ti j

)
β̂
(
ti j ; h1

)
, i = 1, . . . , n, j = 1, . . . , mi . (7)

From (5)–(7), we can obtain the estimator γ̂ of γ by using the GEE method

n∑

i=1

VT
i ẽi = 0,

where ẽi = L−1
i ψτ

(
ε̂i
) = (ẽi1, . . . , ẽimi )

T with ẽi j = ψτ

(
ε̂i j

) − ∑ j−1
k=1 li jk ẽik and

VT
i = ∂ ẽTi

/
∂γ is a q ×mi matrix with the first column zero and the j th j ≥ 2 column
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∂ ẽi j
/
∂γ = −∑ j−1

k=1

[
wi jk ẽik + li jk∂ ẽik

/
∂γ

]
. Then, we have l̂i jk = wT

i jk γ̂ . Please

note that E
(

e2i j

)
= Var

(
ei j

) + [
E
(
ei j

)]2 = Var
(
ei j

) = d2
i j due to E (ei ) = 0 and

Cov (ei ) = Di . Thus, a local polynomial regression technique can be used to estimate
the nonparametric function g(·) (Fan and Yao 1998). Specifically, we can obtain the
estimator d̂2 (t) = â by minimizing the following weighted least-squares problem

(
â, b̂

)
= argmin

a,b

n∑

i=1

mi∑

j=1

{
ê2i j − a − b

(
ti j − t

)}2
Kh2

(
t − ti j

)
,

where êi j = ψτ

(
ε̂i j

)−∑ j−1
k=1 l̂i jk êik . Therefore, we can obtain Σ̂ i = L̂i D̂i L̂

T
i ,where

L̂i is anmi ×mi lower triangularmatrixwith 1’s on its diagonal and the below diagonal

entries of L̂i are l̂i jk = wT
i jk γ̂ and D̂i = diag

(
d̂2

i1, . . . , d̂2
imi

)
with d̂2

i j = d̂2
(
ti j

)
.

Replacing Σ i by Σ̂ i , estimating equations (4) can be rewritten as

n∑

i=1

XT
i Ki (t; h1) Σ̂

−1
i ψτ (Y i − X iβ (t)) = 0. (8)

However, proposed estimating equations (8) are neither smooth normonotone. In order
to overcome the calculation difficulty, we approximate ψτ (·) by a smooth function
ψτh (·) based on the idea ofWang and Zhu (2011). Define G (x) = ∫

u<x K1 (u)du and
Gh (x) = G

(
x
/

h
)
, where K1 (·) is a kernel function and h is a positive bandwidth

parameter. Then, we approximate ψτ (·) by ψτh (·) = τ − 1 + Gh (·). Therefore,
based on the approximation, estimating equations (8) can be replaced by the following
smoothed estimating equations

n∑

i=1

XT
i Ki (t; h1) Σ̂

−1
i ψτh (Yi − X iβ (t)) = 0, (9)

whereψτh (Yi − X iβ (t)) = (
ψτh

{
Yi1 − XT

i (ti1) β (t)
}
, . . . , ψτh

{
Yimi − XT

i

(
timi

)

β (t)})T. We assume that β̄ (t; h1) is the solution of estimating equations (9).
We assume that t0 is an interior point of S( fT ). Next, we derive the asymptotic

distribution of γ̂ and establish the large sample properties of d̂2 (t0) and β̄ (t0; h1) at
a fixed point t0. Let ρε (t0) = limδ→0 E {[ψτ (ε1 (t0 + δ))] [ψτ (ε1 (t0))]}, ηlr (t0) =
E
[
Xil

(
ti j

)
Xir

(
ti j

) ∣∣ti j = t0
]
, μ j = ∫

u j K (u) du and ν j = ∫
u j K 2 (u) du. In this

paper, ḋ(t) and d̈(t) stand for the first and second derivative of d(t) respectively.

Theorem 1 Let γ 0 be the true value of γ . Under conditions (C1)–(C8) stated in
“Appendix,” the proposed estimator γ̂ is

√
n-consistent and asymptotically normal,

that is,

√
n
(
γ̂ − γ 0

) d→ N
(
0,Ξ−1Γ Ξ−1

)
,
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where
d→ means the convergence in distribution, Ξ = limn→∞ 1

n

∑n
i=1 V

T
i V i and

Γ = lim
n→∞

1
n

∑n
i=1 V

T
i DiV i .

In order to obtain the asymptotic result of d̂2 (t), we rewrite (5) as follows:

ψτ

(
εi j

) =
j−1∑

k=1

li jkdikςik + di jςi j , (10)

where ei j = di jςi j , E
(
ςi j |ti j

) = 0 and Var
(
ςi j |ti j

) = 1.

Theorem 2 Under the same set of conditions as in Theorem1, together with Nh2 → ∞
as n → ∞ and lim supn→∞Nh5

2 < ∞, we have

√
Nh2

{
d̂2 (t0) − d2 (t0) − 1

2
μ2h2

2d̈2 (t0)

}

d→ N

⎛

⎝0,
ν0

fT (t0)
lim

n→∞
1

N

n∑

i=1

mi∑

j=1

E

[(
ς2

i j − 1
)2 ∣∣ti j = t0

]
d4 (t0)

⎞

⎠ .

Let bl (t0) = μ2h2
1

∑p
r=1

[
β̇r (t0) η̇lr (t0) fT (t0) + 1

2 β̈r (t0) ηlr (t0) fT (t0) + β̇r (t0)

ηlr (t0) ḟT (t0)
]
and b (t0) = (

b1 (t0) , . . . , bp (t0)
)T. Let σ̂ j j ′ be the ( j, j ′)th element

of Σ̂
−1
i and Φ (t0) be given in condition (C7).

Theorem 3 Suppose that conditions (C1)–(C10) hold, we have

√
Nh1

(
β̄ (t0; h1) − β (t0) − B (t0)

)
d→ N

(
0,Ω−1

1 (Ω2 + Ω3) Ω−1
1

)
,

where B (t0) = f −1
T (t0)Φ−1 (t0) b (t0), Ω1 = limn→∞ 1

N

∑n
i=1

∑mi
j=1

∑mi
j ′=1 fT (t0)

σ̂ j j ′ fi j ′ (0)Φ (t0),

Ω2 = limn→∞ 1
N

n∑

i=1

mi∑

j=1
ν0 fT (t0)

×
[

mi∑

j ′=1

(
σ̂ j j ′

)2
τ (1 − τ) + ∑

j1 �= j2

σ̂ j j1 σ̂ j j2ρε (t0)

]

Φ (t0) ,

Ω3 = limn→∞ 1
N

n∑

i=1

∑

j1 �= j2

h1 f 2T (t0)

×
[

mi∑

j ′=1
σ̂ j1 j ′ σ̂ j2 j ′τ (1 − τ) + ∑

j ′′ �= j ′′′
σ̂ j1 j ′′ σ̂ j2 j ′′′ρε (t0)

]

Φ (t0) .
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2.2 Empirical likelihoodmethod

To construct the empirical likelihood ratio function for β (t), based on Owen
(2001) and Qin and Lawless (1994), we introduce an auxiliary random vec-

tor as follows Zih (β (t)) = XT
i Ki (t; h1) Σ̂

−1
i ψτh (Yi − X iβ (t)). Note that

{Zih (β (t)) : 1 ≤ i ≤ n} are independent. Invoking (2), it can be shown that
E {Zih (β (t))} = o(1) when β (t) is the true value.

Let p1, . . . , pn be nonnegative numbers satisfying
∑n

i=1 pi = 1, where pi =
pi (t) , i = 1, . . . , n. Using such information, a natural block empirical log-likelihood
ratio for β (t) is defined as

l (β (t)) = −2max

{
n∑

i=1

log (n pi )

∣∣∣∣∣
pi ≥ 0,

n∑

i=1

pi = 1,
n∑

i=1

pi Zih (β (t)) = 0

}

.

(11)

Tang and Leng (2011) pointed out that for finite sample, existence of a solution to
empirical likelihood for a given β (t) requires that 0 is inside the convex hull of the
points {Zih (β (t)) , i = 1, . . . , n}. By the Lagrange multiplier method, the optimal
value for pi is given by

pi = n−1
{
1 + λTZih (β (t))

}−1
, (12)

where λ is a p-dimensional Lagrange multiplier satisfying

n∑

i=1

Zih (β (t))

1 + λTZih (β (t))
= 0. (13)

By (11) and (12), l (β (t)) can be represented as

l (β (t)) = 2
n∑

i=1

log
{
1 + λTZih (β (t))

}
(14)

with λ satisfying (13). In our numerical studies, we can employ the modified Newton–
Raphson algorithm of Chen et al. (2002) to obtain the estimator of λ. We further define
the maximum empirical likelihood (EL) estimator of β (t) as

β̂ (t)EL = argmin
β(t)∈R p

l (β (t)) .

Remark 1 From (14) and (A.20), we can prove that the maximum empirical likelihood
estimator β̂ (t)EL is asymptotically the solution of

∑n
i=1 Zih (β (t)) = 0. Let

V̂ (t) = 1

Nh1

n∑

i=1

XT
i Ki (t; h1) Σ̂

−1
i Λ̃i X i ,

123



Smoothed empirical likelihood inference via the modified… 1007

and

Λ̃i = diag
{

h−1K1

[(
Yi1 − X i (ti1)

Tβ (t)
)/

h
]
,

. . . , h−1K1

[(
Yimi − X i

(
timi

)T
β (t)

)/
h
]}

.

If we assume that the matrix V̂ (t) is invertible together with (14), then we can obtain

β̂ (t)EL − β (t) = V̂ (t)−1
{

1
Nh1

n∑

i=1
XT

i Ki (t; h1) Σ̂
−1
i ψτh (Y i − X iβ(t))

}

+ op
(
(Nh1)

−1/2) .

Thenwe can see that the leading term is that of β̄ (t; h1), seeing the proof of Theorem 3
in “Appendix.” In other words, the β̂ (t)EL is asymptotically equivalent to the β̄ (t; h1).

Theorem 4 Suppose that conditions (C1)–(C10) hold. If β (t0) is the true parameter,

then l (β (t0))
d→ χ2

p, where χ2
p is the standard Chi-squared distribution with p degrees

of freedom.

Remark 2 By Theorem 4, we can use the test statistic l (β (t0)) to obtain confidence
regions for β (t0). Specifically, we define

{
β (t) : l (β (t)) ≤ χ2

1−α (p)
}
as the EL

confidence regions for β (t0), where χ2
1−α (p) is the (1 − α)th quantile of χ2

p.

In addition, we can apply the profile empirical log likelihood ratio test statistic to

obtain the confidence regionof the subset ofβ (t0). Letβ (t0)=
(
β(1) (t0)T,β(2) (t0)T

)T
,

where β(1) (t0) and β(2) (t0) are p1 × 1 and (p − p1) × 1 vectors, respectively. If we
are interested in testing H0 : β(1) (t0) = b (t0), where b (t0) is some known p1 × 1
vector. The profile log likelihood ratio test statistic is defined as

l̄ (b (t0)) = l
(
b (t0) , β̃

(2)
(t)

)
− l

(
β̂

(1)
(t) , β̂

(2)
(t)

)
,

where β̃
(2)

(t) minimizes l
(
b (t0) ,β(2) (t)

)
with respect to β(2) (t), and

(
β̂

(1)T
(t) , β̂

(2)T
(t)

)T
are the EL estimators.

Corollary 1 Under the conditions of Theorem 4 and H0 : β(1) (t0) = b (t0), we have

l̄ (b (t0))
d→ χ2

p1 as n → ∞.

Remark 3 According to Corollary 1, we can construct the confidence region for
β(1) (t0), namely

{
b (t) : l (b (t)) ≤ χ2

1−α (p1)
}
.
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3 Simulation studies

In this section, we conduct simulation studies to investigate the finite sample perfor-
mance of the proposed method. In the following examples, we fix the kernel function
to be the Epanechnikov kernel, that is, K (u) = 0.75(1 − u2)+. We apply the fivefold
cross-validation to choose the optimal bandwidths h1 and h2. Taking an example of
the h1, let T − T v and T v be the cross-validation training and test set respectively for
v = 1, . . . , 5, where T is the full dataset. Note that in model (1), the observations are
dependent within each subject. To retain this dependence structure, we treat the obser-
vations in each subject as a block. For each h1 and v, we find the estimator β̂(t; h1, v)

of β(t) using the training set T − T v; then, we can form the fivefold cross-validation
criterion as

CV (h1) =
5∑

v=1

∑

(Yi j ,X i j)∈T v

ρτ

(
Yi j − XT

i

(
ti j

)
β̂
(
ti j ; h1, v

))
.

By using the grid search method, we find h1opt = minh1CV (h1). Based on the idea
of Wang and Zhu (2011), we smooth the quantile score function by the following
second-order (ν = 2) Bartlett kernel

K1 (u) = 3

4
√
5

(
1 − u2/5

)
I
(
|u| ≤ √

5
)

.

WangandZhu (2011) hadproved that the smoothed approach is robust to the bandwidth
h. Thus, we fix h = n−0.4 which satisfies the theoretical requirement nh2ν → 0 with
ν = 2.

In addition, we compare the following estimation approaches. (i) The conven-
tional quantile regression estimator β̂ (t; h1)without considering possible correlations
denoted as β̂qr. (ii) The estimator proposed by Xue and Zhu (2007) denoted as β̂ ls.

(iii) The proposed estimator β̄ (t; h1) denoted as β̂pr. (iv) The proposed empirical

likelihood (EL) estimator β̂ (t)EL denoted as β̂el. For β̂ ls and β̂el, we construct confi-
dence regions/intervals based on the estimated empirical likelihood (EL) as suggested
in Sect. 2.2; for β̂qr and β̂pr, we construct confidence regions/intervals based on the
normal approximation (NA). To assess the performance of the empirical likelihood,
we make a comparison between the EL and NA in terms of coverage accuracies and
average widths of the confidence intervals. In the following simulation studies, we
focus on τ = 0.5 and 0.75, and choose n = 50 and 200 representing moderate and
large sample sizes. The number of simulation replications is set to 500.

Example 1 For simplicity, we consider model (1) with a time-independent covariate
X i = (Xi1, Xi2)

T, where X i follows a multivariate normal distribution N (0,Σ x)

with (Σ x)k,l = 0.5|k−l| for 1 ≤ k, l ≤ 2. The coefficient functions are given by
β1 (t) = 6 − 0.2t , β2 (t) = −4 + (20 − t)3

/
2000. Each subject is measured mi

times with mi − 1 ∼ Binomial(9, 0.8), which results in different numbers of repeated
measurements for each subject. Here, we define εi j = ξi j − cτ , and cτ is the τ th
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quantile of the random error ξi j , which implies the corresponding τ th quantile of εi j

is zero. Meanwhile, we consider two error distributions of ξ i = (
ξi1, . . . , ξimi

)T for
assessing the robustness and effectiveness of the proposed method.

Case 1: correlated normal error, ξ i , is generated fromamultivariate normal distribution
N (0,Ξ i ), where Ξ i will be listed later.
Case 2: ξ i is generated from a multivariate t-distribution with degree 3 and covariance
matrix Ξ i .

We construct the covariance matrix Ξ i of εi as Ξ i = Δ−1
i Bi

(
ΔT

i

)−1
, where Bi is

an mi × mi diagonal matrix with the j th element sin
(
π ti j

)/
3 + 1.5 and Δi is a unit

lower triangular matrix with ( j, k) element−δ
(i)
j,k (k < j), δ(i)

j,k = 0.3+0.6
(
ti j − tik

)

and ti j ∼ U (0, 1). Similar to Zhang and Leng (2012), we take the covariate in model

(6) as wi jk =
{
1, ti j − tik,

(
ti j − tik

)2
,
(
ti j − tik

)3}T.

Example 2 The coefficient functions are given by β1 (t) = cos (2π t), β2 (t) =
4t (1 − t). We set the covariance matrix as Ξ i = D1/2

i R (ρ) D1/2
i , Di =

diag
(
σ 2

i1, . . . , σ
2
imi

)
, with σ 2

i j = σ
(
ti j

)
, where

σ (t) =
⎧
⎨

⎩

∣
∣50t2 − 2

∣
∣ , 0 ≤ t ≤ 0.3

|2t | , 0.3 < t ≤ 0.6
|4t | , 0.6 < t ≤ 1

In addition, R (ρ) is AR(1) or compound symmetry structure with correlation coeffi-
cient ρ = 0.9. Other settings are the same as that in Example 1.

Tables 1, 2, 3 and 4 give the biases, the standard deviations (SD), estimated coverage
probabilities (CP) and average lengths (AL) of 95% confidence intervals for different
methods at τ = 0.5 and 0.75. Tables 2 and 4 only list the results of β̂qr, β̂pr and

β̂el at τ = 0.75. The reason is that there is no comparison between the least-squares
estimator and the quantile estimation at τ = 0.75. From the four tables, we can obtain
the following findings. (1) All methods yield asymptotic unbiased estimators, since
the corresponding biases are small for the large sample size n = 200. (2) For the point
estimation, β̂pr and β̂el have similar performances for all settings due to similar biases

and standard deviations. In other words, the β̂pr is asymptotically equivalent to the

β̂el, which is consistent with our theory. (3) For the interval estimation, it is easy to
find that β̂el has the shortest confidence intervals and achieves the highest empirical
coverage probabilities among all methods. Thus, the proposed empirical likelihood
method β̂el significantly improves the accuracy of the confidence intervals. Finally,
Fig. 1 depicts the sample standard deviations of different methods at τ = 0.5 and 0.75
in Example 1, and we can see that β̂pr has the smallest sample standard deviations.

Overall, the simulation results show that the proposed estimators β̂pr and β̂el gen-
erally work well and outperform other existing methods.
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Table 1 Simulation results of the bias, SD, estimated coverage probabilities (CP) and average lengths (AL)
for different methods with n = 50, τ = 0.5 at t0 = 0.2, 0.7 in Example 1

t0 β̂1(t0) β̂2(t0)

Bias SD CP AL Bias SD CP AL

Case 1 0.2 β̂ls − 0.0037 0.1488 0.934 0.5587 − 0.0003 0.1510 0.926 0.5600

β̂qr − 0.0032 0.1723 0.916 0.6322 0.0045 0.1845 0.912 0.6351

β̂pr − 0.0034 0.1459 0.904 0.5384 0.0033 0.1407 0.912 0.5425

β̂el − 0.0034 0.1459 0.930 0.5235 0.0033 0.1407 0.930 0.5339

Case 1 0.7 β̂ls − 0.0051 0.2654 0.896 0.8195 0.0212 0.2590 0.894 0.8234

β̂qr − 0.0036 0.2466 0.892 0.8891 0.0234 0.2329 0.924 0.9063

β̂pr 0.0079 0.1970 0.894 0.6961 0.0123 0.1781 0.908 0.6833

β̂el 0.0078 0.1970 0.892 0.6372 0.0122 0.1781 0.920 0.6370

Case 2 0.2 β̂ls − 0.0056 0.2449 0.876 0.7834 − 0.0078 0.2685 0.894 0.7871

β̂qr − 0.0091 0.1823 0.906 0.7359 − 0.0009 0.1975 0.910 0.7460

β̂pr − 0.0083 0.1580 0.898 0.5968 0.0023 0.1661 0.914 0.6102

β̂el − 0.0083 0.1580 0.928 0.5876 0.0024 0.1661 0.942 0.5967

Case 2 0.7 β̂ls − 0.0032 0.4141 0.757 0.8880 − 0.0011 0.4129 0.741 0.8905

β̂qr 0.0174 0.2688 0.914 0.9680 − 0.0101 0.2516 0.898 0.9876

β̂pr 0.0140 0.2134 0.878 0.7491 0.0075 0.1937 0.906 0.7503

β̂el 0.0140 0.2134 0.937 0.6962 0.0075 0.1937 0.922 0.6890

Table 2 Simulation results of the bias, SD, estimated coverage probabilities (CP) and average lengths (AL)
for different methods with n = 50, τ = 0.75 at t0 = 0.2, 0.7 in Example 1

t0 β̂1(t0) β̂2(t0)

Bias SD CP AL Bias SD CP AL

Case 1 0.2 β̂qr − 0.0035 0.1777 0.902 0.6582 0.0074 0.1747 0.914 0.6850

β̂pr − 0.0047 0.1524 0.904 0.5640 0.0124 0.1481 0.912 0.5712

β̂el − 0.0047 0.1524 0.926 0.5466 0.0124 0.1481 0.928 0.5478

Case 1 0.7 β̂qr 0.0022 0.2607 0.906 0.9598 0.0054 0.2721 0.880 0.9458

β̂pr 0.0017 0.1917 0.912 0.7573 0.0116 0.2001 0.866 0.7473

β̂el 0.0012 0.1919 0.914 0.6662 0.0120 0.2026 0.900 0.6641

Case 2 0.2 β̂qr − 0.0100 0.2121 0.900 0.7992 0.0053 0.2071 0.904 0.7978

β̂pr − 0.0020 0.1856 0.870 0.6485 0.0039 0.1793 0.892 0.6459

β̂el − 0.0019 0.1853 0.906 0.6328 0.0032 0.1776 0.918 0.6319

Case 2 0.7 β̂qr 0.0070 0.2988 0.890 1.1043 0.0114 0.2998 0.914 1.1223

β̂pr 0.0057 0.2201 0.888 0.7982 0.0142 0.2157 0.910 0.8171

β̂el 0.0059 0.2199 0.914 0.7151 0.0150 0.2163 0.904 0.7222
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Fig. 1 The sample standard deviations of different methods at τ = 0.5 and τ = 0.75 with n = 50 in
Example 1. Here “ls” is the estimator proposed by Xue and Zhu (2007); “qr” is the conventional quan-
tile regression estimator β̂ (t; h1) without considering possible correlations; “pr” stands for the proposed
estimator β̄ (t; h1)

4 Real data analysis

In this section, we illustrate the proposed method by analyzing a longitudinal proges-
terone data (Zhang et al. 1998). The dataset used here consists of 492 observations
of progesterone level within a menstrual cycle from 34 women clinical participants.
Zheng et al. (2013) constructed robust parametric mean-covariance regression model
to analyze this dataset. Here we consider the following quantile varying coefficient
model
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Q
(
Yi j |X i

(
ti j

)) = β0
(
ti j

) + Xi1
(
ti j

)
β1

(
ti j

) + Xi2
(
ti j

)
β2

(
ti j

)
, i = 1, . . . , 34;

j = 1, . . . , mi ,

where Q
(
Yi j |X i

(
ti j

))
is the τ th conditional quantile of Yi j given X i

(
ti j

)
. Here Xi1

and Xi2 represent patient’s age and body mass index, ti j is taken as the repeated mea-
surement time, and the log-transformed progesterone level is defined as the response
Yi j . Then β0 (t) stands for the intercept, and β1 (t) and β2 (t) describe the effects
of woman’s age and body mass index on the progesterone level at time t . Before
implementing estimation procedures, we normalize all predictor variables and rescale
the repeated measurement time ti j into interval [0,1]. In this real data analysis, we

consider conventional quantile regression estimator β̂qr and the proposed estimation

approaches β̂pr and β̂el at quantile levels τ = 0.25 and τ = 0.5. For β̂qr and β̂pr, we
use normal approximation to construct the confidence intervals, and the corresponding
standard error is calculated by the bootstrap resampling method. The confidence inter-
vals of β̂el are constructed by the empirical likelihood method. For covariance model

(6), we take the covariate wi jk as wi jk =
{
1, ti j − tik,

(
ti j − tik

)2
,
(
ti j − tik

)3}T.
Figure 2 displays the estimated varying coefficient functions and their 95% con-

fidence intervals for τ = 0.25 and τ = 0.5. For the estimated values, there is little
difference for β̂pr and β̂el, which has been confirmed by simulations given in Sect. 3.

So we do not display the estimated curves of β̂el in Fig. 2. Obviously, the effects of
AGE and BMI are insignificant for all methods due to the large standard errors. These
results are consistent with that of Zheng et al. (2013). Eyeballing Fig. 3, it is clear that
β̂el performs best among all methods because it has the shortest widths of confidence
intervals. This indicates that the proposed estimation procedure is more efficient.

5 Conclusion and discussion

This paper considers robust GEE analysis for varying coefficient quantile regression
modelswith longitudinal data based on themodifiedCholesky decomposition.Asymp-
totic normalities for the estimators of the coefficient functions and the parameters in
the decomposition of covariance matrix are established. Smoothed quantile score esti-
mating equations are proposed to facilitate computation. We also developed block
empirical likelihood-based inference procedures for varying coefficient functions to
improve the accuracy of interval estimation. Simulations and an real data analysis have
showed that the proposed methods are clear superior to other existing methods.

This paper does not prove that the proposed method is more efficient than the con-
ventional quantile approach which does not deal with the within-subject correlation
among repeated measures over time. The main reason is that we cannot guarantee
covariance model (6) is always correct. In practice, all models are wrong since no
one knows which model is optimal for estimating li jk and d2

i j . Although theoretical
results about estimation efficiency cannot be established in this article, the efficiency
of our method is investigated by simulations and real data analysis, which indicates
that our method is more useful in practice. Recently, Li (2011) utilized the non-
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Fig. 2 Estimated nonparametric curves and their 95% confidence intervals of different methods at τ = 0.25
and τ = 0.5. The red and black solid lines stand for the estimated values of β̂qr and β̂pr. The red and black

dotted lines represent 95% confidence intervals of β̂qr and β̂pr. The black dashed lines represent 95%

confidence intervals of β̂el
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Fig. 3 Average lengths of 95% confidence intervals for different methods at τ = 0.25 and τ = 0.5. The
red solid lines, black dotted lines and black dashed lines represent average interval lengths of β̂qr, β̂pr and

β̂el respectively
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parametric kernel technique to estimate the within-subject covariance matrix. There
is no model assumption to estimate the covariance matrix, and thus his method is
robust against misspecification of covariance models. Furthermore, he proved that
the proposed nonparametric covariance estimation is uniformly consistent. The semi-
parametrical efficiency of mean regression coefficients is also established. However,
he only focused on mean regression. Therefore, nonparametric covariance estimation
procedures for quantile regression should be developed to estimate the covariance
matrix Σ i involved in formula (6), but this is beyond the scope of this paper. We will
focus on the study of these aspects in the future.
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supported by the National Social Science Fund of China (Grant No. 17CTJ015).

Appendix

To establish the asymptotic properties of the proposed estimators, the following reg-
ularity conditions are needed in this paper.
(C1) The bandwidth satisfies h1 = N−1/5h0 for some constant h0 > 0.
(C2) limn→∞N−6/5 ∑n

i=1 m2
i = κ for some 0 ≤ κ < ∞.

(C3)Thekernel function K (·)has a compact support onR and satisfies
∫

K (u) du = 1,∫
K 2 (u) du < ∞,

∫
u2K (u) du < ∞,

∫
uK (u) du = 0 and

∫
u4K (u) du < ∞.

(C4) There exists a constant δ ∈ (
2
/
5, 2] , and we have supt E

(∣∣ψτ

(
ε1

(
ti j

))∣∣2+δ ∣∣ti j

= t) < ∞ and supt E
(∣∣ψτh

(
ε1

(
ti j

))∣∣2+δ ∣∣ti j = t
)

< ∞ for all i = 1, . . . , n, j =
1, . . . , mi , l = 1, . . . , p and t ∈ S( fT ).
(C5) For all l, r = 1, . . . , p, βr (t), ηlr (t) and fT (t) have continuous second deriva-
tives at t0.

(C6)
{(

Yi j , XT
i

(
ti j

))T
, j = 1, . . . , mi

}
are independently and identically distributed

for i = 1, . . . , n. We assume that the dimension p of the covariates X i
(
ti j

)
is fixed

and there is a positive constant M such that |Xil (t)| ≤ M for all t and i = 1, ..., n, l =
1, ..., p.

(C7) The covariance function ρε (t) is continuous at t0, and Φ (t0) =
(
ηlr (t0)

p
l,r=1

)

is positive definite matrixes.
(C8) The distribution function Fi j (x) = p

(
Yi j − XT

i

(
ti j

)
β
(
ti j

)
< x |ti j

)
is abso-

lutely continuous, with continuous densities fi j (·) uniformly bounded, and its first
derivative uniformly bounded away from 0 and ∞ at the points 0, i = 1, . . . , n, j =
1, . . . , mi .
(C9) K1 (·) is a symmetric density function with a bounded support in R. For some
constant CK �= 0, K1 (·) is a ν th-order kernel, i.e.,

∫
u j K1 (u) du = 1 if j = 0; 0 if

1 ≤ j ≤ ν − 1; CK if j = ν, where ν ≥ 2 is an integer.
(C10) The positive bandwidth parameter h satisfies nh2ν → 0.

Lemma 1 Suppose that conditions (C2)–(C10) hold and that the bandwidth satisfies
sup limn→∞Nh5

1 < ∞. If β (t0) is the true parameter, then max1≤i≤n ‖Zi (β (t0))‖ =
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op
(√

Nh1
)

and max1≤i≤n ‖Zih (β (t0))‖ = op
(√

Nh1
)
, where ‖·‖ is the Euclidean

norm.

Proof The proof of Lemma 1 is omitted since it is similar to the proof of Lemma A.1
in Xue and Zhu (2007). �
Lemma 2 Suppose that conditions (C1)–(C8) hold, we have

√
Nh1

(
β̂ (t0; h1) − β (t0) − B (t0)

)
d→ N

(
0, D̄ (t0)

)
,

where D̄ (t0) = (
fT (t0) f̄ (0)

)−2
υ2 (t0)Φ−1 (t0) and f̄ (0) = limn→∞ N−1 ∑n

i=1∑mi
j=1 fi j (0), B (t0) and Φ (t0) are defined in Theorem 3 and condition (C7), υ2 (t0) =

τ (1 − τ) fT (t0) ν0 +κh0ρε (t0) f 2T (t0) , h0 and κ are defined by conditions (C1) and
(C2).

Proof Because

n∑

i=1

XT
i Ki (t; h1) ψτ (Y i − X iβ(t))

=
n∑

i=1

mi∑

j=1

ψτ

(
Yi j − XT

i

(
ti j

)
β (t)

)
X i

(
ti j

)
Kh1

(
t − ti j

)

=
n∑

i=1

mi∑

j=1

ψτ

(
εi

(
ti j

) + XT
i

(
ti j

)
β
(
ti j

) − XT
i

(
ti j

)
β (t)

)
X i

(
ti j

)
Kh1

(
t − ti j

)

=
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

) [
τ − I

{
εi

(
ti j

)
< XT

i

(
ti j

) (
β (t) − β

(
ti j

))}]

=
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

) [
ψτ

(
εi

(
ti j

)) + I
{
εi

(
ti j

)
< 0

}

−I
{
εi

(
ti j

)
< XT

i

(
ti j

) (
β (t) − β

(
ti j

))}]

=
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

)
ψτ

(
εi

(
ti j

))

−
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

)
Υi

(
ti j

)

Δ= I − I I, (A.1)
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where Υi
(
ti j

) = [
I
{
εi

(
ti j

)
< XT

i

(
ti j

) (
β (t) − β

(
ti j

))} − I
{
εi

(
ti j

)
< 0

}]
. In

addition, we define

I I =
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

)
E
(
Υi

(
ti j

))

+
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

) [
Υi

(
ti j

) − E
(
Υi

(
ti j

))]

Δ= I I1 + I I2.

By condition (C8), we have

I I1 =
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

) [
Fi j

(
XT

i

(
ti j

) (
β (t) − β

(
ti j

))) − Fi j (0)
]

=
n∑

i=1

mi∑

j=1

X i
(
ti j

)
Kh1

(
t − ti j

)
fi j (0) {1 + o (1)} XT

i

(
ti j

)

× (
β (t) − β

(
ti j

))
. (A.2)

By Cauchy–Schwartz inequality and conditions (C6) and (C8), for all ζ ∈ R p with
ζTζ = 1,

E
(
ζT I I2

)2 =
n∑

i=1

E
∥∥∥ζTXT

i Ki (t; h1) [Υ i − E (Υ i )]
∥∥∥
2

≤
n∑

i=1

ζTXT
i Ki (t; h1)Ki (t; h1) X iζ

×E
{
(Υ i − E (Υ i ))

T (Υ i − E (Υ i ))
}

≤ C max
{∣∣
∣XT

i

(
ti j

) (
β (t) − β

(
ti j

))∣∣
∣
}

×
n∑

i=1

ζTXT
i Ki (t; h1)Ki (t; h1) X iζ

= o (Nh1) , (A.3)

where Υ i = (Υi (ti1) , . . . , Υi
(
timi

)
)T. According to McCullagh (1983), we have

β̂ (t0; h1) − β (t0)

=
{

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Λi X i

}−1

123



1022 J. Lv et al.

×
{

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) ψτ (Y i − X iβ(t0))

}

+ op

(
(Nh1)

−1/2
)

, (A.4)

where Λi = diag
(

fi1 (0) , . . . , fimi (0)
)
. Then, by the law of large numbers together

with (A.1)–(A.4), we have

β̂ (t0; h1) − β (t0) = f −1
T (t0) f̄ −1 (0) Φ−1 (t0) R̂ (t0; h1) + op

(
(Nh1)

−1/2
)

.

(A.5)

where R̂ (t0; h1) = 1
Nh1

∑n
i=1

{
XT

i Ki (t0; h1) ψτ (εi )+XT
i Ki (t0; h1)Λi X i

[
β
(
ti j

)

−β (t0)]
}
. It can be shown that the lth element of R̂ (t0; h1) can be written as

R̂l (t0; h1) = 1

Nh1

n∑

i=1

ϕil (t0; h1), (A.6)

where ϕil (t0; h1) = ∑mi
j=1 ξil

(
t0, ti j

)
Kh1

(
t0 − ti j

)
and

ξil
(
t0, ti j

) = Xil
(
ti j

)
ψτ

(
εi

(
ti j

)) + Xil
(
ti j

)
fi j (0)

p∑

r=1

Xir
(
ti j

) [
βr

(
ti j

) − βr (t0)
]
.

Then (A.6) implies that R̂ (t0; h1) is a sum of independent vectors

R̂ (t0; h1) = 1

Nh1

n∑

i=1

Ψ i (t0; h1) ,

where Ψ i (t0; h1) = (
ϕi1 (t0; h1) , . . . , ϕi p (t0; h1)

)T. Because E
(
ψτ

{
εi

(
ti j

)}) =
0 and the design points ti j , i = 1, . . . , n, j = 1, . . . , mi are independent, direct
calculation and the change of variables show that

E (ϕil (t0; h1)) =
mi∑

j=1

∫
E
(
ξil

(
t0, ti j

) ∣∣ti j = v
)

K

(
t0 − v

h1

)
fT (v) dv

=
mi∑

j=1

fi j (0) h1

p∑

r=1

∫
[βr (t0 − h1u) − βr (t0)]

×ηlr (t0 − h1u) fT (t0 − h1u) K (u) du

=
mi∑

j=1

fi j (0) μ2h3
1

p∑

r=1

[
β̇r (t0) η̇lr (t0) fT (t0)
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+1

2
β̈r (t0) ηlr (t0) fT (t0) + β̇r (t0) ηlr (t0) ḟT (t0)

]
{1 + o (1)} .

Then, by (A.6) and assumptions (C1), (C3) and (C6), and taking the Taylor expansions
on the right side of the foregoing equation, we have

E
(

R̂l (t0; h1)
)

= 1

Nh1

n∑

i=1

E (ϕil (t0; h1)) → μ2h2
1 f̄ (0)

p∑

r=1

[
β̇r (t0) η̇lr (t0) fT (t0)

+1

2
β̈r (t0) ηlr (t0) fT (t0) + β̇r (t0) ηlr (t0) ḟT (t0)

]
.

Therefore,

E
(
β̂ (t0; h1) − β (t0)

)
= f −1

T (t0)Φ−1 (t0) b (t0) = B (t0) .

For the covariance of
√

Nh1 R̂ (t0; h1), because

Cov
[√

Nh1 R̂l (t0; h1) ,
√

Nh1 R̂r (t0; h1)
]

= E
[√

Nh1 R̂l (t0; h1)
√

Nh1 R̂r (t0; h1)
]

−E
[√

Nh1 R̂l (t0; h1)
]

E
[√

Nh1 R̂r (t0; h1)
]
, (A.7)

and

E
[√

Nh1 R̂l (t0; h1)
√

Nh1 R̂r (t0; h1)
]

= E

{[
1√
Nh1

n∑

i=1

ϕil (t0; h1)

][
1√
Nh1

n∑

i=1

ϕir (t0; h1)

]}

= 1

Nh1

n∑

i=1

E [ϕil (t0; h1) ϕir (t0; h1)]

+ 1

Nh1

∑

i1 �=i2

E
[
ϕi1l (t0; h1) ϕi2r (t0; h1)

]
. (A.8)

For the first term on the right side of (A.8), we consider the further decomposition

ϕil (t0; h1) ϕir (t0; h1) =
mi∑

j=1

ξil
(
t0, ti j

)
ξir

(
t0, ti j

) [
K

(
t0 − ti j

h1

)]2

+
∑

j1 �= j2

ξil
(
t0, ti j1

)
ξir

(
t0, ti j2

)
K

(
t0−ti j1

h1

)
K

(
t0−ti j2

h1

)

(A.9)
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The change of variables, and the fact that ψτ

{
εi

(
ti j

)}
is a mean 0 and independent

of X i
(
ti j

)
, it can be shown by direct calculation that, as n → ∞ and v → t0,

E
(
ξil

(
t0, ti j

)
ξir

(
t0, ti j

) ∣∣ti j = v
)

= τ (1 − τ) E
(
Xil

(
ti j

)
Xir

(
ti j

) ∣∣ti j = v
)

+
p∑

c=1

[βc (v) − βc (t0)]
2 f 2i j (0) E

(
Xil

(
ti j

)
Xir

(
ti j

)
X2

ic

(
ti j

) ∣∣ti j = v
)

+
∑

c1 �=c2

[
βc1 (v) − βc1 (t0)

] [
βc2 (v) − βc2 (t0)

]
f 2i j (0)

×E
(
Xil

(
ti j

)
Xir

(
ti j

)
Xic1

(
ti j

)
Xic2

(
ti j

) ∣∣ti j = v
)

→ τ (1 − τ) ηlr (t0) .

Then, we have

E

⎡

⎣
mi∑

j=1

ξil
(
t0, ti j

)
ξir

(
t0, ti j

)
K 2

(
t0 − ti j

h1

)⎤

⎦

=
mi∑

j=1

∫ [
E
(
ξil

(
t0, ti j

)
ξir

(
t0, ti j

) ∣∣ti j = v
)

K 2
(

t0 − v

h1

)]
fT (v) dv

= mi h1τ (1 − τ) ηlr (t0) ν0 fT (t0) + o(mi h1). (A.10)

Similarly, it can be shown by direct calculation that as n → ∞, v1 → t0, v2 → t0

E
(
ξil

(
t0, ti j1

)
ξir

(
t0, ti j2

) ∣∣ti j1 = v1, ti j2 = v2
)

= ρε (v1, v2) E
(
Xil

(
ti j1

)
Xir

(
ti j2

) ∣∣ti j1 = v1, ti j2 = v2
)

+
p∑

c=1

[βc (v1) − βc (t0)] [βc (v2) − βc (t0)] f 2i j (0)

×E
(
Xil

(
ti j1

)
Xir

(
ti j2

)
Xic

(
ti j1

)
Xic

(
ti j2

) ∣∣ti j1 = v1, ti j2 = v2
)

+
∑

c1 �=c2

[
βc1 (v1) − βc1 (t0)

] [
βc2 (v2) − βc2 (t0)

]
f 2i j (0)

×E
(
Xil

(
ti j1

)
Xir

(
ti j2

)
Xic1

(
ti j1

)
Xic2

(
ti j2

) ∣∣ti j1 = v1, ti j2 = v2
)

→ ρε (t0) ηlr (t0) .

Therefore, the expectation of the second term on the right side of (A.9) is

E

⎡

⎣
∑

j1 �= j2

ξil
(
t0, ti j1

)
ξir

(
t0, ti j2

)
K

(
t0 − ti j1

h1

)
K

(
t0 − ti j2

h1

)
⎤

⎦
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=
∑

j1 �= j2

{∫ ∫
E
(
ξil

(
t0, ti j1

)
ξir

(
t0, ti j2

) ∣∣ti j1 = v1, ti j2 = v2
)

× K

(
t0 − v1

h1

)
K

(
t0 − v2

h1

)
fT (v1) fT (v2) dv1dv2

}

= mi (mi − 1) h2
1ρε (t0) ηlr (t0) f 2T (t0) + o

(
mi (mi − 1) h2

1

)
. (A.11)

Combining (A.9)–(A.11), it follows immediately that when n is sufficiently large

1

Nh1

n∑

i=1

E [ϕil (t0; h1) ϕir (t0; h1)]

= τ (1 − τ) ηlr (t0) ν0 fT (t0) + N−1h1

(
n∑

i=1

m2
i − N

)

ρε (t0) ηlr (t0) f 2T (t0)

+o

(

N−1h1

(
n∑

i=1

m2
i − N

))

+ o (1)

→ τ (1 − τ) ηlr (t0) ν0 fT (t0) + κh0ρε (t0) ηlr (t0) f 2T (t0) (A.12)

because h1 = N−1/5h0 and limn→∞N−6/5 ∑n
i=1 m2

i = κ , and it is easy to see that as
n → ∞

N−1h1

(
n∑

i=1

m2
i − N

)

= N−6/5
(

n∑

i=1

m2
i − N

)

h0 → κh0.

Similar to the proof of (A.13) in Wu et al. (1998), as n → ∞, we have

∣∣∣∣∣∣

1

Nh1

∑

i1 �=i2

E
[
ϕi1l (t0; h1) ϕi2r (t0; h1)

]

−E

[
1√
Nh1

n∑

i=1

ϕil (t0; h1)

]

E

[
1√
Nh1

n∑

i=1

ϕir (t0; h1)

]∣∣∣∣∣

→ 0. (A.13)

Based on (A.7), (A.8), (A.12) and (A.13), we have

Cov
[√

Nh1 R̂l (t0; h1) ,
√

Nh1 R̂r (t0; h1)
]

= τ (1 − τ) ηlr (t0) ν0 fT (t0) + κh0ρε (t0) ηlr (t0) f 2T (t0) + o (1) .
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The multivariate central limit theorem and the Slutsky’s theorem imply that

√
Nh1

(
β̂ (t0; h1) − β (t0) − B (t0)

)
d→ N

(
0, υ2 (t0) f −2

T (t0) f̄ −2 (0)Φ(t0)
−1

)
.

Proof of Theorem 1 According to McCullagh (1983), we have

γ̂ − γ 0 = −
(
1

n

n∑

i=1

VT
i V i

)−1
1

n

n∑

i=1

VT
i ẽi + op

(
n−1/2

)
,

ẽi = L−1
i ψτ

(
ε̂i
) = L−1

i

[
τ1mi − I (εi < 0) + I (εi < 0) − I

(
ε̂i < 0

)]

= ei − L−1
i Δi ,

where 1mi is an mi × 1 vector with all elements being 1 and Δi = (
Δi1, . . . , Δimi

)T

with Δi j =
[

I
{
εi

(
ti j

)
< XT

i

(
ti j

) (
β̂
(
ti j ; h1

) − β
(
ti j

))} − I
{
εi

(
ti j

)
< 0

}]
.

Because ei are independent random variables with E (ei ) = 0 and Cov (ei ) = Di .
In addition, Δi j = Op

(
1
/√

Nh1 + h2
1

)
by Lemma 2. The multivariate central limit

theorem and the Slutsky’s theorem imply that

√
n
(
γ̂ − γ 0

) d→ N
(
0,Ξ−1Γ Ξ−1

)
.

�
Proof of Theorem 2 Following the same line of argument of Theorem 1 of Fan and Yao
(1998), we have

d̂2 (t) − d2 (t) = 1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

) {
ê2i j − d2 (t) − ḋ2 (t)

(
ti j − t

)}
.

Note that

ê2i j =
⎛

⎝ψτ

(
ε̂i j

) −
j−1∑

k=1

l̂i jk êik

⎞

⎠

2

=
⎡

⎣ψτ

(
εi j

) −
⎛

⎝Δi j +
j−1∑

k=1

l̂i jk êik

⎞

⎠

⎤

⎦

2

= d2
i jς

2
i j + 2di jςi j

⎡

⎣
j−1∑

k=1

{
li jk

(
eik − êik

) +
(

li jk − l̂i jk

)
êik

}
− Δi j

⎤

⎦

+
⎡

⎣
j−1∑

k=1

{
li jk

(
eik − êik

) +
(

li jk − l̂i jk

)
êik

}
− Δi j

⎤

⎦

2

,
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where Δi j is given in the proof of Theorem 1. It follows that

d̂2 (t) − d2 (t) = I1 + I2 + I3 + I4
{
1 + op (1)

}
,

where

I1 = 1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

) {
d2 (ti j

) − d2 (t) − ḋ2 (t)
(
ti j − t

)}
,

I2 = 1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

) {
d2 (ti j

) (
ς2

i j − 1
)}

,

I3 = 2
1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

)
di jςi j

×
⎡

⎣
j−1∑

k=1

{
li jk

(
eik − êik

) +
(

li jk − l̂i jk

)
êik

}
− Δi j

⎤

⎦ ,

I4 = 1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

)
⎡

⎣
j−1∑

k=1

{
li jk

(
eik − êik

) +
(

li jk −l̂i jk

)
êik

}
−Δi j

⎤

⎦

2

.

It is easy to see that Theorem 2 follows directly from statements (a)–(d) below

(a) I1 = 1
2μ2h2

2d̈2 (t) + op
(
h2
2

)
,

(b)
√

Nh2 I2 →d N

(
0, ν0

fT (t) limn→∞ 1
N

∑n
i=1

∑mi
j=1 E

[(
ς2

i j −1
)2 ∣∣ti j = t

]
d4 (t)

)
,

(c) I3 = op

(
1√
Nh2

)
,

(d) I4 = op

(
1√
Nh2

)
.

It is easy to see that (a) follows from aTaylor expansion. I2 is asymptotically normal
with mean 0 and variance

Var (I2) = ν0

N 2h2 fT (t)

n∑

i=1

mi∑

j=1

E

[(
ς2

i j − 1
)2 ∣∣ti j = t

]
d4 (t).

It follows from the definition of I3 that

I3 = 2
1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

)
di jςi j

j−1∑

k=1

{
li jk

(
eik − êik

) +
(

li jk − l̂i jk

)
êik

}

−2
1

Nh2 fT (t)

n∑

i=1

mi∑

j=1

Kh2

(
t − ti j

)
di jςi jΔi j
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1028 J. Lv et al.

= I31 + I32.

By Lemma 2 and condition (C1), together with E
(
ςi j |ti j

) = 0, Var
(
ςi j |ti j

) = 1, we
have

I31 = Op

(
1√
Nh1

+ h2
1

)
Op

(
1√
Nh2

)
= op

(
1√
Nh2

)
,

and

I32 = Op

(
1√
Nh1

+ h2
1

)
Op

(
1√
Nh2

)
= op

(
1√
Nh2

)
.

Then I3 = op
(
1
/√

Nh2
)
. By the same arguments as proving I3, we have I4 =

op
(
1
/√

Nh2
)
. Under the conditions Nh2 → ∞ as n → ∞ and lim supn→∞Nh5

2 <

∞, then the proof of Theorem 2 is completed. �
Proof of Theorem 3 Similar to the proof of Lemma 2, we have

β̄ (t0; h1) − β (t0) =
{

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i Λ̃i X i

}−1

×
{

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i ψτh (Y i − X iβ (t0))

}

+ op

(
(Nh1)

−1/2
)

,

By the law of large numbers, we have

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i Λ̃i X i

p→ Ω1,

where Λ̃i = diag

{
1
h K1

(
Yi1−XT

i (ti1)β (t0)
h

)
, . . . , 1

h K1

(
Yimi −XT

i

(
timi

)
β (t0)

h

)}
. Using

the conditions (C6), (C9) and (C10), similar to Lemma 3 (k) of Horowitz (1998), we
obtain

1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i ψτh (Y i − X iβ (t0))

= 1

Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i ψτ (Y i − X iβ (t0)) + op

(
(Nh1)

−1/2
)
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= 1

Nh1

n∑

i=1

mi∑

j=1

mi∑

j ′=1

X i
(
ti j

)
fi j ′ (0) K

(
t0 − ti j

h1

)
σ̂ j j ′XT

i

(
ti j ′

) [
β
(
ti j ′

) − β (t0)
]

+ 1

Nh1

n∑

i=1

mi∑

j=1

mi∑

j ′=1

X i
(
ti j

)
K

(
t0 − ti j

h1

)
σ̂ j j ′ψτ

(
εi

(
ti j ′

)) + op

(
(Nh1)

−1/2
)

.

Similar to the proof of Lemma 2, we have

E
(
β̄ (t0; h1) − β (t0)

)
= f −1

T (t0)Φ−1 (t0) b (t0) = B (t0) ,

and

Var

[
1√
Nh1

n∑

i=1

XT
i Ki (t0; h1) Σ̂

−1
i ψτh (Y i − X iβ (t0))

]

= Ω2 + Ω3 + o(1).

The multivariate central limit theorem and the Slutsky’s theorem imply that

√
Nh1

(
β̄ (t0; h1) − β (t0) − B (t0)

)
d→ N

(
0,Ω−1

1 (Ω2 + Ω3)Ω−1
1

)

Therefore, we complete the proof of Theorem 3. �

Proof of Theorem 4 Let ζ (β (t0)) = 1√
Nh1

∑n
i=1 Zih (β (t0)). By Theorem 3, we have

E [ζ (β (t0))] = o(1) and Cov [ζ (β (t0))] = Ω2 + Ω3+o(1). By Lemma 1, we know
that ζ (β (t0)) satisfies the conditions of the Cramer–Wold theorem (cf. Serfling 1980,
theorem in sec. 1.5.2) and the Lindeberg condition (cf. Serfling 1980, theorem in sec.
1.9.2). Hence,

1√
Nh1

n∑

i=1

Zih (β (t0))
d→ N (0,Ω2 + Ω3) , (A.14)

and

1

Nh1

n∑

i=1

Zih (β (t0)) ZT
ih (β (t0))

p→ Ω2 + Ω3. (A.15)

From (A.14), (A.15) and Lemma 1, and using the same arguments that are used in the
proof of (2.14) in Owen (1990), we can prove that

λ = Op

(
(Nh1)

−1/2
)

, (A.16)
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where λ is defined in (13). Applying the Taylor expansion to (14) and invoking (A.14)–
(A.16) and Lemma 1, we obtain

l (β (t0)) = 2
n∑

i=1

{
λTZih (β (t0)) −

[
λTZih (β (t0))

]2/
2

}
+ op (1) . (A.17)

By (13), it follows that

0 =
n∑

i=1

Zih (β (t0))

1 + λTZih (β (t0))

=
n∑

i=1

Zih (β (t0)) −
n∑

i=1

λTZih (β (t0)) Zih (β (t0))

+
n∑

i=1

Zih (β (t0))
[
λTZih (β (t0))

]2
[
1 + λTZih (β (t0))

] .

The application of Lemma 1 and (A.14)–(A.16) again yields

n∑

i=1

[
λTZih (β (t0))

]2 =
n∑

i=1

λTZih (β (t0)) + op (1) , (A.18)

and

λ =
[

n∑

i=1

Zih (β (t0)) ZT
ih (β (t0))

]−1 n∑

i=1

Zih (β (t0)) + op

(
(Nh1)

−1/2
)

.

(A.19)

Substituting (A.18) and (A.19) into (A.17), we obtain

l (β (t0)) =
[

1√
Nh1

n∑

i=1

Zih (β (t0))

]T[
1

Nh1

n∑

i=1

Zih (β (t0)) ZT
ih (β (t0))

]−1

×
[

1√
Nh1

n∑

i=1

Zih (β (t0))

]

+ op (1) . (A.20)

Based on (A.14), (A.15) and (A.20), we can prove Theorem 4. �
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Proof of Corollary 1 Let Z(2)
ih

(
b (t0) , β̃

(2)
(t)

)
= ∂Zih

(
b (t0) , β̃

(2)
(t)

)/
∂β̃

(2)
(t)

and λ̃ = λ
(
b (t0) , β̃

(2)
(t)

)
, then λ̃ and β̃

(2)
(t) satisfy

Q1

(
b (t0) , β̃

(2)
(t) , λ̃

)
=

n∑

i=1

Zih

(
b (t0) , β̃

(2)
(t)

)

1 + λ̃
T
Zih

(
b (t0) , β̃

(2)
(t)

) = 0,

and

Q2

(
b (t0) , β̃

(2)
(t) , λ̃

)
=

n∑

i=1

λ̃
T
Z(2)

ih

(
b (t0) , β̃

(2)
(t)

)

1 + λ̃
T
Zih

(
b (t0) , β̃

(2)
(t)

) = 0.

Expanding Q1

(
b (t0), β̃

(2)
(t), λ̃

)
and Q2

(
b (t0), β̃

(2)
(t), λ̃

)
at
(
b (t0),β

(2) (t0) , 0
)
,

we have

λ̃ = (I − P)Σ−1
n Z̃ + op

(
(Nh1)

−1/2
)

,

and

β̃
(2)

(t) − β(2) (t0) = −
(
Z̃

(2)T
Σ−1

n Z̃
(2)

)−1
Z̃

(2)T
Σ−1

n Z̃ + op

(
(Nh1)

−1/2
)

,

where Z̃
(2) = ∑n

i=1 Z
(2)
ih

(
b (t0) ,β(2) (t0)

)
, P = Σ−1

n Z̃
(2)

(
Z̃

(2)T
Σ−1

n Z̃
(2)

)−1
Z̃

(2)T
,

Z̃ = ∑n
i=1 Zih

(
b (t0) ,β(2) (t0)

)
and Σn = ∑n

i=1 Zih

(
b (t0) ,β(2) (t0)

)
ZT

ih(
b (t0) ,β(2) (t0)

)
. Because

l
(
b (t0) , β̃

(2)
(t)

)
= 2

n∑

i=1

log
{
1 + λ̃

T
Zih

(
b (t0) , β̃

(2)
(t)

)}

= 2
n∑

i=1

λ̃
T
Zih

(
b (t0) , β̃

(2)
(t)

)

−
n∑

i=1

{
λ̃
T
Zih

(
b (t0) , β̃

(2)
(t)

)}2 + op (1)

= Z̃
T
Σ−1/2

n

(
I − Σ1/2

n PΣ−1/2
n

)
Σ−1/2

n Z̃ + op (1) .

Similar to the proof of Theorem 4, we have Σ
−1/2
n Z̃

d→ N (0, I) and Σ
1/2
n PΣ

−1/2
n is

symmetric and idempotent,with trace equal to p−p1.Because Zih l
(
β̂

(1)
(t) , β̂

(2)
(t)

)
=

0. Hence the empirical likelihood ratio statistic l̄ (b (t0)) converges to χ2
p1 . �
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