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Abstract
Some recent work on conditional formulation of multivariate Gaussian Markov
random fields is presented. The focus is on model constructions by compatible condi-
tionals and coregionalization. Special attention is given to multivariate generalizations
of univariate models. Beginning with univariate model constructions, a survey of key
approaches to formulating multivariate extensions is presented. Two challenges in the
formulation and implementation of multivariate models are highlighted: (1) entan-
glement of spatial and non-spatial components, and (2) enforcement for positivity
condition.Managing the twochallenges bydecomposition, separation, and constrained
parameterization is discussed. Also highlighted is the challenge of flexiblemodeling of
(conditional) cross-spatial dependencies and, in particular, asymmetric cross-spatial
dependencies. Interpretation of asymmetric cross-spatial dependencies is also dis-
cussed. A coregionalization framework which connects and unifies the various lines
of model development is presented. The framework enables a systematic develop-
ment of a broad range of models via linear and spatially varying coregionalization,
respectively, with extensions to locally adaptive models. Formulation of multivari-
ate models over variable-specific lattices is discussed. Selected models are illustrated
with examples of Bayesianmultivariate and spatiotemporal diseasemapping. Potential
applications of coregionalization models in imaging analysis, covariance modeling,
dimension reduction, and latent variable analysis are briefly mentioned.
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1 Introduction

Conditionally formulated Gaussian Markov random fields (GMRFs) and their multi-
variate generalizations have seen broad applications in image processing and analysis
(Kashyap and Chellappa 1983; Mardia 1988), ecology (Lichstein et al. 2002), envi-
ronmental and climate sciences (Daniels et al. 2006; Sain et al. 2011), mapping of
gene frequencies (Gelfand and Vounatsou 2003), human brain mapping (Brezger
et al. 2007), identification of genetic markers (Zhang et al. 2016), disease surveil-
lance (Lawson 2013), and disease epidemiology and mapping (Besag et al. 1991; Kim
et al. 2001; Jin et al. 2007), among others. The Markovian characterization of finite
systems of spatially interacting random variables, which facilitates modeling spatial
dependencies and enables local smoothing and borrowing information, is the primary
motivation for the use of these models.

For example, in the context of Bayesian multivariate disease mapping, condition-
ally formulated multivariate GMRFs (MGMRFs), commonly known as multivariate
conditional autoregressive (MCAR) models, or simply MCARs, have been developed
to model spatial risk interactions within and across diseases (Kim et al. 2001; Jin et al.
2007). They are typically used for local risk prediction and borrowing information
among related diseases or health outcomes, say, some are rare events while others
are more common occurrences (Jin et al. 2007; MacNab 2009). MCARs have been
formulated for spatiotemporal disease-risk smoothing in spatiotemporal disease map-
ping over geographic areas (Knorr-Held and Best 2000; MacNab and Gustafson 2007;
Ugarte et al. 2017) and for analysis of multivariate spatiotemporal environmental pol-
lutant monitoring data collected at fixed spatial locations and over time (Mardia and
Goodall 1993; Daniels et al. 2006). They have been developed to model multivariate
spatial dependencies among variables measured on regular grids (Sain et al. 2011).
MGMRFs are also used as random effects or latent components priors in multivariate
ecological regression models (Wakefield and Salway 2001; MacNab 2009), spatially
varying coefficients models (Banerjee et al. 2014), time-to-event models (Carlin and
Banerjee 2003), and spatial structural equation models (Liu et al. 2005; Congdon
2008a), to name a few.

Despite their wide-ranging applications, MGMRF models with simple cross-
covariance functions, and separable models in particular, have been the most
commonly used models in recent decades. The reasons for this are, perhaps, twofold.
First, there have been limited choices of available models, such as non-separable
models and those allowing for asymmetric cross-covariance functions. Second, the
implementation of non-separable models is often computationally demanding and
challenging, mainly due to the multi-dimensional nature of model constructions and
the estimation and inference for constrained matrices of unknown parameters.
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More recently, however, new and flexible MGMRF models have emerged. Efforts
have beenmade in tackling computational challenges, notably in connection with hier-
archical Bayesian analysis via Markov chain Monte Carlo (MCMC) simulation using
WinBUGS software (Jin et al. 2007; MacNab and Gustafson 2007; Greco and Triv-
isano 2009;Martinez-Beneito 2013; Botella-Rocamora et al. 2015;MacNab 2016a, b).
In particular, recent progress has been made in building flexible MGMRFs by con-
structing full conditionals (Sain and Cressie 2007; Sain et al. 2011) or by formulating
latent full conditionals within a linear coregionalization framework (Jin et al. 2007;
Greco and Trivisano 2009; MacNab 2016a, b).

This paper has three main objectives. The primary objective is to provide a survey
of the key MCAR literature and a synthesis of the different lines of MCAR develop-
ment, highlighting the challenges in formulation, implementation, and interpretation
of conditionally formulated MGMRFs. The second objective is to present a broad-
ened coregionalization framework for unified development of linear coregionalization
and spatially varying coregionalization models, with extensions to locally adaptive
models. The third objective is to discuss applications of MGMRFs in the context
of Bayesian disease mapping, using illustrative examples of multivariate and spa-
tiotemporal disease mapping. Potential applications of coregionalization MGMRFs
in imaging analysis; covariance modeling; dimension reduction; and latent variable,
component, and factor analysis are also briefly mentioned.

1.1 Some preliminaries

Wewill be concernedwith the formulation of latticemodels on finite lattices of integer-
labeled n sites with a predefined system of local neighborhoods representing the
neighbors of each site (Besag 1974; Besag et al. 1991). LetW be a n by n connectivity
matrix with elements wi i = 0, wik = 1 if the i th and kth sites are neighbors (denoted
k ∼ i hereafter) or wik = 0 otherwise. Let wi+ = ∑n

k=1 wik denote the number of
neighbors for the i th site. A lattice is named regular or irregular and “site” may refer
to a point or region. An nr by nc grid is a regular lattice. In disease mapping, “sites”
are often contiguous small geographical areas and they form an irregular lattice. The
“neighborhood” for each of the areas is usually comprised of its adjacent neighbors,
also named nearest-neighbors or first-order neighbors (see Besag 1974 for various
lattice-neighbor systems).

We focus on the formulation of MCARmodels for finite lattice systems of spatially
interacting multivariate Gaussian random variates {ζi j ,∀i, j}, where j = 1, 2, . . . , p
is the labeling for the p variables. Arranging these np random variates in an n by
p matrix ζ = [

ζi j
]
, and denoting the column vectors ζ . j = (ζ1 j , . . . , ζnj )

�, j =
1, 2, . . . , p, and the row vectors ζ i. = (ζi1, . . . , ζi p)

�, i = 1, 2, . . . , n, they represent
the variable and spatial domains, respectively. Denote vec(ζ�) = (ζ�

1., . . . , ζ
�
n.)

� and
vec(ζ ) = (ζ�

.1, . . . , ζ
�
.p)

�. Without essential loss of generality, we will be concerned
with zero-mean MGMRFs.

A conditionally formulated MGMRF has a fully specified precision matrix.
Throughout the paper, MCAR constructions are discussed to yield joint precision
matrices and expressed by vec(ζ�) ∼ MVN(0,Ωvec(ζ�)) or, equivalently, vec(ζ ) ∼
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MVN(0,Ωvec(ζ )), where Ωvec(ζ�) is a np by np block-matrix whose ikth block
Ω ik is a square matrix of p-dimension and Ωvec(ζ ) = [

Ω jl
]
is a np by np block-

matrix whose jlth block Ω jl is a square matrix of n-dimension. The matrix elements
in Ωvec(ζ�) are sparse and spatially structured: The diagonal matrix elements of
Ωvec(ζ�), Ω i i ,∀i , characterize non-spatial conditional dependencies between vari-
ables at co-locations; the nonzero off-diagonal matrix elements Ω ik �= 0, k ∼ i ,
imply spatial and cross-spatial conditional dependencies. The covariance matrix
Σvec(ζ�) = [Σ ik] = Ω−1

vec(ζ�)
is, in general, a dense matrix: Its p by p block-matrix

elements are covariance and cross-covariance matrix functions. These covariance and
cross-covariance matrix functions do not, in general, have analytically transparent
formulae. Throughout the paper, U > 0 indicates that a matrix U is positive definite.

1.2 Compatible conditionals: ideas, complexities, and challenges

We begin the discussion with univariate GMRFs as the simplest cases of MGMRFs.
Consider a CARmodel for n randomvariates ζ = (ζ1, ζ2, . . . , ζn)

�. At the heart of the
CAR formulation is the characterization of Markovian dependence and independence
through a set of compatible conditionals that imply conditional spatial dependence
of ζi on its “neighbors” {ζk, k ∼ i}, i = 1, 2, . . . , n. These conditionals, also named
full conditionals and denoted f (ζi |{ζk, k ∼ i}), are site-wise local models. They are
named compatible in the sense that, subject to highly restrictive consistency conditions
(Besag 1974; Cressie 1993), together they define an unique GMRF whose precision
matrix must be symmetric and positive definite. These are known as the symmetry
and positivity conditions. In spatial statistics applications, and in disease mapping in
particular, a common motivation for the use of a CAR model is to enable site-wise
predictions through locally structured conditional auto-regressions, known as spatial
smoothing.

GMRFs are formulated to imply neighbor-based conditional spatial autocorre-
lations and are also named spatial-interaction models (Besag 1974; Kashyap and
Chellappa 1983). The lattice-neighborhood representation of spatially interacting ran-
dom variates defines a conditional spatial autocorrelation structure over the Gaussian
field, which often has two unknown parameters, denotedGMRF(c, σ ) hereafter, where
c is a spatial interaction or dependence or smoothing parameter and σ is a non-spatial
scale parameter. Locally adaptive CARs that are parameterized by site-specific spatial
parameters c = (c1, . . . , cn) or site-specific scale parameters σ = (σ1, . . . , σn) have
been explored for locally adaptive spatial smoothing (MacNab et al. 2006; Brewer and
Nolan 2007; Reich and Hodges 2008) or for modeling locally structured heterogeneity
(Congdon 2008b).

Compatible conditionals are formulated to give rise to MGMRFs that character-
izemultivariate spatial dependencies, including cross-dependencies between variables
(Mardia 1988; Sain et al. 2011). There are two ways to formulating site-wise local
models that give rise to p-variate GMRFs. We can treat each of the ζ i.s as a p-variate
local component and formulate MCARs using p-variate conditionals f (ζ i.|{ζ k., k ∼
i}), i = 1, 2, . . . , n (Mardia 1988). Alternatively, we can consider each of the ζi j
elements as a site- and variable-wise local component and formulate MCARs using
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univariate conditionals f (ζi j |{ζk j , k ∼ i}, {ζkl , k ∼ i, l �= j}, {ζil , l �= j}), i =
1, 2, . . . , n, j = 1, 2, . . . , p (Sain et al. 2011). A p-variate GMRFmay be formulated
to have a single spatial parameter c that influences spatial and cross-spatial dependen-
cies or to have p variable-specific spatial parameters c = (c1, c2, . . . , cp) that allow
for more flexible characterization of multivariate spatial dependencies (Gelfand and
Vounatsou 2003; Carlin and Banerjee 2003; Jin et al. 2007; MacNab and Gustafson
2007; Martinez-Beneito 2013; Botella-Rocamora et al. 2015).

In recent MCAR literature, flexible p-variate CARs are usually parameterized by
two p by p matrices C and Σ (or Γ ) of spatial and non-spatial parameters, where
Σ > 0 (or Γ > 0) is a non-spatial covariance (or precision) matrix that postulates
non-spatial dependencies between variables at co-locations (Sain and Cressie 2007;
Jin et al. 2007; Greco and Trivisano 2009; MacNab 2016a, b). These parameters are
constrained to ensure that the MGMRF precision matrix is symmetric and positive
definite. For example, constraints onMGMRF parameters may be discussed under the
so-called diagonal dominance criterion, which guarantees the positivity condition if
theMGMRF precision matrix is strictly diagonal dominant (Feingold and Varga 1962;
Berman and Plemmons 1994; Sun et al. 1999; Rue and Held 2005; Sain and Cressie
2007; Greco and Trivisano 2009).

Univariate CARs have been built within a general framework developed in Besag
(1974). Multivariate CARs, on the other hand, have been built in various ways. A gen-
eral framework for formulationofmultivariateGMRFsusingmultivariate conditionals
is developed in Mardia (1988), with application to image processing. While separable
models are readily derived within this framework (Mardia and Goodall 1993; Gelfand
and Vounatsou 2003; Carlin and Banerjee 2004; Daniels et al. 2006; MacNab and
Gustafson 2007), formulation and implementation of non-separable MGMRFs are
less straightforward (Gelfand and Vounatsou 2003; Sain and Cressie 2007), primarily
due to complex entanglement of spatial and non-spatial parameters, where enforcing
the positivity condition may be computationally complex ( Sain and Cressie 2007,
also see Sect. 3.3).

Alternatively, Sain et al. (2011) propose the formulation of MGMRFs using uni-
variate conditionals. The proposal is a general framework for flexible modeling of
multivariate spatial dependencies in terms of conditional spatial, cross-spatial, and
site-wise non-spatial dependencies. The Sain et al. (2011) work was motivated and
illustrated by a spatial analysis of multivariate output of regional climate computer
models. The illustrative example concerned with modeling bivariate spatial dependen-
cies of projected changes in temperature and precipitation on a spatial grid over the
western USA. In the context of disease mapping, a similar bivariate CAR formulated
using univariate conditionals, named a twofold CAR, was proposed by Kim et al.
(2001).

In the present paper, we highlight twomain challenges in formulation, implementa-
tion, and interpretation ofMGMRFs by compatible conditionals: (1) the entanglement
of spatial and non-spatial components, and (2) the enforcement for positivity condi-
tion. We show that even though the two challenges can be managed within the Mardia
or Sain et al. framework in some situations, they become more manageable by for-
mulating and implementing equivalent MGMRFs within a unified coregionalization
framework presented herein. A common limitation of the two frameworks is that they
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do not readily facilitate non-separable MCAR generalization of all available univari-
ate CARs. A notable example is the Leroux et al. CAR, where entanglement of its
spatial and non-spatial parameters prevents a non-separable MCAR generalization
within these frameworks. A solution to this limitation has recently been found within
the linear coregionalization framework (MacNab 2016a, also see Sect. 4).

1.3 Coregionalization: a unified framework

In multivariate geostatistics, the so-called linear model of coregionalization is a pop-
ular approach for building valid covariance models and cross-covariance functions
(Wackernagel 2003; Schmidt and Gelfand 2003; Gelfand et al. 2004; Zhang 2007;
Genton and Kleiber 2015). The method concerns with representing a p-variate field
as a linear combination of q independent univariate fields, usually q < p for dimen-
sion reduction. Gelfand et al. (2004) develop non-stationary multivariate Gaussian
process models through spatially varying coregionalization (SVC) for q = p.

In the context of Bayesian multivariate disease mapping, Jin et al. (2007) propose
formulation of p-variate CARs by linear combination of p independent or correlated
latent variables. They develop a linear coregionalization MCAR construction with
multivariate latent components modeled by univariate conditionals that are parame-
terized by a symmetric matrix C of spatial parameters. Greco and Trivisano (2009)
extend the Jin et al. MpCAR to allow for an asymmetric matrix C of spatial param-
eters. More recently, MacNab (2016a, b) presents a general linear coregionalization
framework for the systematic development of coregionalization MCARs (cMCAR) as
multivariate generalizations of univariate CARs. Linear combination of independent
latent fields, also named the basic coregionalization framework, was shown to readily
facilitate multivariate generalizations of any univariate CAR and CAR-related spatial
models such as the Leroux et al. CAR (Leroux et al. 1999), the well-known Besag,
York, and Mollie (BYM) model (Besag et al. 1991) or the modified BYM model
(MacNab 2011).

A noteworthy benefit of formulating MCARs via linear coregionalization is that
the spatial and non-spatial components representing coregionalization MGMRFs can
be formulated separately, flexible modeling of spatial and cross-spatial dependencies
among multivariate latent components is made possible (MacNab 2016a). Separate
considerations of the spatial and non-spatial components also enable more flexible
modeling of the non-spatial component in the coregionalization models. For example,
order-dependent and order-free models may be formulated (MacNab 2016b). Linear
coregionalization MCARs may enjoy some computational advantages (Martinez-
Beneito 2013; Botella-Rocamora et al. 2015; MacNab 2016a, b), which will become
more clear in the forthcoming discussion.

In the present paper, we connect linear coregionalization with the Sain et al. and
Mardia frameworks and present a broadened coregionalization framework for flexi-
ble, inclusive and unified development of coregionalization MGMRFs via linear or
spatially varying coregionalization, with extensions to locally adaptive models. We
note that this extended framework opens new possibilities for alternative ways of for-
mulating and implementing multivariate spatial models. We show that entanglement
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of spatial and non-spatial parameters is still present in the coregionalization models.
However, the impact of the “entanglement” issue on the spatially varying coregion-
alization model characterization is notably different, potentially making these a more
favorable class of covariance models in some applications.

1.4 Several related approaches to formulatingMCARs

In multivariate disease mapping literature, multivariate extensions of univariate CARs
are proposed under the shared component model framework (Knorr-Held and Best
2001; Held et al. 2005; MacNab 2010). This class of models may be formulated for
multivariate spatial smoothing and for latent component analysis. We show in the
present paper that a shared component model can have its linear coregionalization
recast with a specific parameterization of the coregionalization coefficients matrix.

A MCAR can also be built as a product of a sequence of hierarchically formulated
conditionals over the variable domain ζ = (ζ .1, ζ .2, . . . , ζ .p) (Royle and Berliner
1999):

f (ζ .1, ζ .2, . . . , ζ .p) = f (ζ .1|ζ .2, . . . , ζ .p) f (ζ .2|ζ .3, . . . , ζ .p) . . . f (ζ .p).

For example, Jin et al. (2005) propose a hierarchically formulated multivariate CAR
construction, named a generalized hierarchical MCAR or GMCAR. The GMCAR
construction imposes a priori order among the variables, leading to order-dependent
MCARs (Jin et al. 2007). MacNab (2016b) briefly discusses the connections between
the Royle and Berliner (1999) approach and the linear coregionalization approach for
MCAR construction.

Another approach to formulating MCARs is the Martinez-Beneito (2013) frame-
work for building covariancemodels via matrix-variate theory. Working directly with
the random variates matrix ζ = (ζi j ) in the context of Bayesian multivariate dis-
ease mapping, Martinez-Beneito (2013) and Botella-Rocamora et al. (2015) propose
MCAR models and discuss equivalents to Jin et al. (2007) MCARs. In the present
paper, connections between the Martinez-Beneito (2013) framework and the core-
gionalization framework are discussed and established (in Sect. 5).

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) propose MCARs
built via decomposition of a CAR precision matrix, say, via Cholesky (Carlin and
Banerjee 2003) or spectral (Gelfand andVounatsou 2003) decomposition of a variable-
specific proper CAR precision matrix. We further show in the present paper that the
broadened coregionalization framework contains the Carlin and Banerjee and Gelfand
and Vounatsou MCAR models as spatially varying coregionalization recasts.

1.5 Multivariate GMRFs as prior models and estimation of the prior parameters

MGMRFs are most commonly used as priors in Bayesian hierarchical models for
modeling multivariate spatial or spatiotemporal lattice data (Cressie and Wikle 2011;
Sain et al. 2011). In particular, univariate and multivariate GMRFs have been used
as random effects priors in generalized linear mixed models (GLMM), with posterior

123



504 Y. C. MacNab

inference implemented through MCMC simulations, say, using the Gibbs sampler.
Some of the MCMC implementations have been coded in R (the R Development
Core Team 2007) or C (Kim et al. 2001; Gelfand and Vounatsou 2003; Sain and
Cressie 2007; Jin et al. 2007; Sain et al. 2011). A number of MGMRFs have been
developed in the context of Bayesian multivariate or spatiotemporal disease mapping,
with illustrative examples implemented in the freely available software WinBUGS
(Spiegelhalter et al. 2007; MacNab and Gustafson 2007; Greco and Trivisano 2009;
Martinez-Beneito 2013; Botella-Rocamora et al. 2015; MacNab 2016a, b).

Estimation of the spatial and non-spatial parameter matrices C and Σ in MGM-
RFs is a major challenge. Three solutions have been recently explored for Bayesian
estimation of C . Jin et al. (2007) propose priors for the spectral decomposition of a
symmetric matrix C. Greco and Trivisano (2009) andMacNab (2016a) propose priors
for the singular value decomposition of an asymmetric matrix C . Both approaches
ensure that all eigenvalues of the MGMRF precision matrix are strictly positive. Rec-
ognizing the possibility that the constrained reparameterization via spectral or singular
value decomposition could put excessive a priori constraints on the elements of C,
leading to shrinkage estimation of C toward a diagonal matrix, MacNab (2016b) also
propose alternative options of hierarchical priors (HPs) for the elements of a sym-
metric or an asymmetric matrix C. Bayesian estimation of the covariance matrix Σ

is usually carried out by placing priors on a variance-correlation decomposition of Σ

(Barnard et al. 2000; Jin et al. 2007; Martinez-Beneito 2013; MacNab 2016a, b) or
on its symmetric square root factorization (MacNab 2016b), or by placing a Wishart
prior on the precision matrix Γ = Σ−1 (MacNab and Gustafson 2007).

In the CAR literature, the most well-known model is the improper intrinsic CAR
(iCAR), which has a singular precision matrix of rank n−1 (Besag et al. 1991; Besag
and Kooperberg 1995). In Bayesian disease mapping or ecological spatial regression
analysis, for example, the iCAR model is commonly used as a random effects prior in
GLMMs. Let ζ = (ζ1, . . . , ζn)

� be the iCAR modeled random effects in a GLMM.
If unconstrained, the ζ confounds with the model’s intercept, leading to an identifi-
cation problem. This well-known problem is often handled by placing a sum-to-zero
consistency and identification constraint

∑n
i=1 ζi = 0 (Besag et al. 1991), or, more

recently, by reparameterizing iCAR such that the resulting random effects are orthog-
onal to the model’s intercept (Reich et al. 2006; Hodges and Reich 2010; Goicoa et al.
2018). Goicoa et al. (2018) uncovered that a similar identification issue exists for the
Leroux et al. CARmodel (Leroux et al. 1999), whose precision matrix shares the same
eigenvectors with the iCAR precision matrix but has different eigenvalues. They sug-
gest a similar Leroux et al. CAR reparameterization for orthogonal random effects. In
the present paper, we show that the iCAR and Leroux et al. CAR reparameterizations
lead to covariance models that can be derived via coregionalization reconstructions.
We also briefly mention analogous multivariate coregionalization reconstructions as
multivariate priors for orthogonal random effects in multivariate spatial or spatiotem-
poral GLMMs.
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1.6 Subsequent sections

Section 2 provides an overview of the Besag framework (Besag 1974). Two CAR
constructions are presented; they subsume the major CAR models commonly seen in
the literature.

Section 3 comprises surveys of building MCAR models by univariate conditionals
and multivariate conditionals, respectively. The Sain et al. (2011) and Mardia (1988)
MCARframeworks are discussed for formulation ofMGMRFsvia (1) characterization
of spatial, cross-spatial, and non-spatial conditional dependencies, and (2) decompo-
sition of joint precision and covariance matrices. The latter is also discussed as a
separation strategy that facilitates constrained parameterization for valid models and
for statistical computation. The notions of separation and separability are discussed.
The interpretations of MGMRF precision and covariance matrices, and, in particular,
cross-spatial dependencies, are discussed.

Section 4 presents a coregionalization framework for building linear and spa-
tially varying coregionalization models, with locally adaptive extensions. We also
discuss coregionalization recasting and reconstructions of CAR models and priors
for orthogonal random effects. The formulation of MGMRFs over component-
specific lattice-neighbor schemes, as well as over different lattices, is discussed.
The Martinez-Beneito framework is briefly outlined in Sect. 5, which highlights
the connections between the Martinez-Beneito framework and the coregionalization
framework.

Estimation of constrained spatial and non-spatial parameters inMGMRFs is briefly
reviewed in Sect. 6. Multivariate GMRFs as prior models in Bayesian hierarchical
modeling are discussed in Sect. 7. Bayesian computation via MCMC simulation is
briefly discussed. Illustrative examples of Bayesian multivariate and spatiotemporal
disease mapping are presented in Sect. 8.We end the paper with a summary discussion
in Sect. 9.

2 Univariate CARs

A general CAR framework for a lattice-neighborhood system of zero-mean random
variates ζ = (ζ1, ζ2, . . . , ζn)

� is defined by a set of site-specific univariate auto-
Gaussian conditionals f (ζi |ζ−i ) = f (ζi |{ζk : k ∼ i}) (Besag 1974):

E(ζi |ζ−i ) =
n∑

k=1

βikζkwik =
∑

k∼i

βikζk, Prec(ζi |ζ−i ) = τi , i = 1, . . . , n, (1)

which yield a family of GMRFs with the following joint precision and covariance
matrices:

Ωζ = τ (In − β), Σζ = (In − β)−1σ 2, (2)
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provided that τβ = β�τ (for the symmetry condition) and τ (In − β) > 0 (for the
positivity condition), where τ = diag(τ1, . . . , τn), τi = σ−2

i , σ = diag(σ1, . . . , σn),
β = [βik], βi i = 0, βik �= 0, k ∼ i and βik = 0 otherwise.

Several important facts implied by the CAR framework should be noted. The
conditional auto-regressions in (1) postulate conditional spatial dependence of ζi on
{ζk : k ∼ i}, for i = 1, 2, . . . , n. The CAR coefficients, a set of nonzero β-coefficients
{βk, k ∼ i} that characterize and control for conditional spatial dependencies, are often
functions of spatial dependence parameter(s). The site-specific conditional variance
σ 2
i is the variance of predicting ζi given {ζk : k ∼ i}, for i = 1, 2, . . . , n. In other

words, the matrix β (or In −β)) and τ characterize the GMRF spatial and non-spatial
components, respectively. Entanglement of spatial and non-spatial components can
be present even in univariate GMRFs. Nevertheless, compatible conditionals are typ-
ically formulated to enable a variance-correlation decomposition (Barnard 2000) and
separation of the spatial and non-spatial components with respect to the joint precision
matrix, as expressed by (2) (discussed in Sect. 3.2).

For example, let σ 2
i = σ 2m−1

i and βik = cm−1
i wik in (1), where themi s are known

scaling factors. One can derive a CAR construction yielding precision matrix

Ωζ (c, σ ) = σ−2(Dm − cW), (3)

where Dm = diag(m1,m2, . . . ,mn), provided that (Dm − cW) > 0. Expression
(3) represents a variance-correlation decomposition and the separation of spatial and
non-spatial parameters such that the positivity condition is guaranteed by placing a
constraint on c, independent of σ :

c ∈ (cmin, cmax), (4)

where cmin and cmax are the reciprocals of the minimum and maximum eigenvalues of
W̃ = D−1/2

m WD−1/2
m (Sun et al. 1999). Constraint (4) is a sufficient and necessary

condition to ensure that the eigenvalues of (Dm − cW) are strictly positive, which is
a sufficient and necessary condition for (Dm − cW) > 0 (Sun et al. 1999).

This construction contains threewell-knownCARs commonly seen in the literature:
(1) the basic CAR or bCAR, when mi = 1, (2) the proper CAR or pCAR, when
mi = wi+, and (3) the previously mentioned intrinsic CAR or iCAR, when c = 1 and
mi = wi+. The bCAR is commonly used to model data on a regular grid (Oliveira
2012; Sain et al. 2011). The latter two are popular for hierarchical modeling of spatial
data on irregular lattices, say, in the context of small area diseasemapping (see Lawson
2013 for a recent review). A discussion of iCAR reparameterization, as previously
mentioned, is given in Sect. 4.4.

Consider another CAR construction by letting σ 2
i = σ 2(1 − c + cmi )

−1 and
βik = c (1 − c + cmi )

−1wik in (1), which leads to a joint precision matrix:

Ωζ (c, σ ) = σ−2 [c(Dm − W) + (1 − c) In] , c ∈ (0, 1). (5)

In the present paper, (5) is named the LCAR construction: It contains the Leroux et
al. CAR when mi = wi+ (Leroux et al. 1999). Entanglement of the spatial and non-
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spatial components is readily seen from the LCAR conditionals and from expression
(5): The site-specific conditional variances are functions of both the spatial and scale
parameters. The Leroux et al. CAR precision matrix is a weighted sum of the iCAR
precision matrix and a precision matrix of a Gaussian field of IID components.

The constructions (3) and (5) subsume the CAR models commonly discussed in
the literature (Lee 2011; MacNab 2011, 2016a). In disease mapping, for example, the
spatial parameter in a CAR (3) or (5) model is positive or assumed positive, which
leads to positive conditional spatial autocorrelations that imply a tendency of spatial
(neighborhood) similarity over space. The β-coefficients in the CAR (3) construction,
say, the bCAR or pCAR model, can be both positive and negative (Sun et al. 1999;
MacNab 2011, 2016a). However, the pCARmodel is often used as a spatial smoother;
this is done by containing c ∈ (0, 1) to assume positive conditional autoregressive
correlations. These CAR models may have limited scope and flexibility to model
complex spatial dependencies and spatial heterogeneities. Indeed, the literature on
CAR models explores adaptive iCAR models that allow for site-specific conditional
precision functions (Brewer and Nolan 2007; Reich and Hodges 2008) or adaptive
LCAR models with site-specific spatial parameters c = (c1, . . . , cn) (MacNab et al.
2006; Congdon 2008b).

For illustrative purpose, we consider two adaptive CAR constructions in the present
paper. Let τ 2i = miσ

−2
i and βik = c1/2i c1/2k m−1

i σiσ
−1
k wik in (1), we consider an

adaptive generalization of the CAR (3) formulation, which gives rise to a GMRF
construction with the following precision matrix:

Ω
adaptive

ζ (c, σ ) = diag(σ−1)(Dm − diag(c)1/2Wdiag(c)1/2)diag(σ−1), (6)

provided that c j ∈ (0, cmax), c = (c1, . . . , cn), σ = (σ1, . . . , σn). Notice that the
β-coefficients in the adaptive CAR conditionals are functions of spatial and scale
parameters.

In addition,we consider an adaptive generalization of the construction (5) by letting,
in (1), τi = (1−ci +cimi )σ

−2 and βik = c1/2i c1/2k (1−ci +cimi )
−1σiσ

−1
k wik , which

leads to the following joint precision matrix:

Ω
adaptive

ζ (c, σ ) = σ−1
[
diag(c)1/2(Dm − W)diag(c)1/2 + In − diag(c)

]
σ−1. (7)

The adaptive constructions (6) and (7) differ from the previously mentioned adap-
tive iCAR and LCAR models in two noteworthy ways. First, they are adaptive CAR
constructions that reduce to their simpler adaptive or non-adaptive counterparts when
ci = c and/or σi = σ . In addition, multivariate generalizations of these adaptive
CAR constructions can be readily formulated (see Sects. 3 and 4 for examples). These
adaptive models, perhaps with explanatory covariates, may allow for more flexible
characterization of site-varying spatial interactions or more flexible spatial smoothing.
These adaptive constructions may be particularly useful when explanatory covariates
are available to model the site-varying spatial and/or scale parameters, say, in the
context of joint mean and covariance (or inverse covariance) modeling in the spirit of
the mean-covariance modeling discussed in the literature of mixed effects models for
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longitudinal data (e.g., Pourahmadi 1999; Pan and MacKenzie 2003, 2007). Cong-
don (2008b) provides an example where explanatory covariates are used to model the
site-varying spatial parameters in a locally adaptive LCAR model.

3 Multivariate CARs defined by compatible conditionals

3.1 Multivariate CARs defined by univariate conditionals

The Sain et al. (2011) framework defines MCARs by univariate conditionals:

E(ζi j |ζ−i j )=
∑

k∼i

βi jk jζk j +
∑

k∼i, l �= j

βi jklζkl +
∑

l �= j

βi j ilζil , Prec(ζi j |ζ−i j )=σ−2
i j ,

(8)

which, under regularity conditions, lead to a family of MGMRFs with a preci-
sion matrix Ω = σ−2 (Inp − Block(β ik)), where β iks are p × p matrices, σ =
diag(σ11, . . . , σ1p, . . . , σn1, . . . , σnp). The Sain et al. framework is a direct extension
of theBesagCARframework. The conditional auto-regressionβ-coefficients postulate
conditional spatial and cross-spatial dependencies in the first and second summations,
respectively, and conditional dependencies between variables at co-locations in the
third summation (Sain et al. 2011). The conditional variance σ 2

i j is the variance of
predicting ζi j given ({ζkl , k �= i, l �= j}) for i = 1, 2, . . . , n, j = 1, 2, . . . , p. The
Sain et al. family of MCARs is denoted MCARSain et al. UC hereafter, where “UC” stands
for univariate conditionals.

Following the Sain et al. (2011) proposal, a multivariate generalization of the uni-
variateCARconstruction (3) can be formulated by letting, in (8),σ 2

i j = m−1
i σ 2

j ,βi j il =
ρc
jl σ jσ

−1
l m−1

i , βi jkl = c jl σ jσ
−1
l m−1

i wik k > i, βi jkl = cl j σ jσ
−1
l m−1

i wik k < i ,
which give rise to a MGMRF construction with the following precision matrix:

Ω
MCARSain et al. UC

vec (ζ�)
(C, ρc, σ ) = (In ⊗ σ−1)S(ρc,C)(In ⊗ σ−1), (9)

provided that S(ρc,C) > 0, where

a) C is the p by pmatrix of spatial parameters mentioned earlier, S(ρc,C) = (Dm ⊗
I p − In ⊗ ρc − (WU ⊗ C + W�

U ⊗ C�)), WU is the upper triangular part of W
(Greco and Trivisano 2009), and

WU ⊗ C + W�
U ⊗ C� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Cw12 · · · Cw1n

C�w21 0 · · · Cw2n
·

·
·

C�wn1 C�wn2 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b) σ = diag(σ1, . . . , σp) are scale parameters, and,
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c) ρc =
[
ρc
jl

]
is a p by p matrix with elements ρc

j j = 0, ρc
jl ∈ (−1, 1), j �= l,

ρc
jl = ρc

l j , they are the co-located between-variable partial correlation parameters.

By letting mi = 1 in (9), one can derive the Sain et al. (2011) MCAR model,
which is a multivariate generalization of the bCAR (MacNab 2016a) and is denoted
MbCARSain et al. UC hereafter. In addition, in (8) the conditional auto-regressions have a
total of p∗wi++ p−1 terms in the three summations. Letmi = p∗wi++ p−1 in (9)
we name the model p-fold CAR, also denoted MCARp-fold hereafter, for it represents
a multivariate generalization of the twofold CAR proposed in Kim et al. (2001).

One can readily derive locally adaptive extensions of theMCAR construction (9) by
allowing for site-varying variable-specific scale parametersσi j s, perhapswith different
choices of scaling factors mi j s. Specific MCARs may be built by placing a structural
assumption on the partial correlation matrix ρc, for example, in a spatiotemporal
model with the time dimension modeled by an autoregressive or random walk process
(see Sect. 8 for illustrative examples). Furthermore, this framework enables a broader
conceptualization of MGMRFs defined over different lattices (Sain et al. 2011, to be
discussed in Sect. 4.5).

It should be noted that c jl �= cl j implies asymmetry of conditional cross-spatial
dependencies in relation to the two variables and to the labeling of the neighborhood
sites, say, those in the lower and upper triangular part of the connectivity matrix
W , respectively. To further explain, and without loss of generality, let us consider
the bivariate bCAR, a model discussed in Sain et al. (2011). The conditional spatial
and cross-spatial dependencies characterized in the model may be illustrated via the
following conditional expectations:

E(ζi1|ζ−i1) =
∑

k∼i

c11ζk1 +
∑

k∼i, k<i

c12

(
σ1

σ2

)

ζk2 +
∑

k∼i, k>i

c21

(
σ2

σ1

)

ζk2 + ρc
12

(
σ1

σ2

)

ζi2,

(10)

E(ζi2|ζ−i2) =
∑

k∼i

c22ζk2 +
∑

k∼i, k<i

c21

(
σ2

σ1

)

ζk1 +
∑

k∼i, k>i

c12

(
σ1

σ2

)

ζk1 + ρc
21

(
σ2

σ1

)

ζi1.

(11)

Notice that both c12 and c21 are in (10) and (11), respectively. In otherwords, the spatial
parameters c jl and cl j together characterize the conditional cross-spatial dependencies
of the j th variable on the lth variable and vice versa. As such, difference between c jl
and cl j should be interpreted with caution. For example, evidence of c jl > cl j does
not necessarily suggest evidence that the conditional spatial dependency of the j th
variable on the lth variable is higher than that of the lth variable on the j th variable, or
vice versa. In addition, the asymmetric cross-dependencies are not label-invariant with
respect to the labeling of lattice sites (MacNab 2016a, b). In otherwords, changes to the
site-labeling may lead to changes in the estimates of {c jl , j, l = 1, 2, . . . , p, j �= l, }.

Expressions (10) and (11) also show that the β-coefficients in MCAR (9) condi-
tionals are functions of the spatial and scale parameters, an “entanglement” issue to be
further discussed in Sect. 3.2. In addition, within the Sain et al. framework, multivari-
ate generalization to the LCAR construction is not readily available. The main reason
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seems to be the “entanglement” issue; recall that the LCAR site-specific conditional
variances are functions of both the scale and spatial parameters.

3.2 Separation, separation strategy, and separability

Separation and separation strategy are commonly discussed in the covariance mod-
eling and estimation literature (see Pourahmadi (2011) for a recent review). For
example, Barnard et al. (2000) propose a well-known strategy for modeling a covari-
ance matrix in terms of its standard deviations and correlations. The basic idea is to
decompose a covariance matrix, say, Σ , into a product of its “variance” component,
the standard deviation matrix S, and its “dependence” component, the correlation
matrix R: Σ = SRS, the well-known variance-correlation decomposition (Pourah-
madi 2011). Barnard et al. call this decomposition a separation strategy because the
decomposition is a separation of the standard deviation and correlation matrices. In
the context of Bayesian estimation ofΣ , for example, such separation enabled Barnard
et al. to consider prior specification p(S, R) = p(S)p(R|S), or to assume that S and
R are independent and consider their prior specifications separately.

The Sain et al. MCAR construction (9), as well as the CAR and adaptive CAR
constructions discussed in Sect. 2, represent a variance-correlation decomposition.
This decomposition is also a separation strategy of Barnard et al. (2000). We call
(9) a Type I decomposition hereafter. Notice that, in MCAR (9) construction, the
S(ρc,C) = Dm ⊗ I p − In ⊗ ρc − (WU ⊗ C + W�

U ⊗ C�) is expressed by additive
sub-components of conditional spatial, cross-spatial, and non-spatial dependencies.
As a result, constraints may be considered for C , independent of the non-spatial
parameters (σ and those in ρc), to ensure S(ρc,C) > 0 for valid models (also see
Sect. 6). Bayesian estimation of these parameters may be implemented by placing
separate priors on the spatial parameters in C , the partial correlation parameters in ρc,
and the scale parameters σ .

In the present paper, we also discuss proposals of decomposition and separation
(or separation strategy) as a means to manage the “entanglement” and “enforcement”
challenges. We show that a separation strategy may aim for a separation of spatial and
non-spatial parameters. Consequently, the positivity condition may be more readily
enforced by placing constraints on the spatial parameters, independent of the non-
spatial ones. Such separation is also discussed to facilitate Bayesian estimation of the
spatial and non-spatial parameters.

Inmultivariate spatial and spatiotemporal statistics, and inmultivariate geostatistics
in particular, the concept of separability is typically discussed in relation to covariance
matrix and cross-covariance functions (Gelfand et al. 2004; Genton 2007; Genton and
Kleiber 2015). For modeling multivariate or spatial-temporal processes, for example,
a multivariate or spatiotemporal covariance model is said to be separable if the covari-
ance matrix can be written as a tensor product of a spatial covariance matrix and a
non-spatial covariance matrix. In other words, a separable model separates spatial
dependence from non-spatial dependence. This notion of separability is also part of
the matrix-variate distribution theory for covariance models and is often discussed in
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the context of analysis of matrix-valued or multi-way data (Dawid 1981; Hoff 2011;
Martinez-Beneito 2013; Martinez-Beneito et al. 2017).

The Sain et al. (2011) framework does not contain separable models in its family
of MGMRFs. However, separable MGMRFs form an important class of multivariate
modelswithmany advantages. For example, they are readily available for all univariate
GMRFs, readily interpretable, andoften easy to implement.Adistinct feature of a sepa-
rable p-variate GMRF is that a precision/covariance matrix of np-dimension is broken
down into two precision/covariance matrices of n- and p-dimension. A separable
model is often noted for its computational advantages, say, as a more stable and parsi-
monious alternative to its non-separable counterparts (Hoff 2011). Some advantages
of separable models are discussed in Brown et al. (1994), Sun et al. (1998), Banerjee
et al. (2014), Conti and O’Hagan (2010) and Pourmohamad and Lee (2016).

Even though separability concerns with separation of the spatial and non-spatial
associations that are characterized by theMGMRF precision and covariance matrices,
the separation does not disentagle the spatial and non-spatial components nor undo
the “entanglement” impact on the MGMRF characterization (see Sects. 3.3 and 3.4).
Nevertheless, a separable model is often noted for its computational advantages, say,
as a stable and parsimonious alternative to its non-separable counterparts (Hoff 2011).

3.3 Multivariate CARs defined bymultivariate conditionals

The Mardia (1988) framework represents a family of MGMRFs vec(ζ�) ∼
MVN (0,Ωvec (ζ�)) defined by the following full conditionals

E(ζ i.|ζ−i.) =
n∑

k=1

wikβ ikζ k. =
∑

k:k∼i

β ikζ k., Prec(ζ i.|ζ−i.) = Γ i , (12)

provided that Γ iβ ik = β�
ki Γ k (for symmetry) and Ωvec (ζ�) = T (Inp − β) > 0

(for positivity), T = Bdiag(Γ 1, . . . ,Γ n) and β = Block(β ik). The Mardia fam-
ily of MCARs is denoted MCARMC hereafter, where “MC” stands for multivariate
conditionals.

The MCAR β-coefficients in (12) postulate conditional spatial and cross-spatial
dependencies; conditional dependencies between variables at co-locations are often
postulated by letting Γ i = miΓ , where Γ is a p by p precision matrix, Γ = Σ−1

(MacNab and Gustafson 2007), or Γ i = miΣ
−1 (Gelfand and Vounatsou 2003; Sain

and Cressie 2007). Conditional spatial and cross-spatial dependencies are induced and
defined by Tβ.

Within this framework, any univariate CAR has its separable MCAR readily avail-
able, say, Ωvec (ζ�)(Ωs,Σ) = Ωs ⊗ Γ , where Ωs is a CAR precision matrix. For
example, by letting, in (12),

Γ i = miΓ , β ik = cm−1
i wik I p,

one can derive a multivariate generalization of the CAR (3) construction with the
following precision and covariance matrices, respectively:
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Ωvec (ζ�)(c,Γ ) = (Dm − cW) ⊗ Γ , Σvec (ζ�)(c,Σ) = (Dm − cW)−1 ⊗ Σ .

(13)

In addition, letting c = 1 and mi = wi+ in (13) leads to the well-known improper
intrinsic MCAR with a singular precision matrix ΩMiCAR

vec (ζ�)
(Γ ) = (Dw − W) ⊗ Γ ;

also see MacNab and Gustafson (2007) for a separable multivariate construction of
the LCAR.

TheMardia framework contains non-separablemodelswith variable-specific spatial
parameters or with the previously mentioned asymmetric matrix C of spatial parame-
ters. In Sain and Cressie (2007), for example, a non-separableMGMRF parameterized
by C and Σ is formulated through a square root factorization of the covariance matrix
Σ = Σ1/2Σ1/2, where Σ1/2 = (Σ1/2)�.

Consider a multivariate generalization of the CAR (3) construction. If we were to
let, in (12),

Γ i = miΓ , β ik = m−1
i wikC,

the symmetry condition would lead to an inconvenient constraint CΓ = Γ C�. But,
if we let B = CΓ and allow B be asymmetric (CΓ �= Γ C� even when C is
a diagonal matrix), a non-separable MCAR construction can be built to have the
following precision matrix:

Ω
MCARMC

vec (ζ�)
(C,Γ ) = Dm ⊗ Γ − (WU ⊗ B + W�

U ⊗ B�), (14)

provided that (14) is positive definite. There is more than one way to formu-
late the p-variate full conditionals that give rise to (14); the Sain and Cressie
(2007) proposal is one, which led to (14) with B = CΓ , say, by letting in (12),
β ik = m−1

i Σ1/2ΛΓ 1/2wik , βki = m−1
i Σ1/2Λ�Γ 1/2wik , i < k, Σ1/2Σ1/2 = Σ ,

Γ 1/2 = Σ−1/2, Λ = Γ 1/2CΣ1/2. To enforce the positivity condition on (14) by
diagonal dominance restriction, complex constraints on B = CΓ orΛ = Γ 1/2CΣ1/2

are required. This entanglement of the spatial and non-spatial parameters leads to
complex parameter constraints and considerable computational complexity, as noted
in Sain and Cressie (2007).

Alternatively, if we let B = Γ 1/2CΓ 1/2 in (14), that is, let in (12) Γ i = miΓ , and,
for i < k,

β ik = m−1
i wikΣ

1/2CΓ 1/2, βki = m−1
k wikΣ

1/2C�Γ 1/2,

we can derive a MGMRF construction with precision and covariance matrices:

Ω
MCARMC

vec (ζ�)
(C,Γ 1/2) = (In ⊗ Γ 1/2)S(C)(In ⊗ Γ 1/2), and

Σ
MCARMC

vec (ζ�)
(C,Σ1/2) = (In ⊗ Σ1/2)S(C)−1(In ⊗ Σ1/2), (15)

provided that S(C) > 0, where S(C) = Dm ⊗ I p − (WU ⊗ C + W�
U ⊗ C�).
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An appeal of the MCAR (15) construction is that the joint precision and covariance
matrix is a decomposition that separates spatial parameters in S(C) from non-spatial
parameters in Σ1/2. Consequently, the positivity condition for a valid MGMRF, i.e.,
S(C) > 0, may be enforced by placing constraint on C , independent of Σ1/2 (see
Sect. 6). Expression (15) is named a Type II decomposition hereafter.

Again, due to the entanglement of the spatial and non-spatial components similar
non-separable multivariate generalization to the LCAR construction is not readily
available.

3.4 A closer look at the Sain et al. andMardia MGMRF frameworks

A closer look at their respective joint precision and covariance matrices sheds light
on their characteristics, and on the differences between the Sain et al. and Mardia
frameworks.

Let the Sain et al. MGMRF (9) precision matrix be rewritten as follows:

Ω
MCARSain et al. UC

vec (ζ�)
(C, ρc, τ ) = Dm ⊗ τ − In ⊗ τ 1/2ρcτ 1/2 − (WU ⊗ B + W�

U ⊗ B�),

where B = τ 1/2Cτ 1/2. It is readily seen that the Sain et al. MGMRF (9) is a non-
separable model construction. The Mardia framework contains separable and non-
separable models; the framework facilitates formulation of separable models by a
separation of its spatial and non-spatial components. Non-separableMardiaMGMRFs
can be built by a decomposition of its non-spatial component and by a separation
between its spatial component and the decomposition of its non-spatial component.

Recall that B = CΓ or B = Γ 1/2CΓ 1/2 in theMardiaMGMRF (14). The elements
of B characterize conditional spatial and cross-spatial dependencies in the Mardia
family of MGMRFs. The associated conditional spatial auto- and cross-correlation
functions are

corr(ζi j , ζk j |ζ−(i j,k j)) = Bj j

τ j
√
mimk

,

corr(ζi j , ζkl |ζ−(i j,kl)) = Bjl√
τ jτlmimk

, k > i,

corr(ζi j , ζkl |ζ−(i j,kl)) = Bl j√
τ jτlmimk

, k < i,

where j, l = 1, 2, . . . , J , j �= l, k ∼ i , τ j = σ−2
j for the Sain et al. MCARs or

τ j = Γ j j for the Mardia MCARs.
The Sain et al. framework was proposed to model multivariate spatial dependencies

(Sain et al. 2011). The conditional spatial auto- and cross-correlation functions for the
MGMRF (8) are functions of the elements of C . This MGMRF construction does not
imply conditional cross-spatial dependencies if C is a diagonal matrix (B is diagonal
when C is diagonal). The MGMRF (9) implies positive (or negative) spatial or cross-
spatial dependencies when the associated spatial parameters are positive (or negative).

For the Mardia MGMRFs, the matrix B serves to interpret the conditional spatial
auto- and cross-correlations. A limitation of the these MGMRFs is that the inher-
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ent entanglement of the spatial and non-spatial parameters can induce conditional
cross-spatial dependencies in undesirable ways. TheMardia MGMRF (14) may entail
conditional cross-spatial dependencies even when C is a diagonal matrix or C = cI p
(a separable model), provided that the precision matrix Σ is not a diagonal matrix.
However, the implied conditional cross-spatial dependencies may be unsolicited. This
is an issue even for the separableMGMRFs. For example, the separableMGMRF (13)
precision matrix has B = cΓ , where Γ jl are often negative, say, when the (partial)
correlation between the j th and lth variables at co-locations is positive, which is com-
mon in many applications, say, in disease mapping. When c is positive, the separable
model implies positive conditional spatial autocorrelations but negative conditional
cross-spatial correlations. Similar or more precarious results can arise when C is a
diagonal or full matrix of spatial parameters.

This limitation of the Mardia family of MGMRFs is not necessarily a problem
when a Mardia MCAR model is used for local prediction and spatial smoothing,
say, in multivariate disease mapping where only the site-wise local sub-models are
deployed. In addition, the entanglement of spatial and non-spatial parameters exerts
impact on the MGMRF cross-covariance functions differently. Notice that Σ jl > 0
implies positive correlation between the two variables at co-locations. It is readily seen
from the separable model covariance matrix (13) that positive correlations between
variables at co-locations do not lead to negative cross-covariance functions when
c > 0. Analogous results can be derived for non-separable models with a diagonal
matrix of positive spatial parameters.

4 CoregionalizationMGMRFs

The basic idea of linear coregionalization for multivariate generalizations of univariate
GMRFs is as follows: One can readily produce p-variate coregionalization fields by
linear combination of q independent univariate GMRFs, say, each with distinct spatial
parameter(s),whereq = p orq �= p, in particularq < p for dimension reduction. This
is a powerful idea. Any univariate GMRF can have a variety ofmultivariate generaliza-
tions readily derived (MacNab 2016a). In addition, MGMRFs can be produced by lin-
ear combination of multivariate latent components (Jin et al. 2007; MacNab 2016a, b).

Specifically, let η = (ηi j ) denote an n by p matrix of spatially interacting latent
variates defined over a finite lattice system andwith similar notations η. j s, ηi.s, vec(η),
and vec(η�). A coregionalization MGMRF may be formulated by defining ζ to be a
linear combination of η (Jin et al. 2007; MacNab 2016a, b):

vec(ζ ) = (A ⊗ In)vec(η), equivalently, ζ = ηA�, (16)

or

vec(ζ�) = (In ⊗ A)vec(η�), equivalently, ζ� = Aη�, (17)

provided that AA� = Σ > 0 is a full-rank covariance matrix, where A is the p by p
linear coregionalization coefficients matrix.
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Multivariate coregionalization fields can be built in at least three ways. First, the
linear coregionalization framework enables formulations of MGMRFs as linear com-
binations of independent latent GMRFs via (16); this is discussed further in Sect. 4.1.
Multivariate GMRF can be built by linear combination of underlying multivariate
latent components via (17); they are presented in Sect. 4.2.

In Sect. 4.3, we present a third way of building MGMRFs via

vec(ζ ) = Hvec(η), or, vec(ζ�) = Hvec(η�), (18)

provided that H is a np by np matrix and Σ H = HH� > 0 is a full-rank covariance
matrix of np-dimension. This is a flexible way to buildMGMRFs, say, adding spatially
varying coregionalization fields and spatially adaptive coregionalization fields to the
collection of coregionalization MGMRFs. Notice that (16) and (17) are special cases
of (18).

4.1 The basic coregionalization framework: multivariate coregionalization fields
formulated by linear combination of independent latent fields

An important feature of the basic linear coregionalization framework is its flexibility
for multivariate generalizations of any univariate GMRF. This can be readily achieved
by representing amultivariate coregionalizationGMRFvia linear combination of inde-
pendent underlying latent GMRFs with or without unknown scale parameter(s), say,
η. j ∼ MVN(0,Ωη. j

(c j )) without unknown scale parameter(s). The resulting models
are denoted cMCARInd CARs hereafter. For example, by letting η. j ∼ MVN(0,Ω(c j )),
the resulting coregionalization MCAR construction has the following precision and
covariance matrices (MacNab 2016a, b):

Ω
cMCARInd CARs

vec (ζ ) (c, Γ̃ ) = (Γ̃ ⊗ In) Bdiag(Ω(c1), . . . ,Ω(cp)) (Γ̃ ⊗ In)�,

Σ
cMCARInd CARs

vec (ζ ) (c, A) = (A ⊗ In) Bdiag(Ω(c1)
−1, . . . ,Ω(cp)

−1) (A ⊗ In)�, (19)

where Γ̃ = (A−1)�. Locally adaptive constructions can be readily derived by replac-
ing c j by c j = (c1 j , c2 j , . . . , cnj ) in (19).

It is readily seen from (19) that several cMCAR models may be considered. By
defining A as the lower triangular Cholesky decomposition or the symmetric square
root factorization ofΣ , we have order-dependent or order-free cMCARmodels (see Jin
et al. 2007; MacNab 2016b). In addition, cMCARs can also be defined by letting A
be an arbitrary p by p matrix, provided that AA� = Σ > 0 is a covariance matrix
(see details in Botella-Rocamora et al. 2015; MacNab 2016b). These cMCARmodels
are order-free and named M-models hereafter.

Furthermore, some p-variate coregionalizationmodels canbebuilt by (16), inwhich
the coregionalization coefficients matrix A is a p by q matrix of specific reparame-
terization, q �= p, provided that AA� = Σ > 0 is a covariance matrix. For example,
shared component models can be derived for q > p or q < p. When p is small, a
p-variate shared component model of q components can be formulated with a p by q
matrix A. To give an example, let us consider the following shared component model
formulation (Knorr-Held and Best 2001):
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ζ . j = η. j + δ jη.(p+1), η. j ∼ MVN(0,Ω(c j , σ j )),

p∑

j=1

log(δ j ) = 0.

Its cMCARmodel equivalent can be formulated by letting vec(ζ ) = (A ⊗ In)vec(η),
with the following coregionalization coefficients matrix and its associated non-spatial
covariance matrix, respectively:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 δ1
0 1 · · · 0 δ2
· · ·
· · ·
· · · · · ·
0 0 · · · 1 δp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×(p+1)

,

Σ = AA� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + δ21 δ1δ2 · · · δ1δp
δ1δ2 1 + δ22 · · · δ2δp

· · ·
· · ·
· · · · · ·

δ1δp δ2δp · · · 1 + δ2p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×p

.

Notice that the shared component coregionalization with q > p needs careful
specification in order to be identified (MacNab 2010, 2014). A limitation of the q ≥ p
linear coregionalization is that it is computationally prohibitive when p is large. The
number of unknown parameters in the coregionalization coefficients matrix A grows
quickly, say, by the order of p(p + 1)/2 when q = p.

On the other hand, a major strength of the basic linear coregionalization method
is its use in dimension reduction for large p, where the number of latent components
q < p, or q � p (meaning “as few as possible”). For example, the basic linear
coregionalization with q � p may be a useful tool for multivariate analysis, such as
latent variable or component or factor analysis.

4.2 A general linear coregionalization framework: cMCARmodels with
independent or correlated underlying latent components

The linear coregionalization methods discussed in Jin et al. (2007) and MacNab
(2016a, b) are also concerned with formulating cMCARs with underlying (correlated)
latent components characterized by the following univariate conditionals:

E(ηi j |η−i j ) =
∑

k∼i

βi jk j ηk j +
∑

l �= j k∼i

βi jkl ηkl , Prec(ηi j |η−i j ) = mi . (20)

The main appeal of (20) is that it only implies conditional spatial and cross-spatial
dependencies. The non-spatial site-wise dependencies between variables, and the
scale parameters, are introduced into the coregionalization field via linear coregion-
alization (16) or (17) (MacNab 2016a, b). Free of the “entanglement” issue, flexible
latent MCAR construction and parameterization may be more readily considered,
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with intuitively plausible interpretations of correlated latent components in terms of
(conditional) spatial dependencies and cross-spatial dependencies.

For example, if we let, in (20), βi jk j = c j jm
−1
i wik , βi jkl = c jlm

−1
i wik , βk jil =

cl jm
−1
i wki , k > i , where C is an asymmetric matrix of spatial parameters, we can

derive Ωvec (η�)(C) = S(C), where S(C) = Dm ⊗ I p − (WU ⊗ C + W�
U ⊗ C�).

The resulting cMCAR construction, denoted cMCARUC, has the following covariance
matrix

Σ
cMCARUC

vec (ζ�)
(C, A) = (In ⊗ A)S(C)−1(In ⊗ A)�. (21)

Expression (21) is a multivariate generalization of the CAR construction (3). When
A is a full-rank symmetric matrix, the cMCAR (21) and the Mardia MCAR (15)
constructions have identical precision and covariance matrices.

In addition, the Mardia (1988) framework (12) offers an option for characterizing
underlying latent components:

E(ηi.|η−i.) =
∑

k:k∼i

β ikηk., Prec(ηi.|η−i.) = mi I p. (22)

For example, a coregionalization MCAR equivalent of the Mardia MCAR (15) can be
formulated via (22) for the latent MCAR and (17) for the coregionalization MCAR,
denoted cMCARMC hereafter. The cMCAR models derived via (20) and (22), respec-
tively, have identical precision and covariancematrices. Themain differences between
the two approaches could be computational. For example, for Bayesian estimation
of the cMCARs via MCMC simulations using Gibbs sampling, the latent compo-
nents modeled by (20) may be simulated through site- and component-wise univariate
updates whereas those of MCAR (22) can be sampled by site-wise p-vector updates.

Further, the Sain et al. (2011) (8) framework can be used to formulate MCARs for
multivariate latent field η:

E(ηi j |η−i j )=
∑

k∼i

βi jk jηk j +
∑

k∼i, l �= j

βi jklηkl +
∑

l �= j

βi j ilηil , Prec(ηi j |η−i j ) = mi .

(23)

Any MCAR construction developed within the Sain et al. (2011) framework has a
linear coregionalization equivalent, denoted cMCARSain et al. UC hereafter, which can be
readily derived via (23) for its latent multivariate field and via (17) for the coregion-
alization field. One obvious example is to model the latent field by a MCAR with the
precision matrix Ωvec (η�)(C, ρc) = S(C, ρc) = Dm ⊗ I p − In ⊗ ρc − (WU ⊗
C + W�

U ⊗ C�). The linear transformation via vec(ζ�) = (In ⊗ A)vec(η�), with
A = diag(σ1, . . . , σp), leads to a cMCARSain et al. UC construction with the following
covariance matrix:

Σ
cMCARSain et al. UC

vec (ζ�)
(C, A) = (In ⊗ σ )S(ρc,C)−1(In ⊗ σ ), (24)

which is a linear coregionalization recast of the MCAR (9). By letting mi = pwi+ +
p − 1,∀i , in (24), we can derive a linear coregionalization recast of the p-fold CAR,
denoted cMCARp-fold hereafter.
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The Sain et al. MCARs and their coregionalization recasts are identical models. A
noteworthy difference between the two is computational (discussed in Sect. 7).

4.3 CoregionalizationMGMRFs built via vec(�) = Hvec(�) or
vec(��) = Hvec(��)

The linear coregionalization MCARs of the Type II decomposition are built with a
decomposition of the covariance matrix Σ , its non-spatial component. Alternatively,
spatially varying coregionalization GMRFs can be built via (18) through a decom-
position of its sparse spatial precision matrix or matrices, which may comprise (part
of) its spatial components. Here, we illustrate two classes of spatially varying core-
gionalization models. We also briefly discuss SVC extensions for locally adaptive
coregionalization models.

4.3.1 Spatially varying coregionalization constructions: a class of SVC(I)s

A SVC construction, denoted SVC(I) hereafter, can be formulated by letting vec(ζ ) =
H(c)vec(η), where

– the latent variables vec(η) are assumed to be correlated only at co-locations,
say, they are modeled by a non-spatial multivariate Gaussian field: vec(η) ∼
MVN(0,Γ ⊗ In), Γ = Σ−1; and

– the spatially varying coregionalization coefficients matrix H(c) is defined as
H(c) = (T (c)−1)�, where T = T (c) is a block diagonal matrix with n by n
block matrices T j j (c j ) = ΩCAR j (c j )

1/2,∀ j , and ΩCAR j (c j )
1/2 is a factorization

(say,Cholesky or spectral factorization) of sparseCARprecisionmatrixΩCAR j (c j ).

The resulting SVC(I) construction has the precision and covariance matrices:

Ω
SVC(I)

vec (ζ ) = T (c) (Γ ⊗ In) T (c)�, Σ
SVC(I)

vec (ζ ) = H(c) (Σ ⊗ In) H(c)�, (25)

where,

Ω
SVC(I)

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ11ΩCAR1(c1) Γ12Ω̃12 · · · Γ1pΩ̃1p

Γ21Ω̃21 Γ22ΩCAR2(c2) · · · Γ2pΩ̃2p
· · ·
· · ·
· · · · · ·

Γp1Ω̃ p1 Γp2Ω̃ p2 · · · ΓppΩCARp (cp)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Σ
SVC(I)

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11ΩCAR1(c1)
−1 Σ12Ω̃

−1
12 · · · Σ1pΩ̃

−1
1p

Σ21Ω̃
−1
21 Σ22ΩCAR2(c2)

−1 · · · Σ2pΩ̃
−1
2p

· · ·
· · ·
· · · · · ·

Σp1Ω̃
−1
p1 Σp2Ω̃

−1
p2 · · · ΣppΩCARp (cp)

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)
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Ω̃ jl = ΩCAR j (c j )
1/2(ΩCARl (cl)

1/2)�, Σ = (Σ jl), and Γ = (Γ jl). It is readily verified
that the cross-covariancematrix functionΣ SVC

vec (ζ )[ jl] in (26) is asymmetric in general,

with the exception that Ω̃ jl = ΩCAR(c j )1/2(ΩCAR(cl)1/2)� and the ΩCAR(.)
1/2 is the

spectral factorization of ΩCAR(.) or c j = cl . Expression (25) is a decomposition that
separates T (c) from Γ (H(c) and Σ), which consequently separates c (the spatial
parameters) fromΣ (the non-spatial parameters).We call (25) aType III decomposition
hereafter.

This SVC formulation is a counterpart of the cMCARInd CARs formulation, the linear
coregionalization MCAR formulation represented by the linear combination of inde-
pendent latent CARs. The two MGMRF constructions produce the same independent
GMRFs if and only if Σ = diag(σ 2

1 , . . . , σ 2
p). They also produce the same separable

MGMRF when ΩCAR j (c j ) = ΩCAR(c),∀ j .
However, in general the two approaches produce different multivariate coregion-

alization constructions. To give an illustrative example, let ΩCAR(c j ) = Dm − c jW
in cMCARInd CARs (19) and in SVC(I) (26), respectively (i.e., ΩCAR(c j ) is the precision
matrix of the CAR (3) constructionwith σ = 1). The resulting SVC(I) has the following
precision and covariance matrices:

ΩSVC

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎣

Γ11(Dm − c1W) Γ1pΩ̃1p
·

·
·

Γp1Ω̃ p1 Γpp(Dm − cpW)

⎤

⎥
⎥
⎥
⎥
⎦

,

Σ SVC

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎣

Σ11(Dm − c1W)−1 Σ1pΣ̃ pCAR(c1, cp)
·

·
·

Σp1Σ̃ pCAR(cp, c1) Σpp(Dm − cpW)−1

⎤

⎥
⎥
⎥
⎥
⎦

, (27)

where Ω̃ pCAR(c j , cl) = (Dm − c jW)1/2((Dm − clW)1/2)� and Σ̃ pCAR(c j , cl) =
Ω̃ pCAR(c j , cl)−1. Notice that when (Dm − c jW)1/2 is the lower triangular Cholesky
square root of Dm −c jW ,∀ j , the cross-covariance matrix functions in (27) are asym-
metric functions. However, when (Dm − c jW)1/2 is the symmetric square root of
Dm − c jW ,∀ j , the cross-covariance functions in (27) are symmetric functions.

The resulting cMCARInd CARs, on the other hand, has the following precision and
covariance matrices:
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ΩLMC

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎣

∑p
l=1g

2
1l(Dm − clW)

∑p
l=1g1l gpl(Dm − clW)

·
·

·∑p
l=1g1l gpl(Dm − clW)

∑p
l=1g

2
pl(Dm − clW)

⎤

⎥
⎥
⎥
⎥
⎦

,

ΣLMC

vec (ζ ) =

⎡

⎢
⎢
⎢
⎢
⎣

∑p
l=1a

2
1l(Dm − clW)−1 ∑p

l=1a1lapl(Dm − clW)−1

·
·

·∑p
l=1a1lapl(Dm − clW)−1 ∑p

l=1a
2
pl(Dm − clW)−1

⎤

⎥
⎥
⎥
⎥
⎦

,

(28)

where Γ̃ = (g jl), Γ̃ = (A−1)�, and A = (a jl). Notice that the cross-covariance
matrix functions in (28) are symmetric.

The differences between the two constructions are readily observed. An advan-
tage of the SVC construction over its LMC counterpart is that the SVC models have
intuitively more interpretable and, perhaps, more appealing, covariance matrix (27).
Specifically, the covariance matrix (27) implies that, if the j th and lth (variable)
components of the SVC are independent at co-locations, they are independent at
different locations, i.e., Σ jl = Σl j = 0 implies Σ jl = Σ l j = 0. The matrix of
cross-covariance functions with respect to the j th and lth variables ζ . j and ζ .l , the
n by n cross-covariance matrix Σ SVC

vec (ζ )[ jl], ∀ j �= l in (27), is determined by the
co-located covariance Σ jl between the two variables and the factorizations of the
covariance matrices of the associated latent components, the (Dm − c jW)−1/2 and
(Dm − clW)−1/2. The matrix of variable-specific covariance functions, the n by n
covariance matrixΣ SVC

vec (ζ )[ j j], ∀ j , is the product of the variance Σ j j of the j th SVC
variable ζ . j and the covariance matrix ΣGMRF(c j ) of the j latent variable η. j . In other
words, when c j > 0, ∀ j , the smoothness of the j th component of the SVC (27) is
characterized by the smoothness of the j th latent component GMRF(c j ).

On the other hand, when c j > 0, ∀ j , and A is a full matrix in (28), the n by n covari-
ancematrixΣLMC

vec (ζ )[ j j] = ∑p
l=1 a

2
jl(Dm−clW)−1,∀ j, implies that the smoothness

of any (variable) component in the LMC (28), and in linear coregionalization model in
general, say, a LMC with a full matrix C of spatial parameters, is restricted to that of
the roughest underlying univariate latent component. In multivariate geostatistics lit-
erature, this is considered a limitation of the linear coregionalization method (Genton
and Kleiber 2015).

In addition, if the A in (28) is a lower triangular matrix, for example, the Cholesky
factorization of Σ , the diagonal covariance matrices in (28) are

ΣLMC

vec (ζ )[ j j] =
j∑

l=1

a2jl(Dm − clW)−1, j = 1, 2, . . . , p. (29)

From (29) follows that the smoothness of the j th component of the linear coregional-
ization model is restricted to that of the roughest underlying latent component among
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GMRF(c1), GMRF(c2),.., GMRF(c j ). As a result, the (estimated) LMC has ordered
spatial smoothing parameters c1 > c2 · · · > cp. Analogously we can further ascertain
that the (estimated) LMC with a full matrix C and a lower triangular matrix A should
have ordered spatial smoothing parameters c11 > c22 · · · > cpp.

It is readily seen, from (27) and (28), that entanglement of the spatial and non-
spatial parameters is still present but exerts different influence on theSVC (conditional)
spatial and cross-spatial correlation functions, compared to the entanglement impact
on those of the LMC. Nevertheless, the precision and covariance matrices for the
two constructions shed light on the potential utility of the linear and spatially varying
coregionalization models: They could be used to model spatially varying covariance
and cross-covariance functions and enable spatial smoothing of covariance and cross-
covariance functions.

When mi = wi+, ∀i , and ΩCAR j (c j )
1/2 represents the Cholesky or spectral

factorization, ∀ j , SVC (27) produces a coregionalization recast of the previously men-
tioned Carlin and Banerjee (2003) MCAR or Gelfand and Vounatsou (2003) MCAR.

Consider the following spectral factorization of the CAR (3) (excluding iCAR )
precision matrix without the scale parameter:

Ωζ (c) = Qdiag(λ(c, e∗))Q�, (30)

provided that c �= 1 and c ∈ (1/e∗
1, 1/e

∗
n), where e

∗
1 > e∗

2 >, . . . , > e∗
n are the ordered

eigenvalues of W̃ , H w̃ is the n by n matrix of associated eigenvectors, Q = D1/2
m H w̃,

and λ(c, e∗) = (1 − c e∗
1, . . . , 1 − c e∗

n), e
∗ = (e∗

1, . . . , e
∗
n). The decomposition

required for H(c) in SVC (25) is simplified by letting H j j = Q̃diagλ(c j , e∗)−1/2,

where Q̃ = D−1/2
m H w̃, H w̃ (or Q̃ = H w̃). The resulting covariance matrix (27) can

be written as Σ
SVC(I)

vec (ζ ) = H(c) (Σ ⊗ In) H(c)�:

Q̌

⎡

⎢
⎢
⎢
⎢
⎣

Σ11diag(λ(c1, e∗))−1 Σ1pdiag(λ(c1, e∗)λ(cp, e∗))−1/2

·
·

·
Σp1diag(λ(c1, e∗)λ(cp, e∗))−1/2 Σppdiag(λ(c1, e∗))−1

⎤

⎥
⎥
⎥
⎥
⎦

Q̌
�
,

(31)

where Q̌ = I p ⊗ Q̃. The abovementioned spectral decomposition offers a compu-
tational option for estimation of the SVC (see Sect. 6). Similar reconstruction and
reparameterization may also be considered for the LMC models. Further, for both
the linear and spatially varying coregionalization MGMRF constructions, dimension
reduction may be considered with respect to both n and p. For example, in some appli-
cations (say, disease mapping) where the spatial parameters are typically assumed to
be positive for positive spatial autocorrelations (say, for spatial smoothing), one may
consider reducing the site-dimension from n to nr , where nr is the total number of the
positive eigenvalues e∗

1, e
∗
2, . . . , e

∗
nr .

Extensions to SVC(I) (25) may be considered for vec(ζ�) = H(C)vec(η�), where
H(C) = (T (C)−1)� and T (C) is a decomposition of a MCAR(C) precision matrix,

123



522 Y. C. MacNab

for example, T (C)T (C)� = S(C) = Dm ⊗ I p − (WU ⊗ C + W�
U ⊗ C�) and C is

the previously defined p by p matrix of spatial parameters.

4.3.2 Spatially varying coregionalization constructions: a class of SVC(II)s

The SVC(I) constructions may be further generalized to formulating SVCs with a
latent MGMRF. For example, the latent multivariate Gaussian field in SVC(I) (25)
may be replaced by a separable MGMRF, say, by letting Ωvec (η)(cp+1,Γ ) =
Γ ⊗ ΩCARp+1(cp+1). The precision matrix of the resulting SVC formulation, denoted
SVC(II), is

Ω
SVC(II)

vec (ζ ) = T (c) (Γ ⊗ ΩCARp+1(cp+1)) T (c)�. (32)

This construction represents a separation strategy for separating T (c), Γ , and
ΩCARp+1(cp+1). We call (32) a Type IV decomposition and the resulting construction
a SVC(II) construction.

4.3.3 Locally adaptive coregionalization models

The SVC constructions presented in Sects. 4.3.1 and 4.3.2 can be readily generalized
to allow for site-specific spatial parameters in their coregionalization models. For
example, spatially varying coregionalization models defined by (25) or (32) can have
their locally adaptive SVC extensions readily derived by replacing the c with c̃ =
(c11, c21, . . . , cn1, . . . , c1p, c2p, . . . , cnp).

Locally adaptive SVC(I) or SVC(II) constructions may also be formulated by letting
T = H−1 and H = diag(σ11, . . . , σn1, . . . , σ1p, . . . , σnp) in (25) or (32) and by
considering CAR or MCAR priors for the log(σi j )s.

In addition, adaptive coregionalization MGMRFs can be readily formulated via
(18) with H = diag(σ11, . . . , σ1p, . . . , σn1, . . . , σnp) and with the underlying latent
MGMRFs, represented by vec(η�) ∼ MCARSain et al. UC(C, ρc).

4.4 Linear coregionalization recasts and reconstructions of CARs and priors for
orthogonal random effects

By viewing aCARor adaptiveCARas the simplest case of itsmultivariate counterpart,
one can recast it via coregionalization reconstruction. For example, a coregionalization
recast of an adaptive CAR could be derived by letting ζ = Hη, η ∼ CAR(c) or
η ∼ CAR(c), H = diag(σ1, . . . , σn), η = (η1, . . . , ηn)

�, and ζ = (ζ1, . . . , ζn)
�. In

addition, a coregionalization recast of the CAR (3) (excluding the iCAR) construction
can be formulated via the spectral decomposition (30) discussed in Sect. 4.3.1:

ζ = Hη, η ∼ MVN(0, σ−2λ(c, e∗)−1), H = Q̌, (33)

where Q̌ and λ(c, e∗) are defined in Sect. 4.3.1 for expression (31). By letting
η ∼ MVN(0, σ−2λ(c, e∗)−1) or η ∼ MVN(0, σ−2λ(c, e∗)−1) in (33), we can derive
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a coregionalization reconstruction of the adaptive CAR (6). One application of these
coregionalization recasts and reconstructions would be to enable exploration of dif-
ferent computational approaches to the implementation of these models (discussed in
Sect. 7).

Recall that the iCAR has a precision matrix Ωζ (σ ) = σ−2(Dw − W) of rank
n − 1. The iCAR reparameterization of Reich et al. (2006) and Goicoa et al. (2018)
for orthogonal random effects can be derived by a coregionalization reconstruction
of iCAR via ζ = H̃η, where H̃ is a n by n − 1 matrix of eigenvectors with respect
to the ordered nonzero eigenvalues ς1 > ς2 >, . . . , > ςn−1 > 0 of Dw − W ,
η = (η1, . . . , ηn−1)

�, ηi ∼ N(0, σ−2
i ), σ 2

i = σ 2ς−1
i . The resulting model, denoted

iCARSVC hereafter, has the following covariance matrix:

Σ
iCARSVC
ζ (σ ) = σ 2 H̃ (diag(ς))−1 H̃

�
, (34)

where ς = (ς1, . . . , ςn−1).
Likewise, theGoicoa et al. (2018) reparameterizationof theLCARcanbederivedby

a similar coregionalization reconstruction. Specifically, because the iCAR and LCAR
precision matrices share a commonmatrix of eigenvectors but have different eigenval-
ues (Goicoa et al. 2018), the LCAR reconstruction, denoted LCARSVC hereafter, has
the following covariance matrix:

Σ
LCARSVC
ζ (σ, c) = σ 2 H̃ (diag(c(c, ς)))−1 H̃

�
,

where c(c, ς) = (cς1 + (1 − c), . . . , cςn−1 + (1 − c)) and H̃ is identical to that in
(34).

Analogous coregionalization reconstructions for orthogonal random effects priors
can be built for both multivariate and modified multivariate BYMs (MacNab 2011)
and for multivariate generalizations of LCARs via linear or spatially varying core-
gionalization.

4.5 MGMRFs for variable-specific lattice systems

AMGMRF defined by univariate conditionals may be formulated for variable-specific
lattice-neighbor schemes discussed in Besag (1974). In practice, however, enforcing
the positivity condition can be a considerable challenge for MGMRFs with a matrix
C of spatial parameters. Here, we discuss MGMRFs with a diagonal matrix C diag of
spatial parameters. Consider a coregionalization MGMRF built by linear combination
of independent GMRFs, or its SVC counterpart, where constraints on variable-specific
spatial parameters may be derived with respect to variable-specific lattice-neighbor
schemes. For example, the latent GMRFs may be built for different, but similar, lattice
systems, say, lattices with the associated neighborhood defined by area adjacency,
neighbors defined by first- and second-order connectivity, and neighbors defined by
a distance criterion for proximity, etc. This would also widen the scope for MGMRF
application, say, in image processing and analysiswhere competingmodels of different
neighbor schemes and neighbor sets may be considered and model selection may be
made (Kashyap and Chellappa 1983).
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The abovementioned variable-wise lattice-neighbor schemes may also be consid-
ered for a Sain et al. MCARwith a diagonal matrix of spatial parameters. While a Sain
et al.MCARwith a diagonal matrix C of spatial parameters does not imply conditional
cross-spatial dependencies, it does induce covariance models with cross-covariance
functions, provided that the non-spatial partial correlation matrix ρc implies associa-
tions between variables at co-locations.

In addition, as mentioned in Sain et al. (2011), we could also consider joint models
of multiple variables defined over different lattices. In other words, a more generalized
conceptualization ofmultivariate lattice datamay be explored.Multivariate lattice data
do not have to be multivariate observations taken over the same finite lattice repre-
sentation. Instead, relevant data collected under similar but different spatial settings
may be modeled jointly, as in the case of aggregates (such as disease incidence and
health outcomes) over spatial grids or geographical regions for some variables and
observations attributable to a fix location in each of the grid boxes or geographical
regions (say, multivariate measurements of pollutants and air qualities collected over
monitoring sites) for others. This broader conceptualization also widens the scope for
MGMRF formulation and application over the previously mentioned component-wise
lattice-neighbor schemes.

5 TheMartinez-Beneito framework and its relation to
coregionalization

In the context of multivariate disease mapping, Martinez-Beneito (2013) proposes
formulation of MCARs via

ζ = Σ̃w ε Σ̃
�
b . (35)

Here, ε = (εi j ), εi j ∼ N(0, 1) and Σ̃w and Σ̃b are lower triangular matri-
ces of the Cholesky decompositions of within- and between-variable covariance

matrices Σw = Σ̃wΣ̃
�
w and Σb = Σ̃bΣ̃

�
b , respectively. The Martinez-Beneito

framework is motivated by the idea that zero-mean MCAR models with separable
cross-covariance functions can be formulated by performing two transformations to ε:
a pre-multiplication Σ̃w ε to induce dependencies among geographic units, and a post-

multiplication (Σ̃w ε)Σ̃
�
b to induce dependencies between diseases at co-locations,

denoted vec(ζ ) ∼ MVN(0,Σ−1
ζ ), and Σζ = Σb ⊗ Σw.

Under the Martinez-Beneito (2013) framework, non-separable MCAR models can
be formulated via

ζ = (Σ̃w ε) Σ̃
�
b = φ Σ̃

�
b , (36)

which, when φ = η and Σ̃b = A, has a LMC equivalent vec(ζ ) = (A ⊗ In)vec(η),
equivalently expressed as ζ = ηA�. In Martinez-Beneito (2013) and Botella-
Rocamora et al. (2015), the column vectors φ.1, φ.2 ,…, φ.p in (36) are assumed
to represent independent CAR components.
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In addition, consider post-multiplication first in (35), i.e., let

ζ = Σ̃w (ε Σ̃
�
b ) = Σ̃w ϕ, (37)

and vec(ϕ) ∼ MVN(0,Σ−1
b ⊗ In). Expression (37) is equivalent to the spatially

varying coregionalization formulation of vec(ζ ) = (I p ⊗ Σ̃w)vec(ϕ).

6 Estimation of constrained spatial and non-spatial parameters

For the MCARs and coregionalization MCARs discussed herein [with the exception
of the MCARMardia MC (14)], when C = diag(c) is a diagonal matrix or C = cI p, the
constraint on the elements of C for a valid MCAR is the same as that for its associated
univariate CAR (Jin et al. 2007; MacNab 2016a).

When C is a symmetric matrix, a reparameterization of C via its spectral decom-
position can be considered (Jin et al. 2007). Let C = C(e, θ) = P(θ)diag(e)P(θ)�,
where P(θ) is an orthogonal matrix parameterized by p(p − 1)/2 Givens angles,
θ = (θ1, . . . , θp), and e = (e1, e2, . . . , ep), and e1 > e2 >, . . . , ep are the ordered
eigenvalues of C . The orthogonal matrix of eigenvectors in the spectral decomposition
is reparameterized by the Givens angles to enforce shrinkage of C toward diagonal-
ity (Daniels and Kass 1999; MacNab 2016a, b). With this reparameterization, the
constraint on C for a valid model is simplified to a constraint on its eigenvalues,
which is the same sufficient and necessary constraint for its univariate CAR coun-
terpart, i.e., e j ∈ (cmim, cmax). Posterior estimation and inference for the elements
of C may be carried out by placing uniform priors e j ∼ Unif(cmim, cmax) on the
unknown eigenvalues and θ j ∼ Unif(−π/2, π/2) on the Givens angles (see Daniels
and Kass 1999; Jin et al. 2007; MacNab 2016a, b for technical details). It is worth
mentioning that cMCARUC(C(e, θ), A) is equivalent to cMCARUC(e, P(θ)AP(θ)�)

(Martinez-Beneito 2013). The latter can be derived by the linear combination of inde-
pendent but ordered latent CAR(ei )s, with the linear coregionalization coefficient
matrix P(θ)AP(θ)� (see Martinez-Beneito (2013) and MacNab (2016b) for a more
detailed discussion).

When C is asymmetric, an analogous approach is the singular value decom-
position (Greco and Trivisano 2009; MacNab 2016a): Let C = C(s, θ L , θ R) =
PL(θ L)diag(s)PR(θ R)�, where s = (s1, s2, . . . , sp) comprises the ordered singu-
lar values, PL(θ L) and PR(θ R) represent the corresponding orthogonal matrices, each
parameterized by a set of p(p− 1)/2 Givens angles, denoted θ L and θ R respectively.
Analogous to the spectral decomposition of a symmetric C , placing uniform priors
on the admissible (positive) singular values, say, s j ∼ Unif(0, cmax),∀ j , and on the
Givens angles leads to the posterior shrinkage estimation of C (MacNab 2016a, b).

As an alternative, and also within the context of Bayesian multivariate disease map-
ping,MacNab (2016b) explored the option of placing hierarchical priors (HPs) directly
onto the spatial parameters in C for linear coregionalization MCARs of the Type II
decomposition. The basic idea of this approach is to use priors as a means of imposing
constraints on the parameters in C . This is done by placing a weakly informative HP
on the diagonal elements c j j s of C, with a HP (say, zero-mean Gaussian HP) on its
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off-diagonal elements to encourage shrinkage toward a diagonal matrix. Compared
to the previously mentioned methods via decomposition and reparameterization of
C, this approach was shown to perform comparably well, resulting in similar poste-
rior prediction and inference for disease risks and showing modestly less posterior
shrinkage to C; see MacNab (2016a, b) for technical details and illustrative examples.

The methods for Bayesian estimation of C mentioned above apply to Mardia (15)
and Sain et al. (9) MCARs and their respective coregionalization equivalents; see
Sect. 8 for illustrative examples and the Supplementary Material for this paper for
illustrative WinBUGS examples.

For separable MCARs, a common approach to the Bayesian estimation of Σ is
using the inverse Wishart prior for Σ (Gelfand and Vounatsou 2003) or the Wishart
prior on Γ (MacNab and Gustafson 2007; MacNab 2009). Alternatively, the estima-
tion of Σ can be carried out by using the Barnard et al. (2000) variance-correlation
decomposition strategy and by placing priors on the standard deviation and correla-
tion parameters. For non-separable Mardia MCARs, a symmetric decomposition of
Σ = Σ1/2Σ1/2 requires Σ1/2 to be the symmetric square root of Σ (Harville 2007;
MacNab 2016b). For example, in MacNab (2016a, b) and the present paper, we let
Σ1/2 = P(θ s)es P(θ s)�, where es = (e1/21 , . . . , e1/2p ), e1 > · · · > ep are the ordered
eigenvalues of Σ and θ s is the p-vector of Givens angles.

For non-separable linear coregionalizationMCARs, there are options for estimating
Σ or working with the coregionalization coefficient matrix A, provided that AA� =
Σ . One option is to let A be a lower triangularmatrix representing the unique Cholesky
decomposition of Σ (Jin et al. 2007; MacNab 2016a, b). The resulting cMCARs are
fully identified but the triangular matrix A imposes an order among the variables,
leading to order-dependent cMCARs; see MacNab (2016b) for detailed discussions
and illustrative examples.

Order-dependent models can have advantages when the variables under consider-
ation are causally related or have a natural ordering (say, in spatiotemporal models).
However, minor-to-modest-order sensitivities have been observed in multivariate dis-
ease mapping where the ordering of the disease-specific variables in the model might
be irrelevant to the predictions of the disease-specific risks (Martinez-Beneito 2013;
MacNab 2016b). One option for building order-free cMCARs is to let A be the pre-
viously defined symmetric square root factorization of Σ (MacNab 2016b).

Further, the M-based models proposed in Botella-Rocamora et al. (2015), named
M-models in MacNab (2016b) and hereafter, are also order-free cMCARs defined by
the linear combination of independent CARs, where A is a p by p arbitrary matrix,
provided that AA� = Σ (Botella-Rocamora et al. 2015). The resulting cMCARs
lose identification to A and the spatial parameters in the latent CARs; however, they
may retain identification to Σ = AA� and B−1 = AC−1

diag A
�. The M-model is

noted for its computational advantages in the context of Bayesian multivariate disease
mapping; see Botella-Rocamora et al. (2015) for technical details and illustrative
examples.
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7 Multivariate GMRFs as prior models and Bayesian computation

In recent literature, MGMRFs are typically used as prior models in Bayesian hierar-
chical inferential frameworks with, say, a data model

[
Y |ζ ,μD

]
, a prior or process

model
[
ζ |C,Σ

]
, and parameter priors

[
μD

]
, [C], [Σ], whereμD contains data-model

parameters and C and Σ represent the prior model parameters (Cressie and Wikle
2011; Sain et al. 2011; MacNab 2016a, b).

TheMCAR and cMCAR constructions via compatible conditionals are tailor-made
for MCMC implementations using Gibbs sampling and related methods (Besag et al.
1991). In Bayesian GLMManalysis, MCMC simulations are often implemented using
relatedMetropolis–Hasting (MH) algorithms for posterior sampling of the fixed effects
and the prior parameters, using Gibbs (or MH-within-Gibbs) samplers for posterior
sampling of the random effects ζ or η (Sain and Cressie 2007; Sain et al. 2011; Kim
et al. 2001; Gelfand and Vounatsou 2003; Greco and Trivisano 2009; MacNab and
Gustafson 2007; MacNab 2007, 2011, 2016a, b). In this section, some computational
options are briefly outlined, mainly in the context of MCMC implementations in
WinBUGS.

For a conditionally defined non-separable MCAR, we can program Gibbs algo-
rithms in relation to the corresponding conditionals. For a linear coregionalization
MCAR, the latent components often have simpler conditionals. Gibbs sampling for
the latent components η is often easier to program. Posterior samples of ζ may be
calculated by letting ζ = ηA�; see Martinez-Beneito (2013) and MacNab (2016a, b)
for technical details and WinBUGS examples. Implementation of a non-separable
Mardia MCAR requires a square root factorization of Σ = Σ1/2Σ1/2, which can
be a considerable computational burden, particularly for large values of p. On the
other hand, the abovementioned MCMCmethods for a Sain et al. MCAR and its core-
gionalization MCAR equivalent do not involve matrix factorization, which can be a
significant computational advantage. Some WinBUGS examples for fitting the linear
coregionalization MCARs are presented in the Supplementary Material for the paper.

For a cMCAR built from independent univariate CARs, the latent components in
η may be sampled from off-the-shelf algorithms or available syntaxes for the uni-
variate CARs. Consider the cMpCAR build by independent pCARs, for instance, the
WinBUGS syntax for pCAR may be used to sample the latent components in η; also
see Martinez-Beneito (2013) for technical details and WinBUGS examples.

Implementation of SVCs build via vec(ζ ) = Hvec(η) or vec(ζ�) = Hvec(η�)

typically involves factorization of a sparse spatial precision matrix or matrices. A
SVC may be implemented by utilizing sparse matrix methods for the estimation of
T (c) or T (C) via a spectral decomposition of T (c) (or T (C)), the method presented
in Sect. 4.3.1, or using a sparse Cholesky decomposition algorithm to increase com-
putational efficiency (Rue and Held 2005; Furrer and Sain 2010; Sain et al. 2011;
Pourahmadi 2013). This may be implemented in R or R-INLA (http://www.r-inla.
org/), where fast algorithms for sparse matrix decomposition are available. For a SVC
of the Type III decomposition, posterior sampling of the latent components ηs can be
readily implemented for ηi. ∼ MVN(0,Γ ). For a SVC of the Type IV decomposi-
tion, Gibbs sampling for the latent components may be programmed with regard to
the corresponding latent separable MCAR, formulated by univariate or multivariate
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conditionals. It is worth mentioning that if the T (c) or T (C) is a Cholesky decom-
position of the associated CAR or MCAR precision matrix, the resulting MGMRF is
not label-invariant with respect to the site-labeling.

8 Illustration via selectedmodels

In this section, we briefly describe two applications of selected models in Bayesian
hierarchical analysis of disease mapping data. We present results from the reanalysis
of two data sets:Minnesota cancer mortality data formultivariate diseasemapping (Jin
et al. 2007; MacNab 2016a, b) and British Columbia adverse medical events data for
spatiotemporal disease mapping (MacNab 2007). In both applications, the MGMRFs
are used as prior models to facilitate flexible smoothing and to measure uncertainty.
Bayesian prediction and inference are implemented in previously mentioned Win-
BUGS (WinBUGS examples are presented in the Supplementary Material for the
paper).

For brevity, model comparisons are only briefly reported here using deviance infor-
mation criterion (DIC) (Spiegelhalter et al. 2002): A smaller DIC indicates better
balance of goodness-of-fit and complexity. The DIC is a commonly used model com-
parison tool used in Bayesian disease mapping (Jin et al. 2007; Greco and Trivisano
2009; Martinez-Beneito 2013; Lawson 2013). It is worth mentioning that other poten-
tially useful model comparison tools, such as posterior predictive loss (Gelfand and
Ghosh 1998), posterior predictive p value (Gelman et al. 1996), Gneiting and Raftery
logarithmic score (2007), Watanabe Akaike information criterion (Watanabe 2010),
and root mean squared error have also been used in the context of Bayesian disease
mapping (Gelfand andVounatsou 2003;MacNab 2011; Lawson 2013;MacNab 2016a;
Martinez-Beneito et al. 2017; Ugarte et al. 2017).

8.1 Multivariate diseasemapping

The Minnesota cancer mortality data that will be used in this application have pre-
viously been analyzed by various authors (for example, see Jin et al. and MacNab
2016a, b). The data set consists of observed and expected mortality counts, denoted
{yi j } and {Ei j }hereafter, for cancers of the esophagus ( j = 1), larynx ( j = 2), and lung
( j = 3), respectively, where i = 1, 2, ..., n are the labeling of n = 87 counties in the
Minnesota state of USA.We consider the Bayesian GLMMmodels presented in Mac-
Nab (2016a, b). Specifically, the data model for cancers of esophagus and lung are
Poisson, yi j ∼ Poisson(Ei jexp(bi j )), for j = 1, 3, and a zero-inflated Poisson (ZIP)
data model is assumed for the cancer of larynx (due to an extremely rare disease and
excessive zeros in the data), yi2 ∼ Poisson((1−ωi )Ei2exp(bi2)), ωi ∼ Bernoulli(p);
∀i, j , bi j = b0 j + ζi j , E(ζi j ) = 0.

Overall, the various MCAR and coregionalization MCAR models led to compara-
ble posterior relative risk predictions and inferences. Table 1 presents DIC results for
selectedmodels. Figure 1 additionally illustrates the similarities and differences among
selected models, in terms of posterior relative risk medians and standard deviations.
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Table 1 DIC results for selected multivariate models

Model Asymmetric C Diagonal C

Dbar† pD†† DIC Dbar pD DIC

MbCARSain et al. UC 1435 72 1507 1433 81 1515

MpCAR3-fold 1425 92 1517 1432 76 1508

MpCARMardia MC (12) 1432 67 1499 1434 71 1505

cMpCAR3-fold 1446 46 1494 1423 80 1503

cMpCARUC (A symmetric) 1441 56 1497 1430 69 1499

M-model 1422 78 1501

SVC(I) MbCAR 1396 126 1522

SVC(II) MbCAR-LCAR‡ 1402 124 1525

SVC(I) MpCAR 1405 96 1502

SVC(II) MpCAR-LCAR‡ 1410 95 1505

SVC(I) MLCAR 1404 100 1504

SVC(II) MLCAR-LCAR‡ 1416 101 1517

Separable MpCAR 1408 99 1507

cMLCARUC 1429 56 1485

cMLCARUC adaptive c ∼ iCAR 1428 57 1485

cMLCARUC adaptive c ∼ MBYM 1426 58 1484

cMpCAR3-fold adaptive log(σ ) ∼ iCAR 1422 76 1498

Ind iCAR by conditionals 1433 75 1508

Ind iCAR via SVC 1432 73 1505

Ind Leroux et al. CAR by conditionals 1439 70 1509

Ind Leroux et al. CAR via SVC 1424 78 1502

For models with asymmetric matrix C, the results are based on the hierarchical prior option II presented

in MacNab (2016b): let ψ j = log
[ c j j
cmax−c j j

]
, ψ j ∼ N(0, τc), τc = σ−2

c , σc ∼ Unif(0, ς), c j j =
cmax exp(ψ j )

(exp(ψ j )+1) ; c jk ∼ N(0, τc), τc = σ−2
c , σc ∼ Unif(0, ς), ς = 10

†Posterior mean of the deviance
††Number of free parameters
‡The SVCIIs are defined by spatially varying coregionalization with latent spatial components modeled by
a separable LMCAR (MacNab and Gustafson 2007)

The differences observed are modest and are mostly observed among the posterior
standard deviations for rare cancers such as esophageal, and laryngeal cancer in
particular (the rarest cancer among the three). For lung cancer, the most common
cancer among the three, the posterior risk medians and standard deviations are robust
to prior choices. Overall, the coregionalization models have slightly smaller DICs
compared with their counterparts of MCAR models. Models that allowed for asym-
metric matrix C performed slightly better than their counterparts that only allowed
for diagonal matrix Cdiag; this was observed through smaller DICs (see Table 2) and
generally smaller posterior risk standard deviations. Similar results are also seen in
recent publications (Jin et al. 2007;Greco andTrivisano 2009;Martinez-Beneito 2013;
MacNab 2016a, b). The adaptive coregionalization models are comparable to, or hav-
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Fig. 1 Comparison of posterior relative risk median and standard deviation for indicated models with
an asymmetric matrix C (“cMpCAR(C)”) or a diagonal matrix C (“cMpCAR(R)”): “cMpCAR(C) three-
fold” and “cMpCAR(R) threefold”—linear coregionalization recasts of threefold pCARs of the Type I
decomposition; “cMpCAR(C) UC” and “cMpCAR(R) UC”—linear coregionalization models of the Type
II decomposition

ing marginally smaller DICs than, their non-adaptive counterparts. Some differences
were observed amongMGMRFs formulated by univariate and multivariate condition-
als, respectively: MCAR and cMCAR models of the Type II decomposition slightly
outperformed their counterparts of the Type I decomposition.

Table 1 also presents results of illustrative examples of spatially varying core-
gionalization models. Compared to MCARs and cMCARs, SVCs imposed notably
less smoothing. We also observe smaller deviances and comparable DICs for the
MpCARs, but notably larger DICs for the MbCARs. The DIC and posterior risk pre-
dictions do not suggest the need for SVC(II)s over their (simpler) SVC(I) counterparts.
Table 1 additionally presents the DIC results for the iCAR and LCAR models and
their spatially varying coregionalization reconstructions. The latter are shown to have
modestly lower values of deviance and DIC.
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Fig. 2 Posterior relative risk predictions (median and standard deviation) for esophageal and lung cancers,
based on (1) the M-model—blue circles, (2) the linear coregionalization cMpCAR(diag(C), Σ)—red cir-
cles, (3) the twofold cMpCAR(C, Σ)—red squares, and (4) the spatially varying coregionalization model
SVC(I)MpCAR(diag(C), Σ)—red triangles, respectively. For the twofold cMpCAR, the matrix C of spatial
parameters is assumed to be symmetric and estimated based on a reparameterization via spectral decompo-
sition. For the SVC, the spatial components are defined by variable-specific pCAR precision matrices and
associated spectral decomposition (color figure online)

Figure 2 illustrates the similarities and differences between the models by the dif-
ferent types of decomposition. The results are derived from the estimated bivariate
models using the data for esophageal and lung cancers. The estimated M-model and
the cMpCAR, both are models of the Type II decomposition, are shown to impose
comparable risk smoothing and lead to similar posterior relative risk predictions for
esophageal and lung cancers. The twofold model of the Type I decomposition and
the spatially varying coregionalization model of the Type III decomposition lead to
notably less risk smoothing, with larger posterior risk standard deviations.

Table 2 lists the posterior estimates of the conditional spatial and cross-spatial cor-
relation functions in B (without the scaling factors), for the two order-free cMpCARs

123



532 Y. C. MacNab

Table 2 Posterior estimates of the symmetric matrix B∗, where B∗
j j = B j j

Γ j j
and B∗

jl = B jl√
Γ j jΓll

for the

indicated MCAR models that postulate symmetric cross-spatial dependencies

M-model (pCAR) cMCARInd pCAR A symmetric cMpCAR†
Sain et al. UC

Median SD Median SD Median SD

B∗
11 0.66 0.23 0.80 0.22 0.45 0.39

B∗
22 0.65 0.23 0.76 0.23 0.39 0.56

B∗
33 0.72 0.21 0.87 0.13 0.82 0.18

B∗
12 − 0.03 0.46 − 0.20 0.53 0.04 0.24

B∗
13 − 0.31 0.38 − 0.58 0.40 0.18 0.18

B∗
23 − 0.29 0.38 − 0.35 0.50 0.08 0.21

†Results are based on a cMpCARSain et al. UC model with the spectral decomposition of a symmetric matrix
C

defined by linear combination of independent pCARs and for the cMpCARSain et al. UC

(Dm = Dw) with a symmetric matrix C of spatial parameters. These three mod-
els all resulted in positive posterior estimates of the spatial autocorrelation functions
B∗

j j s; however, modest differences were observed among them. With high posterior
uncertainties, the M-model and the cMpCAR with a symmetric coregionalization
coefficients matrix A both resulted in negative posterior estimates for the cross-spatial
correlations. The posterior estimates of the cross-spatial dependence parameters in
cMpCARSain et al. UC were positive, also with high posterior uncertainties.

8.2 Spatiotemporal diseasemapping

The British Columbia adversemedical events (AME) data set was previously analyzed
in the context of Bayesian spatiotemporal disease mapping (MacNab 2007). The data
comprise the observed AME counts and the associated at risk population estimates
for boys aged 1-19, denoted {yit } and {nit } hereafter, where i = 1, . . . , n and t =
1, 2, . . . , T for data spanning ten (T = 10) years (1991–2000) and for n = 84 local
health areas in British Columbia, Canada; also see MacNab (2007) for further details
about the data and related models and results.

As illustrative examples, we present results from two classes of spatiotemporal
models. The first class of models are the B-spline models (with four inner-knots)
presented in MacNab (2007): yit ∼ Poisson(nitexp(mt + bit )),

mt = a0 + S0(t), bit = ζi0 + RSi (t), S0(t) =
7∑

k=1

ak Bk(t), RSi (t) =
7∑

k=1

ζik Bk(t)

where {Bk(t)}7k=1 are the 4-knot B-spline basis functions without the intercept.
We explored selected priors for the zero-mean random coefficients vec(ζ�) =
(ζ10, ζ11, . . . , ζ17, . . . , ζn0, ζn1, . . . , ζn7)

�. Here, we briefly report on results from
three fitted models, each with a different prior for the random effects vec(ζ�): (1)
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Table 3 DIC results for selected spatiotemporal models

Model Dbar pD DIC

B-spline, 4 knots, M-model (pCAR) 3931 339 4270

B-spline, 4 knots, cMpCAR8-fold diag(c) 4078 262 4340

B-spline, 4 knots, MIID-model 4014 295 4310

adaptSVC(I) pRW1 cMpCAR2-fold diag(c) 3877 324 4201

adaptSVC(I) RW2 cMpCAR2-fold diag(c) 4348 106 4454

adaptSVC(I) linear trend cMpCAR2-fold diag(c) 4346 113 4459

8-variate M-based MpCAR (denoted M-model), (2) cMpCAR 8-fold diag(c), and (3)
non-spatial multivariate Gaussian (MIID) model, i.e., Ωvec (ζ�) = In ⊗ Γ , as pre-
sented inMacNab andGustafson (2007). The B-splinemodel with aMGMRF prior on
vec(ζ�) is a fully identified spatiotemporal model in which the random effects, bit s,
capture complex spatiotemporal risk interactions; they also model spatially varying
nonlinear temporal risk patterns across geographical areas through spatially varying
B-splines.

The second class of models are spatiotemporal models with locally adaptive SVC(I)

prior(s) (denoted adaptSVC(I) hereafter) in which the non-spatial temporal relations
are modeled as order-1 randomwalk (pRW1), order-2 randomwalk (RW2), and linear
trends, respectively; see Rue and Held (2005) for additional details for RW1 and
RW2 formulations. Once again, Poisson likelihood is assumed. Here, we report on
three relatively simple adaptive SVC(I) models for the random effects bit = ui1 + βi t ,
where, for the linear trend model, βi t = ui2t , or, for the RW1 and RW2 process
models,

vec(β) = (IT ⊗ diag(σ ))vec(η),

σ = (σ1, . . . , σn), η is a N by T matrix of latent components, vec(η) ∼ MVN(0,Γ ⊗
In), Γ is a T by T RW1(λ) or RW2(λ = 1) precision matrix, where λ is a temporal
partial correlation parameter. In the threemodels, we let themt s represent fixed effects,
log(σi ) = α+ui2, α is a fixed intercept; and vec(u) ∼ 2-fold cMCAR(diag(c), ρc) is
a multivariate CAR prior used to characterize simple spatiotemporal interactions. The
spatiotemporalmodelwith pRW1 temporal characterization provides an example of an
adaptive SVC(I) that gives rise to a non-singular MGRMF, whereas the spatiotemporal
model assuming RW2 temporal processes leads to a singular MGMRF. Here, the
identification issue related to the singular MGMRFs is handled by the commonly
known sum-to-zero constraint.

Among the three B-spline models, theM-model seems to have enabled most appro-
priate amount of smoothing, resulting in the lowest deviance andDIC (seeTable 3). The
8-fold CAR, on the other hand, appears to have imposed the least favorable smoothing
and exhibited the highest deviance and DIC.

Of the three locally adaptive coregionalization models, the model with proper
RW1(λ) for the latent temporal components at co-locations, denoted “adaptSVC(I)
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Fig. 3 Posterior relative risk (RR) plots for selected local health areas, based on indicated models: dashed
(red) line—crude RRs, solid (black) line: posterior median, with 2.5- and 97.5-percentiles (color figure
online)

pRW(1) cMpCAR2-fold diag(c)”, resulted in the lowest deviance and DIC. These results
were also the best among all six spatiotemporal models. Themodel with RW2, denoted
“adaptSVC(I) RW(2) cMpCAR2-fold diag(c)”, and the model with linear trends, denoted
“adaptSVC(I) linear trend cMpCAR2-fold diag(c)”, were quite comparable: both imposed
considerable smoothing. Consistent results are also observed among the posterior log
relative risk predictions, as seen in Fig. 3.

9 Discussion

In this paper, we provided a survey and synthesis of the main proposals for formu-
lating conditionally specified MGMRFs. We presented a general coregionalization
framework that connects and unifies the various lines of model development.
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The Besag (1974), Mardia (1988) and Sain et al. (2011) frameworks provide the
essential tools for formulations of a wide range of coregionalization MGMRFs, with
extensions to locally adaptive models. The coregionalization framework presented
herein contains the majority of the MGMRFs proposed in the literature to date.
Its inclusiveness and computational advantages, highlighted in the presented paper,
should offer a broad range of models and tools for a wide range of applications,
including but not limited to those outlined in the introduction.

The coregionalization framework presented herein still has considerable potential
for further extension and new model development, with potential connections to non-
stationary or stationary multivariate Gaussian processes commonly discussed in the
geostatistics literature (Gelfand et al. 2004; Lindgren et al. 2011).

In what follows, we present an organized summary discussion on insights gained
from this study. We also discuss challenges and opportunities concerning model con-
struction and parameterization, interpretation, and statistical computation.

9.1 The Sain et al. andMardia frameworks

The Sain et al. framework provides tools for flexible characterizations of conditional
spatial and cross-spatial dependencies. The MGMRFs discussed herein postulate and
control for conditional cross-spatial dependencies via a full matrix of spatial depen-
dence parameters. This family of MGMRFs may be conceptualized and defined over
variable-specific lattice-neighbor schemes or over different lattices. The spatial and
non-spatial dependence parameters in the Sain et al. MGMRFs discussed herein are
partial correlation parameters of non-separable partial correlation matrices. These
spatial and non-spatial partial correlation parameters are constrained together, due to
complex requirement that theMGMRF precision (covariance) matrix must be positive
definite.

The Sain et al. MGMRFs discussed herein use a full matrix of spatial dependence
parameters to postulate and control for conditional spatial and cross-spatial depen-
dencies. The diagonal dominance constraint for enforcing the positivity condition,
and the currently available solutions for shrinkage estimation of a matrix C of spatial
parameters, may reduce the intended flexibility of a proposed model.

TheMardia frameworkmay have limited flexibility for intuitive characterizations of
the conditional cross-spatial dependencies. However, it may enable the formulations of
flexible and intuitively appealing MGMRFs with spatially smoothing covariance and
cross-covariance functions, including asymmetric cross-covariance functions. With
the arrival of linear and spatially varying coregionalization approaches to formulating
MGMRFs, theMardia framework offers an option to formulating linear coregionaliza-
tion models with correlated latent components modeled by multivariate conditionals.

9.2 The broadened coregionalization framework

The linear and spatially varying coregionalization approaches to the formulations
of multivariate spatial or spatiotemporal models presented herein offers a unified
framework for a systematic development and interpretation of the major proposals
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of MGMRFs presented in the literature, with related computational methods for sta-
tistical estimation and inference. In spite the fact that the conditional formulation of
(M)GMRFs “is marred by a number of disadvantages” (Besag 1974), one important
message of the present study is that the Besag (1974), Mardia (1988) and Sain et al.
(2011) frameworks provide the theoretical foundation, essential building blocks, and
intuitively appealing motivations for building MGMRFs for finite lattice systems and
within the coregionalization framework. It is worth noting that Besag (1974) andMar-
dia (1988) also discuss formulations of non-stationary and stationary MGMRFs (i.e.,
Gaussian processes) on infinite lattice. The (M)GMRF proposals presented in recent
literature, and in the present paper, are specific (M)GMRF constructions for data
observed over systems of finite lattice.

Coregionalization is a powerful tool for multivariate generalizations of univariate
spatial models, dimension reduction, and multivariate statistics applications. Spa-
tially varying coregionalization enables us to formulate p-variate GMRFs that allow
asymmetric cross-covariance functions to be parameterized via a p-vector of spa-
tial parameters. These spatially varying coregionalization MGMRFs have intuitive
interpretations for their coregionalization covariance and cross-covariance matrix
functions and may be computationally more manageable in detailing with large-n
and/or large-p problems. Linear coregionalization models built using independent
latent GMRFs, as well as their counterparts of spatially varying coregionalization
models, have broad scope for coregionalization MGMRF formulation over variable-
specific lattice-neighbor schemes or over different lattices.

9.3 MGMRFmodels for prediction, smoothing, and explanation: diseasemapping
and ecological regression

For multivariate disease mapping and spatial smoothing, the various approaches to
formulating MGMRFs and linear coregionalization MGMRFs seem to perform com-
parably as smoothers. While quite preliminary, some consistent results have emerged
from this study and from recent literature. Specifically, in our illustrative examples, the
more flexiblemodels, those that accommodate asymmetric cross-spatial dependencies,
only slightly outperformed their simpler counterparts, which allowed for symmetric
cross-spatial dependencies to be modeled by a diagonal matrix C. Similar results can
be seen in recent publications (Jin et al. 2007; Greco and Trivisano 2009; Martinez-
Beneito 2013; MacNab 2016a, b). Adaptive cMpCARs are seen to be comparable to,
or to marginally outperform, their non-adaptive counterparts. Similar results were also
seen in MacNab et al. (2006) and Congdon (2008b). The Mardia MGMRFs and their
coregionalization model counterparts are shown to perform slightly better than their
Sain et al. MGMRF counterparts.

The spatiotemporal models presented herein provide brief illustrations for the
range of potentially useful models for analyzing spatiotemporal data. The spatially
varying coregionalization MGMRFs may offer considerable options for flexible
multivariate spatial and spatiotemoral smoothing. For example, spatially varying
coregionalization constructions parameterized by component-specific spatial param-
eters c, with the latent components characterizing the variable or time domain
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vec(ζ ) ∼ MVN(0,Γ ⊗ In), may offer considerable model flexibility and options
that are both conceptually plausible and computationally manageable.

Coregionalizationmodelswith locally adaptive spatial and/or scale parameters offer
considerable flexibility for SVC constructions, from formulation of simpler models,
say, the spatially varying adaptive coregionalization models illustrated in the paper,
to those of more complex ones, say, more elaborate spatially adaptive SVC(I)s or
SVC(II)s. Locally adaptive models might be considered for data with complex mul-
tivariate spatial or spatiotemporal dependencies and heterogeneities, particularly in
situations where explanatory covariates are available to model locally structured het-
erogeneity. We also anticipate potential applications of adaptive models in the context
of joint mean-covariance (or inverse covariance) modeling (Pourahmadi 1999, 2000,
2007) of multivariate spatial and spatiotemporal data with explanatory covariates.

In summary, the basic linear coregionalization framework offers a broad range of
model options for disease mapping and spatial regression. Spatially varying coregion-
alization also offers tools for reconstruction of CAR orMCAR for orthogonal random
effects in GLMM disease mapping and spatial regressions.

9.4 Challenges and opportunities

Due, in part, to the highly restrictive constraints placed on the multivariate Gaussian
precision matrices to enforce symmetry and positivity conditions, MGMRFs parame-
terized by thematrixC of spatial parametersmayhave limited applications inmodeling
and inferring complex conditional spatial and cross-spatial dependencies, includ-
ing (a)symmetric cross-spatial dependencies. The currently available approaches to
shrinkage estimation of MGMRFs may also place limits on the utility of the MGM-
RFs. MGMRFs formulated on a “hardwired” lattice-neighborhood structure, with an
undirected graph of connected edges representing Markovian dependencies in terms
of conditional correlations and local interactions, may also have limited flexibility to
model complexmultivariate andmulti-dimensional spatial dependencies and relations.
This could be one important reason that high posterior uncertainties about conditional
spatial cross-correlation parameters are suggested in the present study and in recent
literature (Jin et al. 2007; Greco and Trivisano 2009;MacNab 2016a, b). Locally adap-
tivemodels that allow formore flexible spatial correlation structures, such as randomly
connected edges (Brezger et al. 2007; Lee et al. 2014), may offer alternative and more
flexible parameterizations and representations of multivariate spatial dependencies,
local interactions, discontinuities, and asymmetry.

While the goal for flexible models is often to facilitate characterization of complex
multivariate spatial andnon-spatial dependencies and associations, the implementation
of these complex models is often constrained by computational complexity, particu-
larly in cases where p > 3. The present solutions to the shrinkage estimations of the
spatial parameter matrix C and the covariance matrixΣ orΣ1/2 seem to be tentatively
useful for small values of p, say p ≤ 3. As p increases, we could be dealing with an
unmanageable number of prior parameters. ReducingC to a diagonalmatrix often sim-
plifies computation significantly. Another way to reduce computational complexity is
to place a structural assumption on the non-spatial covariance matrix Σ , as illustrated
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in the present paper for spatiotemporal models. Fast computation for sparse matrix
decomposition and efficient tools for covariance estimation may enable wide use of
the linear and spatially varying coregionalization models. Some computational solu-
tions may be found in Barnard et al. (2000), Gelfand and Vounatsou (2003), Gelfand
et al. (2004), Rue and Held (2005), Sain and Cressie (2007), Jin et al. (2007), Sain
et al. (2011) and Pourahmadi (2011, 2013); implementation of these solutions through
programming in R or extensions of R-INLA may also be fruitfully explored.
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