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Abstract

Itis essential to deal with the within-subject correlation among repeated measures over
time to improve statistical inference efficiency. However, it is a challenging task to
correctly specify a working correlation in quantile regression with longitudinal data. In
this paper, we first develop an adaptive approach to estimate the within-subject covari-
ance matrix of quantile regression by applying a modified Cholesky decomposition.
Then, weighted kernel GEE-type quantile estimating equations are proposed for vary-
ing coefficient functions. Note that the proposed estimating equations include a discrete
indicator function, which results in some problems for computation and asymptotic
analysis. Thus, we construct smoothed estimating equations by introducing a bounded
kernel function. Furthermore, we develop a smoothed empirical likelihood method to
improve the accuracy of interval estimation. Finally, simulation studies and a real data
analysis indicate that the proposed method has superior advantages over the existing
methods in terms of coverage accuracies and widths of confidence intervals.
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1 Introduction

Varying coefficient models proposed by Hastie and Tibshirani (1993) are fashionable
nonparametric fitting techniques. A salient feature of varying coefficient models is
that the response is linear in the covariates, but the regression coefficients are smooth
nonparametric functions which depend on certain covariates such as the measurement
time. Thus, varying coefficient models can be regarded as a natural extension of mul-
tiple linear regression models. Due to its flexibility to explore the dynamic features,
many procedures had been proposed to estimate the varying coefficient functions.
Wau et al. (1998) obtained kernel estimators of the coefficient functions by minimiz-
ing local least-squares criterion and established its asymptotic normality. Combined
with a polynomial spline, Huang et al. (2002, 2004) considered the estimation of the
coefficient functions by employing the least-squares method. Noh and Park (2010)
developed a regularized estimation procedure for variable selection by linearizing the
group smoothly clipped absolute deviation penalty. Other related literature includes
Wang et al. (2008), Wang and Xia (2009) and Wang and Lin (2015).

An important feature of longitudinal data is that subjects are often measured repeat-
edly over a given period, which results in possible correlations between repeated
measures. Thus, it is important to account for the correlation to improve the efficiency
of statistical inference. However, the mentioned references above did not consider the
correlations, which will result in a great loss of efficiency. Although it is an interesting
topic to estimate the covariance functions in the analysis of longitudinal data, we will
meet some challenges. The reasons are as follows. (i) Longitudinal data are frequently
collected at irregular and possibly subject-specific time points, which leads to different
dimensions of the covariance matrix for each subject. (ii) It involves more parameters
to be estimated in the covariance matrix, and the positive definiteness of the covariance
matrix also needs to be assured. To overcome these difficulties, the modified Cholesky
decomposition approach (Pourahmadi 1999) is developed to decompose the covari-
ance matrix, which has been demonstrated to be effective and attractive. Recently, Ye
and Pan (2006) constructed several sets of parametric generalized estimating equations
by utilizing the modified Cholesky decomposition. In order to relax the parametric
assumption in Ye and Pan (2006), Leng et al. (2010) constructed the joint partially
linear mean—covariance model based on the B-spline basis approximation. Liu and Li
(2015) studied a class of marginal models with time-varying coefficients for longitu-
dinal data by using the modified Cholesky decomposition.

However, these mentioned articles are focused on longitudinal mean regression.
Quantile regression has become a powerful complement to the mean regression. Its
main merits include the following two aspects. On the one hand, it can offer a more
complete description of the entire distribution of the response variable. On the other
hand, it does not require specification of the error distribution, and thus it is a robust
regression approach. So far, quantile regression has become a widely used technique
for analyzing longitudinal data. Tang and Leng (2011) applied the empirical likelihood
(Owen 2001) to account for the within-subject correlations, which yields more efficient
estimators than the conventional quantile regression. Leng and Zhang (2014) proposed
a new quantile regression approach to account for correlations through combining
multiple sets of unbiased estimating equations. Tang et al. (2015) extended this method
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to composite quantile regression. Yuan et al. (2017) used a similar strategy to construct
anew weighted quantile regression model with longitudinal data. However, the above
literature only considered some commonly used working correlation structures (e.g.,
compound symmetry (CS) and first-order autoregressive [AR(1)]). When the specified
working correlation structure is far from the true one, it seriously affects the estimation
efficiency. However, it is difficult to justify a correct working correlation matrix in
quantile regression with longitudinal data (Leng and Zhang 2014; Fu and Wang 2016).
This paper focuses on longitudinal varying coefficient models and proposes a data-
driven approach to estimate the covariance matrix through the modified Cholesky
decomposition. The proposed method does not need to specify a working correlation
structure to improve the efficiency of statistical inference, which is more flexible than
the existing methods.

The confidence interval construction for varying coefficient functions is also an
interesting issue. Empirical likelihood (Owen 2001) is a popular nonparametric infer-
ence method for the interval estimation. The confidence region based on empirical
likelihood has many advantages. On the one hand, it does not require estimating either
the unknown error density function or any covariance matrix. On the other hand, it
does not impose prior constraints on the region shape, and the shape and orientation of
confidence regions are determined entirely by the data. Xue and Zhu (2007) applied
the local empirical likelihood technique to construct confidence intervals for vary-
ing coefficient functions, which is more accurate than the normal approximation and
bootstrap methods. However, they did not consider the possible correlation between
repeated measures, which will result in rough confidence intervals. Meanwhile, they
only consider mean regression rather than quantile regression. Under the framework
of longitudinal quantile regression, we propose an efficient smoothed empirical likeli-
hood procedure to construct more accurate confidence intervals for varying coefficient
functions.

The rest of this paper is organized as follows. In Sect. 2, we propose the smoothed
estimating equations for varying coefficient functions and establish its asymptotic
theories. Furthermore, we define a empirical log-likelihood ratio function and prove
that its asymptotic distribution is a standard Chi-squared under mild conditions. Sec-
tion 3 discusses the bandwidth choice and reports the simulation results. In Sect. 4, the
proposed approach is illustrated by a longitudinal progesterone data. Section 5 ends
the article with a discussion. Finally, the proofs of the main results are provided in
“Appendix.”

2 Methodology

We consider the varying coefficient model with longitudinal data
Yij=X;F(tij)ﬂ(tij)+8i(tij)v i=1,...,n, j=17°~-7mi1 (D

where Yij =Y (l‘ij), X (l‘l‘j) = (X,‘l (lij),...,X,'p (lij))T, lijj € X, ﬂ(l) =
BL@),....Bp (t))T, B, (1) are smooth functions of ¢ and B, (1) € % for all
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r=1,..., p, & (t) are stochastic processes and independent of X; (¢). In this paper,
weassumethatthedesignpoints{t,-j,i =1,...,n,j=1, ...,mi}arerandomandiid
according to an underlying density function f7 (-) with respect to the Lebesgue mea-
sure, and S( f7) is the support of f7. We assume that the random error &;; = ¢; (t,- j)
satisfies P (si (ti j) < 0] ti‘,‘) = 7 and with an unspecified density function f;; (-).
Then it is easy to show that

Efe—1(vy - XT (1) B (1) <0) 11} =0, @)

where I (-) is a indicator function. Note that the random errors are correlated within
the same subject but independent across the subjects.

2.1 Efficient estimating equations for regression coefficients (t)

Based on the local constant approximation, the standard quantile regression estimator

A

B (t; hy) of B (¢) can be obtained by minimizing

Zim (Yi' — X[ (1) B (l)) Kn, (t — 1;7)

i=1 j=1

with respect to B (¢), where Kj, (1) = K (/hl) K (+) is a kernel function and £ is a
bandwidth, p; (u) = u {t — I (u < 0)} is the quantile loss function. And equivalently,
the resulting estimator 8 (¢; /1) is the solution of the following estimating equations

n

D XK (6 h) e (Vi — XiB (1) =0, 3)

i=1

where K; (1; h) = diag (Kp, (t — 1), ..., Kn, (t — tim;)), Xi = (X; (ti1) 5 ..,
X; (t;mi))T, Y, = (Yil, Yim,.)T, Y (u) =t — I (u < 0) is the quantile score
function and

T

Ve Vi=XiB ) = {ve (Ya=XT G B©) - ¥ (Y, = XT (1) B 0)) ]

Estimating equations (3) are obtained under the independent working model; hence,
the efficiency of the estimators ,@ (t; h1) can be improved if the within correlations are
incorporated. To incorporate the correlation within subjects, we can use the estimating
equations that take the form

DOXTK (th) Z7 e (Y — XiB (1) =0, (4)

i=1
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where ¥; = Cov (¥; (¢;)) and &; = (5,-1, R 8im,)T. But we cannot directly obtain
the estimator of B (¢) by solving (4) because the estimating equations include the
unknown covariance matrix ;.

In this paper, we estimate X'; via the modified Cholesky decomposition. That is,
Y = LiDiLiT, where L; is a lower triangular matrix with 1’s on its diagonal and

D; = diag (¢, ....d2, ). Letei = L7V (&) = (eit.oeim) " with e =

il

ei (tij), we have
Jj—1
Ve (6if) = Zlijkeik +eij, (5)
k=1

where /; . are the below diagonal entries of L;. The sum Z,j(;} is interpreted as zero
when j = 1 throughout this paper. Note that £ (¢;) = 0 and Cov(e;) = D; =
diag (dl.zl, ""dizml-) fori = 1,...,n. Thus we know that ¢;;, j = 1,...,m; are
uncorrelated and dizj = d? (ti j) is called as innovation variance for j = 1, ..., m;.

The merit of this decomposition is that the parameters /;j; and diz. are unconstrained.
In the spirit of Pourahmadi (1999), we construct the following regression models to
estimate /; j; and dizj

lijk = w,.Tjky, d,?j =g (1), (6)

where y = (yl, el yq)T, g (¢) is an unknown smooth function of ¢, and w;j is
usually taken as a polynomial of time difference #;; — ;. Some authors applied similar
parametric models to parsimoniously parameterize the covariance matrix ¥'; when
considering the modified Cholesky decomposition (Ye and Pan 2006; Zhang and Leng
2012). Compared with parametric models, we relax the parametric assumption and
propose a nonparametric model to estimate innovation variance dlzj which reduce
the risk of model misspecification. Eyeballing (6), we can use regression models
to describe the within-subject correlation among repeated measures. Furthermore,
model-based analysis of /;x and dizj permits more accessible statistical inference.

Now we give specific details to estimate /;j; and dlzj Based on B (¢; k1), we can
obtain the estimated residuals

é‘ij=Yij—X;r(t,'j)ﬂA(tij;h1), i=1,...,n, j=1,...,m,-. (7)

From (5)—(7), we can obtain the estimator y of ¥ by using the GEE method

n
Y vie=o,

i=1

- _ A ~ - o~ N i—1, =~
where ¢; = Li ]Iﬂf (Si) = (ei1,---, eim,-)T with eij = Y (Sij) - leczl lijke,'k and
Vl-T = BEiT / dy is a g x m; matrix with the first column zero and the jth j > 2 column
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8Eij/8y = — Zi;ll ['wl‘jkéik + lijkBEik/ay]. Then, we have iijk = wl.Tjk;?. Please
2

note that E (eé) = Var (e;j) + [E (eij)]” = Var (e;j) = dl.zj due to E (e;) = 0 and

Cov (e;) = D;. Thus, alocal polynomial regression technique can be used to estimate

the nonparflmetric function g(-) (Fan and Yao 1998). Specifically, we can obtain the
estimator d (1) = @ by minimizing the following weighted least-squares problem

<a b) _argmmZZ{ b (tij — )}2Kh2 (t — 1)),

i=1 j=I

. . i—17 R A oA sT
where ¢;; = ¥; (s,-j) _le<=1 lijkei. Therefore, we can obtain X; = L; D;L; , where
L; is an m; x m; lower triangular matrix with 1’s on its diagonal and the below diagonal

: 7 7 T 5 i : 52 52 PRI I )
entries of L; are [jjx = w; p and D; = diag (d“, .. ’dim,-) with d; = d (tif)-

Replacing ¥; by bR estimating equations (4) can be rewritten as

SOXTK; (1) B e (¥i - XiB (1)) = 0. (®)

i=1

However, proposed estimating equations (8) are neither smooth nor monotone. In order
to overcome the calculation difficulty, we approximate ¥, (-) by a smooth function
Yon (+) based on the idea of Wang and Zhu (2011). Define G (x) = fu<x K (u)du and
G (x) = G (x/h), where K| (-) is a kernel function and h is a positive bandwidth
parameter. Then, we approximate ¥, (-) by ¥, (1) = v — 1 4+ Gy, (+). Therefore,
based on the approximation, estimating equations (8) can be replaced by the following
smoothed estimating equations

n

SOXTK (6 h0) B; o (Y — XiB (1) =0, ©)

i=1

Wherewrh Yi — X; ﬁ ) = (wrh { il — XT (ti1) ,B (t)} - Yeh { im; — X:r (timl-)
B (t)})T ‘We assume that ﬁ (t; hy) is the solution of estimating equations (9).

We assume that 7y is an interior point of S(f7). Next, we derive the asymptotic
distribution of p and establish the large sample properties of d? (to) and B (zp; hy) at

a fixed point 7. Let p¢ (19) = lims—o E {[{/r (1 (fo + I [Yr (61 (o)1}, mir (f0) =
E [Xit (1) Xir () |5y = 0] nj = [0/ K () du and v; = [ u/ K (u) du. In this
paper, d(r) and d(r) stand for the first and second derivative of d(¢) respectively.

Theorem 1 Let y be the true value of y. Under conditions (C1)-(CS8) stated in
“Appendix,” the proposed estimator y is \/n-consistent and asymptotically normal,
that is,

Vi (G —yo) SN (0, s—lrs—l) ,
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—

d . . . . .
where — means the convergence in distribution, £ = lim,_, % Z?:l ViTV,- and
— 1 15 Tp.v.
r=lim 7  V.D;V;

n—oo

In order to obtain the asymptotic result of d? (1), we rewrite (5) as follows:
j—1

Ve 81] lejkdzk§1k+dzj§zj, (10)
k=1

where ejj = dijg‘,'j, E (5‘,’j|t,’j) =0and Var(g,-j|t,-j) =1.

Theorem 2 Under the same set of conditions as in Theorem 1, together with Nhy — 00
as n — 0o and lim supn_)ooNhg < 00, we have

~ 1 .
VNhy {d2 (to) — d* (1) — E,uzh%dz (to)}

4 2
o fT (lo) AN ZZE[(% ) |4 =10:|d4 (t0)

i=1j=1

Let by (to) = p2h? Y0_ [Br (t0) i (t0) fr (t0) + 3B, (t0) mir (t0) fr (t0) + B (10)
i (to) fT (to)] and b (to) = (b1 (to) ..., bp (to)) .Let 67/ be the (j, j)th element

A—1
of ¥, and @ (7) be given in condition (C7).

Theorem 3 Suppose that conditions (C1)—(C10) hold, we have
= d _ _
VNI (B w0 h) = B 10) = B (1) > N (0,27 22+ 29 27"),
where B (1) = f1 ' (10)® ™" (10) b (t0), 21 = limy 0oy Y7y Y72, Y5, fr (10)

617" fj (0) @ (10),

m;

n
25 = lim, 0oy Z Z vo f1 (0)

.

m;
x| X
)

[’}

OA’j'/> t(1—1)+ Z OA-jjla-/'/'Zpg (to)j| D (19),

J1#]2

A/

> hifE )
L j1#h2

[ e
x| Y 6o r(l—t)+ Y &7V 672 p. (1) | P (1) .
j'=1 JrE

: 1
25 = hmn—>ooﬁ

IIM:
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2.2 Empirical likelihood method

To construct the empirical likelihood ratio function for B (¢), based on Owen
(2001) and Qin and Lawless (1994), we introduce an auxiliary random vec-
tor as follows Zj, (B (1) = X/K; (t;hl)ﬁ;‘wrh (Y; — X;B (1)). Note that
{Zin (B()):1<i<n} are independent. Invoking (2), it can be shown that
E{Z;, (B (1))} = o(1) when B (¢) is the true value.

Let pi,..., p, be nonnegative numbers satisfying » '_, pi = 1, where p; =
pi (t),i =1,...,n. Using such information, a natural block empirical log-likelihood
ratio for B (¢) is defined as

pi=0,) pi=1Y piZin(B®)=0¢.

i=1 i=1

n
(B (1)) = —2max {Zlog (np;i)
i=1
(1)
Tang and Leng (2011) pointed out that for finite sample, existence of a solution to
empirical likelihood for a given B (¢) requires that O is inside the convex hull of the

points {Z;, (B (¢)),i =1, ..., n}. By the Lagrange multiplier method, the optimal
value for p; is given by

—1
pi=n {1427z B} (12)
where A is a p-dimensional Lagrange multiplier satisfying

i Zin (B (1))

A 13
142 Ziy (B (1)) 4

By (11) and (12), I (B (¢)) can be represented as
LB 1) =2 tog {14172y (B 1)) (14)

i=1

with A satisfying (13). In our numerical studies, we can employ the modified Newton—
Raphson algorithm of Chen et al. (2002) to obtain the estimator of A. We further define
the maximum empirical likelihood (EL) estimator of 8 (¢) as

B (gL = argmini (B (1)) .
B(exr

Remark 1 From (14) and (A.20), we can prove that the maximum empirical likelihood

estimator ﬁ (1)g is asymptotically the solution of Y "_, Z;; (B (1)) = 0. Let

~ 1 " A—] ~
V)= N—MZX,TKZ- t;h)) 2, AiX,

i=1
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and

A; = diag {h_lKl [(Yil - X;(t)'B (t))/h] ,
,h Ky [(Yim,- - Xi(tim,-)Tﬁ (l))/h]} .

If we assume that the matrix V () is invertible together with (14), then we can obtain

B —B W)=V @) I{Nh ZXTK @t hy) 5 Yo (Vi —Xﬂ(r))}
+ 0, (Nh1)~ l/2)

Then we can see that the leading term is that of B (t: hy), seeing the proof of Theorem 3
in “Appendix.” In other words, the ,B (t)gL is asymptotically equivalent to the ,B (t; hy).

Theorem 4 Suppose that conditions (C1)—(C10) hold. If B (ty) is the true parameter,

d
thenl (B (ty)) — )(1%, where XI% is the standard Chi-squared distribution with p degrees
of freedom.

Remark 2 By Theorem 4, we can use the test statistic / (8 (fp)) to obtain confidence
regions for B (19). Specifically, we define {B () : 1 (B (1)) < x{_, (p)} as the EL
confidence regions for B (#y), where Xlz—ot (p) is the (1 — a)th quantile of Xﬁ-

In addition, we can apply the profile empirical log likelihood ratio test statistic to
T
obtain the confidence region of the subset of 8 (¢g). Let B (fg)= (ﬁ(l) (10)T, ﬂ(z) (to)T) ,

where 8 M (19) and B @ (1) are p1 x land (p — p1) x 1 vectors, respectively. If we
are interested in testing Hy : /3(1) (to) = b (tp), where b (ty) is some known p; x 1
vector. The profile log likelihood ratio test statistic is defined as

[bwn=1(bw). 87 0)-1(8" 0.8 w).
where ﬁ~(2) (t) minimizes [ (b (ty), ﬂ(z) (t)) with respect to S @ (1), and
~(DT Q)T T .
(ﬁ ), (t)) are the EL estimators.

Corollary 1 Under the conditions of Theorem 4 and Hy) : ,B(l) (to) = b (tp), we have

1(b (1)) 4 X1271 asn — oo.

Remark 3 According to Corollary 1, we can construct the confidence region for
B (t0), namely {b (1) : 1 (b (1) < xi_, (P1)}-
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3 Simulation studies

In this section, we conduct simulation studies to investigate the finite sample perfor-
mance of the proposed method. In the following examples, we fix the kernel function
to be the Epanechnikov kernel, that is, K (1) = 0.75(1 — u?).. We apply the fivefold
cross-validation to choose the optimal bandwidths /] and h,. Taking an example of
the i1, let T — TV and T be the cross-validation training and test set respectively for
v=1,...,5, where T is the full dataset. Note that in model (1), the observations are
dependent within each subject. To retain this dependence structure, we treat the obser-
vations in each subject as a block. For each /1 and v, we find the estimator ﬁ (t; hi, v)
of B(¢) using the training set 7 — 7T'V; then, we can form the fivefold cross-validation
criterion as

5
CV(h1)=Z Z Pr (Yij—XiT (fij)lé(fij;huv)).
v=1(¥ij, Xij) €T

By using the grid search method, we find /10pt = miny, CV (k7). Based on the idea
of Wang and Zhu (2011), we smooth the quantile score function by the following
second-order (v = 2) Bartlett kernel

Ky (1) = %(1—u2/5)1(|u| gﬁ).

Wang and Zhu (2011) had proved that the smoothed approach is robust to the bandwidth
h. Thus, we fix h = n~04 which satisfies the theoretical requirement nh?’ — 0 with
v =2

In addition, we compare the following estimation approaches. (i) The conven-
tional quantile regression estimator ﬁ (t; h1) without considering possible correlations
denoted as ﬁqr. (i1) The estimator proposed by Xue and Zhu (2007) denoted as ﬁls.
(iii) The proposed estimator B (t; h1) denoted as ﬁpr. (iv) The proposed empirical
likelihood (EL) estimator I§ (t)g, denoted as ﬁ o1- For /§ 1s and ﬁ o> We construct confi-
dence regions/intervals based on the estimated empirical likelihood (EL) as suggested
in Sect. 2.2; for I§ qr and ﬁ pr» We construct confidence regions/intervals based on the
normal approximation (NA). To assess the performance of the empirical likelihood,
we make a comparison between the EL and NA in terms of coverage accuracies and
average widths of the confidence intervals. In the following simulation studies, we
focus on T = 0.5 and 0.75, and choose n = 50 and 200 representing moderate and
large sample sizes. The number of simulation replications is set to 500.

Example 1 For simplicity, we consider model (1) with a time-independent covariate
X = (X1, X,-Q)T, where X; follows a multivariate normal distribution N (0, X'y)
with (Xx)k; = 0.5%=! for 1 < k,I < 2. The coefficient functions are given by
B1() =6—-02¢ (1) = =4+ (20 — 1)3/2000. Each subject is measured m;
times with m; — 1 ~ Binomial(9, 0.8), which results in different numbers of repeated
measurements for each subject. Here, we define ¢;; = &;; — ¢¢, and c; is the tth
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quantile of the random error §;;, which implies the corresponding tth quantile of ¢;;

. . . S T
is zero. Meanwhile, we consider two error distributions of §; = (Sil, e, é,-m,.) for
assessing the robustness and effectiveness of the proposed method.

Case I: correlated normal error, &;, is generated from a multivariate normal distribution
N(0, E;), where E; will be listed later.

Case 2: §; is generated from a multivariate ¢-distribution with degree 3 and covariance
matrix =;.

We construct the covariance matrix =; of ; as E; = Ai_lB,- (AiT)_l, where B; is
an m; x m; diagonal matrix with the jth element sin (nt, /) / 3+ 1.5and A; is a unit
lower triangular matrix with (j, k) element —8(’) k< j), 8(’ =0.340.6 (t,-j - t,-k)
and #;; ~ U (0, 1). Similar to Zhang and Leng (2012) we take the covariate in model

2 T
(6) as w;jx = {1, tij — tik, (tij — tie) ", (tij — tix) } .

Example 2 The coefficient functions are given by B (t) = cos 2nt), 2 (t) =

4t (1 —t). We set the covariance matrix as =; = Dil/zR (p) Dil/z, D;
diag (oizl, R o*izmi), with ol%. =0 (tij), where

|50.2 2|, 0<1r=<03
o (1) =1 |2¢], 03<1t=<0.6
|41] , 06 <r<1

In addition, R (p) is AR(1) or compound symmetry structure with correlation coeffi-
cient p = 0.9. Other settings are the same as that in Example 1.

Tables 1, 2, 3 and 4 give the biases, the standard deviations (SD), estimated coverage
probabilities (CP) and average lengths (AL) of 95% confidence intervals for different
methods at T = 0.5 and 0.75. Tables 2 and 4 only list the results of f}qr, ﬁpr and
ﬁ o at T = 0.75. The reason is that there is no comparison between the least-squares
estimator and the quantile estimation at t = 0.75. From the four tables, we can obtain
the following findings. (1) All methods yield asymptotic unbiased estimators, since
the correspondmg biases are small for the large sample size n = 200. (2) For the point

estimation, ﬂpr and ﬂel have similar performances for all settings due to similar biases
and standard deviations. In other words, the ,Bpr is asymptotically equivalent to the

ﬁ o1» Which is consistent with our theory. (3) For the interval estimation, it is easy to
find that /§ o has the shortest confidence intervals and achieves the highest empirical
coverage probabilities among all methods. Thus, the proposed empirical likelihood
method ﬁel significantly improves the accuracy of the confidence intervals. Finally,
Fig. 1 depicts the sample standard deviations of different methods at r = 0.5 and 0.75
in Example 1, and we can see that /§pr has the smallest sample standard deviations.

Overall, the simulation results show that the proposed estimators f}pr and ,@e] gen-
erally work well and outperform other existing methods.
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Table 1 Simulation results of the bias, SD, estimated coverage probabilities (CP) and average lengths (AL)
for different methods with n = 50, T = 0.5 at f9 = 0.2, 0.7 in Example 1

{0 B1 (1) Ba(to)
Bias SD CP AL Bias SD CP AL
Casel 02 [915 —0.0037 0.1488 0934 0.5587 —0.0003 0.1510 0.926 0.5600
.qu —0.0032 0.1723 0916 0.6322 0.0045 0.1845 0912 0.6351
ifpr —0.0034 0.1459 0904 0.5384 0.0033  0.1407 0912 0.5425
[;el —0.0034 0.1459 0930 0.5235 0.0033  0.1407 0.930 0.5339
Casel 0.7 [;ls —0.0051 0.2654 0.896 0.8195 0.0212  0.2590 0.894  0.8234
ﬁqr —0.0036 02466 0.892  0.8891 0.0234  0.2329 0924  0.9063
ﬁpr 0.0079  0.1970 0.894  0.6961 0.0123  0.1781 0.908  0.6833
Bel 0.0078  0.1970 0.892  0.6372 0.0122  0.1781 0.920 0.6370
Case2 02 Bls —0.0056 0.2449 0.876 0.7834 —0.0078 0.2685 0.894 0.7871
/}qr —0.0091 0.1823 0906 0.7359 —0.0009 0.1975 0910 0.7460
/§pr —0.0083 0.1580 0.898  0.5968 0.0023 0.1661 0914 0.6102
ﬁe] —0.0083 0.1580 0.928 0.5876 0.0024  0.1661 0.942  0.5967
Case2 0.7 ﬁls —0.0032 04141 0.757 0.8880 —0.0011 04129 0.741  0.8905
ﬁqr 0.0174  0.2688 0914 09680 —0.0101 0.2516 0.898 0.9876
/}pr 0.0140 02134 0.878 0.7491 0.0075  0.1937 0.906 0.7503
ﬁel 0.0140 0.2134 0.937 0.6962 0.0075  0.1937  0.922  0.6890

Table2 Simulation results of the bias, SD, estimated coverage probabilities (CP) and average lengths (AL)
for different methods with n = 50, T = 0.75 at fy = 0.2, 0.7 in Example 1

0 Bi(to) Ba(to)
Bias SD CP AL Bias SD CP AL
Casel 0.2 qu —0.0035 0.1777 0902  0.6582 0.0074  0.1747 0914  0.6850
ﬁpr —0.0047 0.1524 0904 0.5640 0.0124  0.1481 0912 0.5712
/?e] —0.0047 0.1524 0926 0.5466 0.0124  0.1481 0.928 0.5478
Casel 0.7 .qu 0.0022  0.2607 0.906  0.9598 0.0054 0.2721 0.880  0.9458
ﬁpr 0.0017 0.1917 0912 0.7573 0.0116  0.2001 0.866  0.7473
ﬁel 0.0012  0.1919 0914 0.6662 0.0120 0.2026  0.900 0.6641
Case2 0.2 qu —0.0100 0.2121  0.900 0.7992 0.0053  0.2071  0.904 0.7978
ﬁpr —0.0020 0.1856 0.870  0.6485 0.0039  0.1793  0.892  0.6459
Be] —0.0019 0.1853 0.906 0.6328 0.0032 0.1776 0918 0.6319
Case2 0.7 qu 0.0070  0.2988 0.890 1.1043 0.0114 0.2998 0914 1.1223
ﬁpr 0.0057 0.2201 0.888  0.7982 0.0142 02157 0910 0.8171
/?e] 0.0059 0.2199 0914 0.7151 0.0150 0.2163 0.904 0.7222
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Fig. 1 The sample standard deviations of different methods at t = 0.5 and = 0.75 with n = 50 in
Example 1. Here “Is” is the estimator proposed by Xue and Zhu (2007); “qr” is the conventional quan-

tile regression estimator /§ (t; hq) without considering possible correlations; “pr” stands for the proposed
estimator B (t; hy)

4 Real data analysis

In this section, we illustrate the proposed method by analyzing a longitudinal proges-
terone data (Zhang et al. 1998). The dataset used here consists of 492 observations
of progesterone level within a menstrual cycle from 34 women clinical participants.
Zheng et al. (2013) constructed robust parametric mean-covariance regression model
to analyze this dataset. Here we consider the following quantile varying coefficient
model
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0 (Yij1Xi (t:7)) = Bo (tij) + Xi1 (1) B1 (ti) + Xiz (1) B2 (1ij) . i=1,...,34;
j=1,...,m;,

where Q (Y;j|X; (i) is the tth conditional quantile of ¥;; given X; (#;;). Here X;
and X, represent patient’s age and body mass index, #;; is taken as the repeated mea-
surement time, and the log-transformed progesterone level is defined as the response
Y;j. Then By (t) stands for the intercept, and B; (t) and B, (t) describe the effects
of woman’s age and body mass index on the progesterone level at time 7. Before
implementing estimation procedures, we normalize all predictor variables and rescale
the repeated measurement time 7;; into interval [0,1]. In this real data analysis, we
consider conventional quantile regression estimator ﬁqr and the proposed estimation

approaches ﬁpr and /§e1 at quantile levels T = 0.25 and t = 0.5. For ﬁqr and ﬁpr, we
use normal approximation to construct the confidence intervals, and the corresponding
standard error is calculated by the bootstrap resampling method. The confidence inter-
vals of /§e1 are constructed by the empirical likelihood method. For covariance model

(6), we take the covariate w; jx as w;jx = {1, tij — tix, (tij — t,-k)z, (tij — tik)3}T
Figure 2 displays the estimated varying coefficient functions and their 95% con-

fidence interva}s for t = 0.25 and T = 0.5. For the estimated values, there is little

difference for B, and B, which has been confirmed by simulations given in Sect. 3.

So we do not display the estimated curves of ﬁel in Fig. 2. Obviously, the effects of
AGE and BMI are insignificant for all methods due to the large standard errors. These
results are consistent with that of Zheng et al. (2013). Eyeballing Fig. 3, it is clear that
ﬁ o1 performs best among all methods because it has the shortest widths of confidence
intervals. This indicates that the proposed estimation procedure is more efficient.

5 Conclusion and discussion

This paper considers robust GEE analysis for varying coefficient quantile regression
models with longitudinal data based on the modified Cholesky decomposition. Asymp-
totic normalities for the estimators of the coefficient functions and the parameters in
the decomposition of covariance matrix are established. Smoothed quantile score esti-
mating equations are proposed to facilitate computation. We also developed block
empirical likelihood-based inference procedures for varying coefficient functions to
improve the accuracy of interval estimation. Simulations and an real data analysis have
showed that the proposed methods are clear superior to other existing methods.

This paper does not prove that the proposed method is more efficient than the con-
ventional quantile approach which does not deal with the within-subject correlation
among repeated measures over time. The main reason is that we cannot guarantee
covariance model (6) is always correct. In practice, all models are wrong since no
one knows which model is optimal for estimating /;; and dlzj Although theoretical
results about estimation efficiency cannot be established in this article, the efficiency
of our method is investigated by simulations and real data analysis, which indicates
that our method is more useful in practice. Recently, Li (2011) utilized the non-
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Fig.2 Estimated nonparametric curves and their 95% confidence intervals of different methods at r = 0.25
and T = 0.5. The red and black solid lines stand for the estimated values of B, and Bp;. The red and black

dotted lines represent 95% confidence intervals of ﬁqr and ﬁpr. The black dashed lines represent 95%

confidence intervals of B¢
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parametric kernel technique to estimate the within-subject covariance matrix. There
is no model assumption to estimate the covariance matrix, and thus his method is
robust against misspecification of covariance models. Furthermore, he proved that
the proposed nonparametric covariance estimation is uniformly consistent. The semi-
parametrical efficiency of mean regression coefficients is also established. However,
he only focused on mean regression. Therefore, nonparametric covariance estimation
procedures for quantile regression should be developed to estimate the covariance
matrix ¥; involved in formula (6), but this is beyond the scope of this paper. We will
focus on the study of these aspects in the future.

Acknowledgements The authors are very grateful to the editor and anonymous referees for their detailed
comments on the earlier version of the manuscript, which leads to a much improved paper. This work is
supported by the National Social Science Fund of China (Grant No. 17CTJO15).

Appendix

To establish the asymptotic properties of the proposed estimators, the following reg-
ularity conditions are needed in this paper.

(C1) The bandwidth satisfies 7} = N’I/Sho for some constant g > 0.

(C2) limy, oo N~ 31 m? = k for some 0 < k < oo.

(C3) The kernel function K (-) has acompact support on % and satisfies f K (u)ydu =1,
[ K?u)du < oo, [u?K (u)du < oo, [uK (u)du =0and [u*K (u)du < oco.

(C4) There exists a constant § € (2/5, 2], and we have sup, E (Wff (e1 (115)) ‘HS |tij

=1) < oo and sup, E (th (e1 (tij))|2+3 |tij = t) <ooforalli=1,...,n,j =
,...,m;,l=1,...,pandt € S(fr).

(CS5)Foralll,r =1,...,p, B (), qir (t) and fr () have continuous second deriva-
tives at fg.

(C6) [(Y i XT (tij))T, j=1,..., m,-} are independently and identically distributed

fori =1, ..., n. We assume that the dimension p of the covariates X; (t,- j) is fixed
and there is a positive constant M such that | X;; (r)] < M foralltandi =1, ...,n,l =
1,..., p.

(CT7) The covariance function p; (¢) is continuous at ¢y, and @ () = <mr (to)lp r=1)

is positive definite matrixes.

(C8) The distribution function F;; (x) = p (¥;; — X[ (t;j) B (tij) < x|tij) is abso-
lutely continuous, with continuous densities f;; (-) uniformly bounded, and its first
derivative uniformly bounded away from O and oo at the points 0,i = 1,...,n, j =
1,...,m;.

(C9) K () is a symmetric density function with a bounded support in %. For some
constant Cx # 0, K () is a v th-order kernel, i.e., f W K| (u)du =1if j =0;0if
1 <j<v—1;Cgkif j =v,where v > 2 is an integer.

(C10) The positive bandwidth parameter & satisfies nh%” — 0.

Lemma 1 Suppose that conditions (C2)—(C10) hold and that the bandwidth satisfies
sup limnﬁooNh? < oc. If B (to) is the true parameter, then maxi<j<, | Z; (B (1))l =
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op («/Nhl) and maxi<j<u | Zin (B (o)l = 0p («/Nhl), where ||-|| is the Euclidean

norm.

Proof The proof of Lemma 1 is omitted since it is similar to the proof of Lemma A.1
in Xue and Zhu (2007). O

Lemma 2 Suppose that conditions (C1)—(C8) hold, we have
~ d -
VNI (B (@0 1) = B (1) = B (1)) > N (0, D (1)

where D (19) = (fr (t0) f (0)) v (10) @~ (t9) and f (0) = limy_oo N7 30,
ZT’ZI fij (0), B (to) and ® (to) are defined in Theorem 3 and condition (C7), V2 (1y) =

T (1 — 1) fr (to) vo+Khops (to) f% (to) , ho and k are defined by conditions (C1) and
(C2).

Proof Because

D OXTK; (th) e (Vi — XiB(1))

i=1

_ZZ¢I ( i — t,])ﬂ(t)> i (tij) Kny (1 —1ij)

= ii% (ei (ti;) + X! (1) B (ti;) — X[ (1) B (t)) X; (tij) Kn, (t — 1;})
= iixl () Ky (e = 1ig) [£ = 1 {ei (1)) < XT () (B ) = B (1))}
= Xn: iXi (ti7) Kny (t = 1ij) [We (e (1)) + 1 {ei (1) < 0}
=1 e (7)< X7 (1)) (B ) = B (1) |
B i X_: Xi (1) Kny (£ = 1) ¥re (e (117))

33K ) Ki )T )
27111, (A.1)
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where 7; (1;) = [I{ei (1) < X (t7) (B (@) — B (1))} — I {ei (15j) < 0}]. In

addition, we define

n  m;

1= szi () Ky (1 = 137) E (Vi (117))
#3°3 ) Ki 1) [ 1) — £ 75 1)
201, +11,.

By condition (C8), we have

I =% X () Kn (t = 13)) [F,»,- (XiT (i) (B (1) — B (fij))) — Fjj (0)]
i=1j=1
=YD Xi (tj) Ky (1 —137) fij ) {1+ 0 (D} XT (1))
i=1 j=1
x (B (1) — B (1ij)) - (A.2)

B%f Cauchy-Schwartz inequality and conditions (C6) and (C8), for all { € Z? with
$e=1,

E(CT112)2 - EH:TXTK (6 i) [T E(T’””
l_l

n
<Y ¢"XTK; () K (1) Xt
i=1

<E {06~ Er)T (- E (X))

! (1) (B0 = B(1))|}

x> XK (1 h) K (3 hy) X

< Cmax{

i=1
=o0(Nhy), (A.3)
where Y'; = (7; (ti1), ..., i (t,'ml.))T. According to McCullagh (1983), we have

B (t0; h1) — B (10)

XTK; (to; 1) Ai X;
Nhlz (tos h1)
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1 n
x {N—h] ;xm (to; h1) e (¥ — Xiﬂ(to))}

+o, ((Nhl)’m) : (A4)

where A; = diag ( i1 ), ..., fim (0)). Then, by the law of large numbers together
with (A.1)-(A.4), we have

B (o hn) — B 10) = f7" (10) 1 ©) 87" (t0) R (10: ko) + 0 (NR)T12).
(A.5)
where R (t0; h1) = s Yi—y {XTK; (t0; 1) Yo () +XTK; (10 h1) Ai X [B (1))

—B (t)] } It can be shown that the Ith element of R (to; h1) can be written as

. R
Ry (t03 hy) = N—h]Zw (t0: 1), (A.6)
i=1

where @;; (tg; h1) = Z’Jnlzl &l (l‘(), t,'j) Ky, (to — t,'j) and
P

&ir (o, tij) = Xir (tij) ¥r (&1 (6i7)) + Xir (1i7) fij (0) Z Xir (1) [Br (tij) — Br (10)]-
r=1

Then (A.6) implies that R (to; h1) is a sum of independent vectors
1 n
R (to; h) = — W, (to; hy),
(fo; h1) N ; i (fo; h1)

T
where W; (to: h1) = (¢i1 (to: k1) . ... @ip (t0: h1)) . Because E (Y {ei (1j)}) =
0 and the design points #;;,i = 1,...,n,j = 1,...,m; are independent, direct
calculation and the change of variables show that

mj

E (i1 (to; h1)) = Z/ E (&1 (10. 1) [ty = v) K (to}; v> Sfr (v)dv
j=1

m; p

SDIOIT) 3 [T ACEVIMEYAT)
j=1 r=1
Xy (to — hyu) fr (to — hiu) K (u) du

mi p
=Y fij ) pahi Y [Br (0) ur (t0) fr (t0)

j=1 r=1
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1.. . .
+§,3r (to) mir (to) fr (to) + Br (to) mir (to) fr (to):| {I1+o(1)}.

Then, by (A.6) and assumptions (C1), (C3) and (C6), and taking the Taylor expansions
on the right side of the foregoing equation, we have

. 1< A
E (R tios b)) = 575 D0 E (it (o ) = w2k £ ©) Y [Br o) e o) fr 10
i=1

r=1

1. . .
+5Br (0) mr (t0) f1 (t0) + By (f0) mir (t0) fr (to)} :
Therefore,
E (B (o:m) — B@0) = f7" (10 @7 (10) b (t0) = B (10).

For the covariance of \/Nh R (to; h1), because
Cov I:\/Nhlél (to: 1), /Nh Ry (to; hl)]

=E [\/NTM% (to; h1) v/Nh1 R, (1o; hl)]
—E [VNhi Ry (to; ) | E[ VNI Ry (03 1) (A7)

and

E [\/ NhiR; (to; h1) v/Nhi R, (10; hl)]

R RS
=EF {[—N—hl ;%1 (t0; hl):| |:\/Thl ;‘Pir (103 hl):| }

n

1
= — E (@i (tg; h i (tos h
NI Z [wir (t0; h1) @ir (To; h1)]
1
N > E @i (to: h1) @iy (t0: h1) ] (A.8)
i1#i2

For the first term on the right side of (A.8), we consider the further decomposition

m; to —t;; 2
@it (to; 1) @ir (f0; h1) = Z&'l (to. 1ij) &ir (t0. 1i) |:K ( 2 hltj )}

J=1

10—tij Io—lij
+ Z &1 (ZOa tij])%_ir (to, tijz) K < 0 h]ljl > K ( 0 hluz)

J1#J2

(A.9)
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The change of variables, and the fact that ¥/, {e,- (t,- j)} is a mean 0 and independent
of X; (#;) , it can be shown by direct calculation that, as n — oo and v — 1o,

E (& (to. 1ij) &ir (10. 1ij) |tij = v)
=t (1 — 1) E (Xu (tij) Xir (t:j) |tij = v)
p
+ > " [Be ) = Be () £ (O) E (Xil (tij) Xir (1) X0 (1) |t = v)

c=1
+ ) [Be 0) = Bey (10)] [Ber () = Bey (10)] £5 (0)
c1#C
XE (Xit () Xir (1) Xiey (67) Xiex (1) [1ij = v)
=t (I =1)my ().

Then, we have

m;
— 1
|:Zétl 1o, tz; &ir (t()atl])K2< h U>:|
m;

—Z/[ Ell fo, tl/)&r (t()atlj)|tl/ —U)Kz (tohl )i| Jr (v)dv

=m;hit (1 — 1) ny (o) vo f1 (o) + o(m;hy). (A.10)

Similarly, it can be shown by direct calculation that as n — oo, vi — fg, V2 — 1o

E (Eiz (to, fijl)fir (to, fijz) |fij1 =1, tij = U2)
= pe (v1,v2) E (Xt (ti ) Xir (tio) [tijy = v1.tij, = v2)

14
+ > [Be (1) = Be ()] [Be (v2) — Be (10)] f2 (0)

c=1
< E (Xir (i) Xir (tij) Xic (tijy) Xic (i) |tijy = v1.1ijy = v2)
+ Z [,301 (vl) - ﬂcl (tO)] [ﬂcz (UZ) - :302 (IO)] fz? (0)

cr#c
X E (Xit (t:)) Xir (i) Xie, (6:) Xiey (ti2) |tijy = vistijy = v2)
— pe (to) iy (t0) .

Therefore, the expectation of the second term on the right side of (A.9) is

to — tij fo =t
E |:Z &t (10, tijy) &ir (10, 1i) K ( . i 11) K < : h 12>j|

N#P
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-2 {//E(Eil (0, tijy) &r (10, 1i5) [tijy = 1. tijp = v2)

J1#J2

x K <t0; v1> K <t0 — v2> fr (v1) fr (Uz)dvldvz}

1 hy
= my (m; = 1) pe (1) mr (10) f7 (t0) + 0 (mi mi =) 1) . (A1D)

Combining (A.9)—(A.11), it follows immediately that when 7 is sufficiently large

n

1
— E (@i (tg; h ir (to; h
NI Z [wii (to; 1) @ir (t0; h1)]

=7 (1 = 1) mr (t0) vofr (to) + N~y (Z m; — N) pe (t0) mir (t0) £7 (t0)

i=1

+o <N1h1 (Z m? — N)) +o(1)
i=1

— (1= 1) iy (t0) vo.fr (t0) + Khope (t0) mir (t0) f7 (t0) (A.12)

because h| = N_l/sho and limn_moN_f’/5 Z?:l ml2 = K, and it is easy to see that as
n— oo

n n
N_lhl <Zm12 — N) = N0 (X:ml2 — N) ho — Kho.
i=1 i=1

Similar to the proof of (A.13) in Wu et al. (1998), as n — o0, we have

1
N i; E [@iy1 (t0: h1) @iy (03 h1) ]
1 2

R 1 <
—FE| — i1 (to; h E| —— ir (to; h
|: —Nhlgsﬂl(o 1)i| |: _Nm;w (to 1)”
— 0. (A.13)

Based on (A.7), (A.8), (A.12) and (A.13), we have

Cov [ /NI Ry (to: hi) . NRT Ry (103 )

=7 (1 — 1) miyr (10) vo f1 (t0) + Khope (t0) mir (t0) f7 (t0) + 0 (1).
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The multivariate central limit theorem and the Slutsky’s theorem imply that

VR (B o) = B t0) = B (1)) > N (0.0 (t0) £72 (0) F2 0) @ (10) ")

Proof of Theorem 1 According to McCullagh (1983), we have

1 n
P—vo= —(;ZV,-TV,') ZVTe, +0p ( *1/2),
i=1
&=Ly (8))=L; [tly, — I (e; <0)+1(g; <0)— I (8 <0)]
=e — L 'A;,

where 1,,, is an m; x 1 vector with all elements being 1 and A; = (A,'l, e, Aimi)T

with Ay = [1{ei (1) < XT (1) (B (i 1) = B (1)) } = 1 {ei (1)) < 0}]
Because e; are independent random variables with E (¢;) = 0 and Cov (e;) = D;.
In addition, A;; = O, (1/+/Nh| + h?) by Lemma 2. The multivariate central limit
theorem and the Slutsky’s theorem imply that

S (P —vo) SN (0, E—lrs—l) .
O

Proof of Theorem 2 Following the same line of argument of Theorem 1 of Fan and Yao
(1998), we have

52 2 _ _ g2 72 L
E =& 0=y (I)X;X;K,U tl,){ d* (1) —d* (1) (1 t)}.

J

Note that
B 2
)
€= Ve 81] Z ljkelk
j-1 :
= | ¥e (eij) — | Aij + Zlijkéik
k=1

j—1
= d};f; + 2dijgij Z {lijk (eix — éix) + (lijk - lijk) éik} — Ajj
k=1
2

-1
+ Z {lijk (eix — éix) + (lijk - lijk) @ik} — A,
k=1
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where A;; is given in the proof of Theorem 1. It follows that

P -d*O)=hL+hL+L+L{l+o,D},

where

= thfT @) 4 Z Z K, (1 = 1) {d® (1)) = &> (1) = &> () (1 — 1)},

—1j=1
he thfr () X;;K’“ — ) {4 (w) (3 - 1)}
b= thfT ) XI:JX;K]” — 1ij) dijij

i1
X |:Z [lijk (eix — éix) + (lijk - lijk) éik] - Aij:| ,
=1

-1

~.

2
{lijk (eix — i) + (lijk_iijk) éik}—Aij:| -

=1 j=I 1

bl
I

L= N/’lsz (t) 4 ZZKM ~ i) |:

It is easy to see that Theorem 2 follows directly from statements (a)—(d) below

@ © = spuah3d® (1) + o) (h),

(b) /Nholh, >4 N <o, 0] limy,—s o0 ~ ¥ i Z,’}L E |:(§i2j_]>2 |tij=ti|d4 (z)),
© I =0, (A=)

) Is = o, (ﬁ)

Itis easy to see that (a) follows from a Taylor expansion. /5 is asymptotically normal
with mean 0 and variance

Var () = N o) fT ) - ZZ |:(§i2j - 1)2 \t,'j = ti| a* (1).

=1 j=1

It follows from the definition of I3 that

j-1
Iz = thfT o 21:; K, (t — tij) dijsij 1; {lijk (eix — éix) + (lijk - lijk) éik}

- Kn, (t — 1 A
Nh2fT(t)ZZ h2 1] ljglj ij

=1 j=1
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= I31 + I3.
By Lemma 2 and condition (C1), together with E (g;;t;;) = 0, Var (gij1t;;) = 1, we
have

2

o ) ) o ).

and
re =0y (e +#7) 00 (i) = ()
= — —— ) =0, | — ).
2EEP N, ) TP\ /N, P\ /Nh,

Then Iy = o) (1/./Nh2). By the same arguments as proving I3, we have Iy =

0p (1/+/Nh3). Under the conditions N1y — oo as n — oo and limsup,,_, ( N1 <
00, then the proof of Theorem 2 is completed. O
Proof of Theorem 3 Similar to the proof of Lemma 2, we have
1 & -
_ A—] ~
B (to; h) — B (t9) = {N_hl ZXiTKi (to; h1) X; AiXi}
[Nhl injX Ki (t0: ) £ ren (¥ — Xilg(to))}
+op ((WHDT),
By the law of large numbers, we have
X K; (to; h E A X; L ,
Nhl Z (to: h1) 1
~ v T T
where A; = diag M Y ¢ M }.Using

the conditions (C6), (C9) and (C10), similar to Lemma 3 (k) of Horowitz (1998), we
obtain

Nhl ZX K; (to; h1) 2, lﬂrh (Y — XiB (10))
Nhlzx Ki (to; 1) £; e (Vi = XiB (10)) + 0, (WA ™)
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n m; m;

= 2 32 ) i 0k () ] ) o) - 0]
! i=1 j=1j'=
no m; m; o - _
NhIZZZX 1ij) ( " ]>6” Ve (e (1)) + 0p (VD7)
i=1 j=1j'=1

Similar to the proof of Lemma 2, we have

E (B (t0:m) = B @0) = f7' (1) @ (10) b (10) = B (10),

and

R .
ar [m ;X?Ki (to; h1) X; llﬁrh Y, - X;B (to))} =2, + 23+ 0(1).

The multivariate central limit theorem and the Slutsky’s theorem imply that

VNI (B o ) = B (0) — B @) 5 N (0,27 (22 + 29 27)

Therefore, we complete the proof of Theorem 3. O

Proof of Theorem 4 Let ¢ (B (1)) = ﬁ 'y Zin (B (t0)). By Theorem 3, we have

E[¢ (B ()] =o0(1)and Cov [¢ (B (t0))] = £22 + £3+0(1). By Lemma 1, we know
that ¢ (B (tp)) satisfies the conditions of the Cramer—Wold theorem (cf. Serfling 1980,
theorem in sec. 1.5.2) and the Lindeberg condition (cf. Serfling 1980, theorem in sec.
1.9.2). Hence,

l n
N Z Zin (B (10)) LY 0,2, + 23), (A.14)
i=1

and

N Zin (B (10)) Z}, (B (10)) 525+ 2. (A.15)
i=1

From (A.14), (A.15) and Lemma 1, and using the same arguments that are used in the
proof of (2.14) in Owen (1990), we can prove that

=0, (wn)7?), (A.16)
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where A is defined in (13). Applying the Taylor expansion to (14) and invoking (A.14)—
(A.16) and Lemma 1, we obtain

" 2
LB (1) =2 {xsz (B (10) = [A"Zin (B (10))] / 2} +op(1). (A7)

i=1

By (13), it follows that

B Zin (B (10)
0 =
; 1+ 2TZi (B (10))

=Y Zin B (t0) — Y A Zis (B (10)) Zin (B (10))
i=1 i=1
Z”: Zin (B (10)) [N Zin (B (10))]
—~  [1+A"Zi B (10))]

The application of Lemma 1 and (A.14)—(A.16) again yields
n 2 n
>[N Zi B o) = Y ATZin B 1) + 0, (1, (A18)
i=1 i=1
and
n -1 n
A= [Z Zin (B (1)) ZJ, (B (to))] " Zin (B wo) + o0, (WHDTH2).
i=l1

i=1

(A.19)

Substituting (A.18) and (A.19) into (A.17), we obtain

—1

n T n
1 1
L(B (1)) = [ﬁ ; Zin (B (to))] |:N_hl ; Zin (B (10) Z}, (B (to))}
1 n
X [ﬁ ; Zin (B (to)):| +op(1). (A.20)
Based on (A.14), (A.15) and (A.20), we can prove Theorem 4. O
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Proof of Corollary 1 Let Zl%) (b (to) , ﬁ(z) (t)) = 3Z: (1, (to) , /§(2) (t))/aﬁ(z) )
and X = A (b (o), ﬁ~(2) (t)), then A and ﬁ~(2) (1) satisfy
n Zij (b (to) , ﬁ(z) (t))

~(2) ~
01 (b, F7 0.%) = . =0,
( ) X i (b0 87 )

and

ol 1z (b B (f>) B
0: (b (1), B (f>’k>_§1+x "z (b, B (f)>_0

Expanding 01 (b (r0), 8 (0. %) and 02 (b (t0), B 1), X) at (b (), B2 ()., 0),

we have
A= =P 5" Z+0, ((Vh)™P),
and

~( (2)T = (2) 5T 15 _
B2 )= B? (1) = ( x-1Z ) 7 znlz+o,,((Nhl) 1/2),

where 27 =y 2 (b (t0), B? (to)) P=x z(z)<2(mz Z(2)> 'zor
Z = Y | Zy (b(to),ﬂ(z) (to)) and X, = Y Zy (b(to),ﬁ(z) (to)) Z},
(b (t0), B? (t())). Because

(b0 5% ) =2 toe 14172 (51 52 )]
i=1

=231z (b o). 87 )

i=1
n
S8z (b BV )] 40 )
i=1
=7 32 (1 - E,L/ZPZ;W) 2.7 40,(1).

Similar to the proof of Theorem 4, we have X', /ZZ — N (0, I) and 21/2P27]/2
symmetric and idempotent, with trace equal to p— p. Because Z;, [ (ﬂ (1), ﬂ (t)) =

0. Hence the empirical likelihood ratio statistic 1(b (1)) converges to Xl%l. O
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