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Abstract
Functions to calculate measures of spatial association, especially measures of spatial
autocorrelation, have been made available in many software applications. Measures
may be global, applying to the whole data set under consideration, or local, applying to
each observation in the data set. Methods of statistical inference may also be provided,
but thesewill, like themeasures themselves, depend on the support of the observations,
chosen assumptions, and the way in which spatial association is represented; spatial
weights are often used as a representational technique. In addition, assumptions may
be made about the underlying mean model, and about error distributions. Different
software implementations may choose to expose these choices to the analyst, but the
sets of choices available may vary between these implementations, as may default
settings. This comparison will consider the implementations of global Moran’s I ,
Getis–OrdG and Geary’sC , local Ii andGi , available in a range of software including
Crimestat, GeoDa, ArcGIS, PySAL and R contributed packages.
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1 Introduction

In application domains, problems involved in analyzing areal data have attracted atten-
tion for almost 60 years (Duncan et al. 1961). One set of problems has been associated
with spatial heterogeneity, another with spatial autocorrelation. It has very often been
the case that the polygonal areas available to analysts have not matched the footprint
of spatial processes. This leads inevitably to problems, with relative spatial hetero-
geneity then used to attempt to regionalize the data, aggregating to more adequate,
homogeneous, policy zones. Regionalization has developed further as a separate field
with clear links to the study of spatial sorting and segregation. Spatial autocorrelation
should arguably have stayed closer to spatial heterogeneity, and more recent work is
moving in this direction (Ord and Getis 2012; Xu et al. 2014), to which we return in
conclusion.

There have been implementations of global measures of spatial autocorrelation
in open and closed1 source software since the 1990’s. These include the survey and
Systat case in Bivand (1992)2 and the then widely used SpaceStat implementation
described in Anselin (1992). Provisions were also made within the ArcView and
ArcInfo proprietary GIS (geographical information systems) through contributions
written in Avenue and AML (advanced markup language), respectively. Following
the introduction of ArcGIS superceding ArcView and ArcInfo, first Visual Basic then
Python were used to provide implementations. This progression is described in detail
by Wong and Lee (2005, first edition 2001) and is presented by Scott and Janikas
(2010), also covering local measures of spatial autocorrelation introduced from the
mid 1990s.

Table 1 shows one of the typical issues that differences in numerical results occur
between implementations. The first four lines of the Table are copied from Table 6 in
Bivand (1992, p. 957) and differ from those re-created using the current implementa-
tion in spdep::moran.test(), shown in the next four lines. The four lines differ among
themselves in using binary or row-standardized spatial contiguity weights and using
the normality or randomisation assumption for calculating the variance of Moran’s I .

> eire <- rgdal::readOGR(system.file("shapes/eire.shp", package = "spData")[1])

> library(spdep)
> eire.nb <- poly2nb(eire)
> moran.test(eire$OWNCONS, nb2listw(eire.nb, style = "B"), randomisation = FALSE)

Moran I test under normality

data: eire$OWNCONS
weights: nb2listw(eire.nb, style = "B")

Moran I statistic standard deviate = 5.7608, p-value = 4.187e-09
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.63262789 -0.04000000 0.01363295

1 Some free software, like CrimeStat, is closed source.
2 Source code now available from https://github.com/rsbivand/legacy_systat.
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718 R. S. Bivand, D. W. S. Wong

Table 1 Reproducing results for Moran’s I under randomisation and normality assumptions for binary (B)
and row-standardized (W) contiguity weights from Table 6 in Bivand (1992, p. 957) for 26 Irish counties
and consumption of own produce as a percentage of gross agricultural output; spdep::moran.test
are results without a neighbour link for a ferry between non-contiguous counties in the original data, and
spdep::moran.test (*) following the insertion of the link

Randomisation Weights I Z(I )

Bivand (1992) FALSE B 0.626 5.748

Bivand (1992) TRUE B 0.626 5.706

Bivand (1992) FALSE W 0.722 6.073

Bivand (1992) TRUE W 0.722 6.027

spdep::moran.test FALSE B 0.633 5.761

spdep::moran.test TRUE B 0.633 5.719

spdep::moran.test FALSE W 0.713 5.909

spdep::moran.test TRUE W 0.713 5.864

spdep::moran.test (*) FALSE B 0.626 5.748

spdep::moran.test (*) TRUE B 0.626 5.706

spdep::moran.test (*) FALSE W 0.722 6.073

spdep::moran.test (*) TRUE W 0.722 6.027

The reason for the difference is that the contiguities used in Bivand (1992) follow
Cliff and Ord (1969) and include a ferry link between the counties of Clare and Kerry
(Bivand 2009, p. 377), a link that is not found when generating county contiguities
based only on map boundaries. If we add in the symmetric ferry link, we see that the
final four lines of Table 1 now agree with those from the original article.

> eire.nb[[3]] <- sort(c(eire.nb[[3]], 8L))
> eire.nb[[8]] <- sort(c(eire.nb[[8]], 3L))
> moran.test(eire$OWNCONS, nb2listw(eire.nb, style = "B"), randomisation = FALSE)

Moran I test under normality

data: eire$OWNCONS
weights: nb2listw(eire.nb, style = "B")

Moran I statistic standard deviate = 5.7483, p-value = 4.508e-09
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.62601807 -0.04000000 0.01342444

Authors of implementations of global and local measures of spatial autocorrela-
tion are often asked by users of the software why conducting the same calculation
in different implementations appears to give different numerical results. While it is
seldom the case that the inference would have differed, users express concern about
the causes of the differences.3 In this trivial case, the cause was a missing link in the
graph of neighbours. A frequent cause of divergence in numerical results is that it may
not be easy to exchange weights objects between implementations, so the difference

3 For an example, see https://community.esri.com/thread/60740.
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between weights is the cause of the difference in results. Another common cause of
divergence is that the spatial weights and the variable of interest are not sorted in the
same order or differ in some other way. Once we have established that the input data
and the spatial weights being used are identical, we would expect all implementations
to yield identical numerical output.

The purpose of this article is then to compare implementations of chosen global and
local measures of spatial autocorrelation, and to establish reasons for any differences
that are found, so that users can be surer that their choice of software is not prejudicing
their work. In this comparison, we will not be considering spatial autocorrelation in
categorical variables, and hope to return to join-count (Cliff and Ord 1981, pp. 18–20)
and similar measures in the near future. The authors share an interest in benchmarking
implementations of measures of spatial association, and Bivand (2009) and Bivand
and Piras (2015) are similar in comparative approach.

2 Global and local indicators

Global measures express the strength of spatial autocorrelation present in the quan-
titative variable of interest across a whole areal data set, possibly after considering
the influence of other variables. The underlying spatial process is expressed as a fixed
spatial weightsmatrix chosen by the analyst, and the strength of spatial autocorrelation
may vary if the spatial weights matrix is defined in a different way. For example, a
chessboardmight seem to display strong negative autocorrelation, but this only holds if
the weights express contiguity between squares sharing edges, not edges and corners.

Local measures decompose the spatial autocorrelation present in the quantitative
variable of interest across an areal data set to each of the component areas, also using
a fixed spatial weights matrix chosen by the analyst. They will be affected by missing
consideration of other variables, and/or of a global spatial process.

Both global and local measures may detect other forms of mis-specification, for
example, a missing variable showing spatial pattern (see McMillen 2003; Schaben-
berger and Gotway 2005), or spatial heterogeneity. The use of local measures to
detect hotspots is crucially impacted by their ability to pick up other forms of mis-
specification. Further, because they may constitute multiple tests on the same data,
inference needs to be able to handle multiple comparisons.

For convenience, we list standard representations of the measures as given in the
now rather disperse literature. The development of the measures is covered in detail
in the references given, together with further alternatives for join-count measures
and ranked observations not covered here. We do not give the definitions of more
specialized measures, such as those taking the incidence count and population at risk
into account.
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2.1 Global indicators

2.1.1 Moran’s I

Moran’s I , originally defined byMoran (1950), is without doubt themeasure of choice
for applied scientists, with over 2000 citations in Web of Science, concentrated in the
environmental sciences, ecology and public health. Other authors have built on this
work, notably Cliff and Ord (1969, 1973, 1981), and it is this development of a more
general test statistic that is covered by Ripley (1981), Goodchild (1986) and Cressie
(1993). The standard representation of themeasure (Cliff andOrd 1981, p. 17, equation
1.15) is as follows:

I = n
∑

(2) wi j zi z j

S0
∑n

i=1 z
2
i

, (1)

where xi , i = 1, . . . , n are n observations on the numeric variable of interest, zi = xi−
x̄ , x̄ = ∑n

i=1 xi/n,
∑

(2) =
∑n

i=1
∑n

j=1

i �= j ,wi j are the spatial weights, and S0 = ∑
(2) wi j .

Note that by definition the principal diagonal of the weights matrix wi i = 0, i ∈
1, . . . , n, so that in practice the condition i �= j on

∑
(2) has no effect. Since many

other weights are typically also 0, summation of products is often implemented over
the nonzero values of wi j . In early treatments, contiguity weights were by definition
symmetric, wi j = w j i , as were weights based on a distance threshold, and weights
could be seen as an undirected graph.

The expectation of Moran’s I (Cliff and Ord 1981, p. 21, equation 1.37) for both
the normality and randomisation assumptions used in the development may be taken
as:

E(I ) = − 1

(n − 1)
, (2)

if we do not question the size of n. Bivand and Portnov (2004) suggest that there are
issues raised when xi is observed for all i = 1, . . . , n, but that there are no-neighbour
observations,

∑n
j=1 wi j = 0. Because neighbours are recorded as graph edges or as a

sparse matrix, not as a dense matrix with many zero values, it is quite easy to generate
no-neighbour observations. As Bivand and Portnov (2004, pp. 125–129) note, it is not
obvious whether Cliff and Ord (1969, and their subsequent work) intended n to be
the number of observations in total, or the number of observations with neighbours
in the development of the inferential basis for Moran’s I . In the spdep functions
implementing global measures by default adjust n to the number of observations with
neighbours once the user has also chosen to permit observations with no neighbours
(leading to the curious lagged value of

∑n
j=1 wi j x j = 0). This path yields n′ for use

in the expectation and variance calculations:

n′ =
n∑

i=1

⎡

⎣

⎛

⎝
n∑

j=1

wi j

⎞

⎠ > 0

⎤

⎦ , (3)
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where the logical variable (
∑n

j=1 wi j ) > 0 takes the value 1 and (
∑n

j=1 wi j ) = 0 the
value 0 for summation.

The analytical variance can be calculated under normality (N) or randomisation (R)
assumptions. Under the normality assumption (Cliff and Ord 1981, p. 21, equation
1.38), it takes this form:

EN(I 2) = n2S1 − nS2 + 3S20
S20 (n

2 − 1)
, (4)

where S1 = 1
2

∑
(2)(wi j + w j i )

2 and S2 = ∑n
i=1

(∑n
j=1 wi j + ∑n

j=1 w j i

)2
. Under

the randomisation assumption, which also accommodates divergences of the variable
from normality by including a kurtosis term (Cliff and Ord 1981, p. 21, equation 1.39),
it is:

ER(I 2) = n
[
(n2 − 3n + 3)S1 − nS2 + 3S20

] − b2
[
(n2 − n)S1 − 2nS2 + 6S20

]

(n − 1)(n − 2)(n − 3)S20
,

(5)
where b2 = m4

m2
2
, m4 = ∑n

i=1 z
4
i and m2 = ∑n

i=1 z
2
i (Cliff and Ord 1981, pp. 45–

46). The variance is then calculated by subtracting the square of the expectation from
the E(I 2) term from the E∗(I 2) term calculated under either the normality or the
randomisation assumption (Cliff and Ord 1969, p. 28, equation 8):

Var∗(I ) = E∗(I 2) − [E(I )]2 . (6)

Finally, we reach the standard normal deviate under one of the assumptions for
evaluation (Cliff and Ord 1969, p. 28, equation 9):

Z∗(I ) = I − E(I )√
Var∗(I )

. (7)

Moran’s I has also been developed for regression residuals, but for comparison is
only available here for the spdep implementation, as neither GeoDa nor PySAL admit
an intercept-only regression. In the intercept-only case, Z(I ) should agree exactlywith
the use of x̄ as the mean model in standardMoran’s I under the normality assumption.

None of the implementations considered here use the adjustment for small n con-
sidered in Cliff and Ord (1971) and discussed by Sokal and Oden (1978). There is as
yet no implementation of the exact testing approach for regression residuals presented
by Hepple (1998). Implementations of the Saddlepoint approximation for regression
residuals proposed by Tiefelsdorf (2002) and the exact testing approach for regression
residuals presented by Bivand et al. (2009) are available in spdep but not elsewhere.
These approaches are based on Tiefelsdorf and Boots (1995), Tiefelsdorf and Boots
(1997) and Tiefelsdorf (2000), and also apply to local Moran’s I for regression resid-
uals.
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2.1.2 Geary’s C

Geary’s C (Geary 1954) was discussed by Duncan et al. (1961) and in Cliff and Ord
(1969) and their subsequent work. It appears that this global measure has not been
applied to the same extent as Moran’s I , but it is implemented in a number of the
software applications considered here. Geary’s C is defined as (Cliff and Ord 1981,
p. 17, equation 1.16):

C =
(

(n − 1)

2S0

) ∑
(2) wi j (xi − x j )2

∑n
i=1 z

2
i

. (8)

Its expectation is given as (Cliff and Ord 1981, p. 21, equation 1.40):

E(C) = 1. (9)

Variance terms are defined again under assumptions of normality and randomisa-
tion. First the simpler randomisation definition is (Cliff and Ord 1981, p. 21, equation
1.41):

VarN (C) = (2S1 + S2)(n − 1) − 4S20
2(n + 1)S20

. (10)

The definition of the variance under randomisation is (Cliff and Ord 1981, p. 21,
equation 1.42):

VarR(C) = 1

n(n − 2)(n − 3)S20

{
(n − 1)S1

[
n2 − 3n + 3 − (n − 1)b2

]

− 1

4
(n − 1)S2

[
n2 + 3n − 6 − (n2 − n + 2)b2

]

+ S20

[
n2 − 3 − (n − 1)2b2

]}
.

(11)

The standard normal deviate has a reversed numerator in the original development
in Cliff and Ord (1969, p. 29, equation 13):

Z(C) = E(C) − C√
Var∗(C)

. (12)

2.1.3 Getis–Ord G

The Getis–Ord global G measure arose in connection with exploration of local mea-
sures of spatial association in Getis and Ord (1992), intending to use G and its local
variants to supplementMoran’s I . The generalG statistic is simplified by dropping the
explicit d() term inw(d)i j in their development (Getis and Ord 1992, p. 194, equation
5):

G =
∑

(2) wi j xi x j
∑

(2) xi x j
, (13)
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Note that the summations as defined above strictly enforce j �= i . The expectation,
again adjusting n for no-neighbour observations at the choice of the implementation
and analyst, is (Getis and Ord 1992, p. 195, equation 6):

E(G) = S0
n(n − 1)

(14)

The E(G2) term is relatively complicated, built up of many of the same building
blocks as those used in the equivalent formulae for the analytical distributions of
Moran’s I and Geary’s C (Getis and Ord 1992, p. 195):

E(G2) =
[
B0m2

2 + B1m4 + B2m2
1m2 + B3m1m3 + B4m4

1

]

(m2
1 − m2)n(n − 1)(n − 2)(n − 3)

(15)

where m j = n−1 ∑n
i=1 x

j
i , j = 1, 2, 3, 4, and B0 = (n2 − 3n + 3)S1 − nS2 + 3S20 ;

B1 = −[(n2 − n)S1 − 2nS2 + 6S20 ] [see also correction in Getis and Ord (1993)];
B2 = − [

2nS1 − (n + 3)S2 + 6S20
]
; B3 = 4(n − 1S1 − 2(n + 1)S2 + 8S20 ; and

B4 = S1 − S2 + S20 .
Finally we reach the variance term as (Getis and Ord 1992, p. 195, equation 7):

Var(G) = E(G2) − [E(G)]2 (16)

and the standard normal deviate:

Z(G) = G − E(G)√
Var(G)

(17)

2.2 Local measures

At about the same time in the early andmid1990s, local indicators of spatial association
(LISA), spatially structured random effects, and spatial scan statistics emerged. The
first two permitted the structure of spatial autocorrelation to be mapped to the units of
observation in an inferential framework, while LISA and spatial scan statistics both
claimed to make it possible to explore hotspots, although only spatial scan statistics
have robust inferential underpinnings in this respect.

2.2.1 Getis–Ord Gi

In discussing Gi and G∗
i , Getis and Ord (1992) follow up incomplete work on spatial

correlograms that had its origins in the 1970s by suggesting using distance to analyse
spatial association. Since areal data may be represented by a point, perhaps a centroid,
chosen to represent observations with polygonal support, or topological buffering may
be used to find neighbours within distance bands. They followed up with a series of
articles (Ord and Getis 1995; Getis and Ord 1996; Ord and Getis 2001) refining the
measures, and removing some restrictions placed on the version presented in 1992.
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The local Gi measure is in later work expressed as a standard deviate (Getis and
Ord 1996, p. 263, equation 14.2):

Z(Gi ) =
[∑n

j=1 wi j x j
]

−
[∑n

j=1 wi j x̄i
]

si

{[(

(n − 1)
∑n

j=1 w2
i j −

(∑n
j=1 wi j

)2
)]

/(n − 1)

}1/2 , i �= j, (18)

where si =
√

((
∑n

j=1 x
2
j )/(n − 1)) − [x̄i ]2, i �= j , and x̄i = (

∑n
j=1 x j )/(n−1), i �=

j . The left numerator component corresponds to Gi , the right to E(Gi ), and the
denominator to Var(Gi ).

In Eq. 18, the condition that i �= j is central. A further measure, local G∗
i relaxes

this constraint, by including i as a neighbour of itself (thereby also removing the no-
neighbour problem, because all observations have at least one neighbour). This local
measure is expressed as (Getis and Ord 1996, p. 263, equation 14.3):

Z(G∗
i ) =

[∑n
j=1 wi j x j

]
−

[(∑n
j=1 wi j

)
x̄∗

]

s∗
{[(

(n − 1)
∑n

j=1 w2
i j −

(∑n
j=1 wi j

)2
)]

/(n − 1)

}1/2 , all j, (19)

where s∗ =
√

((
∑n

j=1 x
2
j )/n) − x̄∗2, and x̄∗ = (

∑n
j=1 x j )/n, all j .

2.2.2 Moran’s Ii

The localMoran’s Ii measure of spatial association was introduced by Anselin (1995),
and further elaborated in the context of the Moran scatterplot in Anselin (1996).
The inferential development of the measure was considered by Getis and Ord (1996)
and refined by Sokal et al. (1998). Work on Saddlepoint approximation and exact
calculation of the standard normal deviate for regression residuals, including residuals
from spatial regression models accounting for global autocorrelation, followed from
similar developments for global Moran’s I referred to in Sect. 2.1.1 (Tiefelsdorf 2002;
Bivand et al. 2009).

Local Moran’s Ii values are constructed as the n components used to reach global
Moran’s I (Anselin 1995, p. 99, equation 12):

Ii = zi
∑n

j=1 wi j z j

m2
, (20)

where4 m2 = n−1 ∑n
i=1 z

2
i . We once again assume that the global mean x̄ is an

adequate representation of the variable of interest x . The relationship between the

4 In implementations we also find m2 = (n − 1)−1 ∑n
i=1 z

2
i , but this does not seem to have support in the

original source.
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sum of the local Ii and global I is (Anselin 1995, p. 99, equation 10):

I =
∑n

i=1 Ii
S0

, (21)

Based on the development in Cliff and Ord (1981), the expectation and variance of
Ii may be shown as follows; first the expectation (Anselin 1995, p. 99, equation 13):

E(Ii ) = −wi

(n − 1)
(22)

where wi = ∑n
j=1 wi j . The variance under the randomisation assumption may be

defined as (Anselin 1995, p. 99, equation 14, and p. 115):

VarAnselin(Ii ) = wi(2)(n − b2)/(n − 1)

+ 2wi(kh)(2b2 − n)/ [(n − 1)(n − 2)]

− w2
i

(n − 1)2

(23)

where5 b2 = (n−1 ∑n
i=1 z

4
i )/m

2
2, wi(2) = ∑n

j=1 w2
i j and wi(kh) = 1

2

∑
k �=i∑

h �=i wikwih . However, the wi(kh) term presents implementation difficulties, and
Sokal et al (1998, p. 351) have argued that it should be further constrained by impos-
ing k �= h in addition, leading to (Sokal et al. 1998, p. 334, equation 5, and p. 351,
equation A4*):

VarSokal(Ii ) = wi(2)(n − b2)/(n − 1)

+ (w2
i − wi(2))(2b2 − n)/ [(n − 1)(n − 2)]

−
[ −wi

(n − 1)

]2
(24)

3 Software implementations

While it is probably the case that institutional setting and need determine the desir-
ability of comparing and/or benchmarking implementations with each other, it is more
likely that open source developers will wish to publish results. In earlier work, Bivand
(1998, 2008) has attempted to show that implementations are equivalent in terms of
results if not always in performance. Bivand and Piras (2015) survey a range of imple-
mentations of techniques for spatial econometrics. This article extends this work to
cover implementations of some measures of spatial association and has taken into
account chosen software applications.

5 Again, division by (n − 1) is encountered in implementations.
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3.1 Crimestat

CrimeStat6 is a closed-source Windows application that is free for download. It is
described in Levine (2006, 2017), and the version used here is 4.02, running under
Wine on Fedora Linux. CrimeStat is well-documented, but it appears that the multi-
ple comparison issue is not highlighted in the online help page for hotspot analysis,
although it is mentioned in the onlinemanual. Crimestat does not output binary results,
but permits export as rounded values in DBF files. It only permits fully connected
inverse distance weights without row-standardization for I and Ii , and distance bands
for G and Gi with user-choosable thresholds (for Euclidean and spherical distance).
It does not permit import or export of weights; it can read point files in ESRI Shape-
file format to import observations with point support. It provides global Moran’s I ,
Geary’s C and Getis–Ord G, and local Moran’s Ii and Getis–Ord Gi . Its data and
weights import and export facilities are the most limited, as are its range of choice of
user-generated weights, and for this reason it provided the weights specifications used
in most of this comparison.

3.2 ArcGIS

As Scott and Janikas (2010) recount, spatial statistics tools were added to ArcGIS
9 from 2004; as this release of ArcGIS supports Python as a tool and procedure
development language, this is how the tools are written. It provides global Moran’s
I and Getis–Ord G, and local Moran’s Ii and Getis–Ord G∗

i . The help pages explain
clearly themultiple comparison problem for local measures and provide the possibility
of reporting probability values adjusted for false discovery rate. Use of measures of
spatial association in ArcView and other earlier ESRI products is described by Wong
and Lee (2005). The version used here is ArcGIS 10.5 Desktop onWindows; rounded
output in DBF files and crafted output through Python as numpy arrays has been
used. Data and weights may be read in a large number of ways, using the spatial
weights file (SWF) format also found in PySAL, so that we may be confident that the
Python functions in ArcGIS are receiving the same input data and weights as the other
implementations.

3.3 GeoDa

As Anselin et al. (2006) relate, GeoDa is a continuing reinvention of the original
SpaceStat package (Anselin 1992) and has moved over time from a closed-source
Windows implementation to an open source7 multi-platform8 application. The ver-
sion used here is 1.12.1.59 for Windows running under Wine on Fedora Linux. The
documentation explains clearly the multiple comparison problem for local measures,
with reference to Caldas de Castro and Singer (2006). For global measures, GeoDa

6 https://nij.gov/topics/technology/maps/pages/crimestat.aspx.
7 https://github.com/GeoDaCenter/geoda/.
8 https://spatial.uchicago.edu/geoda.

123

https://nij.gov/topics/technology/maps/pages/crimestat.aspx
https://github.com/GeoDaCenter/geoda/
https://spatial.uchicago.edu/geoda


Comparing implementations of global and local indicators of spatial association 727

provides on-screen rounded output, and for local measures, rounded output in the DBF
part exported in ESRI Shapefile format; it reads and writes many data and weights
formats. Of the measures provided, we have used global Moran’s I and local Moran’s
Ii and Getis–Ord Gi and G∗

i .

3.4 PySAL

The development of PySAL9 is described by Rey and Anselin (2007) and Rey et al.
(2015). It is an open source10 package of Python modules for a growing range of tasks
in spatial analysis. The version used here is 1.14.3 run from R using the reticulate
package (Allaire et al. 2018). PySAL can read and write spatial weights files in a
number of formats and can read and write data files. Using reticulate, binary input and
output has been possible. We have used PySAL implementations of global Moran’s
I , Geary’s C , Getis–Ord G, and local Moran’s Ii and Getis–Ord Gi and G∗

i . The
documentation of the local measures does not seem to discuss multiple comparisons.

3.5 R: spdep

There are a number of implementations of measures of spatial association in R pack-
ages, but because the spdep11 contains most of those chosen for comparison, it will
receive proportionate attention. The test functions have also been modified so as to
permit the reproduction of matching results where other implementations have chosen
other readings of the sources for the methods. The test functions were first described in
Bivand and Gebhardt (2000) before being made available as a package (Bivand 2006).
The version used here is 0.7–7, and like all published CRAN packages, spdep12 is
open source. The package provides a wide range of functions for creating, manipu-
lating, reading and writing spatial weights, and implementations of global Moran’s I ,
Geary’s C , Getis–Ord G, and local Moran’s Ii and Getis–Ord Gi and G∗

i . The local
measures function documentation discusses the adjustment of probability values for
multiple comparisons, using p.adjust, and the variant spdep::p.adjustSP which
adjusts for the number of comparisons for nonzero neighbour weights only, provided
as a less conservative speculation without proven theoretical bases.

4 Test data and locations

We have chosen to use data and locations utilized in a Consumer Data Research
Centre (CDRC) tutorial13 by Guy Lansley and James Cheshire, using UK 2011 census
data for the London Borough of Camden and aggregation entity boundaries in planar
coordinates. We are grateful to the authors of the tutorial for their permission to use

9 http://pysal.readthedocs.io/en/latest/.
10 https://github.com/pysal.
11 https://cran.r-project.org/package=spdep.
12 https://github.com/r-spatial/spdep/.
13 https://data.cdrc.ac.uk/tutorial/an-introduction-to-spatial-data-analysis-and-visualisation-in-r.
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% unemployed economically active
0.00 to 2.02
2.02 to 3.65
3.65 to 5.53
5.53 to 7.69
7.69 to 10.94
10.94 to 18.62

Fig. 1 London Borough of Camden: 2011 Census unemployment rates of resident working age population
by Output Area

this data set for this comparison. Output Areas (OA) are the basic aggregation entities,
grouped into LSOA and MSOA (Lower and Middle layer Super Output Areas); in
the Borough of Camden there are 749 OA, 133 LSOA and 28 MSOA. In the tutorial,
several rate variables are used; here we restrict ourselves to unemployment among
economically active residents, calculated as a percentage from counts. Figure 1 shows
the spatial distribution of the 2011 Census-based OA unemployment rates among
economically active residents. The north of the borough contains Hampstead Heath,
London Zoo is central, while the British Museum is toward the south of the borough.

> Employment0 <- read.csv("KS601EW_oa11.csv")
> Employment <- Employment0[, c(1:2, 6, 20)]
> names(Employment) <- c("OA11CD", "all_categories_economic_activity",
+ "economically_active_unemployed", "Unemployment")
> library(sf)
> output_areas <- st_read("Camden_oa11.shp")
> oa_census <- merge(output_areas, Employment, by = "OA11CD")

The aggregation entities have areal support (counts within polygons) which could
be used in GeoDa, ArcGIS, PySAL and spdep; however as Crimestat requires point
support, the positions of the observations are represented by polygon centroids. This
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IDW
0.262 to 0.347
0.347 to 0.410
0.410 to 0.466
0.466 to 0.513
0.513 to 0.560
0.560 to 0.632

300m
1 to 5
5 to 8
8 to 11
11 to 14
14 to 17
17 to 25
Missing

Fig. 2 Row sums of Output Area spatial weights; left panel: inverse distance weights between polygon
centroids, right panel: 300 m binary centroid distance weights

departs from the use of polygon contiguities in the parts of the tutorial not dealing
with Getis–Ord G and Gi measures, where contiguity neighbours were used.

As CrimeStat does not permit the import of spatial weights, its specifications have
been replicated and used. For Moran’s I , Ii and Geary’s C , CrimeStat uses general
inverse distance weighting (IDW) including all point observations, so here OA cen-
troids are used, not polygon boundaries; all distances are measured in metres.

> oa_census_pt <- st_centroid(oa_census)
> crds <- st_coordinates(oa_census_pt)
> library(spdep)
> alldnb <- dnearneigh(crds, 0, 10000)
> dists <- nbdists(alldnb, crds)
> idw <- lapply(dists, function(x) 1/x)
> lw_idw <- nb2listw(alldnb, glist = idw, style = "B")

For Getis–Ord G and Gi , CrimeStat requires binary distance bands, here set to
inter-centroid distances of 300 m or less. Figure 2 shows the sum of weights by OA
for the two weighting schemes. The IDW scheme gives more weight to the central
parts of the borough near Chalk Farm, while the binary 300 m weights accumulate in
areas where the OAs are closer to each other.

> dnb_300 <- dnearneigh(crds, 0, 300)
> lwd_300 <- nb2listw(dnb_300, style = "B", zero.policy = TRUE)
> lwd_300s <- nb2listw(include.self(dnb_300), style = "B")

In a few cases where CrimeStat is not involved, polygon neighbour “queen” contigu-
ities are used for polygons sharing at least one boundary point.

> nb_q <- poly2nb(as(oa_census, "Spatial"), queen = TRUE)
> lw <- nb2listw(nb_q, style = "B")
> lwW <- nb2listw(nb_q, style = "W")
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Table 2 GlobalMoran’s I , inverse distanceweights, normality assumption;spdep::moran.test (*)
gives results from tstN_CS with E(I )2 omitted in Var(I )

I E(I ) Var(I ) Z(I )

CrimeStat 0.048459 −0.001337 7.927432e–06

spdep::moran.test (*) 0.048459 −0.001337 7.927365e–06 17.685942

spdep::moran.test 0.048459 −0.001337 6.140067e–06 20.095835

PySAL::Moran 0.048459 −0.001337 6.140067e–06 20.095835

spdep::lm.morantest 0.048459 −0.001337 6.140067e–06 20.095835

spdep::lm.morantest.sad 0.048459 8.256678

spdep::lm.morantest.exact 0.048459 4.991673

5 Global test results

The global test results are scalar, and so can be shown in tabular form. They are
also not very exciting, as we wish to find output that is identical after rounding has
been accounted for. This is similar to the kinds of results reported by Bivand and
Piras (2015), and as experienced there, some differences have been removed during
the preparation of this article (PySAL has been updated to address issues uncovered
duringworkon this comparison). It is seldom the case that inferenceswould be changed
by using other software on the same data, except where the standard deviate is close
to a chosen confidence interval.

5.1 Moran’s I

Starting with Moran’s I with general IDW weights, we see that Table 2 with variance
terms calculated under the normality assumption shows good agreement in estimates
of Moran’s I ; CrimeStat 4.0.2 values are copied from rounded text file output but all
others are binary, including PySAL 1.14.3 using reticulate. The spdep::moran.test

(*) line shows that the standard deviance difference between CrimeStat and default
moran.test are due to the omission of the −E(I )2 term in Var(I ) in CrimeS-
tat (CrimeStat reports E(I ) and

√
Var(I )). Tests on regression residuals from a

model only including the intercept give the same values of I , and the standard test
spdep::lm.morantest is the same as spdep::moran.test under normality. However,
Saddlepoint approximation (Tiefelsdorf 2002) and exact (Bivand et al. 2009) estimates
of Z(I ) give very different values.

> tstN <- moran.test(oa_census$Unemployment, lw_idw, randomisation = FALSE)
> tstN_CS <- moran.test(oa_census$Unemployment, lw_idw, randomisation = FALSE,
+ drop.EI2 = TRUE)
> OLS <- lm(Unemployment ˜ 1, oa_census)
> tstNlm <- lm.morantest(OLS, lw_idw)
> tstNsad <- lm.morantest.sad(OLS, lw_idw)
> tstNex <- lm.morantest.exact(OLS, lw_idw)

Since the ArcGIS SpatialAutocorrelation_stats function only seems to
report Var(I ) under randomisation, it is included in Table 3, and agrees with
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Table 3 Global Moran’s I , inverse distance weights, randomisation assumption; spdep::moran.test
(*) gives results from tstR_CS with E(I )2 omitted in Var(I )

I E(I ) Var(I ) Z(I )

CrimeStat 0.048459 −0.001337 7.916183e–06

spdep::moran.test (*) 0.048459 −0.001337 7.916116e–06 17.698503

spdep::moran.test 0.048459 −0.001337 6.128819e–06 20.114267

PySAL::Moran 0.048459 −0.001337 6.128819e–06 20.114267

ArcGIS 0.048459 −0.001337 6.128819e–06 20.114267

Table 4 Global Moran’s I , binary 300 m distance weights, randomisation assumption

adjust.n I E(I ) Var(I ) Z(I )

spdep::moran.test TRUE 0.197848 −0.001346 2.221678e–04 13.363973

spdep::moran.test FALSE 0.199178 −0.001337 2.221774e–04 13.452284

PySAL::Moran FALSE 0.199178 −0.001337 2.221774e–04 13.452284

ArcGIS FALSE 0.199178 −0.001337 2.221774e–04 13.452284

spdep::moran.test (default assumption randomisation) and PySAL::Moran. Once
again, CrimeStat drops the E(I )2 term in Var(I ). In PySAL::Moran, the Var(I ) term
was affected by a bug for versions before 1.14.1.14

> tstR <- moran.test(oa_census$Unemployment, lw_idw)
> tstR_CS <- moran.test(oa_census$Unemployment, lw_idw, drop.EI2 = TRUE)

For the randomisation case, we also used the binary 300mdistanceweights to check
how the implementations handle no-neighbour observations. The results reported in
Table 4 are for spdep adjusting n in the inferential basis (see Eq. 3), and for spdep
not adjusting n to match PySAL::Moran and ArcGIS. For spdep, the zero.policy=

argument needs to be set to accept 0 as the spatially lagged value of for observations
with no neighbours.

> tst300 <- moran.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE)
> tst300n <- moran.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ adjust.n = FALSE)

As it turned out, GeoDa silently row-standardizes imported general weights when
reading the same GWT file that was used to read general weights in PySAL. Table 5
shows that we can replicate the value of I within rounding constraints. In addition,
implementations in the R packages ape (Paradis et al. 2004) and lctools (Kalo-
girou 2017) using dense weights matrices also row-standardize weights internally;
the lctools version provides Var(I ) under the normality (termed resampling) and ran-
domisation assumptions.

> lwW_idw <- nb2listw(alldnb, glist = idw, style = "W")
> tstWN <- moran.test(oa_census$Unemployment, lwW_idw, randomisation = FALSE)

14 https://github.com/pysal/pysal/issues/970.
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Table 5 Global Moran’s I , row-standardized inverse distance weights

Randomisation I E(I ) Var(I ) Z(I )

GeoDa 0.048087

spdep::moran.test FALSE 0.048087 −0.001337 6.120535e–06 19.977699

lctools::moransI.w FALSE 0.048087 −0.001337 6.120535e–06 19.977699

spdep::moran.test TRUE 0.048087 −0.001337 6.109029e–06 19.996503

lctools::moransI.w TRUE 0.048087 −0.001337 6.109029e–06 19.996503

ape::Moran.I TRUE 0.048087 −0.001337 6.109029e–06 19.996503

Table 6 Global Moran’s I , row-standardized contiguity weights, Monte Carlo (mc) and bootstrap (boot)

nsim I E(I ) Var(I ) Z(I )

spdep::moran.test 0.268652 −0.001337 4.854350e–04 12.254073

GeoDa 999 0.268652 −0.001100 4.645282e–04 12.515800

spdep::moran.mc 999 0.268652 −0.001615 4.548740e–04 12.672066

PySAL::Moran 999 0.268652 −0.001003 4.923302e–04 12.152926

boot::boot (parametric) 999 0.268652 −0.000716 4.974985e–04 12.076735

> tstWR <- moran.test(oa_census$Unemployment, lwW_idw)
> B <- listw2mat(lw_idw)
> lctI <- lctools::moransI.w(x = oa_census$Unemployment, w = B)
> apeI <- ape::Moran.I(oa_census$Unemployment, B)

Most implementations offer bootstrap, Monte Carlo or Hope-type approaches to
inference by permutation. The observed values are redistributed using sampling with-
out replacement in the permutation cases. It is not possible to ensure the same stream
of pseudorandom numbers across the implementations. The values reported in Table 6
of E(I ) and Var(I ) are the means and variances of the samples. For comparison, the
output of Moran’s I under randomisation for the same data and weights is provided.
In addition, a parametric bootstrap is reported with input values drawn from the nor-
mal distribution using the mean and standard deviation of the input data. Inference
on any of these would correspond to the standard result under randomisation, so the
claim that these approaches provide robustness against distributional assumptions is
probably not of practical importance.

> tstcWR <- moran.test(oa_census$Unemployment, lwW)
> set.seed(1)
> tstcWMC <- moran.mc(oa_census$Unemployment, lwW, nsim = 999, return_boot = TRUE)

> set.seed(1)
> boot_out <- EBImoran.mc(oa_census[[3]], oa_census[[2]], lwW, nsim = 999,
+ return_boot = TRUE)

There are several implementations of the Assunção and Reis (1999) Empirical
Bayes Moran’s I , taking the count of events and the base count rather than the rate.
We again use row-standardized contiguity weights and permutation bootstrap for three
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Table 7 Empirical Bayes Moran’s I , row-standardized contiguity weights, Monte Carlo, bootstrap

nsim I E(I ) Var(I ) Z(I )

GeoDa 999 0.269000 −0.002200 4.680018e–04 12.536200

spdep::EBImoran.mc 999 0.269000 −0.001591 4.557487e–04 12.675073

PySAL::Moran_Rate 999 0.269000 −0.000633 5.271059e–04 11.744200

DCluster::moranI.pboot 999 0.268652 −0.000488 5.067401e–04 11.955984

Table 8 Summary of Moran’s I capabilities, inverse distance weights

spdep PySAL CrimeStat ArcGIS

Z(I ) under normality ✓ ✓ ✓ ✗

Z(I ) under randomisation ✓ ✓ ✓ ✓

Equation 6 Var∗(I ) ✓ ✓ ✗ ✓

Permutation Z(I ) ✓ ✓ ✓ ✓

Saddlepoint approximation Z(I ) ✓ ✗ ✗ ✗

Exact Z(I ) ✓ ✗ ✗ ✗

cases. The DCluster case is a Negative Binomial parametric bootstrap described by
Gómez-Rubio et al. (2005). The results are shown in Table 7, and in this case show
little difference from the global measure on the percentage rate for row-standardized
contiguity weights.

Table 8 provides a summary of software capabilities for the base case of
inverse distance weights without row-standardization. All of spdep::moran.test(),
PySAL::Moran(), CrimeStat and ArcGIS::GlobalI() provide Z(I ) under randomi-
sation and using permutation. ArcGIS::GlobalI() does not provide Z(I ) under
normality, and CrimeStat does not subtract [E(I )]2 in Eq. 6 when calculating Var∗(I ).
Only spdep provides exact and Saddlepoint approximation values of Z(I ).

5.2 Other global indicators

5.2.1 Geary’s C

We return to the IDW general weights to accommodate CrimeStat for a comparison of
Geary’s C (Table 9). There are many fewer implementations of Geary’s C , probably
because it is more computationally demanding, especially when the spatial weights
are dense, as in this case where there are many more pair differences to compute.
PySAL and CrimeStat output uses the standard z-value, so reversing the sign (Eq. 12,
and Cliff and Ord 1969, p. 29, equation 13).

> tstN <- geary.test(oa_census$Unemployment, lw_idw, randomisation = FALSE)
> tstR <- geary.test(oa_census$Unemployment, lw_idw)
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Table 9 Global Geary’s C , inverse distance weights

Randomisation C E(C) Var(C) Z(C)

CrimeStat FALSE 0.954406 1.000000 − 5.299659

PySAL::Geary FALSE 0.954406 1.000000 7.401481e–05 − 5.299659

spdep::geary.test FALSE 0.954406 1.000000 7.401481e–05 5.299659

PySAL::Geary TRUE 0.954406 1.000000 1.218734e–04 − 4.130026

spdep::geary.test TRUE 0.954406 1.000000 1.218734e–04 4.130026

Table 10 Global Getis–Ord G, binary 300 m distance weights

adjust.n G E(G) Var(G) Z(G)

CrimeStat FALSE 0.017971 0.015714 8.462774

PySAL::G FALSE 0.017971 0.015714 7.107530e–08 8.462774

spdep::globalG FALSE 0.017971 0.015714 7.107530e–08 8.462774

spdep::globalG TRUE 0.017971 0.015926 6.786192e–08 7.846753

5.2.2 Getis–Ord G

The comparisons shown in Table 10 use the binary distance definition used by Crime-
Stat; the cut off threshold is set to 300 m. The three implementations (CrimeStat,
PySAL::G and spdep::globalG) are identical apart from rounding. Earlier, some
implementations differed by not correcting the variance using Getis and Ord (1993),
but this has beendealtwith now.CrimeStat andPySALdonot adjustn for no-neighbour
observations.

> tst <- globalG.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ adjust.n = TRUE)
> tstn <- globalG.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ adjust.n = FALSE)

Getting an exact match for the ArcGIS global Getis–Ord G with binary 300 m
distance weights turned out to be quite demanding. In ArcGIS, some internal products
are accumulated only for observations with neighbours, but others use the full vector
of the variable of interest. If adjust.x=TRUE, the x vector is shortened by dropping the
non-neighbour observations. However, the denominator in Eq. 13,

∑
(2) xi x j , j �= i ,

is implemented as sum of the product of x ′
i dropping no-neighbour observations with

x j , the complete x vector, and then subtracting the cross-product of x ′
i . ArcGIS does

not adjust n for no-neighbour observations.

> tstx <- globalG.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ adjust.n = FALSE, adjust.x = TRUE, Arc_all_x = FALSE)
> tstxAG <- globalG.test(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ adjust.n = FALSE, adjust.x = TRUE, Arc_all_x = TRUE)

The adjust.x = TRUE argument drops no-neighbour observation x values, and the
Arc_all_x = TRUE uses the complete x vector in one product sum. Table 11 shows
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Table 11 Reproducing ArcGIS output for global Getis–Ord G, binary 300 m distance weights

adjust.x Arc_all_x G E(G) Var(G) Z(G)

spdep::globalG TRUE FALSE 0.018131 0.015714 7.276249e–08 8.958640

spdep::globalG TRUE TRUE 0.018050 0.015714 7.276249e–08 8.660501

ArcGIS 0.018050 0.015714 7.276249e–08 8.660501
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Fig. 3 Density plots of analytical and conditional permutation-based Z(Gi ) values, PySAL, 999 samples;
London Borough of Camden: 2011 Census unemployment rates of resident working age population by
Output Area

that when Arc_all_x = TRUE, the value of G is slightly smaller as the denominator is
slightly larger. E(G) andVar(G) are the same because themoments of x are calculated
leaving out no-neighbour x values consistently, so the difference in Z(G) is caused
by the difference in G.

6 Local test results

The comparison of local results is less easy to convey, because each scalar output in
the global case is replaced by a vector of n values. This means that we will need to
compare vector values between implementations within given precision, while taking
into account the precision output to, for example, DBF files.

6.1 Getis–Ord Gi

The CrimeStat, PySAL and spdep implementations return values of Gi , E(Gi ),
Var(Gi ) and Z(Gi ), while GeoDa returns only Gi . The implementations differ in
the values assigned to no-neighbour observations; here these are set to missing (NA) if
not already so reported for purposes of comparison.

> Gi <- localG(oa_census$Unemployment, lwd_300, return_internals = TRUE)
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analytical permutation
Z(Gi)

Less than −4.25
−4.25 to −3.00
−3.00 to −2.00
−2.00 to 0.00
0.00 to 2.00
2.00 to 3.00
3.00 to 4.25
4.25 or more
Missing

Fig. 4 Analytical and conditional permutation-based Z(Gi ) values, PySAL, 999 samples; London Borough
of Camden: 2011 Census unemployment rates of resident working age population by Output Area

The results for the PySAL and spdep implementations using the binary 300 m
distance threshold weights are identical within machine precision, and these agree
with those for CrimeStat after rounding to six digits after the decimal sign. Several
of the implementations provide conditional permutation-based inference, where all
observations except xi are randomly re-assigned without replacement for the test
for observation i , here 999 times. Figure 3 shows density plots of Z(Gi ) computed
analytically (Eq. 18) and by conditional permutation from the PySAL implementation;
it is clear that the conditional permutation-based are more concentrated in the centre
of the distribution than the analytical values. Figure 4 contrasts the same values; recall
that positive values (blue) of Z(Gi ) here correspond to spatial autocorrelation with
respect to high unemployment, and negative values (red) to spatial autocorrelationwith
respect to lowunemployment. The correlation between the analytical and permutation-
based Z(Gi ) values is only 0.737; this result is consistent and is not affected by the
number of draws as explored in more detail for the local Moran’s Ii case below.

The Gi values returned by GeoDa agree with spdep when they are rounded to
seven digits after the decimal sign, and when spdep uses the GeoDa=TRUE argument to
accommodate the fact that GeoDa drops xi values for observations with no neighbours
from summations.15

> Gi_gd <- localG(oa_census$Unemployment, lwd_300, return_internals = TRUE,
+ GeoDa = TRUE)

ArcGIS only provides the G∗
i measure, and the ArcGIS values of Z(G∗

i ) agree
within machine precision with the PySAL and spdep implementations for the binary
300 m distance threshold weights. Once again, the GeoDa G∗

i values agree with those
from spdep when they are rounded to seven digits after the decimal sign, and spdep
uses the GeoDa=TRUE argument. In theG∗

i case, GeoDa only seems to include xi values
in summations when observations have more than one neighbour (not counting itself
as a valid neighbour).
> lwd_300s <- nb2listw(include.self(dnb_300), style = "B")
> Gi_s <- localG(oa_census$Unemployment, lwd_300s, return_internals = TRUE)

15 https://github.com/GeoDaCenter/geoda/blob/master/Explore/GStatCoordinator.cpp, lines 338–342,
526–527.
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Fig. 5 Correlations between values of Z(Gi ) (Eq. 18) and Z(G∗
i ) (Eq. 19)—conditional permutation (with

numbers of permutations) and analytical; London Borough of Camden: 2011 Census unemployment rates
of resident working age population by Output Area

> Gi_s_gd <- localG(oa_census$Unemployment, lwd_300s, return_internals = TRUE,
+ GeoDa = TRUE)

Figure 5 summarizes the inferential bases for localGi andG∗
i for analytical and con-

ditional permutation approaches. All the analytical Z(Gi ) and Z(G∗
i ) are effectively

identical within and between groups, suggesting that only providing Gi (CrimeStat)
or G∗

i (ArcGIS) is not a problem. The ArcGIS conditional permutation Z(G∗
i ) values

are very close to the analytical values, but have been reconstructed here from their p
values. It is unknown why the PySAL and ArcGIS conditional permutation Z(G∗

i )

values differ asmuch as they do, but this may relate to the reconstruction of theArcGIS
values. As GeoDa reported conditional permutation p values are folded to combine
tails, it is not possible to include them in this comparison.

Table 12 summarizes the capabilities of five software implementations of local
Gi and G∗

i : spdep::localG(), PySAL::G_Local(), CrimeStat, ArcGIS::LocalG(),
and GeoDa. GeoDa, spdep::localG() and PySAL::G_Local() provide both local
Gi and G∗

i , while CrimeStat provides only local Gi and ArcGIS::LocalG() only
G∗

i . GeoDa does not provide analytical Z(Gi ) values, and spdep does not provide
conditional permutation Z(Gi ) values. Taking Fig. 5 into account, it is not obvious
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Table 12 Summary of local Gi and G∗
i capabilities, binary 300 m distance weights

spdep PySAL CrimeStat ArcGIS GeoDa

Analytical Z(Gi ) ✓ ✓ ✓ ✓ ✗

Conditional permutation Z(Gi ) ✗ ✓ ✓ ✓ ✓

Gi ✓ ✓ ✓ ✗ ✓

G∗
i ✓ ✓ ✗ ✓ ✓

that the provision of both local Gi and G∗
i is essential; it is further not obvious that

conditional permutation offers a stronger inferential basis than analytical values of
Z(Gi ).

6.2 Moran’s Ii

As in the global case for Moran’s I , CrimeStat uses general inverse distance weights
between the centroids of all output area polygons for local Moran’s Ii . Starting with
this case,we again note that CrimeStat andGeoDa export results inDBF format subject
to rounding. In both spdep and CrimeStat, local Moran’s Ii is calculated such that the
denominator of m2 in Eq. 20 is n, but may be set to n − 1 in spdep, and equivalently
in the b2 term, if the argument mlvar=FALSE. The values of Ii returned by spdep and
CrimeStat agree to six digits after the decimal sign with default mlvar=TRUE; however,
the values of Z(Ii ) differ somewhat (mean absolute difference: 0.0004928), although
they are perfectly correlated. This suggests that CrimeStat perhaps uses Eq. 23, since
spdep uses Eq. 24 to define Var(Ii ).

> base_Ii_ml <- localmoran(oa_census$Unemployment, lw_idw)

Setting mlvar=FALSE in spdep gives output that agrees within machine precision
for Ii and Z(Ii ) to that of ArcGIS, implying that both use Eq. 24 to define Var(Ii ).
Comparing spdep with mlvar=FALSE and PySAL gives agreement within machine
precision for Ii , but does not compute or return any analytical inferential results.

> base_Ii <- localmoran(oa_census$Unemployment, lw_idw, mlvar = FALSE)

Again, GeoDa appears to row-standardize on reading the general inverse distance
weights. The values of Ii reported by GeoDa agree with spdep with mlvar=FALSE

when they are rounded to seven digits after the decimal sign, and PySAL and spdep Ii
valueswith mlvar=FALSE for the row-standardized case agreewithinmachine precision
with PySAL.

> base_IiW <- localmoran(oa_census$Unemployment, lwW_idw, mlvar = FALSE)

The R lctools package provides the l.moransI function, which presupposes k-
nearest neighbour weights and permits row-standardized or Bisquare kernel weights;
for k = 6, the values of Ii agree with spdep with mlvar=TRUE.

> crds <- st_coordinates(pt_out)
> k6 <- knn2nb(knearneigh(crds, k = 6))
> klw <- nb2listw(k6, style = "W", zero.policy = TRUE)
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Fig. 6 Density plots of analytical, Saddlepoint approximation and exact Z(Ii ) values using the same inverse
distance weights and for exactΩ queen binary contiguities for the exact measures only with inverse distance
weights for the SAR model, spdep; horizontal axis truncated

> base_Ii_k6 <- localmoran(oa_census$Unemployment, klw, zero.policy = TRUE)
> lct_Ii <- lctools::l.moransI(crds, 6, x = oa_census$Unemployment,
+ WType = "Binary", scatter.plot = FALSE)

The R package ncf (Bjornstad 2018) function lisa uses row-standardized distance-
based weights, and the Ii values agree with spdep for a threshold of 300 m and
mlvar=TRUE.

> lwd_300W <- nb2listw(dnb_300, style = "W", zero.policy = TRUE)
> base_Ii_300 <- localmoran(oa_census$Unemployment, lwd_300W, zero.policy = FALSE)
> ncf_Ii <- ncf::lisa(crds[, 1], crds[, 2], oa_census$Unemployment,
+ 300, resamp = 0L, quiet = TRUE)

LocalMoran’s Ii as calculated using Saddlepoint approximation (Tiefelsdorf 2002)
and exact (Bivand et al. 2009) methods provide inferential alternatives to the analytical
methods presented above, and to conditional permutation to be considered later. The
Ii values returned are equal to the values with mlvar=TRUE when multiplied by n/2.
Both approaches permit the inclusion of explanatory variables, and the use of a global
spatial process to account for global autocorrelation before local autocorrelation is
explored. Here we use an intercept-only linear model, and an intercept-only simulta-
neous autoregressive model to remove a global process defined by the same inverse
distance weights matrix.We extend this approach to explore local autocorrelation with
different spatial weights to those used to remove the global process, because the actual
global data generation process may not be fully captured by the chosen weights.

> sad_Ii <- as.data.frame(localmoran.sad(OLS, nb = alldnb, glist = idw,
+ style = "B"))
> exact_Ii <- as.data.frame(localmoran.exact(OLS, nb = alldnb, glist = idw,
+ style = "B"))
> SEM <- errorsarlm(Unemployment ˜ 1, data = oa_census, listw = lw_idw)
> lm.target <- lm(SEM$tary ˜ SEM$tarX - 1)
> Omega <- invIrW(lw_idw, rho = SEM$lambda)
> sad_Ii_Omega <- as.data.frame(localmoran.sad(lm.target, nb = alldnb,
+ glist = idw, style = "B", Omega = Omega))

123



740 R. S. Bivand, D. W. S. Wong

analytical exact Omega

exact Omega queen

Z(Ii)
Less than −4.25
−4.25 to −3.00
−3.00 to −2.00
−2.00 to 0.00
0.00 to 2.00
2.00 to 3.00
3.00 to 4.25
4.25 or more

Fig. 7 Analytical and exact Z(Ii ) values; the exact values have been calculated after global autocorrelation
has been removed by fitting a SAR model; London Borough of Camden: 2011 Census unemployment rates
of resident working age population by Output Area

Table 13 Tabulation of OA Z(Ii ) values by conventional normal confidence levels, analytical, Saddlepoint
approximation and exact Z(Gi ) values using the same inverse distance weights and for exact Ω queen
binary contiguities for the exact measures only with inverse distance weights for the SAR model

Analytical Saddle Exact Saddle Ω Exact Ω Exact Ω queen

< −4.25 10 1 1 0 0 0

−4.25 to −3 12 6 6 0 0 2

−3 to −2 28 32 33 1 1 9

−2 to 0 193 213 214 380 348 270

0 to 2 289 294 289 364 395 434

2 to 3 67 135 138 4 5 32

3 to 4.25 70 65 66 0 0 2

> 4.25 80 3 2 0 0 0

> exact_Ii_Omega <- as.data.frame(localmoran.exact.alt(lm.target,
+ nb = alldnb, glist = idw, style = "B", Omega = Omega))
> exact_Ii_Omega_q <- as.data.frame(localmoran.exact.alt(lm.target,
+ nb = nb_q, style = "B", Omega = Omega))
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Fig. 8 Density plots of analytical and conditional permutation Z(Ii ) for increasing numbers of draws—the
lines for conditional permutation Z(Ii ) overplot and show how little they differ; horizontal axis truncated

Figures 6, 7 and Table 13 show the dramatic effect on inferential output of using
Saddlepoint approximation or exact methods, especially when global autocorrelation
has been removed bymodelling and only searching for residual local spatial autocorre-
lation. In this case, and for the choice of inverse distanceweights, there is effectively no
residual local spatial autocorrelation.Whenwe remove global inverse distanceweight-
based autocorrelation, and test using binary contiguity weights (exactΩ queen), some
residual local spatial autocorrelation is found, but still less than when global spatial
autocorrelation is not removed. Even if we had not modelled global spatial autocor-
relation, we could have introduced covariates into the mean model with a potentially
similar effect, or added a Lower layer Super Output Area random effect in a multilevel
approach (as a speculation—the block diagonal group effect might replace theΩ term
instead of a global spatial process).

In the case of Z(Gi ), we saw (Figs. 3, 4) that the values returned by analytical and
conditional permutation were not very similar, both in terms of distribution as might
be expected but also in terms of the spatial patterning of tail values in the distribution.

> pslm <- pysal$Moran_Local(y, w, transformation = "O", permutations = 999L)
> pslm_9999 <- pysal$Moran_Local(y, w, transformation = "O", permutations = 9999L)
> pslm_99999 <- pysal$Moran_Local(y, w, transformation = "O", permutations = 99999L)

We will use the PySAL implementation here, but can note that a non-optimized
implementation in R, and the PySAL and ArcGIS implementations of conditional
permutation yield Z(Ii ) correlated with each other by more than 0.999 (see also
Fig. 10); GeoDa does not return Z(Ii ) values. This suggests that the implementations
are using the same understanding of conditional permutation, and that remaining trivial
differences are related to different streams of random numbers.

Figures 8, 9 and Table 14 show not only that increasing the number of draws
beyond 999 has no effect (the Z(Ii ) values are correlated by more than 0.999), but
that the procedure generates more values outside the −24 to 2 range compared to the
analytical approach for this data set and weights. Even adjusting probability values
by false discovery rate will leave more “unusual” values of local autocorrelation than
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analytical conditional permutation
Z(Ii)

Less than −4.25
−4.25 to −3.00
−3.00 to −2.00
−2.00 to 0.00
0.00 to 2.00
2.00 to 3.00
3.00 to 4.25
4.25 or more

Fig. 9 Analytical and conditional permutation-based Z(Ii ) values (99999 draws); London Borough of
Camden: 2011 Census unemployment rates of resident working age population by Output Area

Table 14 Tabulation of OA Z(Ii ) values by conventional normal confidence levels, analytical and condi-
tional permutation Z(Ii ) for increasing numbers of draws, PySAL

Analytical 999 draws 9999 draws 99999 draws

<−4.25 10 12 11 12

−4.25 to −3 12 48 51 48

−3 to −2 28 67 65 67

−2 to 0 193 127 128 127

0 to 2 289 193 193 193

2 to 3 67 108 104 107

3 to 4.25 70 120 127 123

> 4.25 80 74 70 72

when the analytical approach is used, and the contrast with Saddlepoint approximation
and exact methods does not need stressing.

Finally, since some issues were observed in the handling of no-neighbour observa-
tions, we reproduce parts of the comparison for the binary 300 m distance threshold
weights.

> sp_liF <- localmoran(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ mlvar = FALSE)
> sp_liFa <- localmoran(oa_census$Unemployment, lwd_300, zero.policy = TRUE,
+ mlvar = FALSE, adjust.x = TRUE)

The Ii values returned by PySAL and spdep agree when mlvar=FALSE, and
the GeoDa values agree with spdep when mlvar=FALSE and the weights are row-
standardized. The ArcGIS Ii values agree with spdep when mlvar=FALSE and
adjust.x=TRUE, indicating that summations in ArcGIS omit values of x for no-
neighbour observations.

Figure 10 summarizes the results of the different ways of calculating Z(Ii ), the
standard deviate of localMoran’s Ii . Thefirst block of valueswith a Pearson correlation
of 1 is returned by conditional permutation methods. It seems that no advantage is
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Fig. 10 Correlations between values of Z(Ii )—conditional permutation (with numbers of permutations),
analytical (Normal and Randomized), Saddlepoint approximation and exact methods (without and with
Omega used to remove global autocorrelation); London Borough of Camden: 2011 Census unemployment
rates of resident working age population by Output Area

obtained by increasing the number of iterations. The next clear block is generated by
the use of analytical methods (one normal assumption returned by the Saddlepoint
function in spdep, the others under the randomisation assumption) to calculate the
expectation and variance of local Moran’s Ii . The final two blocks bring together
exact and Saddlepoint approximation vales, first without the prior modelling of global
autocorrelation, the second based on providing the Ω matrix calculated from earlier
fitting of a global model. These latter methods are only available in spdep.

Only PySAL::Moran_Local_Rate and GeoDa provide Empirical Bayes local Ii
rates; these agree within rounding error for row-standardized contiguity weights.

Table 15 gives a summary of local Moran’s Ii capabilities for five software imple-
mentations: spdep (localmoran(), localmoran.sad() and localmoran.exact()),
PySAL::Moran_Local(), CrimeStat, ArcGIS::LocalI() and GeoDa. The correlations
shown in Fig. 10 indicate that exact or Saddlepoint approximation Z(Ii ) values are a
useful contrast to analytical or conditional permutation Z(Ii ) values. Uses of Eq. 20
with default (n − 1) will seldom change inferences but do confuse users, as do the
analytical definitions of Var(Ii ).

123



744 R. S. Bivand, D. W. S. Wong

Table 15 Summary of local Ii capabilities, inverse distance weights

spdep PySAL CrimeStat ArcGIS GeoDa

Analytical Z(Ii ) ✓ ✗ ✓ ✓ ✗

Conditional permutation Z(Ii ) ✗ ✓ ✓ ✓ ✓

Equation 20 default (n − 1) ✗ ✓ ✗ ✓ ✓

Equation 24 VarSokal(Ii ) ✓ ✗ ✗ ✓ ✗

Saddlepoint approximation Z(Ii ) ✓ ✗ ✗ ✗ ✗

Exact Z(Ii ) ✓ ✗ ✗ ✗ ✗

7 Conclusions

In this comparative review of implementations of global and local measures of spatial
autocorrelation, we have been able to establish the conditions under which we can
account for observed numerical differences in output. These differences are unlikely
to affect inferential outcomes for global measures, but user choices for local measures
both of software and of inferential method over and above the handling of multiple
comparisons will have consequences for conclusions drawn. Only users of spdep have
access to Saddlepoint approximation of exact methods for localMoran’s Ii , and thus to
the possibility of the removal of globalmis-specification from the data before exploring
local measures. In any case, applied users are unlikely to choose to do this, despite
these methods often not needing more computing time than conditional permutations.

In particular, it is a matter of concern that the spatial patterns of Z values gen-
erated by conditional permutation for local measures differ considerably from those
calculated using analytical methods. This means that the further use of local measures
to “detect” “hotspots” which is prevalent in applied fields, needs to take account not
only of the pressing need to handle false discovery rates, but also of the differences
between “hotspots” that might be “detected” using analytical or conditional permu-
tation. Table 14 is particularly worrying, as conditional permutation for this data set
generates far more output area Z(Ii ) values that exceed |2| than the analytical method,
and many of them are in different output areas (182 more conditional permutation val-
ues of Z(Ii ) ≥ |2| compared with analytical; 20 more analytical values of Z(Ii ) ≥ |2|
compared with conditional permutation).
> LOSH_idw <- LOSH.cs(oa_census$Unemployment, lw_idw)
> nn <- card(lwd_300$neighbours) > 0
> LOSH_d300 <- LOSH.cs(oa_census$Unemployment[nn], subset(lwd_300,
+ nn))

Since conditional permutation assumes that the local and (conditional, without xi )
global distributions of x are equivalent, perhaps the divergence between analytical
and conditional permutations is driven by local spatial heterogeneity. Ord and Getis
(2012) propose a measure of local spatial heterogeneity (LOSH), and very recently
an implementation has been added to spdep thanks to Rene Westerholt in connection
with Westerholt et al. (2015, 2018). The implementation also includes inferential
mechanisms proposed by Xu et al. (2014). Figure 11 shows the values of the measure
for two different sets of spatial weights. Values of the measure greater than unity
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IDW 300m
LOSH

0.0 to 0.5
0.5 to 1.0
1.0 to 1.5
1.5 to 2.0
2.0 to 2.5
2.5 to 3.0
3.0 to 3.5
3.5 to 4.0
Missing

Fig. 11 Local spatial heterogeneitymeasure for general inverse distance and binary 300mdistance threshold
weights; LondonBorough of Camden: 2011Census unemployment rates of residentworking age population
by Output Area

HGLM IID HGLM SAR
random

effects
−4 to −3
−3 to −2
−2 to −1
−1 to 0
0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6

Fig. 12 HGLM IID and SAR random effects—SAR random effects for contiguous queen neighbours;
London Borough of Camden: 2011 Census unemployment rates of resident working age population by
Output Area

indicate heightened local spatial heterogenity. Not only can we see that local spatial
heterogenity is present, but also that general inverse distance weights induce strong
smoothing compared to binary 300 m distance threshold weights. This measure is
fairly new, and its implementation has only been made available recently, so we can
expect more studies of the impact of local spatial heterogeneity, for example, on spatial
discrepancies in the inferential bases of local measures of spatial autocorrelation.

In a survey of ways of calculating independent and identically distributed (IID)
and spatially structured (here simultaneous autoregressive, SAR) random effects in
multilevel models, Bivand et al. (2017) draw attention to the possibility of using spa-
tially structured random effects to explore local spatial autocorrelation. Since random
effects estimates come with standard errors, as, for example, in the use of hierarchical
generalized linear models by Alam et al. (2015), they may provide an additional way
of modelling spatial dependence. Here we have not added covariates or grouping at
more aggregated levels, not used the possibility of handling the underlying discrete
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response by fitting a Poisson regression with an offset, but such flexibility is easily
available. Figure 12 shows the fitted IID and queen contiguity SAR random effects
for the data set under investigation. Further fitting techniques are reviewed by Bivand
et al. (2017).

> library(hglm)
> X_hglm <- model.matrix(˜1, data = oa_census)
> Z_hglm <- model.matrix(˜-1 + factor(OA11CD), data = oa_census)
> hglm_iid <- hglm(y = oa_census$Unemployment, X = X_hglm, Z = Z_hglm)
> M_hglm <- listw2mat(lwW)
> hglm_sar <- hglm(y = oa_census$Unemployment, X = X_hglm, Z = Z_hglm,
+ rand.family = SAR(D = M_hglm))

In the course of our comparison, we have established the reasons for observed
differences in numerical results between implementations of global and localmeasures
of spatial autocorrelation. We have pointed to the need to draw users’ attention to
the issue of multiple comparisons in making inferential judgements based on local
measures. We have further examined the way in which implementations handle no-
neighbour observations.We have raised questions about the appropriateness of relying
on conditional permutation as an inferential basis for local measures, and suggested a
link to a newer measure of local spatial heterogeneity. We indicate that local measures
of spatial autocorrelation are also likely to mislead users in the presence of global
autocorrelation, and where the mean model is mis-specified in other ways. These
doubts have already been highlighted in the literature, often in the articles introducing
local measures, but have unfortunately often been put aside by users. We continue
to hope that implementations and this comparison will offer the guidance required to
assist users in their application of these measures.
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