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Abstract
This article studies a minimum distance regression model checking approach in the
presence of Berkson measurement errors in covariates without specifying the mea-
surement error density but when external validation data are available. The proposed
tests are based on a class of minimized integrated square distances between a nonpara-
metric estimate of the calibrated regression function and the parametric null model
being fitted. The asymptotic distributions of these tests under the null hypothesis and
against certain alternatives are established. Surprisingly, these asymptotic distributions
are the same as in the case of known measurement error density. In comparison, the
asymptotic distributions of the correspondingminimum distance estimators of the null
model parameters are affected by the estimation of the calibrated regression function.
A simulation study shows desirable performance of a member of the proposed class
of estimators and tests.
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1 Introduction

In statistical data analysis, the data are often collected subject to measurement errors.
One typical way to treat the measurement error is the errors-in-variables model which
assumes that the real observation Z is a surrogate of the true unobserved variable X , i.e.,
Z = X + u, where u is the measurement error. Regression models with measurement
errors in covariates have received broad attention in the literature over the last century.
In the last three decades, it has been the focus of numerous researchers, as is evidenced
in the three monographs by Fuller (1987), Cheng and Ness (1999) and Carroll et al.
(2006), and the references therein. However, as Berkson (1950) argued that in many
situations it is more appropriate to treat the true unobserved variable X as the observed
variable Z plus an error, i.e., X = Z + η, where now η is the measurement error. As
an example, Wang (2003) mentions that in a chemical analysis, in order to study the
effect of temperature to dry a sample on the resulting concentration of certain volatile
matter, an oven is typically used to keep the samples at certain temperature. However,
the actual temperature (X ) in the oven can vary from the setup temperature (Z ) due
to the working mechanism of the oven. As a second example mentioned in Wang
(2004), in order to study the yield of a crop in agriculture, an important covariate is the
absorption amount of a fertilizer in the crop. Typically only the amount of fertilizer
(Z ) applied to the crop is observed. However, the actual amount of absorption (X ) is
not easily observed and may vary randomly around the amount Z applied to the crop.
For more examples, see Carroll et al. (2006), Du et al. (2011), Schennach (2013), and
the references therein.

Proceeding a bitmore precisely, in theBerksonmeasurement error regressionmodel
of interest here, one has the triple X , Y , Z , obeying the relations

Y = μ(X) + ε, X = Z + η. (1.1)

Here Y is a scalar response variable and ε is an error variable, independent of X ,
with Eε = 0, so that μ(x) = E(Y |X = x), x ∈ R

p. The random vectors X , Z , η are
p-dimensional, with X being the true unobservable covariate vector, Z representing
an observation on X and η denoting the measurement error having Eη = 0. We also
assume that the three r.v.’s ε, Z , η aremutually independent. SeeRemark 2 for a further
discussion on this assumption.

Let Θ ⊂ R
q be a compact set, {mθ (x); θ ∈ Θ, x ∈ R

p} be a family of given
functions and C be a compact subset in Rp. The problem of interest is to test

H0 : μ(x) = mθ0(x), for some θ0 ∈ Θ and all x ∈ C, versus

H1 : H0 is not true,

based on the primary sample {(Zi , Yi ), i = 1, . . . , n} and an independent validation
sample {(˜Zk, ˜Xk), k = 1, . . . , N }, all satisfying (1.1). Then the empirical version of
η is naturally obtained by η̃k := ˜Xk − ˜Zk, 1 ≤ k ≤ N .

Koul and Song (2009) provide a class of tests for the above testing problem when
fη is known. To describe their tests, assume E |μ(X)| < ∞, E |mθ (X)| < ∞, for all
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θ ∈ Θ , and define H(z) := E
[

μ(X)
∣

∣Z = z
]

, Hθ (z) := E[mθ (X)|Z = z], z ∈ R
p.

Then the original model is transformed to

Y = H(Z) + ξ, E(ξ |Z) = 0,

and the hypothesis H0 implies

H ′
0 : H(z) = Hθ0(z), for some θ0 ∈ Θ and all z ∈ C, versus H ′

1 : H ′
0 is not true.

Note that known fη implies that Hθ is a known parametric function.
Next, let w ≡ wn = c(log n/n)1/(p+4), c > 0, and h ≡ hn be two bandwidth

sequences depending on n, K be a density kernel and G be a nondecreasing right
continuous real-valued function on R

p and define

Khi (z) = 1

h p
K

(

z − Zi

h

)

, f̂w(z) = 1

n

n
∑

i=1

Kwi (z),

Mn(θ) =
∫

C

[

1

n f̂w(z)

n
∑

i=1

Khi (z)[Yi − Hθ (Zi )]
]2

dG(z), θ̃n = argminθ Mn(θ).

The class of tests, one for each K and G, proposed in Koul and Song (2009) (KS) is
based on the class of minimized integrated square distances Mn(θ̃n). They establish
the consistency and asymptotic normality of suitably standardized θ̃n and Mn(θ̃n).

In the current paper, we extend this minimum distance (m.d.) methodology to
the case when fη is unknown, but when external validation data are available. The
lack of knowledge of fη makes Hθ to be an unknown function. The validation data
{(˜Zk, ˜Xk), k = 1, . . . , N } is used to estimate Hθ , which in turn is used to construct a
class of tests analogous to Mn . More precisely, let

̂Hθ (z) = N−1
N
∑

k=1

mθ (z + η̃k), η̃k := ˜Zk − ˜Xk, 1 ≤ k ≤ N ,

̂Mn(θ) =
∫

C

[

1

n f̂w(z)

n
∑

i=1

Khi (z)[Yi − ̂Hθ (Zi )]
]2

dG(z), θ̂n = argminθ
̂Mn(θ).

The proposed class of tests investigated in this paper is based on ̂Mn(θ̂n).

Weestablish the asymptotic normality of n1/2(θ̂n −θ0) under H0 and that of suitably
standardized ̂Mn(θ̂n) under H0 and under a sequence of local alternatives. We also
discuss the choice of the optimal G that maximizes the asymptotic power against a
given sequence of local alternatives.

A surprising finding is that the asymptotic distributions of suitably standardized
̂Mn(θ̂n)under H0 and under certain sequences of local alternatives are the same as those
of the similarly standardized Mn(θ̃n), see Theorems 2 and 5 below. In comparison,
Theorem1below shows that the asymptotic distributions of n1/2(θ̂n−θ0) andn1/2(θ̃n−
θ0), under H0, are different, in general.
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882 P. Geng, H. L. Koul

If p = q and mθ (x) = θT x is linear, then Hθ (z) = θT z is a known function, so
there is no need to estimate it and one can use Mn(θ̃n) to fit a linear model to μ(x)

regardless of the knowledge of fη. Moreover, Proposition 1 below proves that in this
case, n1/2(θ̂n − θ̃n) →p 0. However, as pointed out in Example 1 below, the need
to estimate fη cannot be avoided even when the regression model is a polynomial of
order 2 or more, a small departure from the linearity.

The paper is organized as follows. Section 2 describes the needed assumptions for
the derivation of the consistency and asymptotic normality of the proposed estimators
and tests. Section 3 establishes the consistency and asymptotic normality of the m.d.
estimators, while in Sect. 4 we state the main results about the m.d. tests under the null
and certain fixed and local alternative hypotheses. The proofs of many results stated
in Sects. 3 and 4 appear in the supplement of this paper. Section 5 reports the findings
of a simulation study that assesses some finite sample properties of an estimator and
a test in the proposed classes of these inference procedures.

In this paper, Nq(ν,Σ) stands for the q-variate normal distribution with mean
vector ν and covariance matrix Σ , xT denotes the transpose of an Euclidean vector x ,
‖·‖ denotes the Euclidean norm, all limits are taken as N ∧n → ∞, unless mentioned
otherwise, and →d (→p) denotes the convergence in distribution (probability).

2 Assumptions under H0

In this section, we shall describe the assumptions for the asymptotic normality of
suitably standardized θ̂n and ̂Mn(θ̂n), under H0. Many of these assumptions are the
same as in KS. Define, for x, y ∈ R

p and θ ∈ Θ ,

σθ (x, y) := Cov
(

mθ (x + η), mθ (y + η)
)

, σ 2
θ (x) := σθ (x, x) = Var(mθ (x + η)).

All the integrals with respect to the measure G are supposed to be over the compact
set C, unless specified otherwise. We are now ready to state the needed assumptions.

(A1) {(Yi , Zi ), Zi ∈ R
p, i = 1, . . . , n} is an i.i.d. sample with regression function

H(z) = E(Y |Z = z) satisfying
∫

H2dG < ∞. The integrating measure G
has continuous Lebesgue density g on C. The validation data {(˜Zk, ˜Xk),˜Zk ∈
R

p, ˜Xk ∈ R
p, k = 1, . . . , N } is an i.i.d. sample from Berkson measurement

error model X = Z + η. Furthermore, the two samples are independent.
(A2) 0 < σ 2

ε := Var(ε) < ∞, τ 2(z) = E[(mθ0(X)−Hθ0(Z))2|Z = z] is continuous
on C.

(A3) For some δ > 0, E |ε|2+δ + E |mθ0(X) − Hθ0(Z)|2+δ < ∞.

(A4) E |ε|4 + E |mθ0(X) − Hθ0(Z)|4 < ∞.

(A5)
∫

σ 2
θ (z)dG(z) < ∞, for all θ ∈ Θ .

(F1) The density fZ is uniformly continuous on C and inf z∈C f (z) > 0.
(F2) The density fZ is twice continuously differentiable on C.
(H1) mθ (x) is a.e. continuous in x , for every θ ∈ Θ .
(H2) The parametric function family Hθ (z) is identifiable with respect to θ , i.e,

Hθ1(z) = Hθ2(z) a.e. in z implies θ1 = θ2.
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(H3) For some positive continuous function r on C, and for some 0 < β ≤ 1,
|Hθ1(z) − Hθ2(z)| ≤ ‖θ1 − θ2‖βr(z), for all θ1, θ2 ∈ Θ and z ∈ C.

(H4) For each x , mθ (x) is differentiable with respect to θ in a neighborhood of θ0
with the derivative vector ṁθ (x) such that for any consistent estimator θn of θ0,

sup
i

∣

∣
1
N

∑N
k=1[mθn (Zi + η̃k) − mθ0 (Zi + η̃k) − (θn − θ0)

T ṁθ0 (Zi + η̃k)]
∣

∣

‖θn − θ0‖ = op(1),

where the supremum is taken over 1 ≤ i ≤ n.
(H5) The vector function ṁθ0(x) is continuous in x ∈ C and for every ε > 0, there

are nε, Nε such that for every 0 < a < ∞, and for all n > nε, N > Nε ,

P

(

max
1≤i≤n,1≤k≤N ,(nh p)1/2‖θ−θ0‖≤a

h−p/2‖ṁθ (Zi +η̃k) − ṁθ0(Zi +η̃k)‖ ≥ ε

)

≤ ε.

(H6)
∫ ‖Ḣθ0‖2dG < ∞ and Σ0 = ∫

Ḣθ0 Ḣ T
θ0
dG is positive definite.

(K) The density kernel K is positive, symmetric and square integrable on [−1, 1]p.
(W1) nh2p → ∞ and N/n → λ, λ > 0.
(W2) h ∼ n−a , where 0 < a < min(1/2p, 4/(p(p + 4))).

We state some important facts that will be used later. From Mack and Silverman
(1982), we obtain that under (F1), (K1), (W1) and (W2),

sup
z∈C

| f̂h(z) − fZ (z)| = op(1), sup
z∈C

| f̂w(z) − fZ (z)| = op(1),

sup
z∈C

∣

∣

∣

∣

∣

f 2Z (z)

f̂ 2w(z)
− 1

∣

∣

∣

∣

∣

= op(1). (2.1)

Let dϕ = f −2
Z dG, dϕ̂ = f̂ −2

w dG. We also recall the following facts from Koul and
Ni (2004) (KN) and KS. For any continuous function α on C,

∫ |α(z)|dϕ(z) < ∞,
and by (2.1),

∫

α(z)dϕ̂(z) =
∫

α(z)dϕ(z) + op

(∫

|α(z)|dϕ(z)

)

. (2.2)

Using the equation (3.9) on page 117 of Koul and Ni (2004), for any α as above, (F1),
(K1) and (W1) imply

∫

E

{

1

n

n
∑

i=1

Kh(z − Zi )α(Zi )

}2

dϕ(z) =
∫

α2(z)dG(z) + o(1) = O(1).

(2.3)
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884 P. Geng, H. L. Koul

3 Estimation of �0

In this section,we establish the consistencyof θ̂n and asymptotic normality ofn1/2(θ̂n−
θ0), under H0. Let

Wn(θ) =
∫

C

[

1

n f̂w(z)

n
∑

i=1

Khi (z)[̂Hθ (Zi ) − Hθ (Zi )]
]2

dG(z).

This quantity is a measure of the essential difference between ̂Mn(θ) and Mn(θ) as is
seen in the following decomposition:

̂Mn(θ) =
∫

[

1

n f̂w(z)

n
∑

i=1

Khi (z)[Yi − Hθ (Zi ) + Hθ (Zi ) − ̂Hθ (Zi )]
]2

dG(z)

= Mn(θ) + Wn(θ) + 2Rn(θ),

where Rn(θ) is the cross product term. The following lemma about Wn is found to be
useful in deriving various results in the sequel. Let

γ (θ) =
∫ ∫

σ 2
θ (x, y)dG(x)dG(y), AN (θ) = 1

N

∫

σ 2
θ (z)dG(z).

Lemma 1 Suppose (A1), (A2), (A5), (F1), (H1), (K), and (W1) hold. Then for every
θ ∈ Θ for which μ(x) = mθ (x), x ∈ C,

N (Wn(θ) − AN (θ)) →d N1(0, 2γ (θ)).

3.1 Consistency of �̂n

In this subsection, we shall establish the consistency of the m.d. estimators θ̂n for θ0.
Many details below are similar to those in KN and KS. For a ν ∈ L2(G), let

ρ(ν, Hθ ) =
∫

(ν − Hθ )
2dG, T (ν) = argminθ ρ(ν, Hθ ). (3.1)

The proof of the following lemma is similar to that of Lemma 3.2 and Corollary 3.1
of KS. Details are left out for the sake of brevity.

Lemma 2 Suppose (A1), (A2), (A5), (F1), (H1), (H3), (K) and (W1) hold. If T (H) is
unique, then θ̂n = T (H) + op(1). If, in addition H0 and (H2) hold, then θ̂n →p θ0.

3.2 Asymptotic normality of �̂n

Here we present the asymptotic normality result about θ̂n under H0.
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Theorem 1 Suppose (A1)–(A3), (A5), (F1), (F2), (H1)–(H6), (K), (W1), (W2) and H0

hold. Then
√

n(θ̂n − θ0) →d Nq

(

0,Σ−1
0 (Σ1 + λ−1Σ2)Σ

−1
0

)

, where Σ0 is given in

(H6) and

Σ1 =
∫

(σ 2
ε + τ 2(u))Ḣθ0(u)Ḣ T

θ0
(u)g2(u)

fZ (u)
du,

Σ2 =
∫

σθ0(x, y)Ḣθ0(x)Ḣ T
θ0

(y)dG(x)dG(y). (3.2)

Note that the asymptotic covariance matrix of
√

n(θ̂n − θ0) is determined by Σ1,
Σ2 and the limit of N/n. The matrix Σ1 represents the variation due to Berkson
measurement error when fη is known. From Koul and Song (2009), we recall that√

n(θ̃n −θ0) →d Nq(0,Σ−1
0 Σ1Σ

−1
0 ). The matrixΣ2 represents the additional varia-

tion due to the estimation of Hθ by ̂Hθ when fη is unknown. Moreover, the covariance
tends to decay as N/n increases. When N/n → ∞, in other words, when the valida-
tion sample size N is sufficiently large, compared to the primary sample size n, not
surprisingly the above asymptotic covariance degenerates to the case of known fη.

Remark 1 Here we shall verify that the quantities Σ1 and Σ2 of (3.2) are well defined
under the given assumptions. By (A2) and the compactness of C, τ 2(u) is bounded on
C. Assumption (H6) further implies that 0 < aT Σ1a < ∞, for all a ∈ R

q .
Next, consider Σ2. The Cauchy–Schwarz inequality implies that σθ (x, y) ≤

σθ (x)σθ (y) for all x, y ∈ R, θ ∈ Θ , and that for any a ∈ R
q ,

|aT Σ2a| ≤
∫

∣

∣σθ0(x, y)
∣

∣

∣

∣aT Ḣθ0(x)Ḣ T
θ0

(y)a
∣

∣dG(x)dG(y)

≤
∫

σθ0(x)σθ0(y)‖aT Ḣθ0(x)‖ ‖aT Ḣθ0(y)‖dG(x)dG(y)

=
(∫

σθ0(x)‖aT Ḣθ0(x)‖dG(x)

)2

≤ ‖a‖2
∫

σ 2
θ0

(x)dG(x)

∫

‖Hθ0(x)‖2dG(x).

Hence assumptions (A5) and (H6) ensure that the entries of Σ2 exist and are finite.
Moreover, as seen in the proof of the theorem in the supplement,Σ2 is positive definite.

Remark 2 Here we shall discuss some of the assumptions of Sect. 2, give examples of
mθ ’s that satisfy the assumptions (H3)–(H5) and provide explicit expressions of Σ2.

In the Berkson model (1.1), ε and η are typically assumed to be independent to
ensure its identifiability, while Z and η can be correlated. One of the entities we
have to estimate consistently for implementing our methodology is Hθ (z). Under the
assumption of the independence of Z and η, it is relatively easy to show that the
proposed estimator ̂Hθ (z) is consistent for Hθ (z). In the case of correlated Z and η,
one could use a Nadaraya–Watson type estimator to estimate Hθ (z) instead of ̂Hθ (z).
However we refrain from doing this in the current paper for the sake of brevity.
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886 P. Geng, H. L. Koul

As for the validation sample assumed in (A1), in fact, there are two types of valida-
tion data in reality. The first type is that an external validation sample is collected after
the primary study due to various factors, such as the unawareness of measurement
errors in the primary study. In this case, the validation study is usually carried out on
a different sample from the primary sample. Hence it is rather clear that the validation
data can be treated independent of the primary data as assumed in (A1). A real data
example dealing with breast cancer study can be found in Yi et al. (2015). Based on
the independence, the theory developed for two sample statistics in Sepanski and Lee
(1995) and Geng and Koul (2017) can be applied to derive the asymptotic results.
The second type is that the validation study is carried out simultaneously with the
primary study; thus, the validation sample is a subset of the primary sample. In this
case, the minimum distance idea is applicable; however, the results in this paper would
not hold due to the lack of independence between the two samples. Hence different
assumptions and theory should be investigated for the second type of validation data.
This paper focuses on the first type of validation data based on (A1).

Regarding (H2) of the identifiability of Hθ , various conditions can be imposed to
ensure (H2) hold. For instance, the following two assumptions together imply (H2):

(1) mθ1(x) = mθ2(x), for a.e. x ∈ R
p, implies θ1 = θ2.

(2) The location family { fη(·− z), z ∈ R
p} is complete. More details can be found in

Koul and Song (2009). Furthermore, it can be easily verified that all the examples
of mθ ’s given below satisfy (1).

Example 1 (The linear and polynomial cases) Suppose q = p, mθ (x) = θT x , θ, x ∈
R

p and E |X | < ∞, where for any vector x = (x1, · · · , x p)
T ∈ R

p, |x | = ∑p
j=1 |x j |.

Then Hθ (z) = θT z is a known function. In this case, there is no need to estimate
this function and one can also use θ̃n as a m.d. estimator of θ . This fact in spirit is
similar to the fact that the classical least square estimators, when regressing Y on Z ,
continue to be unbiased and consistent in the Berkson linear model. See Remark 3 for
an asymptotic equivalence between θ̂n and θ̃n .

In the polynomial regression of order p, q = p + 1 and mθ (x) = θT �(x), x ∈ R,
where θ = (θ1, . . . , θp+1)

T and �(x) := (1, x, . . . , x p)T such that E‖�(X)‖ < ∞.
Then

L(z) := E(�(X)|Z = z)=(1, z, E(z + η)2, . . . , E(z + η)p)T , Hθ (z) = θT L(z).

This model is a simple deviation from the linear model, yet one already sees the need
to estimate Hθ (z). Given the validation data, an estimate of Hθ (z) in this case is given
by

̂Hθ (z) = 1

N

N
∑

k=1

mθ (z + η̃k) = 1

N

N
∑

k=1

[

θ1 + θ2(z + η̃k) + θ3(z + η̃k)
2

+ · · · + θp+1(z + η̃k)
p].
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Here (H3) is satisfied with r = L . Furthermore, ṁθ (x) = �(x) and Ḣθ (z) = L(z) for
all θ ∈ Θ . Therefore, similar to the linear case, (H4) and (H5) hold. Moreover,

σθ (x, y) = θT [E�(x + η)�T (y + η) − L(x)LT (y)
]

θ,

Σ2 =
∫

θT
0 [E�(x + η)�T (y + η) − L(x)LT (y)]θ0 L(x)LT (y)dG(x)dG(y).

Example 2 (The nonlinear case) In biochemistry, one of the well-known models for
enzyme kinetics relates enzyme reaction rate to the concentration of a substrate x by
the formula α0x/(θ + x), α0 > 0, θ > 0, x > 0. This is the so-called Michaelis–
Menten model, see Bates and Watts (1998). The ratio γ0 = α0/θ is defined as the
catalytic efficiency that measures how efficiently an enzyme converts a substrate into
product. When γ0 is known, the function can be written as

mθ (x) := γ0θx

θ + x
, θ > 0, x > 0. (3.3)

We will verify that this nonlinear function satisfies (H3)–(H5).
Regarding (H3), as argued in KS, it suffices to verify that (H3) holds with Hθ

replaced by mθ . Here, direct calculation shows that

|mθ1(x) − mθ0(x)| = γ0x2|θ1 − θ0|
(θ0 + x)(θ1 + x)

≤ γ0|θ1 − θ0|.

Hence (H3) holds for the mθ of (3.3).
Furthermore, suppose for each x ∈ R

p, the q × q matrix m̈θ (x) := ∂2mθ (x)/∂θ2

exists for all θ in a neighborhood U0 of θ0 and ‖m̈θ (x)‖ ≤ C , for all θ ∈ U0 and
x ∈ R

p, where the constant C may depend on θ0. Then, by the mean value theorem,
with probability 1, for all 1 ≤ i ≤ n, N ≥ 1,

∣

∣
1
N

∑N
k=1[mθ (Zi + η̃k) − mθ0(Zi + η̃k) − (θ − θ0)

T ṁθ0(Zi + η̃k)]
∣

∣

‖θ − θ0‖ ≤C‖θ − θ0‖.

Now apply this with θ = θn , where θn is any consistent estimator of θ0, to conclude
that (H4) holds.

In particular, for the function mθ of (3.3), p = 1 = q and m̈θ (x) = −2γ0x2/(θ +
x)3 is bounded for θ > 0 and x > 0, so (H4) holds in this case.

As for (H5), with
√

nh p|θ − θ0| ≤ a and θ∗
1 falling between θ and θ0, we have

sup
i,k,θ

h−p/2|ṁθ (Zi + η̃k) − ṁθ0(Zi + η̃k)| = sup
i,k,θ∗

h−p/2|m̈θ∗(Zi + η̃k)(θ − θ0)|

≤ sup
θ

C ′h−p/2|θ − θ0| = Op(h
−p/2/

√
nh p) = Op

(

1/(
√

nh p)
) = op(1),

where C ′ is the upper bound for the second derivative m̈θ (x). Therefore, (H5) is
satisfied.
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888 P. Geng, H. L. Koul

Another nonlinear example is the exponential functionmθ (x) = eθx , with θ, x ∈ R.
In practice, it is reasonable to assume that both Θ and the domain of X are bounded
subsets in R, i.e., |θ | ≤ C1 and |x | ≤ C2. To verify (H3), it suffices to show that this
condition holds with Hθ (z) replaced by mθ (x). With θ∗ falling between θ1 and θ2, we
obtain

|mθ2(x) − mθ1(x)| = |ṁθ∗(x)(θ2 − θ1)| ≤ (|x |eC1|x |)|θ2 − θ1| := r(x)|θ2 − θ1|.

Therefore, (H3) holds for the exponential regression function. Moreover, the second
derivative m̈θ (x) = x2eθx is bounded by the constant C2

1eC1C2 . Hence the argument
similar to that for (3.3) yields that the exponential function also satisfies (H4) and
(H5). The expression of Σ2 is given in Sect. 5.1.

Remark 3 (Connection between θ̂n and θ̃n in linear regression) Here we shall show,
under some conditions, that θ̂n − θ̃n = op(n−1/2) in the linear regression model

p = q, μ(x) = mθ (x) = θT x, x ∈ C ⊂ R
p, for some θ0 ∈ Θ ⊂ R

p. (3.4)

In this case, Hθ (z) = θT z and by solving the equation ∂ ̂Mn(θ)/∂θ = 0, we obtain
Bn θ̂n = An , where

An =
∫

[

1

n

n
∑

i=1

Khi (z)Yi

][

1

n

n
∑

i=1

Khi (z)(Zi + η̄)

]

dϕ̂(z),

Bn =
∫

[

1

n

n
∑

i=1

Khi (z)(Zi + η̄)

][

1

n

n
∑

i=1

Khi (z)(Zi + η̄)T

]

dϕ̂(z),

with η̄ = N−1∑N
k=1 η̃k . Similarly, B̃n θ̃n = ˜An , where

˜An =
∫

[

1

n

n
∑

i=1

Khi (z)Yi

][

1

n

n
∑

i=1

Khi (z)Zi

]

dϕ̂(z),

˜Bn =
∫

[

1

n

n
∑

i=1

Khi (z)Zi

][

1

n

n
∑

i=1

Khi (z)Z T
i

]

dϕ̂(z).

Roughly speaking, because η̄ →p 0, An − ˜An = op(1), Bn − ˜Bn = op(1) and hence
θ̂n − θ̃n →p 0. Furthermore, under some specific conditions, both θ̂n and θ̃n can
achieve the same asymptotic efficiency. We present two such assumptions here.

(A6) Eη2 < ∞, τ1(z) := E
(|ε|∣∣Z = z

)

is a.e. (G) continuous.
(A7) νG := ∫

zdG(z) = 0,
∫

zzT dG(z) is positive definite.

Proposition 1 Suppose (1.1) and (3.4) hold. In addition suppose (A1), (F1), (K), (W1),
(A6) and (A7) hold, then

√
n(θ̂n − θ̃n) →p 0.
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Proof For the simplicity of the exposition,we give details for the case p = 1 only. Then
˜Bn = ∫ [

n−1∑n
i=1 Khi (z)Zi

]2dϕ̂(z). By (2.1), (2.2), (2.3) and direct calculations,
˜Bn = κG + op(1), where κG = ∫

z2dG(z). By (A7), κG > 0. Then θ̃n = ˜B−1
n

˜An

is well defined for all sufficiently large n, and the consistency of θ̃n yields that ˜An =
Op(1). We shall shortly show that

(a)
√

n
(

An − ˜An
) = op(1), (b)

√
n
(

Bn − ˜Bn
) = op(n

−1/2). (3.5)

Then for all sufficiently large n, θ̂n = B−1
n An and

√
n(θ̂n − θ̃n) =

√
n(An˜Bn − ˜An Bn)

Bn˜Bn
=

√
n[An˜Bn − ˜An(˜Bn + op(n−1/2))]

˜Bn(˜Bn + op(n−1/2))

=
√

n(An − ˜An)˜Bn − op(˜An)

κ2
G + op(1)

= op(1).

To prove (3.5) (a), rewrite

√
n(An − ˜An) = √

nη̄

∫

[

1

n

n
∑

i=1

Khi (z)Yi

][

1

n

n
∑

i=1

Khi (z)

]

dϕ̂(z) := √
nη̄An .

By (A6) and the central limit theorem,
√

nη̄ = Op(1). It thus suffices to show that
An = op(1). Let A∗

n denote the An with ϕ̂ replaced by ϕ. Then (2.2), E(|Y |∣∣Z =
z) ≤ |θT

0 z| + τ1(z), assumption (A6) and direct calculations yield that

|An − A∗
n| = op

⎛

⎝

∫

1

n2

n
∑

i, j=1

Khi (z)Khj (z)|Yi |dϕ(z)

⎞

⎠ = op(1).

Next, rewrite

A∗
n = 1

n2

n
∑

i=1

∫

K 2
hi (z)Yidϕ(z) + 1

n2

n
∑

i=1

n
∑

j �=i=1

∫

Khi (z)Khj (z)Yidϕ(z)

:= An1 + An2.

Calculation of moments shows that E(An1) = O((nh)−1), E(An2) = θ0νG + o(1),
Var(An1) = O(n−3h−2) and Var(An2) = O(n−1). Hence A∗

n = θ0νG + op(1), and
(A7) implies (3.5)(a).

Now we prove (3.5)(b). Let

Bn :=
∫

[

1

n

n
∑

i=1

Khi (z)Zi

][

1

n

n
∑

i=1

Khi (z)

]

dϕ̂(z).
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Then, by (2.3),

Bn − ˜Bn = 2η̄Bn + η̄2
∫

[

1

n

n
∑

i=1

Khi (z)

]2

dϕ̂(z) = 2η̄Bn + Op(n
−1).

Argue as in the analysis of An to obtain that Bn = νG + op(1). This fact and
√

nη̄ =
Op(1) imply that

√
n(Bn −˜Bn) = 2(

√
nη̄)νG + Op(n−1/2), which together with (A7)

imply (3.5)(b). This also completes the proof of the proposition.

4 Testing

In this section, we establish the asymptotic distributions of the m.d. test statistics
̂Mn(θ̂n) under the null and certain fixed and local alternative hypotheses. Let

ξi = Yi − Hθ0(Zi ), ξ̂i = Yi − ̂H
θ̂n

(Zi ),

˜Cn = 1

n2

n
∑

i=1

∫

K 2
hi (z)ξ

2
i dϕ(z), ˜Γn = 2h p

n2

∑

i �= j

(∫

Khi (z)Khj (z)ξiξ jdϕ(z)

)2

,

̂Cn = 1

n2

n
∑

i=1

∫

K 2
hi (z)ξ̂

2
i dϕ̂(z), ̂Γn = 2h p

n2

∑

i �= j

(∫

Khi (z)Khj (z)ξ̂i ξ̂ jdϕ̂(z)

)2

,

̂Tn := nh p/2
̂Γ

−1/2
n

(

̂Mn(θ̂n) − ̂Cn
)

.

Because ξ = Y − Hθ0(Z) = ε + mθ0(X) − Hθ0(Z) and because Z , η and ε are
mutually independent, E(ξ2|Z = z) = σ 2

ε + τ 2(z), where τ 2 is as in (A2). Since C is
compact, the continuity of τ 2 implies that it is bounded on C and hence

∫

E
(

ξ2|Z =
z
)

dG(z) < ∞.

4.1 Asymptotic null distribution of ̂Tn

The following theorem states the asymptotic distribution of the proposed m.d. tests
under the null hypothesis H0.

Theorem 2 Suppose (A1), (A2), (A4), (A5), (F1)–(F2), (K), (H1)–(H6), (W1) and (W2)
hold. Then, under H0, ̂Tn →d N1(0, 1).

Consequently, the test that rejects H0 whenever
∣

∣̂Tn
∣

∣ > zα/2 is of the asymptotic size
α, where zα is the upper 100αth percentile of N1(0, 1).

Theorem 2 shows that the ratio parameter N/n does not play a role in the limiting
null distribution of ̂Tn . This finding is also reflected in a finite sample simulation study
of Sect. 5.2 below.
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Define

Un1(z) = 1

n

n
∑

i=1

Khi (z)[Yi − Hθ0(Zi )],

Un2(z) = 1

n

n
∑

i=1

Khi (z)[̂Hθ0(Zi ) − Hθ0(Zi )],

Vn(z, θ) = 1

n

n
∑

i=1

Khi (z)[̂Hθ (Zi ) − ̂Hθ0(Zi )]. (4.1)

The following decomposition is important to study the asymptotic behavior of the
proposed m.d. tests. Rewrite

̂Mn(θ̂n) =
∫

{

1

n

n
∑

i=1

Khi (z)
[

Yi − Hθ0(Zi ) + Hθ0(Zi ) − ̂Hθ0(Zi )

+̂Hθ0(Zi ) − ̂H
θ̂n

(Zi )
]

}2

dϕ̂(z)

=
∫

[Un1(z) − Un2(z) − Vn(z, θ̂n)]2dϕ̂(z)

=
∫

[Un1(z) − Un2(z)]2dϕ̂(z) +
∫

[Vn(z, θ̂n)]2dϕ̂(z)

−2
∫

[Un1(z) − Un2(z)]Vn(z, θ̂n)dϕ̂(z)

:= Jn + ̂Dn(θ̂n) − 2Kn(θ̂n), say.

The following three lemmas yield the conclusion of Theorem 2 in a routine fashion.

Lemma 3 Suppose assumptions (A1), (A2), (A4), (A5), (F1)–(F2), (K), (H1)–(H6),
(W1), (W2) and H0 hold. Then

nh p/2
˜Γ

−1/2
n (Jn − ˜Cn) →d N1(0, 1).

Lemma 4 Under the assumptions of Lemma 3, the following holds.

(a) nh p/2
̂Dn(θ̂n) = op(1), (b) nh p/2Kn(θ̂n) = op(1).

Lemma 5 Suppose assumptions (A1), (A2), (F1), (K), (H1)–(H6), (W1) with λ < ∞,
(W2) and H0 hold. Then

(a) nh p/2(̂Cn − ˜Cn) = op(1), (b) ̂Γn − ˜Γn = op(1).
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4.2 Consistency

Next, we shall briefly discuss the consistency of these tests. Recall (3.1). Let θn be an
consistent estimator of T (H), ξi = Yi − H(Zi ), ξni = Yi − ̂Hθn (Zi ), and let

Cn = 1

n2

n
∑

i=1

∫

K 2
hi (z)ξ

2
nidϕ̂(z), Γn = 2h p

n2

n
∑

i �= j=1

(∫

Khi (z)Khj (z)ξniξnjdϕ̂(z)

)2

.

LetTn := nh p/2Γ
−1/2

n (̂Mn(θn)−Cn). Then the theorembelowpresents the asymptotic
behavior of the proposed test under certain alternative hypotheses.

Theorem 3 Suppose (A1), (A2), (A4), (A5), (F1), (F2), (H3), (K), (W1) and (W2)
hold and the alternative hypothesis H1 : μ(x) = m(x), x ∈ C satisfies that
infθ ρ(H , Hθ ) > 0 and T (H) is unique. Then |Tn | →p ∞ for any consistent estimator
θn of T (H).

By Lemma 2, θ̂n is consistent for T (H); therefore, the above theorem implies that
|̂Tn| → ∞ in probability under the same regularity conditions, and the test based on
̂Tn is consistent against the alternative m for which infθ ρ(H , Hθ ) > 0. The proof
of Theorem 3 is similar to that of Theorem 5.1 in KS with slight modifications. The
techniques used for analyzing Wn(θ) in Lemma 1 and ̂Dn(θ) in the proof of Theorem 1
are enough to produce the conclusions. Details are skipped for the sake of brevity.

4.3 Power at local alternatives

We further investigate the asymptotic power of the proposed test against certain local
alternatives. Let a be a known real-valued function with continuous derivative. Define
A(z) = E(a(X)|Z = z) and A2(z) = E([a(X)]2|Z = z), z ∈ C. Furthermore,
suppose both A and A2 are continuous on C and

∫

Hθ AdG = 0, ∀θ ∈ Θ. (4.2)

We consider a sequence of local alternatives

H1,n : μ(x) = mθ0(x) + bn a(x), bn = 1/
√

nh p/2. (4.3)

The asymptotic distribution of θ̂n under H1,n is given in the following theorem.

Theorem 4 Assume (A1)–(A3), (A5), (F1), (F2), (H1)–(H6), (K), (W1) and (W2) hold.

Then under (4.2) and (4.3),
√

n(θ̂n −θ0) →d Nq

(

0,Σ−1
0 (Σ1+λ−1Σ2)Σ

−1
0

)

, where

Σ0 is given in (H6), Σ1 and Σ2 are defined in (3.2).

The asymptotic distribution of the proposed m.d. tests against the local alternatives
H1,n in (4.3) is presented in the following theorem. Define

K2(v) =
∫

K (v + u)K (u)du, Γ = 2
∫

K 2
2 (v)dv

∫

[σ 2
ε + τ 2(z)]2g(z)dϕ(z).
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Theorem 5 Suppose (A1)–(A3), (A5), (F1), (F2), (H1)–(H6), (K), (W1) and (W2) hold.
Then under (4.2) and (4.3), ̂Tn →d N1(Γ

−1/2
∫

A2dG, 1).

Similar to Theorem 2, under the chosen local alternative sequences, the limit λ of
sample ratio N/n does not play a critical role in the asymptotic property of the m.d.
test.

Remark 4 (Optimal G) Let K(g) := Γ −1/2
∫

A2dG. From the above theorem, the
asymptotic power of the level α test based on ̂Tn is

1 − Φ
(

zα/2 − K(g)
) + Φ

( − zα/2 − K(g)
)

.

This power is an increasing function of K(g). Thus it will be maximized by that g
which maximizes K(g). Let c = 2

∫

K 2
2 (v)dv and κ(z) := σ 2

ε + τ 2(z). Note that
κ(z) ≥ σ 2

ε > 0. Under (F1), fZ (z) > 0 for all z ∈ C. Then by the Cauchy–Schwarz
inequality, we obtain

K(g) =
∫

A2(z)g(z)dz
√

c
∫

κ2(z)g2(z) f −2
Z (z)dz

= c−1/2

∫

A2(z) fZ (z)κ−1(z) κ(z)g(z) f −1
Z (z)dz

√

∫

κ2(z)g2(z) f −2
Z (z)dz

≤ c−1/2

(

∫

A4(z) f 2Z (z)

κ2(z)
dz

)1/2

,

with equality holding if, and only if, g(z) ∝ A2(z) f 2Z (z)/κ2(z), for all z ∈ C. Since
K(g) is scale invariant, i.e., K(bg) = K(g), for all b > 0, we can take the optimal
g(z) = A2(z) f 2Z (z)/κ2(z).

5 Simulation study

In this section, we present the results of aMonteCarlo study of the proposed estimation
and testing procedures for p = 1, 2. For p = 1, a nonlinear regression model is
considered. For p = 2, a linear regression is assumed. Three different values of the
ratio N/n = (4, 1, 1/4) are selected to assess its effect on the performance of these
inference procedures. Throughout the simulation, K (u) = 0.75(1 − u2)I(|u|≤1) for
p = 1 and K (u) = 0.752(1 − u2

1)(1 − u2
2)I(|u1|≤1,|u2|≤1) for p = 2. The set C and

the integrating measure G are specified later. All of the results obtained are based on
1000 replications.

We need to determine the two bandwidths for the implementation of the above
inference procedures. As mentioned in Sect. 1, one bandwidth used for estimating fZ

is w = c(log n/n)1/(p+4), c > 0. We propose to obtain c by minimizing, w.r.t. c, the
unbiased cross-validation criterion UCV (w) of Härdle et al. (1990), where

UCV (w) = (R(K ))p

nw p
+ 1

n(n − 1)w p

n
∑

i �= j=1

(K ∗ K − K )

(

Zi − Z j

w

)

,
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with R(K ) = ∫

K 2(x)dx and K ∗ K (x) = ∫

K (y)K (x − y)dy. We applied a grid
search to choose the optimal coefficient c starting from 0.1 with step 0.02, i.e.,

c∗
n := argmin0.1≤c≤10 UCV

(

c(log n/n)1/(p+4)
)

, wopt = c∗
n(log n/n)1/(p+4).

In order for the bandwidth h to satisfy (W2), we used h = d n−1/Δ,Δ =
max{2p, p(p + 4)/4} + 1. We further adopted the leave-one-out cross-validation
approach for thenonparametric regression function estimator μ̂basedon {(Yi , Zi ), 1 ≤
i ≤ n} to select the optimal coefficient d, i.e.,

d∗
n = argmin0.1≤d≤10

n
∑

i=1

{

Yi − μ̂−i (Zi )
}2

, μ̂−i (z) =
∑n

j=1, j �=i Khj (z)Y j
∑n

j=1, j �=i Khj (z)
,

hopt = d∗
n n−1/Δ.

In order to interpret the performance of the proposed estimator θ̂n , we also present
the performance of the KS estimator θ̃n . Recall that in KS, fη is assumed to be known.

Both the absolute bias and square root of mean square error (RMSE) of the two
estimators are reported. In both linear and nonlinear cases, the absolute bias andRMSE
decrease as the sample sizes increase. In the linear case, as shown in Example 1, there
is no need to estimate the regression function and the asymptotic variance of θ̂n is the
same as that of θ̃n . This is also reflected in this finite sample study as in the case of
p = 2 the RMSEs of the components of θ̂n and θ̃n in Table 2 are very similar to each
other for all the chosen values of N/n. In the nonlinear case, Table 1 shows that the
obtained RMSE of θ̂n is larger than θ̃n and it decreases as N/n increases from 1/4
to 4.

We compared the proposed test ̂Tn with the test ˜Tn of KS, where

Cn = 1

n2

n
∑

i=1

∫

K 2
hi (z)ξ̃

2
i dϕ̂(z), ξ̃i = Yi − Hθ̃ n(Zi ),

Γ̃n = 2h p

n2

∑

i �= j

(∫

Khi (z)Khj (z)ξ̃i ξ̃ jdϕ̂(z)

)2

, ˜Tn :=nh p/2Γ̃
−1/2

n
(

Mn(θ̃n) − Cn
)

.

The ˜Tn test rejects H0 at the significance level α whenever |˜Tn| ≥ zα/2. With the
nominal level 0.05, the empirical levels and powers of these two tests are obtained by
computing #{|̂Tn| ≥ 1.96}/1000 and #{|˜Tn| ≥ 1.96}/1000.

5.1 Finite sample performance of �̂n

In this subsection,we report the findings of a finite sample performance of the estimator
θ̂n in nonlinear and linear cases.

The nonlinear case with q = 1 = p. Here, data are generated from the model (1.1)
with
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Table 1 Performance of θ̂n and θ̃n in the nonlinear case (5.1) with p = 1

N/n = 4

(n, N ) (60, 240) (100, 400) (200, 800) (300, 1200) (400, 1600)

|BIAS(θ̂n)| 0.0010 0.0030 0.0008 0.0017 0.0007

RMSE(θ̂n) 0.0716 0.0552 0.0393 0.0311 0.0274

N/n = 1

(n, N ) (60, 60) (100, 100) (200, 200) (300, 300) (400, 400)

|BIAS(θ̂n)| 0.0012 0.0036 0.0021 0.0015 0.0009

RMSE(θ̂n) 0.0768 0.0591 0.0424 0.0338 0.0293

N/n = 1/4

(n, N ) (60, 15) (100, 25) (200, 50) (300, 75) (400, 100)

|BIAS(θ̂n)| 0.0063 0.0048 0.0027 0.00014 0.0008

RMSE(θ̂n) 0.0954 0.0730 0.0503 0.0417 0.0355

θ̃n

n 60 100 200 300 400

|BIAS(θ̃n)| 0.0029 0.0044 0.0012 0.0009 0.0005

RMSE(θ̃n) 0.0686 0.0552 0.0392 0.0325 0.0264

μ(x) = mθ0(x) = eθ0x , θ0 = −1, (5.1)

where ε ∼ N1(0, 0.22), η ∼ N1(0, 0.22), Z ∼ U [−1, 1]. Then

Hθ0(z) = eθ20 σ 2
η /2 eθ0z, ̂Hθ0(z) = 1

N

N
∑

k=1

eθ0(z+η̃k ) = eθ0z 1

N

N
∑

k=1

eθ0η̃k ,

and the second term Σ2 in the asymptotic variance is calculated as

σθ0(x, y)=eσ 2
η (eσ 2

η −1)eθ0(x+y), Σ2=e2σ
2
η (eσ 2

η − 1)

[∫

(x + σ 2
η θ0)e

θ0xdG(x)

]2

.

We used C = [−1, 1] and G equal to the uniform measure on [−1, 1].
Table 1 shows little empirical bias in θ̂n and its RMSE decreases as the sample sizes

and N/n increase. For N/n = 4, 1, the RMSE of θ̂n is similar to that of θ̃n , while for
N/n = 1/4, RMSE of θ̂n is much larger than that of θ̃n , because of the smaller size
of the validation data set.

The linear case with q = 2 = p. Here we consider themodelmθ (x) = θ1x1+θ2x2,
θ = (θ1, θ2)

T ∈ R
2, x = (x1, x2)T ∈ R

2. The true parameter θ0 = (0.5, 1) is used to
generate the data. Denote Zi = (Zi1, Zi2)

T and ηi = (ηi1, ηi2)
T for 1 ≤ i ≤ n. Both

Zi1 and Zi2 are generated independently from U [−1, 1], while ηi are generated from
a bivariate normal distribution N2(0,Ση) with Ση = (σi j )i, j=1,2, σ11 = 0.12, σ22 =
0.22, σ12 = σ21 = 0.01. Then Xi = (Xi1, Xi2)

T = Zi + ηi . The primary data
{(Yi , Zi ), 1 ≤ i ≤ n} are generated from the above regression function with the error
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Table 2 Performance of θ̂n and θ̃n in the linear case with p = 2 = q

N/n = 4

(n, N ) (60, 240) (100, 400) (200, 800) (300, 1200) (400, 1600)

|BIAS(θ̂n,1)| 0.0007 0.0031 0.0007 0.0004 0.0009

RMSE(θ̂n,1) 0.1069 0.0911 0.0515 0.0434 0.0345

|BIAS(θ̂n,2)| 0.0020 0.0003 0.0034 0.0020 0.0004

RMSE(θ̂n,2) 0.1048 0.0863 0.0511 0.0428 0.0356

N/n = 1

(n, N ) (60, 60) (100, 100) (200, 200) (300, 300) (400, 400)

|BIAS(θ̂n,1)| 0.0012 0.0032 0.0009 0.0003 0.0009

RMSE(θ̂n,1) 0.1064 0.0895 0.0516 0.0434 0.0345

|BIAS(θ̂n,2)| 0.0004 0.0014 0.0032 0.0016 0.0001

RMSE(θ̂n,2) 0.1049 0.0844 0.0516 0.0427 0.0355

N/n = 1/4

(n, N ) (60, 15) (100, 25) (200, 50) (300, 75) (400, 100)

|BIAS(θ̂n,1)| 0.0042 0.0041 0.0015 0.0002 0.0005

RMSE(θ̂n,1) 0.1073 0.0916 0.0516 0.0435 0.0344

|BIAS(θ̂n,2)| 0.0040 0.0040 0.0012 0.0002 0.0009

RMSE(θ̂n,2) 0.1079 0.0882 0.0518 0.0429 0.0357

θ̃n

n 60 100 200 300 400

|BIAS(θ̃1)| 0.0070 0.0005 0.0028 0.0021 0.0011

RMSE(θ̃1) 0.1162 0.0952 0.0560 0.0497 0.0339

|BIAS(θ̃2)| 0.0023 0.0006 0.0012 0.0022 0.0002

RMSE(θ̃2) 0.1086 0.0877 0.0513 0.0438 0.0357

ε following N1(0, 0.32). The validation data {η̃k, 1 ≤ k ≤ N} are independently
simulated fromN2(0,Ση). The bandwidths h andw are obtained based on the criteria
mentioned above. In this case, C = [−1, 1]2 andG is the uniformmeasure on [−1, 1]2.
The choices of N/n are the same as in the previous case.

Both bias and RMSE of the estimators θ̂n = (θ̂n,1, θ̂n,2)
T and θ̃n = (θ̃1, θ̃2)

T are
presented in Table 2. It shows small estimation bias and reduced RMSE for increased
sample sizes. As noted in Proposition 1, in this linear setup, the asymptotic variances
of θ̂n and θ̃n are equivalent to each other. This fact is also reflected in this finite sample
study by observing that the RMSEs of the components of θ̂n are very similar to those
of the components of θ̃n for the different chosen values of N/n.

5.2 Test performance

Here we present the performance of amember of the proposed class of m.d. tests based
on ̂Tn and a member of the KS tests based on ˜Tn .
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Table 3 Empirical levels and powers of ̂Tn and ˜Tn tests for the nonlinear null model (5.1) with p = 1 = q

N/n = 4

(n, N ) (60, 240) (100, 400) (200, 800) (300, 1200) (400, 1600)

Model 0 0.043 0.042 0.048 0.045 0.047

Model 1 0.153 0.183 0.462 0.724 0.878

Model 2 0.113 0.196 0.438 0.680 0.866

Model 3 0.163 0.288 0.689 0.936 0.990

N/n = 1

(n, N ) (60, 60) (100, 100) (200, 200) (300, 300) (400, 400)

Model 0 0.043 0.045 0.052 0.044 0.048

Model 1 0.170 0.199 0.481 0.722 0.861

Model 2 0.130 0.201 0.437 0.680 0.870

Model 3 0.187 0.325 0.668 0.922 0.990

N/n = 1/4

(n, N ) (60, 15) (100, 25) (200, 50) (300, 75) (400, 100)

Model 0 0.062 0.054 0.059 0.055 0.053

Model 1 0.185 0.227 0.464 0.724 0.851

Model 2 0.146 0.217 0.464 0.672 0.856

Model 3 0.228 0.339 0.690 0.914 0.985
˜Tn

n 60 100 200 300 400

Model 0 0.074 0.060 0.044 0.043 0.055

Model 1 0.145 0.219 0.469 0.680 0.849

Model 2 0.144 0.230 0.474 0.705 0.902

Model 3 0.180 0.291 0.646 0.880 0.986

The case q = 1 = p. The finite sample performance of these tests is assessed for
the nonlinear model (5.1) as the null. Three different alternatives defined below are
chosen to obtain the empirical power of a member of the class of the proposed tests.

Model 0: Y = e−X + ε.

Model 1: Y = e−X − 0.2X2 + ε.

Model 2: Y = e−X + 0.2 sin(2X) + ε.

Model 3: Y = e−X I(X≤0.4) + e−0.4 I(X>0.4) + ε.

The entities G, K , fZ , η and ε are as in the case of q = 1 = p in Sect. 5.1.
The empirical levels under model 0 and the empirical powers under models 1, 2, 3

for both the proposed and the KS tests are shown in Table 3 with increasing sample
sizes. With the nominal level 0.05, the empirical level of the ̂Tn test is well controlled
for the larger sample sizes when N/n = 1, 4. For N/n = 1/4, the empirical level is
slightly inflated for small andmoderate sample sizes due to the limited validation data,
and it decreases toward 0.05 when the sample size increases. The empirical levels of
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Table 4 Empirical levels and powers of ̂Tn and ˜Tn tests under the linear null model with p = 2 = q

N/n = 4

(n, N ) (60, 240) (100, 400) (200, 800) (300, 1200) (400, 1600)

Model ∅ 0.045 0.038 0.042 0.050 0.048

Model I 0.205 0.470 0.865 0.968 0.996

Model II 0.066 0.129 0.303 0.519 0.686

Model III 0.222 0.488 0.901 0.984 0.997

N/n = 1

(n, N ) (60, 60) (100, 100) (200, 200) (300, 300) (400, 400)

Model ∅ 0.048 0.035 0.043 0.053 0.049

Model I 0.218 0.468 0.859 0.970 0.996

Model II 0.073 0.128 0.313 0.521 0.688

Model III 0.223 0.476 0.884 0.979 0.998

N/n = 1/4

(n, N ) (60, 15) (100, 25) (200, 50) (300, 75) (400, 100)

Model ∅ 0.060 0.047 0.044 0.056 0.045

Model I 0.234 0.497 0.883 0.975 0.996

Model II 0.086 0.159 0.347 0.558 0.716

Model III 0.242 0.522 0.867 0.971 0.995
˜Tn

n 60 100 200 300 400

Model ∅ 0.042 0.036 0.042 0.056 0.047

Model I 0.199 0.464 0.869 0.975 0.997

Model II 0.058 0.124 0.302 0.516 0.690

Model III 0.212 0.477 0.902 0.984 0.997

the test ̂Tn are very similar to those of the ˜Tn test for the chosen larger sample sizes,
n ≥ 200. This finding is consistent with the theoretical result that the asymptotic null
distribution of ̂Tn does not depend on the ratio N/n and is the same as that of ˜Tn .

We also find that the empirical powers of the ̂Tn test for all chosen alternatives are
very similar to the empirical powers of the ˜Tn test for all the three choices of N/n and
for moderate-to-large sample sizes. This finding is in some sense consistent with the
results in Sect. 4 that the asymptotic distribution of ̂Tn does not depend on the limit
of N/n for certain fixed and local alternatives.

The linear case q = 2 = p. In this case, the setup is the same as Sect. 5.1 for
p = 2. We investigate the empirical level of the proposed test under models defined
below. With θ0 = (0.5, 1)T and X = (X1, X2)

T ,

Model ∅ : Y = θT
0 X + ε,

Model I : Y = θT
0 X + 0.2X1X2 + ε,

Model II : Y = θT
0 X + 0.5 sin(2X1X2) + ε,

Model III : Y = θT
0 X I(θT

0 X≤0.5) + 0.5I(θT
0 X>0.5) + ε.
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The numerical findings are summarized in Table 4. In this linear case, it is observed
that the empirical levels of the proposed test are close to the nominal level 0.05 for
the larger chosen sample sizes and for all three choices of N/n. The empirical power
performance pattern is similar to that in the nonlinear case. Again, not surprisingly,
the empirical powers of the ̂Tn test are similar to those of the ˜Tn test for the larger
chosen sample sizes and all the three choices of N/n.
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