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Abstract
We compare two mixtures of arbitrary collection of stochastically ordered distribution
functions with respect to fixedmixing distributions. Under the assumption that the first
mixture distribution is known, we establish optimal lower and upper bounds on the
latter mixture distribution function and present single families of ordered distributions
which attain the bounds uniformly at all real arguments. Furthermore, we determine
sharp upper and lower bounds on the differences between the expectations of the
mixtures expressed in various scale units. General results are illustrated by several
examples.
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1 Introduction

Let {Fθ }θ∈R be an arbitrary family of stochastically ordered distribution functions,
i.e., ones that satisfy

θ1 < θ2 ⇒ Fθ1(x) ≥ Fθ2(x), x ∈ R. (1.1)

We assume that the family is not known. We further introduce two distribution func-
tions S and T which are assumed to be known. We do not impose any restrictions on
them. They may have discrete and/or continuous components, and supports concen-
trated on possibly partially or even fully different subsets of the real line. The purpose
of the paper is to compare the mixture distribution functions
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G(x) =
∫
R

Fθ (x)S(dθ), (1.2)

H(x) =
∫
R

Fθ (x)T (dθ), (1.3)

and their expectations.
Our model is motivated by nonparametric Bayes and regression ideas. The rela-

tion between the predictor θ and random response with distribution function Fθ is
completely unknown except for a frequently natural and practically justified premise
that the greater value of predictor results in a (stochastically) greater response. We
investigate consequences of various choices of prior S and T for the wide nonpara-
metric response model restricted merely by the above order constraints. Classic Bayes
procedures are focused on identifying the predictor value managing a single random
experiment. Our approach is global: we analyze the final consequences of random
choice of predictor, and random response to the selected predictor. This corresponds
to the situation of multiple repetitions of the experiment where various values of
predictors are chosen according to the prior selection rule.

Precisely, in Sect. 2 we determine sharp lower and upper bounds on distribution
functions (1.3) under the constraint that condition (1.2) is satisfied for an arbitrarily
fixed G. The lower and upper bounds constitute proper distribution functions iff the
mixing distribution function T does not have a positivemass right and left, respectively,
to the support of S. We also show that the bounds are attained uniformly for anyG, i.e.,
there exist single families {Fθ }θ∈R and {Fθ }θ∈R such that (1.2) holds, and the lower
and upper bounds on (1.3) are attained by {Fθ }θ∈R and {Fθ }θ∈R, respectively, for
every real argument x . In Sect. 3, we determine the greatest possible lower and upper
deviations ofEY = ∫

R
xH(dx) fromEX = ∫

R
xG(dx) (cf (1.2) and (1.3)), measured

in various scale units (E|X − EX |p)1/p = (∫
R

|x − EX |pG(dx)
)1/p, p ≥ 1, based

on central absolute moments of (1.2). We illustrate theoretical results by a number of
examples in Sect. 4. Section 5 is devoted to the proof of Theorem 1 of Sect. 2 that is
the basic result of the paper providing the tools for establishing the expectation bounds
of Sect. 3.

Mixturemodels havemultiple applications in probability and statistics. Itwas shown
in a reviewpaper ofKarlis andXekalaki (2003) that they are exploited in datamodeling,
discriminant and cluster analysis, outlier and robustness studies, analysis of variance,
randomeffects and relatedmodels, factor analysis, and latent structuremodels, random
variable generation, and approximation of distributions. Here we merely mention
several nonparametric Bayesian inference and regression analysis applications. One
of the pioneering works on nonparametric Bayesian estimation methods was that of
Ferguson (1973) who provided Bayes estimates of the response distribution function
and several its functionals under the Dirichlet process prior. Ghosh and Mukherjee
(2005) presented a sequential version of the distribution function estimate. Susarla
and Ryzin (1978), Tiwari and Zalkikar (1990), Gasparini (1996), and Zhou (2004)
determined nonparametric Bayes estimators of distribution function under various
censoring schemes. Sethuraman and Hollander (2009) estimated the nominal lifetime
distribution of an unit exposed to various repair treatments. Hansen and Lauritzen
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168 T. Rychlik

(2002) proposed a method of Bayesian estimation of arbitrary concave distribution
function when the prior is a proper mixture of Dirichlet processes. For the Bayesian
density estimation, we refer to Escobar and West (1995) and Vieira et al. (2015),
whereas the hazard rate function was treated by McKeague and Tighiouart (2002).

From the vast nonparametric Bayesian regression literature, we mention only
the following. Choi (2008) studied convergence of posterior distributions when the
response–predictor relation was modeled by mixtures of parametric densities, and a
sieve priorwas assumed.Chung andDunson (2009) estimated the conditional response
distribution and identified significant predictors under the assumption of probit stick-
breaking process as a prior. Zhu and Dunson (2013) used nested Gaussian processes
as locally adaptive priors for the regression model. Jo et al. (2016) considered quantile
regression problemswith theDirichlet processmixturemodeling the error distribution.

A small proportion of nonparametric Bayes research is devoted to order restricted
inference. Assuming restricted dependent Dirichlet prior for a collection of partially
ordered distributions, Dunson and Peddada (2008) tested equalities in the homogenous
groups and estimated group-specific distributions. Yang et al. (2011) developed pos-
terior computations for stochastically ordered latent class model based on the nested
Dirichlet process prior. Nashimoto and Wright (2007, 2008) performed Bayesian
multiple comparisons for ordered medians and means, respectively. The model of
stochastically orderedmixtures presented herewas earlier examined byMiziuła (2017)
who established tight lower and upper bounds on the ratios of various dispersion mea-
sures ofmixtures. Some similarities to our approach can be also found inRobertson and
Wright (1982) where lower and upper bounds on mixtures of stochastically ordered
Chi-squared distributions useful in testing homogeneity of normal means against their
ordering were established.

2 Distribution functions of mixtures

The main result of this section is following.

Theorem 1 Let S, T , and G be fixed distribution functions onR. Then for every family
{Fθ }θ∈R of stochastically ordered distribution functions (cf (1.1)) satisfying (1.2), the
following inequalities hold

H(G(x)) ≤
∫
R

Fθ (x)T (dθ) ≤ H(G(x)), x ∈ R, (2.1)

where H , H : [0, 1] �→ [0, 1] are the greatest convex minorant and the smallest
concave majorant, respectively, of the set

U = U(S, T ) = {(u, v) = (S(θ), T (θ)) : θ ∈ R}. (2.2)

Moreover, the bounds in (2.1) are optimal and uniformly attainable which means that
there exist stochastically ordered families {Fθ }θ∈R and {Fθ }θ∈R satisfying (1.2) such
that for every real x yields
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H(G(x)) =
∫
R

Fθ (x)T (dθ), (2.3)

H(G(x)) =
∫
R

Fθ (x)T (dθ).

Remark 1 The set of stochastically ordered families satisfying (1.2) is non-empty. A
trivial example is one-element family {G}θ∈R.

Remark 2 Set (2.2) is certainly a subset of the standard unit square [0, 1]2. It only
contains ordered planar points which means that for every (u1, v1), (u2, v2) ∈ U ,
inequality u1 ≤ (≥, resp.) u2 implies the same relation between v1 and v2. Points
(0, 0) and (1, 1) belong to U(S, T ) iff both S and T have left and right bounded
supports, respectively.

Besides, (2.2) may have very different forms for various S and T . Note first that
since S and T are arbitrary, and we can interchange their roles. Except for given
U(S, T ) we also consider U(T , S) which is a symmetric transformation of U(S, T )

about the diagonal u = v.
In the simplest case, when both S and T are continuous, (2.2) is represented by a

single curve joining (0, 0) and (1, 1). It does not necessarily contain the end-points.
The curve may contain horizontal line segments if S is increasing on some interval,
and T is constant there. By the symmetry property mentioned above, vertical line
segments are possible as well.

Another simple image set (2.2) arises when S and T are discrete. It consists of sep-
arate points. Notice that some of them may lie on some horizontal (or vertical) lines.
If S is continuous and T is discrete, then U(S, T ) consists of horizontal line segments.
Sometimes the set is identical with the graph of non-decreasing right-continuous step-
wise function which means that the steps have left end-points, and to not have the right
ones. However, if S is constant on some left neighborhood of a jump of T , then the
right end-point belongs to the line segment as well. Clearly, under the assumptions
U(T , S) is built of vertical intervals.

After analyzing these simple cases, we are prepared for examining general S and
T , possibly possessing some continuity intervals, and some discontinuities. Set (2.2)
consists of at most countably many pieces. For each pair of pieces, one is located right
and above the other. Only one coordinate of the left lower end-point of the former
piece may be equal to the respective coordinate of the right upper end-point of the
latter one. The pieces of (2.2) are either curves or separate points. The curves may
contain horizontally and vertically oriented line segments as well as some their pieces
can represent the graphs of strictly increasing functions. Each curve contains the point
with minimal values of both coordinates, but it does not necessarily contain the right
upper end-point.

Remark 3 The points of the graphs of the greatest convex minorant and the smallest
concavemajorant of (2.2) either coincidewith the points of the set, or belong to straight
line segments joining the elements of the set (more precisely, the limiting values of the
right upper ends of the set pieces may also serve as the left and right ends of the line
segments). By definition of U(S, T ), the greatest convex minorant and the smallest
concave majorant are non-decreasing functions. They are obviously continuous as
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well. Accordingly, compositions H ◦ G and H ◦ G are well-defined functions on the
whole real axis, non-decreasing, right-continuous, and have all values in [0, 1].

Their actual image sets can be smaller, though. We explain when it occurs with use
of a natural notion of ordering intervals which we further often use in the proof of
Theorem 1. We say that interval �1 precedes interval �2, and write �1 ≺ �2 iff for
every θ1 ∈ �1 and θ2 ∈ �2 we have θ1 < θ2. We admit that the intervals have or do
not have their left and right end-points. Accordingly, H ◦ G is a distribution function
iff

∀�1 ≺ �2 S(�1) = 1 ⇒ T (�2) = 0. (2.4)

(for simplicity of notation, we use the same symbol for the distribution function and
respective probability distribution). Clearly, H ◦G is not a proper distribution function
iff

∃ �1 ≺ �2 S(�1) = 1, T (�2) > 0. (2.5)

Then

1 > u = u(S, T ) = 1 − max{T (�2) : �2 � �1, S(�1) = 1}. (2.6)

is the supremum point of H ◦G(R). It means that H ◦G is not a distribution function
when T has a positive probability mass right to the support of S. This may even happen
when the support of T is contained in that of S, but they have a joint right support
end-point, at which T has an atom, and S has not. Formally we admit the situation
that u(S, T ) = 0 if the whole mass of T is located right to the mass of S, and then
H ◦ G simply vanishes. Analogously, H ◦ G is a proper distribution function iff

∀�1 ≺ �2 S(�2) = 1 ⇒ T (�1) = 0. (2.7)

In the general case, inf H ◦ G(R) = u ≥ 0 where

u = max{T (�1) : �1 ≺ �2, S(�2) = 1}.

It is clear that u ≥ u.

Remark 4 Observe that the inverses

H(u) =
{
0, 0 ≤ u ≤ u,

H
−1

(u), u ≤ u ≤ 1,

and

H(u) =
{
H−1(u), 0 ≤ u ≤ u,

1, u ≤ u ≤ 1,
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are the greatest convexminorant and the smallest concavemajorant, respectively, of the
set U(T , S) which are exploited in minimizing and maximizing mixture distribution
function

∫
R
Fθ (x)S(dθ) under restriction on fixed form of

∫
R
Fθ (x)T (dθ).

The proofs of the lower and upper bounds, and their attainability are rather long,
but similar. Therefore in the proof presented in Sect. 5, we restrict ourselves to the
lower bound case. Families {Fθ }θ∈R and {Fθ }θ∈R which attain the bounds in (2.1)
strongly depend on the particular shape of set (2.2), and resulting forms of the greatest
convex minorant and the smallest concave majorant. It is impossible to describe them
in a concise form for general S and T (dependence on G is much simpler here) in
the statement of Theorem 1. Precise construction of {Fθ }θ∈R is presented in the proof
of Theorem 1. Construction of {Fθ }θ∈R is analogous to that of {Fθ }θ∈R, and it not
presented there.

3 Expectations of mixtures

In this section we examine variations of the expectations of mixtures under stochas-
tic ordering of mixed distributions. Suppose that we consider a mixture of arbitrary
unknown family of ordered distribution functions, and the actual mixing distribution
is S. The resulting random variable X has an unknown distribution function (1.2).
However, we assume that the mixing distribution is T , different from S. This gen-
erates a random variable Y with different distribution function (1.3) and expectation
EY . Our purpose is to evaluate the maximal possible differences between the assumed
and actual expectations of mixtures EY − EX . This is measured in various scale units
σp = (E|X − EX |p)1/p, p ≥ 1, generated by the central absolute moments of the
actual mixture variable X . The bounds depend merely on the mixing distributions S
and T , and on the parameter p of the measurement units σp. They are valid for all
possible {Fθ }θ∈R, and resulting mixture distributions G and H . The only restriction
is that X has a finite pth raw moment E|X |p of chosen order p ≥ 1, and Y has a finite
expectation. Similarly, under condition that actual mixture variable X has a bounded
support, we determine upper and lower bounds on EY −EX gauged in the scale units
σ∞ = ess sup |X − EX | = sup{0<x<1} |G−1(x) − EX |.

First we exclude the possibilities for which we obtain trivial infinite bounds on
EY − EX , independently of the choice of the scale units. Assume first that S and
T are such that respective H([0, 1]) = [0, u] � [0, 1], i.e., condition (2.5) holds.
Then clearly one can find the partition �1, �2 of R such that (2.5) is satisfied with
T (�2) = 1 − u. Take the family of distributions

Fθ =
{
FU , θ ∈ �1,

FP , θ ∈ �2,

where FU (x) = x , 0 ≤ x ≤ 1, and FP (x) = 1− 1
x , x ≥ 1, are the standard uniformand

Pareto distributions with shape parameter 1, respectively. Then obviously G = FU ,
H = (1 − u)FU + uFP , and so EX = 1

2 ,
1
4 ≤ σp ≤ 1

2 for all 1 ≤ p ≤ +∞ whereas
EY = +∞. Similarly, contradicting (2.7), we are able to choose an ordered family
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such that its mixtures with respect to S and T have bounded support, and expectation
−∞, respectively. Therefore assumptions (2.4) and (2.7) are necessary for getting
nontrivial finite upper and lower bounds on EY − EX .

Other extremities may occur when S and T are stochastically ordered. If S(θ) ≥
T (θ), θ ∈ R, then all the points of (2.2) lie either above or on the diagonal {(u, u) :
0 ≤ u ≤ 1} of the unit square. If we additionally assume (2.4), we obtain H(u) = u,
0 ≤ u ≤ 1.ByTheorem1,weget H(x) ≥ G(x), x ∈ R, andEY ≤ EX for an arbitrary
choice of ordered {Fθ }θ∈R for which the expectations exist. Similarly, assumptions
S ≤ T and (2.7) imply EY ≥ EX for any {Fθ }θ∈R. Determination of the nonpositive
upper bounds and nonnegative lower ones for (EY − EX)/σp, 1 ≤ p ≤ +∞, when
S ≥ T and S ≤ T , respectively, needs more subtle tools than these used below, and
will be treated elsewhere.

Now we present strictly positive upper bounds and strictly negative lower bounds
on (EY − EX)/σp for 1 < p < ∞, p = 1 and p = +∞ in Propositions 1, 2, and
3, respectively. Due to its importance and relative simplicity, case p = 2 is espe-
cially distinguished in Corollary 1. The bounds depend on the mixing distributions
S and T , and the scale unit parameter p, and all of them are optimal. We describe
conditions of their attainability by specifying mixture distribution G = G(S, T , p)
(see (1.2)). Construction of the families of mixing distributions {Fθ }θ∈R and {Fθ }θ∈R
providing stochastically minimal and maximal mixture distribution H (and, in con-
sequence, maximal and minimal expectations EY , respectively) for given S, T , and
G = G(S, T , p) are described in the proof of Theorem 1.

Proposition 1 Let X and Y be random variables with distribution functions which
are the mixtures of some stochastically ordered families of distributions {Fθ }θ∈R with
respect to fixed distribution functions S and T , respectively. Assume that X has a finite
pth moment for some fixed 1 < p < ∞.

(i) Suppose that S � T satisfy (2.4), and denote by h the right-continuous version
of the derivative of the greatest convex minorant of set U(S, T ) defined in (2.2).
If
∫ 1
0 h p/(p−1)(u) du is finite, then for all mixture distribution functions (1.2) for

which E|X |p < ∞ we have

EY − EX

(E|X − EX |p)1/p ≤ Bp(S, T ) =
(∫ 1

0
|h(u) − Cp|p/(p−1)du

)(p−1)/p

,

(3.1)

where h(0) < Cp < h(1) uniquely solves the equation

∫
{h(u)<c}

[c − h(u)]1/(p−1)du =
∫

{h(u)>c}
[h(u) − c]1/(p−1)du. (3.2)

The equality in (3.1) is attained if (1.2) has the right-continuous quantile function
satisfying

123



Sharp bounds on distribution functions and expectations… 173

G−1(u) − μ

σp
=
∣∣∣∣h(u) − Cp

Bp(S, T )

∣∣∣∣
1/(p−1)

× sgn {h(u) − Cp}, 0 < u < 1,

(3.3)

where μ ∈ R and σ
p
p ∈ R+ denote arbitrarily chosen values of expectation and

pth absolute central moment of G, respectively.
(ii) Let S � T satisfy (2.7), and h denote the right derivative of the smallest concave

majorant of (2.2). If
∫ 1
0 h

p/(p−1)
(u) du < ∞, then for all mixture distributions

(1.2) with finite pth moment yields

EY − EX

(E|X − EX |p)1/p ≥ −bp(S, T ) = −
(∫ 1

0
|h(u) − cp|p/(p−1)du

)(p−1)/p

,(3.4)

where h(0) > cp > h(1) is determined by Eq. (3.2) with h replaced by h. The
equality in (3.4) is attained by (1.2) with the quantile function

G−1(u) − μ

σp
=
∣∣∣∣∣
h(u) − cp
bp(S, T )

∣∣∣∣∣
1/(p−1)

× sgn {cp − h(u)}, 0 < u < 1,

and μ and σ
p
p denoting arbitrarily chosen expectation and pth absolute central

moments of G.

Proof We prove statement (i). Note first that by definition h is well-defined nonnega-
tive, non-decreasing and right continuous function. Assumption

∫ 1
0 h p/(p−1)(u) du <

∞ implies that the left hand-side of (3.2) is a continuous strictly decreasing function of
c ranging from

∫ 1
0 h1/(p−1)(u) du at 0 to 0 as c ↗ h(1) even if it is infinite. Similarly,

the right-hand side of (3.2) continuously increases from 0 to
∫ 1
0 h1/(p−1)(u) du as c

varies over the same range.
We can write

μ = EX =
∫
R

x G(dx) =
∫ 1

0
G−1(u)du,

σ
p
p = E|X − μ|p =

∫ 1

0
|G−1(u) − μ|pdu (3.5)

whereas owing to Theorem 1

EY =
∫
R

xH(dx) ≤
∫
R

xH(G(dx))

=
∫ 1

0
G−1(u)H(du) =

∫ 1

0
G−1(u)h(u)du.

123



174 T. Rychlik

Since we also have μ = μH(1) = ∫ 10 μh(u)du, the following yields

EY − EX ≤
∫ 1

0
[G−1(u) − μ]h(u)du =

∫ 1

0
[G−1(u) − μ][h(u) − Cp]du

≤
(∫ 1

0
|G−1(u) − μ|pdu

)1/p (∫ 1

0
|h(u) − Cp|p/(p−1)du

)(p−1)/p

which, due to (3.5), gives (3.1).

We obtain equality in the above Hölder inequality iff
∣∣h(u) − Cp

∣∣1/(p−1) sgn
{h(u)−Cp} and G−1(u)−μ are proportional with a nonnegative proportionality fac-
tor which is fulfilled in (3.3). By (3.2), the right-hand side of (3.3) has zero Lebesgue
integral over [0, 1]which guarantees that the expectation ofG is equal toμ.Moreover,

1 =
∫ 1

0

∣∣∣∣h(u) − Cp

Bp(S, T )

∣∣∣∣
p/(p−1)

du =
∫ 1

0

|G−1(u) − μ|p
σ
p
p

du,

which means that the pth absolute central moment of G amounts to σ
p
p , as desired.

Similar proof of claim (ii) is left to the reader. ��
Remark 5 Assumption

∫ 1
0 h p/(p−1)(u) du < ∞ is necessary for finiteness of the upper

bound in Proposition 1 even if (2.4) holds. Indeed, infiniteness of the integral implies
that H is not linear an some left neighborhood (1− ε, 1) of 1, and its graph coincides
with a piece of set (2.2) there. This means that

∀ 1 − ε < u < 1 {(u, H(u))} = {(S(θ), T (θ)) : θ ∈ �u}

where {�u}1−ε<u<1 is a family of ordered intervals so that 1 − ε < u1 < u2 < 1
implies �u1 ≺ �u2 , and

⋃
1−ε<u<1 �u constitutes a single right-unbounded interval.

From the proof of Theorem 1we conclude that the family {Fθ }θ∈R attaining uniformly
the lower bound in (2.1) consists of degenerate distributions for all θ ∈⋃1−ε<u<1 �u .

If we take 1 − ε < u1 < 1, and replace all the degenerate distribution functions
Fθ , θ ∈⋃u1<u<1 �u , by a single distribution function

Fu1(x) =
⎧⎨
⎩
0, G(x) ≤ S(θu1),

G(x)−S(θu1 )

1−S(θu1 )
S(θu1) ≤ G(x) ≤ 1,

where θu1 is any element of�u1 , we do not disturb ordering of the family, and the shape
of H on [0, u1], andmodify the latter into the linear function 1−H(u1)

1−u1
(u−u1)+H(u1)

on (u1, 1]. The resulting distribution function H1 preserves convexity, and its right
derivative h1 is bounded. There exists a unique Cp,1 being the solution to (3.2) with
h replaced by h1. For finite

Bp,1(S, T ) =
(∫ 1

0
|h1(u) − Cp,1|p/(p−1)du

)(p−1)/p
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and G1 satisfying

G−1
1 (u) − μ

σp
=
∣∣∣∣h1(u) − Cp,1

Bp,1(S, T )

∣∣∣∣
1/(p−1)

× sgn {h1(u) − Cp,1}, 0 < u < 1,

we get

EY − EX

(E|X − EX |p)1/p = Bp,1(S, T )

where X and Y have distribution functions G1 and H1 ◦ G1, respectively, arising by
mixing ordered families of distribution functions with respect to S and T . We repeat
the procedure for consecutive elements of increasing sequence (uk)∞k=1 tending to 1.
Then bounded hk tend increasingly to h, and

∫ 1

0
|hk(u) − c|p/(p−1)du → +∞, as k → +∞,

for arbitrary c, and for all Cp,k in particular. This implies that the difference EY −EX
measured in (E|X − EX |p)1/p units does not have a finite bound.

Analogously, we verify that under conditions (2.5) and
∫ 1
0 h

p/(p−1)
(u) du = ∞,

the respective lower bound amounts to −∞.

Corollary 1 Assume notation of Proposition 1, and specify p = 2.

(i) If (2.4), S � T , and
∫ 1
0 h2(u)du < ∞ hold, then

EY − EX√
Var X

≤ B2(S, T ) =
√∫ 1

0
h2(u)du − 1,

and equality is attained iff

G−1(u) − μ

σ2
= h(u) − 1

B2(S, T )
, 0 < u < 1.

(ii) Under assumptions (2.7), S � T , and
∫ 1
0 h

2
(u)du < ∞

EY − EX√
Var X

≥ −b2(S, T ) = −
√∫ 1

0
h
2
(u)du − 1,

and equality is attained iff

G−1(u) − μ

σ2
= 1 − h(u)

b2(S, T )
, 0 < u < 1.
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An essential simplification in case p = 2 follows from the fact that under the above
assumptions we get

∫ 1
0 h(u)du = H(1) − H(0) = 1 = ∫ 10 h(u)du = H(1) − H(0).

This implies that C2 = c2 = 1 then. Moreover,
∫ 1
0 [h(u) − 1]2du = ∫ 10 h2(u)du − 1,

and the same equality holds for h.

Proposition 2 Let X, Y , and h, h be defined as in Proposition 1, and suppose that X
has a finite mean.

(i) If (2.4) holds, S � T , and h is bounded, then

EY − EX

E|X − EX | ≤ h(1) − h(0)

2
, (3.6)

where h(1) is the left derivative of H at 1. The equality is attained in the limit by
the three-point distributions Gε, where

Gε

({
μ ± σ1

2ε

})
= ε, Gε({μ}) = 1 − 2ε,

as ε → 0, and μ and σ1 are arbitrarily chosen common values of the expectation
and mean absolute deviation from the mean of all mixture distributions Gε.

(ii) Under (2.7), S � T , and boundedness of h, we have

EY − EX

E|X − EX | ≥ −h(0) − h(1)

2
, (3.7)

with h(1) denoting the left derivative of H at 1. The bound is attained in the limit
by the family of mixture distributions {Gε}0<ε<1/2 described in Proposition 2(i)
as ε → 0.

The difference between the attainability conditions in Proposition 2(i) and (ii) consists
in different choice of mixed distribution functions {Fθ }θ∈R and {Fθ }θ∈R leading to
different distributions H ◦ Gε and H ◦ Gε of Y .

Proof of Proposition 2 We focus on the proof of statement (i), because that of (ii) is
similar, and we omit it here. We start with the relations

EY − EX ≤
∫ 1

0
[G−1(u) − μ]

[
h(u) − h(0) + h(1)

2

]
du

≤ sup
0<u<1

∣∣∣∣h(u) − h(0) + h(1)

2

∣∣∣∣
∫ 1

0
|G−1(u) − μ|du

= h(1) − h(0)

2
σ1.
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If the distribution function of Y is Gε, then

EY − EX

σ1
= 1

2ε

[∫ ε

0

(
h(1) − h(0)

2
− h(u)

)
du

+
∫ 1

1−ε

(
h(u) − h(1) − h(0)

2

)
du

]
. (3.8)

Function h and its left continuous versions are monotone and continuous at 0 and 1,
respectively. Accordingly, they tend to h(0) and h(1) uniformly over intervals [0, ε]
and [1 − ε, 1] as ε → 0. Therefore the right-hand side of (3.8) tends to h(1)−h(0)

2 . ��
Obviously, the families of distributions described in Proposition 2 are not the only

ones which attain the bounds in the limit. One can modify them in many ways without
disturbing desired asymptotic properties. If h(u) = h(0) and h(u) = h(1) on some
non-degenerate intervals [0, u0] and [u1, 1], say, then bound (3.6) is attained non-
asymptotically by a single family of ordered distributions. The necessary and sufficient
conditions of attainability are then G({μ}) = 1 − u0 − u1 with

−
∫ u0

0
[G−1(u) − μ]du =

∫ 1

u1
[G−1(u) − μ]du = σ1

2
.

This happenswhen H is linear on somevicinities of 0 and 1.Accordingly, the condition
for non-limit attainability of lower bound (3.7) is linearity of H about 0 and 1. It is
worth pointing out that such behavior of H and H is not especially extraordinary, and
occurs for a significant proportion of pairs S and T .

Observe that

h(0) = inf
θ∈R

T (θ)

S(θ)
≤ 1 ≤ h(1) = sup

θ∈R
1 − T (θ)

1 − S(θ)
(3.9)

under condition (2.4), and

h(0) = sup
θ∈R

T (θ)

S(θ)
≥ 1 ≥ h(1) = inf

θ∈R
1 − T (θ)

1 − S(θ)
(3.10)

when (2.7) holds. Miziuła and Solnický (2018, Theorem 1) (seeMiziuła 2015, Section
2.3, for the proof completely different from the above) used these notions for presenting
the inequalities

min

{
0,

h(1) − h(0)

2

}
≤ EY − EX

E|X − EX | ≤ max

{
0,

h(1) − h(0)

2

}
,

when both (2.4) and (2.7) are assumed. In fact, themin,max, and zeros can be dropped,
because h(1) − h(0) ≤ 0 ≤ h(1) − h(0) due to (3.9) and (3.10).

Proposition 3 Take X, Y , and h, h defined above and suppose that X has a bounded
support.
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(i) If (2.4) holds, S � T , and
∫ 1
0 h(u)du < ∞, we have

EY − EX

ess sup|X − EX | ≤ 1 − 2H

(
1

2

)
. (3.11)

Furthermore, define

0 ≤ λ− = λ

({
h(u) < h

(
1

2

)}}
≤ 1

2
, (3.12)

0 ≤ λ+ = λ

({
h(u) > h

(
1

2

)}}
≤ 1

2
, (3.13)

for λ(A) denoting the Lebesgue measure of measurable set A ⊂ R. The equality
in (3.11) is attained for (1.2) satisfying G({μ − σ∞}) = λ−, G({μ + σ∞}) = λ+,
and

∫
{
h(u)=h

(
1
2

)}[G−1(u) − μ]du = σ∞(λ− − λ+) (3.14)

with arbitrary μ ∈ R and σ∞ ∈ R+ serving as the mean and maximal absolute
deviation from the mean, respectively, of distribution function G.

(ii) Assume (2.7), S � T , and
∫ 1
0 h(u)du < ∞. It follows that

EY − EX

ess sup|X − EX | ≥ 1 − 2H

(
1

2

)
. (3.15)

Letλ− andλ+ be defined as in (3.12) and (3.13), respectively, except for h replaced
by h. Bound (3.15) is attained if G({μ − σ∞}) = λ+, G({μ + σ∞}) = λ−, and

∫
{
h(u)=h

(
1
2

)}[G−1(u) − μ]du = σ∞(λ+ − λ−)

with the above meaning of μ and σ∞.

Proof (i) We easily obtain (3.11), because

EY − EX ≤
∫ 1

0
[G−1(u) − μ]

[
h(u) − h

(
1

2

)]
du

≤ sup
0<u<1

|G−1(u) − μ|
∫ 1

0

∣∣∣∣h(u) − h

(
1

2

)∣∣∣∣ du

= σ∞
[
1 − 2H

(
1

2

)]
.

The former inequality follows from Theorem 1, and is valid and attainable for
any G under appropriate choice of mixed distributions. The latter becomes the
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equality iff G−1(u)−μ = − σ∞ on
{
h(u) < h

( 1
2

)}
and G−1(u)−μ = + σ∞ on{

h(u) > h
( 1
2

)}
. If λ− = λ+ = 1

2 , and, in consequence,
{
h(u) = h

( 1
2

)}
is either

empty or a degenerate interval, the optimal G is the unique two-point symmetric
distribution function supported onμ±σ∞. Otherwise (3.14) is the only assumption
necessary for fulfilling the first moment condition

0 =
∫ 1

0
[G−1(u) − μ]du = σ∞λ− +

∫
{
h(u)=h

(
1
2

)}[G−1(u) − μ]dx + σ∞λ+.

(ii) The proof is omitted due to its similarity to the above.
��

If λ− + λ+ < 1, the necessary condition (3.14) is in particular satisfied by
two- or three-point distribution G({μ − σ∞}) = λ−, G({μ + σ∞}) = λ+, and
G
({

μ + λ−−λ+
1−λ−−λ+

σ∞
})

= 1 − λ− − λ+. We easily check that −1 ≤ λ−−λ+
1−λ−−λ+

≤ 1

which assures that actually ess sup |X − EX | = σ∞. An analogous construction is
possible in Proposition 3(ii).

Also, one can verify that dropping the assumptions onboundedness and integrability
of h (and h) in Propositions 2 and3 implies that the respective upper (and lower) bounds
are infinite. We finally point out that strengthening the assumptions on moments of X
with mixture distribution G in Propositions 1–3 allows to relax respective conditions
on integrability of powers of functions h and h, and, in consequence, on moments of
Y with distribution functions H ◦ G and H ◦ G, respectively.

4 Examples

We first mention applications of our mixtures in the reliability theory. If a system
is composed of n identical elements with arbitrary exchangeable joint lifetime dis-
tribution, then the single component lifetime is the discrete uniform mixture of n
stochastically ordered component lifetime order statistics distributions, whereas the
system lifetime is another convex combination of theses distributions whose probabil-
ity vector, called the Samaniego signature, depends on the structure of the system (see
Samaniego 1985; Navarro et al. 2008). These representations were used by Navarro
andRychlik (2007) for evaluating the distribution functions and expectations of system
lifetimes by means of distribution functions and moments of component lifetimes. A
similar idea can be used for calculating bounds on expectations of linear combinations
of order statistics based on identically distributed samples (cf Rychlik 1993).

In the examples below, we restrict ourselves to calculating the sharp upper and
lower bounds expressed with scale units with parameters p = 1, 2 and ∞, because
for the other values of p we merely obtain numerical approximations.

Example 1 We start with a simple pair of discrete mixing distributions

S({1}) = 0.2, S({2}) = 0.3, S({3}) = 0.3, S({4}) = 0.2,

T ({1}) = 0.2, T ({2}) = 0.4, T ({3}) = 0.1, T ({4}) = 0.3.
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The image of the parametric transformation {(S(θ), T (θ)) : θ ∈ R} consists of 5
separate points

U(S, T ) = {(0, 0), (0.2, 0.2), (0.5, 0.6), (0.8, 0.7), (1, 1)}.

We immediately notice that the greatest convex minorant and the smallest concave
majorant of the points are piecewise linear functions

H(u) =
{

7
8u, 0 < u ≤ 0.8,
3
2 (u − 1) + 1, 0.8 ≤ u < 1,

H(u) =
{

6
5u, 0 < u ≤ 0.5,
4
5 (u − 1) + 1, 0.5 ≤ u < 1,

with respective stepwise right-continuous derivatives

h(u) =
{

7
8 , 0 < u < 0.8,
3
2 , 0.8 ≤ u < 1,

h(u) =
{

6
5 , 0 < u < 0.5,
4
5 , 0.5 ≤ u < 1.

Applying Corollary 1, we calculate

B2(S, T ) =
√∫ 1

0
h2(u)du − 1 = 1

4
,

b2(S, T ) = −
√∫ 1

0
h
2
(u)du − 1 = −1

5
.

Conclusions of Propositions 2 and 3 are following here

−1

5
≤ EY − EX

E|X − EX | ≤ 5

16
,

−1

5
≤ EY − EX

ess sup |X − EX | ≤ 1

8
.

After changing the roles of S and T , we get

h(u) =
{

5
6 , 0 < u < 0.6,
5
4 , 0.6 ≤ u < 1,

h(u) =
{

8
7 , 0 < u < 0.7,
2
3 , 0.7 ≤ u < 1,
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and so

− 5

21
≤ EX − EY

E|Y − EY | ≤ 5

24
,

− 1√
21

≤ EX − EY√
Var Y

≤ 1

2
√
6
,

−1

7
≤ EX − EY

ess sup |Y − EY | ≤ 1

6
.

The bounds shrink down towards 0 as p increases. This is evident due to the fact that
by the Hölder inequality the scale units (E|X − EX |p)1/p increase in p. Besides, the
classes of distributions G with finite pth moments decrease with increase of p. The
only exception make here the lower bounds on EY − EX which are still equal to − 1

5 .
This is caused by the fact that then the bounds are attained for two-point symmetric
distributions G for which (E|X − EX |p)1/p are equal for all 1 ≤ p ≤ +∞.

Example 2 Suppose that the actual mixing distribution function is the power one
S(θ) = 1−(1−θ)α , 0 < θ < 1, for someα > 0, whereas it is assumed that themixing
distribution function is another member of the power family T (θ) = 1− (1− θ)β for
0 < β �= α. Set U(S, T ) (see (2.2)) is the graph of increasing function

v(u) = T (S−1(u)) = 1 − (1 − u)β/α, 0 ≤ u ≤ 1,

transforming [0, 1] onto [0, 1]. It has the derivatives

v′(u) = β

α
(1 − u)β/α−1,

v′′(u) = −β

α

(
β

α
− 1

)
(1 − u)β/α−2,

which implies that v itself is convex if α > β, and concave when α < β. Accordingly,
the greatest convexminorant and the smallest concavemajorant of (2.2) have the forms
H(u) = 1−(1−u)β/α and H(u) = u, and their derivatives are h(u) = β

α
(1−u)β/α−1

and h(u) = 1, when α > β, and the functions change their roles if α < β. By
Theorem 1, every mixture distribution H of stochastically ordered family {Fθ }θ∈R
with respect to T satisfies the inequalities

G(x) ≤ H(x) ≤ 1 − [1 − G(x)]β/α,

when α > β and the mixture of {Fθ }θ∈R with respect to S is G, and the inequalities
are reversed for α < β.

Below we discuss the expectation bounds for the case α > β in greater detail,
and merely mention the final results for α < β which are derived analogously. By
Proposition 1, the upper bound on EY−EX

(E|X−EX |p)1/p is finite for given 1 < p < ∞ when

∫ 1
0 (1 − u)

(
β
α
−1
)

p
p−1 du < ∞, i.e., when the exponent is greater than − 1, which is
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equivalent to p > α
β
. However, the bound does not have an analytic form except for

the case p = 2. The lower one is 0 for all 1 < p < ∞ (and for p = 1,∞ as well).
When α < β, the upper bound vanishes, and the lower one is negative finite for all
1 ≤ p ≤ ∞.

If we have β < α < 2β, and fix p = 2, we get

∫ 1

0
h2(u)du =

(
β

α

)2 ∫ 1

0
(1 − u)2β/α−2du = β2

α(2β − α)
,

and consequently

0 ≤ EY − EX√
Var X

≤ α − β√
α(2β − α)

.

For α ≥ 2β, the right-hand side expression is replaced by +∞. Similarly, we obtain

α − β√
α(2β − α)

≤ EY − EX√
Var X

≤ 0

for α < β.
Proposition 2 asserts that

0 ≤ EY − EX

E|X − EX | ≤ +∞

for α > β, but in the case α < β the respective lower bound is nontrivial, and we
have

− β

2α
≤ EY − EX

E|X − EX | ≤ 0.

For p = ∞, we have H
( 1
2

) = 1 − 2−β/α , and so

0 ≤ EY − EX

ess sup |X − EX | ≤ 21−β/α − 1

for α > β. We easily check that the inequalities are reversed for α < β. However,
we do not claim that the zero bounds are optimal here. We finally observe that all the
nonzero bounds tend to 0 as β → α.

Example 3 Suppose that one mixing distribution function is exponential with expec-
tation 2, i.e., S(θ) = 1− exp(−θ/2), θ > 0, and the alternative one is that of the sum
of two independent standard exponentials, that is T (θ) = 1− (1+θ) exp(−θ), θ > 0.
The composition

v(u) = T (S−1(u)) = 1 − (1 − u)2[1 − 2 ln(1 − u)], 0 < u < 1,
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represents set (2.2) for the above choice S and T . It is easily verified that v ranges over
the whole standard unit interval, is strictly increasing, and convex on (0, 1 − e−1),
and concave on (1 − e−1, 1). The greatest convex minorant H of v is first coinciding
with some convex part of v, and then linear. The breaking point is determined by the
equation

1 − v(u) = (1 − u)2[1 − 2 ln(1 − u)] = (1 − u)v′(u) = −4(1 − u)2 ln(1 − u),

and amounts to 1 − e−1/2 ≈ 0.39347 which satisfies v′(1 − e−1/2) = 2e−1/2 ≈
1.21306. Therefore the greatest convex minorant and its derivative are following

H(u) =
{
1 − (1 − u)2[1 − 2 ln(1 − u)], 0 < u ≤ 1 − e−1/2,

2e−1/2(u − 1) + 1, 1 − e−1/2 ≤ u < 1,

and

h(u) =
{−4(1 − u) ln(1 − u), 0 < u ≤ 1 − e−1/2,

2e−1/2, 1 − e−1/2 ≤ u < 1,

respectively. The smallest concave majorant H of v is first linear, and then identical
with v. The change point satisfies

v(u) = 1 − (1 − u)2[1 − 2 ln(1 − u)] = uv′(u) = −4u(1 − u) ln(1 − u).

This does not have an analytic representation, and equals to u0 ≈ 0.87242 so that
v′(u0) ≈ 1.05075. The smallest concave majorant

H(u) =
{

v′(u0)u, 0 < u ≤ u0,

1 − (1 − u)2[1 − 2 ln(1 − u)], u0 ≤ u < 1,

has the derivative

h(u) =
{

v′(u0), 0 < u ≤ u0,

−4(1 − u) ln(1 − u), u0 ≤ u < 1.

Note that both functions h and h are bounded here, and hence all the bounds of
Propositions 1–3 are finite.

For establishing the standard deviation bounds with p = 2, we use the following
indefinite integral

v2(u) =
∫ u

1
[v′(t)]2dt = 16

∫ u

1
(1 − t)2 ln2(1 − t)dt

= −16(1 − u)3
[
1

3
ln2(1 − u) − 2

9
ln(1 − u) + 2

27

]
.
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The upper and lower bounds are

B2(S, T ) =
√∫ 1

0
h2(u)du−1 =

√
v2(1−e−1/2)−v2(0)+4e−3/2−1

=
√
5 − 8e−3/2

27

and

b2(S, T ) = −
√∫ 1

0
h
2
(u)du − 1 = −

√
u0[v′(u0)]2 + v2(1) − v2(u0) − 1,

respectively. In the case p = 1, we immediately check that e−1/2 and− 1
2v

′(u0) are the
upper and lower optimal evaluations. Since H

( 1
2

) = 1−e−1/2 and H
( 1
2

) = 1
2v

′(u0),
bounds (3.11) and (3.15) of Proposition 3 take on the forms 2e−1/2 and 1 − v′(u0),
respectively. Below we present numerical approximations of the above bounds

− 0.52538 ≤ EY − EX

E|X − EX | ≤ 0.60653,

− 0.16684 ≤ EY − EX√
Var X

≤ 0.34507,

− 0.05075 ≤ EY − EX

ess sup |X − EX | ≤ 0.21306.

Example 4 Wefinally consider a pair of seemingly similar symmetric unimodalmixing
distributions supported on [0, 1]. One is

S(θ) =
{

3
2θ

2, 0 < θ < 1
2 ,

1 − 3
2 (1 − θ)2, 1

2 ≤ θ < 1,

which has a symmetric triangular density, and an atom 1
4 at the mode 1

2 . The other one

T (θ) =
{
4θ3, 0 < θ < 1

2 ,

1 − 4(1 − θ)3, 1
2 ≤ θ < 1,

has quadratic density of different forms on
(
0, 1

2

)
and
( 1
2 , 1
)
, and a sharp peak at 1

2 .
Then

U(S, T ) =
{(

u,
8

3

√
2

3
u3/2
)

: 0 ≤ u <
3

8

}

∪
{(

u, 1 − 8

3

√
2

3
(1 − u)3/2

)
: 5

8
≤ u < 1

}
.
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The first pairs represent the graph of convex increasing function, and that of the latter
is concave increasing. The greatest convex minorant of U(S, T ) has three different

parts: function v(u) = 8
3

√
2
3u

3/2 on some right neighborhood of 0, then a straight line

joining the graph of v with point
(
5
8 ,

1
2

)
, and ultimately another piece of line passing

between
(
5
8 ,

1
2

)
and (1, 1). The point of change from strictly convex v into the first

linear one is determined by the slope equality condition

v′(u) =
1
2 − v(u)

5
8 − u

for some 0 < u < 3
8 which can be rewritten as

8
√
2
(√

u
)3 − 15

√
2
√
u + 3

√
3 = 0.

The cubic function of real argument replacing
√
u has three real roots −

√
3
2 −

√
6
4 <√

3
2 −

√
6
4 <

√
6
2 , and only the middle one is located in (0, 1). Therefore our change

point is
(√

3
2 −

√
6
4

)2 = 9
8 − 3

4

√
2 ≈ 0.064340 so that v′

(
9
8 − 3

4

√
2
)

= 2
√
2 − 2 ≈

0.82843. Accordingly,

H(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8
3

√
2
3u

3/2, 0 ≤ u ≤ 9
8 − 3

4

√
2,

(2
√
2 − 2)

(
u − 5

8

)
+ 1

2 ,
9
8 − 3

4

√
2 ≤ u ≤ 5

8 ,

4
3 (u − 1) + 1, 5

8 ≤ u ≤ 1,

and its derivative is

h(u) =

⎧⎪⎪⎨
⎪⎪⎩
4
√

2u
3 , 0 ≤ u ≤ 9

8 − 3
4

√
2,

2
√
2 − 2, 9

8 − 3
4

√
2 ≤ u < 5

8 ,

4
3 ,

5
8 ≤ x < 1.

Therefore

B2
2 (S, T ) =

∫ 9
8− 3

4

√
2

0

32u

3
du + (2

√
2 − 2)2

(
3

4

√
2 − 1

2

)

+
(
4

3

)2 3

8
− 1 = 4

√
2 − 5

7

12
,

and B2(S, T ) =
√
4
√
2 − 5 7

12 ≈ 0.27115 is the sharp upper bound on EY−EX√
Var X

.

Furthermore, B1(S, T ) = 1
2 [h(1) − h(0)] = 2

3 and B∞(S, T ) = 1 − 2H
( 1
2

) =√
2−1
2 ≈ 0.20711 provide analogous bounds expressed inE|X−EX | and ess sup |X−

EX | units, respectively.
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Since H(u) = 1−H(1−u), and h(u) = h(1−u), we easily deduce that bp(S, T ) =
−Bp(S, T ), 1 ≤ p ≤ +∞, whichmeans that the sharp lower bounds are the negatives
of their upper counterparts.

5 Proof of Theorem 1

We prove the first inequality in (2.1) for every fixed value u = G(x) ∈ [0, 1]. It is
evident that for u = G(x) = ∫

R
Fθ (x)S(dθ) = 0, we can take Fθ (x) = 0, θ ∈ R,

which guarantees the smallest possible value of
∫
R
Fθ (x)T (dθ) = 0.

For fixed 0 < u ≤ 1, we solve an auxiliary minimization problem for discrete
approximations of Fθ (x), θ ∈ R. Consider a finite partition of real axisR =⋃n

i=1 �i ,
where �1 ≺ · · · ≺ �n are disjoint ordered intervals. Each interval either has or does
not have the left and right end-point. Define si = S(�i ), ti = T (�i ), and denote
by ui unknown constant values of Fθ (x) on �i , i = 1, . . . , n. The only restrictions
on them are 1 ≥ u1 ≥ · · · ≥ un ≥ 0, and

∫
R
Fθ (x)S(dθ) = ∑n

i=1 si ui = u. Our
auxiliary problem is to minimize

∫
R
Fθ (x)T (dθ) = ∑n

i=1 ti ui under the constraints
on u1, . . . , un . By the change of variables

vn = un ≥ 0,

vi = ui − ui+1 ≥ 0, i = 1, . . . , n − 1,

satisfying also
∑n

i=1 vi = u1 ≤ 1, we have

n∑
i=1

ui si =
n∑

i=1

⎛
⎝ n∑

j=i

v j

⎞
⎠ si =

n∑
i=1

⎛
⎝ i∑

j=1

s j

⎞
⎠ vi =

n∑
i=1

Sivi ,

n∑
i=1

ui ti =
n∑

i=1

Tivi ,

where Si = ∑i
j=1 s j , Ti = ∑i

j=1 t j , i = 1, . . . , n, are known and satisfy 0 ≤ S1 ≤
· · · ≤ Sn = 1 and 0 ≤ T1 ≤ · · · ≤ Tn = 1.

Our problem can be rewritten as to minimize
∑n

i=1 Tivi over the intersection of the
simplex

Sn =
{

(v1, . . . , vn) : vi ≥ 0, i = 1, . . . , n,

n∑
i=1

vi ≤ 1

}

and hyperplane

HS =
{

(v1, . . . , vn) :
n∑

i=1

Sivi = u

}
.
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The simplex is a convex polyhedron with vertices 0, being the zero vector, and ei ,
i = 1, . . . , n, which are the standard unit vectors in R

n . Clearly, the line segments
joining the extreme points constitute the edges of Sn . The intersection Sn ∩ HS is
a convex set as well, and all its extreme points belong to some edges of Sn . All the
edges can be represented as

α ei + (1 − α) 0, 1 ≤ i ≤ n,

α ei + (1 − α) e j , 1 ≤ i < j ≤ n,

for all 0 ≤ α ≤ 1. In the first case, α ei ∈ HS iff Si ≥ u and

vk =
{ u

Si
, k = i,

0, otherwise.
(5.1)

In the latter one, α ei + (1 − α) e j ∈ HS iff Si ≤ u ≤ S j and αSi + (1 − α)S j = u.
If either u = Si or u = S j , then either ei ∈ HS or e j ∈ HS , respectively. These come
under the provisions of the previous case. When Si < u < S j , the respective vector
has the coordinates

vk =

⎧⎪⎪⎨
⎪⎪⎩

S j−u
S j−Si

, k = i,

u−Si
S j−Si

, k = j,

0, otherwise.

(5.2)

The linear functional
∑n

i=1 Tivi attains its minimal value on the convex compact
set Sn ∩HS at some its extreme points. This means that it suffices to confine analysis
to the finite set of points (5.1) if u ≤ Si , and (5.2) if Si < u < S j . Coming back to the
original variables we conclude that the possible candidates for the minimum points
are (u1, . . . , un) with

uk =
{

u
Si

, k = 1, . . . , i,

0, k = i + 1, . . . , n,
if u ≤ Si , (5.3)

and

uk =

⎧⎪⎨
⎪⎩
1, k = 1, . . . , i,
u−Si
S j−Si

, k = i + 1, . . . , j,

0, k = j + 1, . . . , n,

if Si < u < S j . (5.4)

Adding i = 0 with S0 = 0, we can jointly represent (5.3) and (5.4) by the formula

uk =

⎧⎪⎨
⎪⎩
1, k = 1, . . . , i,
u−Si
S j−Si

, k = i + 1, . . . , j,

0, k = j + 1, . . . , n,

if Si < u ≤ S j , 0 ≤ i < j ≤ n. (5.5)
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Note that for i = 0 and j = n, the first and last options in (5.5) are empty, respectively.
Accordingly, for given u = G(x) and Fθ (x), θ ∈ R, constant on the intervals

of finite partition �1 ≺ · · · ≺ �n there exist 0 ≤ i < j ≤ n such that Si =
S
(⋃i

k=1 �k

)
< u ≤ S j = S

(⋃ j
k=1 �k

)
which provide the minimal value of

n∑
k=1

tkuk =
i∑

k=1

tk + u − Si
S j − Si

j∑
k=i+1

tk

= T

(
i⋃

k=1

�k

)
+

T
(⋃ j

k=i+1 �k

)

S
(⋃ j

k=i+1 �k

)
[
u − S

(
i⋃

k=1

�k

)]
.

This means that in this case it suffices to partition the parameter set R onto at most
three intervals �1 ≺ �2 ≺ �3 such that S(�1) < u ≤ S(�1 ∪ �2). Observe that �1
and/or �3 may be empty so that S(�1) = 0 and/or S(�1 ∪ �2) = 1. For given S, T ,
and 0 < u ≤ 1, we define

H(u) = inf

{
T (�1) + T (�2)

S (�2)
[u − S (�1)]

}
, (5.6)

where the infimum is taken over all partitions�1 ≺ �2 ≺ �3 of the real line satisfying
S(�1) < u ≤ S(�1 ∪ �2). Observe that

S(�1) =

⎧⎪⎨
⎪⎩
0, if �1 = ∅,

S(θ1−), if �1 = (−∞, θ1),

S(θ1), if �1 = (−∞, θ1],

and

S(�2) =
{
S(θ2−) − S(�1), if �1 ∪ �2 = (−∞, θ2),

S(θ2) − S(�1), if �1 ∪ �2 = (−∞, θ2],

for some θ1 < θ2, and similar relations hold for T (�1) and T (�2). This means that
for given 0 < u ≤ 1, H(u) is the infimum over the values of all linear functions
joining points (S(θ1∓), T (θ1∓)) and (S(θ2∓), T (θ2∓)) for which S(θ1∓) < u ≤
S(θ2∓) at argument u. This defines the greatest convex minorant of the set of points
{(S(θ−), T (θ−)), (S(θ), T (θ)) : θ ∈ R} on interval [0, 1] when we let vary u over
the interval. Obviously, the greatest convex minorant does not change if we drop the
left-limit values.

A trivial but important observation is that the same partition �1 ≺ �2 ≺ �3 may
provide the infimum in (5.6) for various u. In particular, if the infimum is attained
when S(�2) = 1, then H(u) = u u with u defined in (2.6) for every u ∈ [0, 1].
Another extremity is that H(u) is approached as S(�2) ↘ 0, and the linear functions
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in (5.6) tend to the tangent of U(S, T ) at u. In this case, one needs to perform separate
approximations for single values of u.

We prove that (5.6) satisfies the left hand-side inequality in (2.1). Let Fθ (x) for
fixed x be a non-increasing function of θ ∈ R taking values in [0, 1] and satisfying∫
R
Fθ (x)S(dθ) = u. If Fθ (x), θ ∈ R, take on finitely many values (u1, . . . , un),

we proved above that there exists Fθ (x), θ ∈ R, with no more than three values 0,
0 < c < 1 and 1, satisfying the assumptions and such that

∫
R

Fθ (x)T (dθ) ≤
∫
R

Fθ (x)T (dθ),

and the infimum over these at most three-valued functions is just H(u).
If Fθ (x), θ ∈ R, has an infinite image set, we need more subtle arguments. Since

it is monotone, nonnegative and bounded above, we can write

u =
∫
R

Fθ (x)S(dθ) = inf
A1,...,Am

m∑
i=1

sup
θ∈Ai

Fθ (x)S(Ai ),

∫
R

Fθ (x)T (dθ) = inf
B1,...,Bm

m∑
i=1

sup
θ∈Bi

Fθ (x)T (Bi ),

where {A1, . . . , Am} and {B1, . . . , Bm} are arbitrary finite partitions ofR onto disjoint
intervals. Thismeans that there exist increasing sequences of partitions {Am

1 , . . . , Am
im

},
{Bm

1 , . . . , Bm
jm

}, m = 1, 2, . . ., such that

um =
im∑
i=1

sup
θ∈Am

i

Fθ (x)S(Am
i ) ↘ u =

∫
R

Fθ (x)S(dθ),

jm∑
j=1

sup
θ∈Bm

j

Fθ (x)T (Bm
j ) ↘

∫
R

Fθ (x)T (dθ),

as m → ∞. Let {Cm
1 , . . . ,Cm

km
} be the partition of R composed of intersections

Am
i ∩ Bm

j , i = 1, . . . , im , j = 1, . . . , jm . Then

im∑
i=1

sup
θ∈Am

i

Fθ (x)S(Am
i ) ≥

km∑
k=1

sup
θ∈Cm

k

Fθ (x)S(Cm
k ) = vm

↘ u =
∫
R

Fθ (x)S(dθ) > 0,

jm∑
j=1

sup
θ∈Bm

j

Fθ (x)T (Bm
j ) ≥

km∑
k=1

sup
θ∈Cm

k

Fθ (x)T (Cm
k ) ↘

∫
R

Fθ (x)T (dθ).
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Functions

Fm
θ (x) = u

vm

km∑
k=1

sup
θ∈Cm

k

Fθ (x)1Cm
k
(θ), θ ∈ R,

are non-increasing, have finite numbers of values in [0, 1], and integrate to u with
respect to measure S. Therefore

H(u) ≤
∫
R

Fm
θ (x)T (dθ) = u

vm

km∑
k=1

sup
θ∈Cm

k

Fθ (x)T (Cm
k )

→
∫
R

Fm
θ (x)T (dθ) ≥ H(u),

which is our claim.
We proved that for every fixed x ∈ R, there exists function Fθ (x), θ ∈ R, with

at most three values in [0, 1] which satisfies (1.2) and provides the minimal value of
(1.3) which amounts to (2.3). Letting x vary over R, we obtain two-variable function
F : R

2 �→ [0, 1] which can be treated as a family of functions {Fθ }θ∈R in variable
x . Our aim is to prove that the construction defines a family of stochastically ordered
distribution functions.

To this end, we first perform some auxiliary considerations. Define

A = {0 ≤ u ≤ 1 : ∃ θ ∈ R (u, H(u)) = (S(θ±), T (θ±))}.

This notation means that either (u, H(u)) = (S(θ), T (θ)) or (u, H(u)) = (S(θ−),

T (θ−)). This is a closed subset of [0, 1] which can be represented as an at most
countable sum of disjoint closed, possibly degenerate intervals A =⋃ j A j . Then its

interior is a sum of disjoint open intervals A = int A =⋃ j A j . Note that the number
of open intervals can be less than the number of the closed ones. The border of A
consists of at most countably many separate points

C = ∂A = A\A =
⋃
j

{c j }.

We finally introduce

B = [0, 1]\A = {0 ≤ u ≤ 1 : ∀ θ ∈ R (u, H(u)) �= (S(θ±), T (θ±))}

which means that neither (u, H(u)) = (S(θ), T (θ)) nor (u, H(u)) = (S(θ−),

T (θ−)). Obviously, this is a sum of no more than countably many disjoint inter-
vals B = ⋃ j B j . The closures of B and Bj are denoted by B, and B j , respectively.
Summing up, each pair (S, T ) generates a partition of the unit interval

[0, 1] =
⋃
j

A j ∪
⋃
j

B j ∪
⋃
j

{c j }. (5.7)
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It is obvious that for every A j , Ak ⊂ A, A j ≺ Ak , there exists Bl ⊂ B such that
A j ≺ Bl ≺ Ak . This is not necessarily true if we replace the roles of subintervals of
A and B. However, for every pair of subintervals from A and B there exists point cl
separating them.

For every G(x) = u ∈ A there exists θ = θu ∈ R such that (u, H(u)) =
(S(θ), T (θ)). This is not uniquely determined, though. We denote the set of all θ

satisfying the condition by �u . We also define �A j = ⋃u∈A j
�u . Similarly, for

every c j ∈ C there exists real θc j satisfying either (c j , H(c j )) = (S(θc j ), T (θc j ))

or (c j , H(c j )) = (S(θc j −), T (θc j −)). This is unique in the latter case, but other-
wise may be many θ ’s satisfying the condition. We denote the set of all θ sharing the
property by �c j . Finally, for Bj = B j\{ck, cl} with ck < cl , define

�Bj = {θ ∈ R : ∀ θ1 ∈ �ck , θ2 ∈ �cl θ1 < θ < θ2}.

Then we have a partition of the parameter set

R =
⋃
j

�A j ∪
⋃
j

�Bj ∪
⋃
j

�c j .

For any two elements Dk ≺ Dl of the partition (5.7) we have �Dk ≺ �Dl . Moreover,
inequality u < v for some u, v ∈ A j implies �u ≺ �v as well.

From the solution of the local minimization problems for various u = G(x), we
conclude the following minimization conditions. If u ∈ A j = (ck, cl), say, then

Fθ (x) =
{
1, if θ � �u,

0, if θ � �u .
(5.8)

The above notation, introduced for brevity,means that θ ≺ (�)�u when {θ} ≺(�)�u ,
and θ � (�) �u when either {θ} ≺ (�) �u or θ ∈ �u . For u ∈ B j = [ck, cl ], say,
we have four possible cases. We take

Fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ � �ck ,

G(x)−S(θck )

S(θcl )−S(θck )
, if �ck ≺ θ � �cl ,

0, if θ � �cl ,

(5.9)

if (ck, H(ck)) = (S(θck ), T (θck )) and (cl , H(cl)) = (S(θcl ), T (θcl )) for θck and θcl ,
being some representatives of �ck and �cl , respectively. Moreover,

Fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ ≺ �ck ,

G(x)−S(θck−)

S(θcl−)−S(θck−)
, if �ck � θ ≺ �cl ,

0, if θ � �cl ,

(5.10)
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when (ck, H(ck)) = (S(θck−), T (θck−)) and (cl , H(cl)) = (S(θcl−), T (θcl−)), and

Fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ � �ck ,

G(x)−S(θck )

S(θcl−)−S(θck )
, if �ck ≺ θ ≺ �cl ,

0, if θ � �cl ,

(5.11)

if (ck, H(ck)) = (S(θck ), T (θck )) and (cl , H(cl)) = (S(θcl−), T (θcl−)), and finally

Fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ ≺ �ck ,

G(x)−S(θck−)

S(θcl )−S(θck−)
, if �ck � θ � �cl ,

0, if θ � �cl ,

(5.12)

if (ck, H(ck)) = (S(θck−), T (θck−)) and (cl , H(cl)) = (S(θcl ), T (θcl )). We easily
check that in all the cases (5.8)–(5.12) imply

∫
R

Fθ (x)S(dθ) = G(x),
∫
R

Fθ (x)T (dθ) = H(G(x)).

where H(G(x)) = T (θu) for (5.8), and H(G(x)) = T (θck±) + T (θcl ±)−T (θck±)

S(θcl ±)−(θck±)
[u −

S(θck±)] with properly chosen limits at ck and cl in the other cases.
Now we rewrite the above formulae fixing θ ∈ R, and letting x vary. Assume first

(A1) θ ∈ �u ⊂ �A j for some u = G(x) ∈ A j ⊂ A.

Then Fθ (x) = 1 by (5.8). Take u > v = G(y) ∈ A (we admit v ∈ A j as well as
v ∈ Ak ≺ A j ). Since

Fθ (y) =
{
0, if θ � �v,

1, otherwise,

and �u � �v , we obtain Fθ (y) = 0. Assume now that v = G(y) ∈ B j = [ck, cl ]
for some B j ≺ A j . Then �u � �cl and any of (5.9)–(5.12) implies that Fθ (y) = 0
for all θ ∈ �u . Similar arguments show that Fθ (y) = 1 if G(y) > G(x) and either
G(y) ∈ A or G(y) ∈ B. This shows that for every θ ∈ �G(x) such that G(x) ∈ A, we
have

Fθ (y) =
{
0, if G(y) < G(x),
1, if G(y) ≥ G(x),

(5.13)

Consider now the set of parameters θ such that

(A2) �ck ≺ θ � �cl for some (ck, cl) = Bj , with (ck, H(ck)) = (S(θck ), T (θck )),
and (cl , H(cl)) = (S(θcl ), T (θcl )).
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Then for every x such that G(x) = u ∈ [ck, cl ] we have

Fθ (x) = G(x) − S(θck )

S(θcl ) − S(θck )
.

(cf (5.9)). If G(x) = v ∈ Ak ≺ B j , then �v ≺ �ck ≺ θ , and Fθ (x) = 0 by (5.8).
Certainly, Fθ (x) = 1 if G(x) = v ∈ Ak � B j , because �v � �cl .

If G(x) ∈ Bi = [cp, cq ] ≺ B j , we obtain �cq ≺ �ck ≺ θ , and each of (5.9)–
(5.12) implies Fθ (x) = 0. If G(x) ∈ Bi \ {ck} = [cp, ck), relation �ck ≺ θ provides
the same conclusion by (5.9) and (5.12). When G(x) ∈ Bi = [cp, cq ] with cp ≥ cl ,
we have two possibilities. When cp > cl , we apply the relation �cl ≺ �cp , possibly
together with θ ≺ �cl , to obtain Fθ (x) = 1. Suppose now that G(x) ∈ (cl , cq ].
Applying formulae (5.9) and (5.11), we conclude again Fθ (x) = 1 from condition
θ � �cl . Accordingly, for θ ’s satisfying assumption (A2) we have

Fθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if G(x) ≤ S(θck ),

G(x)−S(θck )

S(θcl )−S(θck )
, if S(θck ) ≤ G(x) ≤ S(θcl ),

1, if G(x) ≥ S(θcl ),

(5.14)

which is a proper distribution function on R.
Using much the same arguments, we deduce that for parameters θ satisfying the

conditions

(A3) �ck � θ ≺ �cl for some (ck, cl) = Bj , with (ck, H(ck))=(S(θck−), T (θck−)),
and (cl , H(cl)) = (S(θcl−), T (θcl−)),

(A4) �ck ≺ θ ≺ �cl for some (ck, cl) = Bj , with (ck, H(ck)) = (S(θck ), T (θck )),
and (cl , H(cl)) = (S(θcl−), T (θcl−)),

(A5) �ck � θ � �cl for some (ck, cl) = Bj , with (ck, H(ck))=(S(θck−), T (θck−)),
and (cl , H(cl)) = (S(θcl ), T (θcl )),

the minimal distribution functions Fθ have the following forms

Fθ (x) =

⎧⎪⎨
⎪⎩
0, if G(x) ≤ S(θck−),
G(x)−S(θck−)

S(θcl −)−S(θck−)
, if S(θck−) ≤ G(x) ≤ S(θcl−),

1, if G(x) ≥ S(θcl−),

(5.15)

Fθ (x) =

⎧⎪⎨
⎪⎩
0, if G(x) ≤ S(θck ),
G(x)−S(θck )

S(θcl −)−S(θck )
, if S(θck ) ≤ G(x) ≤ S(θcl−),

1, if G(x) ≥ S(θcl−),

(5.16)

Fθ (x) =

⎧⎪⎨
⎪⎩
0, if G(x) ≤ S(θck−),
G(x)−S(θck−)

S(θcl )−S(θck−)
, if S(θck−) ≤ G(x) ≤ S(θcl ),

1, if G(x) ≥ S(θcl ),

(5.17)

respectively. Assumptions (A1)–(A5) guarantee that the family of distribution func-
tions described in (5.13)–(5.17) is defined for all θ ∈ R. For verifying that this is
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stochastically ordered it suffices to refer to formulae (5.8)–(5.12). They show that for
Fθ (x) is decreasing in θ every fixed x ∈ R.

The proof of the right-hand side inequality in (2.1) as well as its optimality is
analogous to the above, and therefore it is omitted. ��
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