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Abstract
We present in this paper tests for link misspecification in generalized linear mixed
models with a random intercept for binary responses. To facilitate model diagnosis, we
consider two types of grouped responses induced from the original responses and also
stochastically create reclassified binary responses. Maximum likelihood estimators
based on the original observed data and the counterpart estimators based on different
induced data sets are investigated in the presence of link misspecification. Results
from this investigation motivate four diagnostic tests for assessing the adequacy of
an assumed link, which can provide information on how the true link differs from
an assumed symmetric link when the proposed tests reject the assumed link. The
performance of these tests is illustrated via simulation studies in comparison with an
existing method for checking link assumptions. These tests are applied to a data set
from a longitudinal study that was analyzed in the existing literature using logistic
regression.

Keywords Grouped response · Logistic regression · Reclassified response

Mathematics Subject Classification 62J12 · 62F03

1 Introduction

Since the seminal paper of Nelder andWedderburn (1972), the class of generalized lin-
ear models (GLM) has received wide acceptance in a host of applications (McCullagh
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and Nelder 1989). It provides a practically interpretable and mathematically flexible
platform for studying the association between a non-normal response and covariates
of interest. When the response associated with an experimental unit is a vector of
correlated components, as encountered in longitudinal studies for instance, random
effects are included in the models to account for the correlation between responses
from the same experimental unit. This modification of GLM leads the class of gen-
eralized linear mixed models (GLMM, Molenberghs and Verbeke 2005). This study
focuses on GLMM with a random intercept for clustered binary responses, which is
an important subclass of GLMM that has received lots of attention from researchers
(Neuhaus et al. 1992; Wang and Louis 2003, 2004; Tchetgen and Coull 2006; Caffo
et al. 2007, etc.).

Thewidely entertainedGLMMfor binary responses often assumeoneof the popular
links such as logit, probit, and complementary log–log, mostly due to ease of inter-
pretation and convenient implementation using standard software. However, from a
practical standpoint, a symmetry link, such as logit and probit, may not be reasonable
inmany applications (Jiang et al. 2013), and, although asymmetric, the complementary
log–log link only allows a fixed negative skewness. From a theoretical standpoint, Li
and Duan (1989) studied regression analysis under a misspecified link function in gen-
eral regression settings; Czado and Santner (1992) zoomed in on GLM for a binary
response to study the effects of link misspecification on regression analysis. These
authors provided theoretical and empirical evidence of the adverse effects of a mis-
specified link in GLM on likelihood-based inference. They showed that the maximum
likelihood estimators (MLE) of regression coefficients obtained under an inappropriate
link can be inconsistent and inefficient. These adverse effects carry over to likelihood-
based inference in the GLMM framework with an inadequate link (Samejima 2000;
Pan and Lin 2005).

There are twoways to avoid an inadequate assumed link function. Themore actively
explored way is to formulate a flexible class of link functions (Aranda-Ordaz 1981;
Guerrero and Johnson 1982; Morgan 1983; Whittemore 1983; Stukel 1988; Kim et al.
2008; Jiang et al. 2013). Alternatively, one keeps the simple and popular choice of
link, such as the logit link, and assume a more flexible functional form through which
covariates enter the conditional mean model of the response. This approach can be
unattractive to practitioners when a specific (often simple) form of the linear predictor
in GLMM is desirable for meaningful interpretations of the fixed or random effects.
This is the case in, for example, models in the item response theory as discussed
in Samejima (2000). There, the author showed that maximum likelihood estimation
based on a logistic regression produces results that contradict with the psychological
reality. As a remedy, she proposed a family of models with asymmetric links while
keeping the functional form of the linear predictor unchanged.

Before employing a potentially complicated flexible link or revising the functional
formof covariates in the linear predictor, data analystsmaywish to validate an assumed
link using some diagnostic tools. If one finds sufficient evidence that a simpler (and
easier to interpret) link function is adequate for a given application, sticking to it can
potentially improve efficiency of follow-up statistical inference compared to when
one adopts a more complicated flexible link right off the bat. Many researchers have
developed diagnosticmethods for assessing the adequacy of an assumedGLMM.Most
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of the existing methods are goodness-of-fit (GOF) tests in nature that are designed to
assess the overall adequacy of a GLMM rather than a specific assumption of the model
(e.g.,White 1981; Ritz 2004; Pan and Lin 2005). There is also a sizable collection of
methods for testing assumptions on random effects in GLMM (Waagepetersen 2006;
Tchetgen and Coull 2006; Alonso et al. 2008; Huang 2009; Verbeke andMolenberghs
2013; Yu and Huang 2017), but there are much fewer effective diagnostics tools for
checking link assumptions, especially in the framework of GLMM. In this study, we
assume correct modeling on the random effect and focus on developing tests to detect
link misspecification. The proposed diagnostic tools are designed for one source of
model misspecification at a time.

One common theme running through our proposed methods is to make use of dif-
ferent types of clustered binary responses induced from the original responses. The
intention of creating these induced responses is to draw likelihood-based inference
based on the induced data and then to compare with the counterpart inference based
on the raw data, or simply compare with the truth when the truth is known to data ana-
lysts.With an adequately assumed link in theGLMMfor the original data, all inference
should be consistent under regularity conditions regardless of which induced data set
is used, so is that from the raw data. With an inadequate link, these inferences can be
biased in different ways. Although this common theme was exploited in Huang (2009)
and Yu and Huang (2017) to develop diagnostic tests for random-effects assumptions
in GLMM, they only used one particular type of induced responses considered in our
current study. Here, we explore more versatile ways to create induced data, leading
to different diagnostic tools that can be effective in detecting link misspecification in
different contexts. In addition, the introduction of a user-specified extraneous param-
eter arising in one of the three types of considered induced response leads to a testing
procedure that only requires one round of maximum likelihood estimation as opposed
to two rounds as needed in the two aforementioned existing works, which also adds
to the novelty of our current proposals. Section 2 is devoted to describing these three
types of induced responses and presenting the corresponding likelihood functions.
In Sect. 3, we investigate MLEs in the presence of link misspecification resulting
from different induced data, as well as those based on the raw data. Patterns of these
estimators motivate the tests for link specification presented in Sect. 4. In Sect. 5,
simulation experiments are conducted to demonstrate the operating characteristics of
the proposed tests. Using the proposed tests, we assess the adequacy of the logit link
in the logistic GLMM used to analyze a data set from a longitudinal study in Sect. 6.
We summarize the contributions of our study and discuss future research in Sect. 7.

2 Model and induced responses

Denote by Yi = (Yi1, . . . ,Yini )
t the vector of observed binary responses from clus-

ter i , and by Xi the ni × p matrix of covariates, with the j th row being Xi j , for
i = 1, . . . ,m, j = 1, . . . , ni . Suppose one posits a conditional mean of Yi j given
the covariates and the random effect as E(Yi j |Xi j , bi0;β) = h(Xi jβ + bi0), for
i = 1, . . . ,m, j = 1, . . . , ni , where β is the p × 1 vector of fixed effects, bi0
is the random intercept, h(·) is a differentiable non-decreasing link function, and
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Xi jβ +bi0 is referred to as the linear predictor. Suppose the distribution of bi0 is (cor-
rectly) specified by the probability density function (pdf), fb(bi0; τ), where τ is the
parameter associated with this distribution. Then the contribution to the observed
data likelihood from cluster i is fY(Yi |Xi ;β, τ ) = ∫

fb(bi0; τ)
∏ni

j=1 h(Xi jβ +
bi0)Yi j

{
1 − h(Xi jβ + bi0)

}1−Yi j dbi0, for i = 1, . . . ,m. For the purpose of devel-
oping diagnostic tools, we next construct three types of responses induced from the
observed responses, followed by the likelihood function of each induced data set.

Thefirst typeof induced responses ismotivatedbygroup testing (Dorfman1943).To
create such responses, one partitions cluster i into gi groups; then, one defines grouped
responses Y ∗

ig = max j∈Iig Yi j , where Iig is the index set such that j ∈ Iig indicates
that observation j is in group g within cluster i , for i = 1, . . . ,m, g = 1, . . . , gi .
Letting Y∗

i = (Y ∗
i1, . . . ,Y

∗
igi

)t , we refer to the so-constructed responses, {Y∗
i }mi=1, the

unbalanced grouped responses. The name for this type of responses is to reflect that 0
and 1 are not treated equally in the definition of the grouped response because Y ∗

ig takes
value 1 if at least one of the original responses in {Yi j , j ∈ Iig} is 1. Following this
definition, one has the likelihood of the unbalanced grouped responses from cluster i
as, for i = 1, . . . ,m,

fY∗(Y∗
i |Xi ;β, τ ) =

∫
fb(bi0; τ)

gi∏

g=1

⎡

⎣1 −
∏

j∈Iig

{
1 − h(Xi jβ + bi0)

}
⎤

⎦

Y ∗
ig

×
⎡

⎣
∏

j∈Iig

{
1 − h(Xi jβ + bi0)

}
⎤

⎦

1−Y ∗
ig

dbi0.

The second type of induced responses is similar to the unbalanced grouped
responses in that it also requires dividing cluster i into gi groups, for i = 1, . . . ,m.
The difference is that, for group g in cluster i , one defines a grouped response
as Y ∗∗

ig = I (
∑

j∈Iig Yi j ≥ nig/2), where I (·) is the indicator function, and nig
is size of group g in cluster i , for i = 1, . . . ,m, g = 1, . . . , gi . Denoting by
Y∗∗
i = (Y ∗∗

i1 , . . . ,Y ∗∗
igi

)t , we call the so-constructed responses, {Y∗∗
i }mi=1, the balanced

grouped responses. This term is motivated by the fact that the definition of Y ∗∗
ig treats

0 and 1 more fairly in the sense that Y ∗∗
ig takes value 1 when at least half of the orig-

inal responses in that group, {Yi j , j ∈ Iig}, are equal to 1. With this definition, the
contribution of cluster i to the balanced grouped data likelihood is, for i = 1, . . . ,m,

fY∗∗(Y∗∗
i |Xi ;β, τ ) =

∫
fb(bi0; τ)

gi∏

g=1

{
P(Y ∗∗

ig = 1|Xi , bi0;β, τ )
}Y ∗∗

ig

×
{
P(Y ∗∗

ig = 0|Xi , bi0;β, τ )
]1−Y ∗∗

ig
dbi0,

where P(Y ∗∗
ig = 0|Xi , bi0;β, τ ) = P(

∑
j∈Iig Yi j < nig/2|Xi , bi0;β, τ ). Because

conditioning onXi and bi0,
∑

j∈Iig Yi j is the sumof nig independent but not identically
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distributed Bernoulli random variables, one can see that
∑

j∈Iig Yi j follows a Poisson
binomial distribution (Wang 1993). For illustration purposes, we provide an example
of how to derive P(Y ∗∗

ig = 0|Xi , bi0;β, τ ) in Appendix A in supplementary material.
The third type of induced responses is referred to as the reclassified responses.

Here, one replaces the value of Yi j by 1 − Yi j with certain probability, producing a
new response Ỹi j , for i = 1, . . . ,m, j = 1, . . . , ni . For simplicity, we use the reclas-
sification mechanism, P(Ỹi j = 1 − Yi j |Yi j ) = ρ, as the stochastic model according
to which Ỹi j is generated, for i = 1, . . . ,m, j = 1, . . . , ni , where ρ ∈ (0, 0.5) is a
user-specified constant. Denoting by Ỹi = (Ỹi1, . . . , Ỹini )

t the vector of reclassified
responses for cluster i , one can show that the likelihood of Ỹi is, for i = 1, . . . ,m,

fỸ(Ỹi |Xi ;β, τ ) =
∫

fb(bi0; τ)

ni∏

j=1

{1 − ρ − (1 − 2ρ)h(Xi jβ + bi0)}1−Ỹi j

× {ρ + (1 − 2ρ)h(Xi jβ + bi0)}Ỹi j dbi0.

3 Maximum likelihood estimators

With three types of induced responses constructed and the corresponding likelihood
functions derived, we now can study the MLEs of relevant parameters resulting from
each type of induced responses, as well as the counterpart MLEs based on the orig-
inal responses. The goal of the investigation in this section is to understand how the
consistency of the MLE of a parameter is compromised by link misspecification when
each of the four types of responses is used for maximum likelihood estimation.

To gain insight on the asymptotic mean of these MLEs, we generate a sample
with m = 105 clusters, each cluster of size ni = 6, from the true GLMM given
by E(Yi j |Xi , bi0;β, τ ) = h0(β0 + β1Xi j,1 + β2Xi j,2 + β3Xi j,1Xi j,2 + bi0), for
i = 1, . . . ,m, j = 1, . . . , ni , where h0(·) is the true link given by the cumulative
distribution function (cdf) of a skew normal (SN) distribution (Azzalini 1985). More
specifically, this link is given by

h0(s) = �(s) − 2T (s, α), (1)

for −∞ < s < ∞, where �(·) is the standard normal cdf, T (s, α) is the Owen’s
T function (Owen 1956), and α is a shape parameter. When α = 0, h0(·) is the
probit link; when α < 0 (> 0), the corresponding skew normal distribution is left
(right) skewed. Viewing a link function as a cdf in general, we say a link function is
symmetric or left/right skewed if the cdf corresponds to a symmetric or left-/right-
skewed pdf. In the true GLMM, we set Xi j,1 = xi , with xi equal to 0 form/2 clusters,
and equal to 1 for the remaining m/2 clusters, and we set Xi j,2 = ( j − 1)/(ni − 1),
for j = 1, . . . , ni . The random intercept, {bi0}mi=1, is generated from N (0, σ 2), where
σ = 1 is the only parameter, i.e., τ , in the pdf fb(bi0; τ). Finally, the values of the
fixed effects, β = (β0, β1, β2, β3)

t , are (− 2, 1, 0.5,− 0.25)t . Given a simulated raw
data set, {(Yi , Xi )}mi=1, we then generate three types of induced data, {(Y∗

i , Xi )}mi=1,
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{(Y∗∗
i , Xi )}mi=1, and {(Ỹi , Xi )}mi=1, respectively, following their definitions in Sect. 2.

To create the (un)balanced grouped responses, we split each cluster into gi = 2 groups
with Ii1 = {1, 2, 3} and Ii2 = {4, 5, 6}, for i = 1, . . . ,m. To create different sets of
reclassified responses, we vary ρ over the range (0, 0.5) at increments of 0.05.

Denote by � = (β t , σ )t the vector of all parameters in the GLMM, and by �̂

the raw-data MLE of �, by �̂
∗
, �̂

∗∗
, and �̃ the counterpart estimators based on

the unbalanced grouped data, the balanced grouped data, and the reclassified data,
respectively. This notational convention carries over to MLEs of θ , where θ denotes a
generic parameter in �. For parameter estimation using the reclassified data, we also
estimate ρ along with � and denote the MLE of ρ by ρ̃.

When computing theMLEs from the grouped responses, �̂
∗
and �̂

∗∗
, and compare

them with the counterpart raw-data MLE, �̂, we assume the raw data come from a
probit GLMM, that is, the assumed link is h(s) = �(s). To vary the severity of link
misspecification, we vary α in (1) from − 5 to 5 at increments of 0.5, with α = 0
giving rise to the scenario of correct link specification. Figure 1 depicts �̂, �̂

∗
, and

�̂
∗∗

as α varies. As one would expect, except for when α = 0, all parameter estimates
exhibit bias, with the amount increases in absolute value as α deviates further from
zero. For �̂

∗
, the bias tends to be more substantial when h0(s) is right skewed than

when it is left skewed. In contrast, the bias associated with �̂
∗∗

is more comparable in
absolute value when the sign of α switches from negative to positive. We believe that
the even treatment of 0 and 1 in the construction of the balanced grouped responses
contributes to this symmetric pattern of bias in �̂

∗∗
. And the asymmetric pattern of

�̂
∗
is due to the uneven treatment of 0 and 1 in the definition of the unbalanced

grouped responses. While acknowledging that results in Fig. 1 are estimates based on
finite samples, and thus are subject to sampling error and numerical inaccuracy in, for
instance, computing the integrals that define the likelihood functions in Sect. 2, we
believe that these estimates based on samples of size m = 105 preserve key features
of the corresponding limiting MLEs as m → ∞. Although the depicted MLEs can be
wiggly (especially �̂

∗∗
) as α varies, it is not unreasonable to expect that the limiting

(non-random) MLEs are smooth functions of α that exhibit the patterns highlighted
in Fig. 1.

Amore important phenomenon implied inFig. 1 that directlymotivates the proposed
diagnostic methods described in Sect. 4 is that θ̂ , θ̂∗, and θ̂∗∗ do not coincide when
α �= 0. Figure 2 shows the difference between each pair of the estimates for each
parameter based on two different data sets. Among these differences, θ̂∗− θ̂∗∗ deviates
from zeromore substantially for the parameters β0, β1, and σ , especially when α > 0.
This phenomenon also has an indication in the power of the diagnostic tests provided
in Sect. 4.

When the reclassified data are used for developing diagnostic methods, we only
make use of the MLE of ρ, ρ̃. Because ρ is a user-specified parameter in the reclassifi-
cation model, its true value is known to data analysts, which makes assessing the bias
in ρ̃ practically possible. In this numerical study, we assume a logit GLMM, that is,
h(s) = 1/(1 + e−s), when computing ρ̃ (along with �̃). The raw data with m = 105

clusters are generated according to a GLMMwith the true link being the logit, probit,
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Fig. 1 Maximum likelihood estimates from different data sets withm = 105 versus the shape parameter, α,
in the true link function h0(s). Raw-data MLEs, �̂: dashed lines; MLEs based on the unbalanced grouped
data, �̂

∗
: dotted lines; MLEs based on the balanced grouped data, �̂

∗∗
: solid lines. The horizontal dotted

reference line in each panel refers to the true parameter value
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Fig. 2 Differences between twoMLEs from twodifferent data setswithm = 105 versus the shapeparameter,
α, in the true link function h0(s). �̂− �̂

∗
: dashed lines; �̂− �̂

∗∗
: dotted lines; �̂

∗ − �̂
∗∗
: solid lines. The

horizontal dotted reference lines signify the value zero

and h0(s) in (1) with α = −5, 5. The first choice of the true link yields a case without
link misspecification; the choice of the probit link leads to link misspecification that
is nearly negligible because the logit link and the probit link are virtually indistin-
guishable in most inference contexts (Chambers and Cox 1967). These four links are
shown in the left panel of Fig. 3. The values of ρ̃ as ρ varies within (0, 0.5) under
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cdf h0(s) with α = −5 (dotted line), and h0(s) with α = 5 (dotted-dashed line). The right panel shows
the following four link functions: logit (solid line), probit (dashed line), the cdf of a left-skewed mixture
normal distribution (dotted line), and the cdf of a right-skewed mixture normal distribution (dotted-dashed
line)
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Fig. 4 MLE of ρ, ρ̃ (dashed lines), versus ρ when the true link is logit (top left), probit (top right), SN (−5)
(bottom left), and SN (5) (bottom right). The solid line in each panel is the 45◦ reference line

these four combinations of assumed link (logit) and the true link are shown in Fig. 4.
In the absence of link misspecification or with practically negligible misspecification,
ρ̃ matches ρ closely. In the presence of noticeable link misspecification, ρ̃ can deviate
from the truth significantly. More interestingly, ρ̃ tends to overestimate ρ when the
true link is left skewed, and it underestimates the truth when the true link is right
skewed. We will exploit this phenomenon in a proposed diagnostic test next to not
only detect link misspecification but also gain information on the skewness of the true
link.
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4 Tests for linkmisspecification

Even though the adverse effects of link misspecification on the likelihood-based
inference have been well studied and acknowledged, such knowledge cannot be
straightforwardly used for model diagnosis because one does not get to see the bias in
an MLE of a parameter unless one knows the true value of that parameter. Using the
findings in Sect. 3, we can make use of such bias in two ways to detect link misspec-
ification. One is to use the discrepancy between two MLEs resulting from two data
sets explored above as an indicator of link misspecification. The key to formulating
a useful indicator here is to have two related data sets based on which two MLEs of
a parameter have different bias in the presence of link misspecification. Once this is
accomplished, even without knowing the true parameter value, the discrepancy (in
large-sample sense) between the two MLEs essentially indicates the existence of bias
in at least one of the estimators, which in turn suggests the presence of link misspec-
ification. This theme idea has been used in Huang (2009, 2011, 2013) and Yu and
Huang (2017) to assess random-effects assumptions in GLMM and linear mixed mod-
els (LMM). Another novel way is to introduce an extraneous parameter involved in
creating an induced data set from the raw data, such as ρ in the model used to generate
the reclassified responses. Using the induced data set to infer ρ allows one to directly
assess the bias in the MLE of ρ, ρ̃, since one knows the truth about ρ. The key to the
success of this approach is to bring in an extraneous parameter that can be identified
along with � based on the induced data, which is fortunately the case for ρ in the
reclassification model used in Sect. 3 (Neuhaus 2002).

Following these two theme ideas, we define four test statistics below,

t1,θ = (θ̂ − θ̂∗)/ν̂1,θ , t2,θ = (θ̂ − θ̂∗∗)/ν̂2,θ ,
t3,θ = (θ̂∗ − θ̂∗∗)/ν̂3,θ , t4,ρ = (ρ̃ − ρ)/ν̂ρ,

where the first three test statistics can be defined for an arbitrary parameter in �; ν̂1,θ ,
ν̂2,θ , and ν̂3,θ are estimators of the standard errors of the corresponding differences on
the numerator of the first three test statistics; and ν̂ρ is the estimator of the standard
error of ρ̃. More specifically, ν̂ρ is the square root of the [p + 2, p + 2] entry in the
sandwich variance estimator (Boos and Stefanski 2013) for the (p + 2)-dimensional
MLE of (�t , ρ)t . The decision rule for all four tests is to reject the null (of lack of
link misspecification) when the value of the test statistic deviates significantly from
zero. By the asymptotic properties of MLE, in the absence of link misspecification,
t4,ρ follows a t distribution with m − p − 2 degrees of freedom asymptotically. In
Appendix B in supplementarymaterial, we elaborate the construction of ν̂1,θ and show
that the null distribution of t1,θ is a t distribution with m − p − 1 degrees of freedom
asymptotically. Similarly, it can be shown that t2,θ and t3,θ also have the same null
distribution as that of t1,θ . Besides theoretical justification, Appendix B also provides
empirical evidence of these claimed null distributions using QQ plots of realizations
of the test statistics from simulation study.

The test based on t4,ρ has the advantage over the first three tests in that, under mild
regularity conditions, a consistent ρ̃, which tends to yield an insignificant value of t4,ρ ,

123



836 S. Yu , X. Huang

typically implies a correct model for the raw data in most practical scenarios. Here,
the regularity conditions are classical regularity conditions for maximum likelihood
estimation (Cox andHinkley 1974, page 281). Under these conditions, ρ is identifiable
based on the induced reclassified data, along with other parameters in themodel. Thus,
under the correct model, a consistent MLE of ρ is expected, and failing to reject the
null by t4,ρ can be interpreted as lack of data evidence against the null. In contrast,
using the other three tests, when one fails to reject the null due to an insignificant
value of the test statistic, one can only conclude that the two MLEs are similar, or
tend to the same limit as m → ∞, not necessarily that the assumed link is adequate.
Indeed, two inconsistent MLEs can have the same asymptotic mean under a particular
wrong model. Instead of validating the assumed link, failing to reject the null by the
first three tests can be interpreted as robustness in the MLEs of θ in the presence of
(potential) model misspecification, which is a desirable feature for an estimator. In
addition, although beyond the scope of the current study, the first three tests can be
more informative than the fourth when random slopes are included in a GLMM and
other sources of model misspecification besides a link misspecification are of interest
(Huang 2009).

In the next section, we present simulation studies to demonstrate the operating char-
acteristics of the four proposed tests in the presence of different link misspecification
scenarios. In the simulation experiment, we use the residual-based method of testing
link misspecification in GLMM proposed by Pan and Lin (2005) as the competing
method.

5 Empirical evidence

Unlike the numerical study presented inSect. 3,which aims to approximate the limiting
MLEs of relevant parameters, here we set m = 600 for each simulation setting, each
cluster of size 6, and we create 1000 Monte Carlo (MC) replicates under each setting
to monitor the rejection rate of each test. In the raw-data-generating process, the true
GLMM has bi0 ∼ N (0, 1) and the same covariates setting and values of β as those
in Sect. 3. We consider four true link functions when generating clustered binary
responses: logit, probit, a link defined as the cdf of the left-skewed normal given by
(7/10)N (1/2, 0.22) + (3/10)N (−7/6, 0.22), and a link defined as the cdf of the
right-skewed normal given by (7/10)N (−1/2, 0.22) + (3/10)N (7/6, 0.22). These
four link functions are displayed in the right panel of Fig. 3. When computing the
MLEs needed for the tests, we assume a logit GLMM. Finally, for the test t4,ρ , we
experiment on two levels of ρ, 0.05 and 0.1. Using a significance level of 0.05, we
record under each true model setting the rejection rates across 1000 MC replicates.
These rates are given in Table1. Under the first two true link settings, all tests have
rejection rates around 0.05, suggesting that all tests preserve the right size.

For the three proposed tests based on (un)balanced grouped responses, where there
are multiple parameters for which each test statistic can be computed, we recommend
to only use the test statistic associated with σ to avoid the issue of multiple testing.
Alternatively, one can consider a quadratic-form test statistic based on the discrepancy
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Table 1 Rejection rates of the four proposed tests and GOF test in Pan and Lin (2005) across 1000 Monte
Carlo replicates when the true link is logit, probit, the cdf of a left-skewed mixture normal, and the cdf of
a right-skewed mixture normal. The two entries in parentheses under t4,ρ for each true link setting are the
rejection rates when ρ = 0.05 and 0.1, respectively

θ t1,θ t2,θ t3,θ t4,ρ GOF t1,θ t2,θ t3,θ t4,ρ GOF

The true link is logit The true link is probit

σ 0.05 0.06 0.04 (0.05, 0.04) 0.04 0.05 0.05 0.06 (0.06, 0.05) 0.04

β0 0.05 0.06 0.05 0.05 0.06 0.07

β1 0.04 0.04 0.05 0.05 0.07 0.06

β2 0.05 0.05 0.05 0.05 0.05 0.06

β3 0.05 0.04 0.06 0.05 0.05 0.05

The true link is left skewed The true link is right skewed

σ 0.08 0.67 0.57 (0.92, 0.78) 0.09 1.00 0.67 1.00 (0.61, 0.39) 1.00

β0 0.10 0.61 0.59 1.00 0.84 1.00

β1 0.08 0.51 0.40 0.94 0.56 0.96

β2 0.07 0.13 0.13 0.49 0.26 0.61

β3 0.06 0.08 0.08 0.08 0.13 0.14

vector, say, �̂ − �̂
∗
, to combine evidence from individual t1,θ ’s as a way to avoid

multiple testing as done in Huang (2009). For a cleaner comparison between the
first three tests and the fourth, we focus on the above t test statistics in this study.
The following features of the operating characteristics of t1,σ , t2,σ , and t3,σ provide
helpful guidance for practical implementation of these tests to check the adequacy of
an assumed link.

The test based on t1,σ possesses high power to detect link misspecification when
the true link is right skewed, whereas it shows little power when the true link is left
skewed. Therefore, when one rejects the null due to a significant test based on t1,σ ,
one may conclude not only that the assumed logit (or a symmetric) link is inadequate
for the current data, but also that the true link is very likely to be right skewed. On the
other hand, an insignificant value of t1,σ may not be enough to support an assumed
symmetric link. In this case, one may follow up with a test based on t2,σ , which
shows in the simulation moderate or high power under both asymmetric true link
settings. The asymmetric pattern in the power associated with t1,θ can be explained
by the phenomenon observed in Sect. 3 that the bias of θ̂∗ tends to be more substantial
when the true link is right skewed than when it is left skewed. The more comparable
power associated with t2,θ when the direction of skewness of the true link switches
relates to the symmetric pattern of θ̂∗∗ for asymmetric true links of opposite skewness
directions. Lastly, the test based on t3,θ has similar power as that of t2,θ when the
true link is left skewed, and is very comparable with t1,θ when the true link is right
skewed. In other words, t3,θ is similar to whichever the “winner” is between t1,θ and
t2,θ given any asymmetric true link setting. This is not surprising considering the
most substantial discrepancy θ̂∗ − θ̂∗∗ compared with the other discrepancies under
different asymmetric true links we already observe in the numerical study in Sect. 3.
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Table 2 Averages of the MLE of ρ, ρ̃, across 1000 MC replicates when the true link is logit, probit, a
left-skewed mixture normal cdf (LS-MN), and a right-skewed mixture normal cdf (RS-MN), respectively.
The empirical standard error associated with each of these averages is below 0.003

ρ Logit Probit LS-MN RS-MN

0.05 0.05 0.05 0.13 0.03

0.1 0.10 0.09 0.17 0.08

Because of this feature of t3,θ , if one is only interested in revealing the existence of
some kind of link misspecification, one only needs to implement the test using t3,σ .
But if one also wishes to correct an assumed link, we recommend use of a sequential
testing strategy, where one computes t2,σ if one fails to reject the null using t1,σ .

The test based on t4,ρ shows promising power in both linkmisspecification settings,
especially when the true link is left skewed, which is much higher than the power of
the competing GOF test. Moreover, the sign of t4,ρ directly relates to the skewness of
the true link because ρ̃ overestimates ρ when the true link is left skewed, resulting in a
positive t4,ρ , and it underestimates the truthwhen the true link is right skewed, resulting
in a negative t4,ρ . Table 2 provides the MC average of ρ̃ under each true link setting.
To this end, one may use t4,ρ as an informative test for link misspecification, of which
a significant positive/negative value provides evidence of a true link being left/right
skewed.When implementing this test,we recommenda conservative choice ofρ so that
the misclassification rate is low (such as 0.05 or 0.1) when generating the reclassified
responses. With too high (i.e., too close to 0.5 from below) of a misclassification
rate, the resulting reclassified responses may suffer too much information loss in the
original data, which can compromise the power of t4,ρ .

To this end, we have the assumed GLMM correctly specified except for the link
function in the empirical study. This design of the numerical study is dictated by our
focus in this article, which is link misspecification. In practice, one shall bear in mind
that other assumptions involved in a GLMMmay be inadequate as well, such as those
on the random intercept and the linear predictor. For the fourth test with test statistic
t4,ρ , any source of model misspecification that leads to an inconsistent estimator for ρ

can trigger a significant test result. As for the first three proposed tests, which are based
on the comparison between two MLEs resulting from two related data sets, they can
also return significant values in the presence of other forms of model misspecification
whenever the two considered MLEs are affected by the model misspecification(s)
differently in limit. In fact, Yu and Huang (2017) used t1,θ to assess distributional
assumptions on the random intercept in a GLMM. There the authors showed that,
besides promising power of the tests when the true random intercept distribution is
skewed as opposed to an assumed normal, t1,σ can also reveal the direction of skewness
of the true distribution. Like our study here, their study also focused on one source of
misspecification at a time. We conjecture that, like t1,θ , t2,θ , t3,θ , and t4,ρ are sensitive
to certain types of misspecification on the random intercept as well.When it is only the
form of the linear predictor that ismisspecified, we repeat part of the simulation studies
with the raw data generated from aGLMMofwhich the conditional meanmodel given
by E(Yi j |Xi , bi0;β, τ ) = h0(β0 + β1Xi j,1 + β2X2

i j,2 + β3Xi j,1Xi j,2 + bi0), and the
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true link being logit. Then we compute MLEs based on the raw data and induced data
assuming a GLMM with logit link and E(Yi j |Xi , bi0;β, τ ) = h0(β0 + β1Xi j,1 +
β2Xi j,2 + β3Xi j,1Xi j,2 + bi0). In the presence of this (mild) misspecification on the
linear predictor, only the fourth test t1,ρ exhibits moderate power to conclude rejection
of the null, with a rejection rate of 43% across 1000 MC replicates at the significance
level of 0.05. The rejection rates associated with the other three tests, t1,θ , t2,θ , t3,θ ,
all remain around the nominal level of 0.05 in this case when θ takes any one of the
five parameters in �.

Systematic investigations on the operating characteristics of the four proposed tests
in the presence of other sources of model misspecification are beyond the scope of
the current study. But, based on our preliminary empirical studies (partly described
above), we conjecture that t4,ρ can be more responsive than the other three tests
whenever there exists some form(s) of model misspecification, whereas the first three
tests enjoy certain level of robustness to linear predictor misspecification because of
the similarity of the two MLEs under comparison within a test statistic when this is
the only source of misspecification.

6 Real data application

We now revisit the longitudinal data from the Indonesian children’s health study on
respiratory infection (Sommer et al. 1984) analyzed in Pan and Lin (2005). In Pan and
Lin (2005), the authors applied their GOF test to search for some improvement in the
functional form of the linear predictor over the initial assumed logit GLMM given by

E(Yi j |Xi , bi0;β) = {1 + exp(−β0 − β1Xi j,1 − β2Xi j,2 − β3Xi j,3 − β4Xi j,4

− β5Xi j,5 − β6Xi j,6 − β7X
2
i j,6 − bi0}−1, (2)

where Yi j is the indicator of child i suffering from respiratory infection at the j th
occasion when this child was examined, Xi j,1 is the only between-cluster covariate in
the model, which refers to the gender of child i , Xi j,2 is height for age as a percentage
of the United States National Center for Health Statistics standards, Xi j,3 and Xi j,4 are
annual cosine and sine variables to adjust for seasonality, Xi j,5 is an indicator taking
value 1 if child i is suffering from xerophthalmia at the j th occasion, and Xi j,6 is the
centered age. Like our study throughout this article, they assumed bi0 ∼ N (0, σ 2).
Unlike our analyses presented in this section, they focused on testing the adequacy of
the functional form in which the covariates enter the linear predictor.

For illustration purposes, we use a subset of the data analyzed in Pan and Lin (2005)
with 122 children who had six records. Preserving the functional form of the linear
predictor in (2), we apply the following four proposed tests to assess the adequacy
of the logit link, t1,σ , t2,σ , t3,σ , and t4,ρ . When implementing the first three tests, we
partition the six records within each child into two groups of equal size after these
six records are sorted by Xi j,2 and Xi j,6. This sorting before partitioning each cluster
yields higher across-groups variability associated with the within-cluster covariates,
which increases the efficiency of the MLEs and typically leads to more powerful tests

123



840 S. Yu , X. Huang

compared to when the groups are formed randomly within a cluster. For the test based
on t4,ρ , we repeat it twice, one with ρ = 0.05 and the other with ρ = 0.1. The p
values associated with the first three tests are 0.30, 0.02, and 0.06, respectively. Hence,
the test based on t1,σ is insignificant, whereas the test using t2,σ is clearly much more
significant than the first test and so is the test using t3,σ . This is the pattern of how these
three tests compared observed in Sect. 5when the true link is left skewed. Additionally,
the two tests based on t4,ρ yield highly significant positive values of the test statistic,
with p values both less than 10−4. This is yet another indication that the logit link is
inadequate for the current data set, and a left-skewed link is likely to yield a better fit
for the data. Although in Pan and Lin (2005) the authors did not consider testing the
link function, they did find strong evidence from their GOF test that the functional
form of the linear predictor in (2) is problematic. In conclusion, our tests, as well as
their GOF test, suggest lack of fit of the initial logit GLMM model, and the next step
is to improve this model, either by using a flexible link function that allows negative
skewness, such as a generalized logit link (Stukel 1988), or by attempting different
functional forms for the linear predictor as pursued in Pan and Lin (2005). We do not
sidetrack to modeling using a flexible link in this analysis.

7 Discussion

In this study, we propose four diagnostic tests for link misspecification following
two theme ideas, both of which involve creating induced responses from the original
responses. The first theme idea, which leads to three proposed tests, is the same as that
in Huang (2009). In both works, the discrepancy between two MLEs of a parameter
resulting from two related data sets serves as an indicator of model misspecification.
The contribution of this work is that we use this idea to achieve an informative diag-
nostic test for link misspecification, whereas Huang (2009) concerns random-effects
assumptions in GLMM.More importantly, besides the unbalanced grouped responses,
which is the only type of induced responses considered in Huang (2009) in develop-
ing diagnostic methods, we also exploit the balanced grouped responses. This new
addition leads to a test, t2,θ , that has impressive power to detect link misspecification
when the true link deviates from the assumed symmetric link in either direction; it
also motivates a third test, t3,θ , that has competitive power when the true link deviates
from an assumed symmetric link from either direction. Another advantage of using
balanced group responses is that, compared to the unbalanced group responses, it is
less likely to have the induced grouped responses to be all one’s (or all zero’s), a sit-
uation making sensible maximum likelihood estimation infeasible. The nature of this
first theme idea shares some similarity with that in Agresti and Caffo (2002), where
the authors constructed descriptive measures of relative model fit based on the com-
parison between two geometric means or means of the likelihood functions associated
with two models. The second theme idea leads to a test that only requires one MLE of
an extraneous parameter whose truth is known to data analysts. Using the difference
between the MLE of this extraneous parameter and its truth as an indicator of link
misspecification not only allows direct validation of an assumed link, but also provides
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information on the skewness direction of the true link when the assumed symmetric
link is rejected.

We compare our tests with the residual-based GOF test proposed by Pan and Lin
(2005) and observe higher or comparable power from at least two of our proposed
tests compared to the power of their test in all misspecification scenarios consid-
ered. In terms of computation, our methods only require routine maximum likelihood
estimation, with test statistics follow some t distributions asymptotically under the
null, whereas the null distribution of their test statistic is far more complex, and
consequently, time-consuming bootstrap procedures are needed to approximate the
corresponding p value. For a data set of the size as that in the simulation studies in
Sect. 5, that is, m = 600 and ni = 6, it takes 190.3 s to implement the GOF test,
whereas it takes 45.6, 99.4, 112.7, and 59.8 s, respectively, to obtain test results from
t1,θ , t2,θ , t3,θ , and t4,ρ when implemented separately using the R codes created by the
first author on a Dell XPS 934 with Core i7 processor and 2.40 GHz CPU.

When implementing the tests based on grouped responses, we recommend sort the
observations within each cluster according to the within-cluster covariate(s) before
dividing each cluster into groups in order to produce less variable parameter estimates,
which can in turn yield more efficient tests. Throughout the simulation study and
data analyses we create two groups per cluster for simplicity. In the presence of link
misspecification, the two MLEs under comparison in the first three test statistics tend
to differ more (in limit for large samples) when the number of groups in a cluster,
gi (≥ 2), is much smaller than the cluster size, ni . But the grouped data MLEs are
more variable with a smaller gi , causing a larger denominator of the test statistics.
Due to this trade-off between the numerator and denominator of the first three test
statistics, the choice of gi is secondary and should not substantially affect the power
of the tests. When implementing the test based on reclassified responses, we suggest
one use amisclassification probabilityρ much lower than 0.5 to guard against toomuch
information loss in the reclassified responses compared to the original responses. One
may also consider experimenting a grid of ρ’s over the range (0, 0.5) and defines the
supremum of |t4,ρ | as the test statistic to achieve a more powerful test, although this
test does not have a null distribution as simple as the one we use here.

We consider a symmetric link under the null hypothesis throughout the study.
Under such null formulation, we are able to extract information from the proposed
test statistics regarding the skewness direction of an underlying link when the null
is rejected. If one already assumes an asymmetric link under the null, some of the
tests should still have power to detect an inadequate assumed link as long as the
misspecification leads to discrepancybetween �̂ and �̂

∗
or �̂

∗∗
, or themisspecification

results in an inconsistent MLE of ρ. But, when the null is rejected in this case, what
information one can extract from these test statistics relating to how the asymmetric
link is misspecified is less clear. Lastly, we assume in this study correct modeling for
the random intercept. The operating characteristics of the proposed tests in the presence
of random-effects misspecification in addition to link misspecification are unclear. We
do not think the tests based on grouped responses can distinguish these two sources
of model misspecification, although we are hopeful that the test based on reclassified
response generated according to a more strategically designedmisclassificationmodel
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can disentangle different sources ofmodelmisspecification. These arewithin the scope
of our follow-up research topics.
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