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Abstract We generalize a recent class of tests for univariate normality that are based
on the empirical moment generating function to themultivariate setting, thus obtaining
a class of affine invariant, consistent and easy-to-use goodness-of-fit tests for multi-
normality. The test statistics are suitably weighted L2-statistics, and we provide their
asymptotic behavior both for i.i.d. observations and in the context of testing that the
innovation distribution of a multivariate GARCH model is Gaussian. We study the
finite-sample behavior of the new tests, compare the criteria with alternative existing
procedures, and apply the new procedure to a data set of monthly log returns.

Keywords Moment generating function · Goodness-of-fit test · Multivariate
normality · Gaussian GARCH model
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1 Introduction

As evidenced by the papers Arcones (2007), Batsidis et al. (2013), Cardoso deOliveira
and Ferreira (2010), Ebner (2012), Enomoto et al. (2012), Farrel et al. (2007), Hanusz
and Tarasińska (2008), Hanusz and Tarasińska (2012), Henze et al. (2018), Joenssen
and Vogel (2014), Jönsson (2011), Kim (2016), Koizumi et al. (2014), Mecklin and
Mundfrom (2005), Pudełko (2005), Székeley and Rizzo (2005), Tenreiro (2011), Ten-
reiro (2017), Thulin (2014), Villaseñor-Alva and Estrada (2009), Voinov et al. (2016),

B María Dolores Jiménez-Gamero
dolores@us.es

1 Institute of Stochastics, Karlsruhe Institute of Technology, Karlsruhe, Germany

2 Department of Statistics and Operations Research, University of Seville, Seville, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11749-018-0589-z&domain=pdf
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Yanada et al. (2015), and Zhou and Shao (2014), there is an ongoing interest in the
problem of testing for multivariate normality. Without claiming to be exhaustive, the
above list probably covers most of the publications in this field since the review paper
Henze (2002).

Recently, Henze and Koch (2017) provided the lacking theory for a test for uni-
variate normality suggested by Zghoul (2010). The purpose of this paper is twofold.
First, we generalize the results of Henze and Koch (2017) to the multivariate case,
thus obtaining a class of affine invariant and consistent tests for multivariate normality.
Secondly, in contrast to that paper (and most of the other publications), which consid-
ered only independent and identically distributed (i.i.d.) observations, we also provide
the asymptotics of our test statistics in the context of GARCH-type dependence.

To be more specific, let (for the time being) X, X1, X2, . . . be a sequence of i.i.d.
d-variate random column vectors that are defined on a common probability space
(�,A,P). We assume that the distribution P

X of X is absolutely continuous with
respect to Lebesgue measure. Let Nd(μ,�) denote the d-variate normal distribution
with mean vector μ and non-degenerate covariance matrix �, and write Nd for the
class of all non-degenerate d-dimensional normal distributions. A test for multivariate
normality is a test of the null hypothesis

H0 : P
X ∈ Nd ,

and usually such a test should be consistent against any fixed non-normal alternative
distribution. Since the class Nd is closed with respect to full rank affine transforma-
tions, any genuine test statistic Tn = Tn(X1, . . . , Xn) based on X1, . . . , Xn should also
be affine invariant, i.e., we should have Tn(AX1+b, . . . , AXn+b) = Tn(X1, . . . , Xn)

for each nonsingular d × d-matrix A and each b ∈ R
d , see Henze (2002) for a critical

account on affine invariant tests for multivariate normality.
In what follows, let Xn = n−1 ∑n

j=1 X j , Sn = n−1 ∑n
j=1(X j − Xn)(X j − Xn)

�
denote the samplemean and the sample covariancematrix of X1, . . . , Xn , respectively,
where � means transposition of vectors and matrices. Furthermore, let

Yn, j = S−1/2
n (X j − Xn), j = 1, . . . , n,

be the so-called scaled residuals of X1, . . . , Xn , which provide an empirical standard-
ization of X1, . . . , Xn . Here, S

−1/2
n denotes the unique symmetric square root of Sn .

Notice that Sn is invertible with probability one provided that n ≥ d + 1, see Eaton
and Perlman (1973). The latter condition is tacitly assumed to hold in what follows.
Under H0, the empirical moment generating function

Mn(t) = 1

n

n∑

j=1

exp
(
t�Yn, j

)
, t ∈ R

d , (1.1)

of Yn,1, . . . ,Yn,n should be close to

m(t) = exp
(
‖t‖2/2

)
,
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which is themoment generating function of the standard normal distributionNd (0, Id).
Here and in the sequel, ‖ · ‖ stands for the Euclidean norm on R

d , and Id is the unit
matrix of order d.

The statistic proposed in this paper is the weighted L2-statistic

Tn,β = n
∫

Rd
(Mn(t) − m(t))2 wβ(t) dt, (1.2)

where
wβ(t) = exp

(
−β‖t‖2

)
, (1.3)

and β > 1 is some fixed parameter, the role of which will be discussed later. Notice
that Tn,β is the ‘moment generating function analogue’ to the BHEP-statistics for
testing for multivariate normality [see, e.g., Baringhaus and Henze (1988), Henze and
Zirkler (1990), and Henze and Wagner (1997)]. The latter statistics originate if one
replaces Mn(t) with the empirical characteristic function of the scaled residuals and
m(t)with the characteristic function exp(−‖t‖2/2) of the standard normal distribution
Nd(0, Id). For a general account on weighted L2-statistics see, e.g., Baringhaus et al.
(2017).

In principle, one could replace wβ in (1.3) with a more general weight function
satisfying some general conditions. The above special choice, however, leads to a test
criterion with certain extremely appealing features, since straightforward calculations
yield the representation

Tn,β = πd/2

⎛

⎝1

n

n∑

i, j=1

1

βd/2 exp

(‖Yn,i + Yn, j‖2
4β

)

+ n

(β − 1)d/2

− 2
n∑

j=1

1

(β − 1/2)d/2 exp

(‖Yn, j‖2
4β − 2

)
⎞

⎠ , (1.4)

which is amenable to computational purposes. Notice that the condition β > 1 is
necessary for the integral in (1.2) to be finite. Later, we have to impose the further
restriction β > 2 to prove that Tn,β has a non-degenerate limit null distribution as n →
∞. We remark that Tn,β is affine invariant since it only depends on the Mahalanobis
angles and distances Y�

n,i Yn, j , 1 ≤ i, j ≤ n. Rejection of H0 is for large values of
Tn,β .

The rest of the paper unfolds as follows. The next section shows that letting β

tend to infinity in (1.2) yields a linear combination of two well-known measures
of multivariate skewness. In Sect. 3, we derive the limit null distribution of Tn,β in
the i.i.d. setting. Section 4 addresses the question of consistency of the new tests
against general alternatives, while Sect. 5 considers the new criterion in the context
of multivariate GARCH models in order to test for normality of innovations, and it
provides the pertaining large-sample theory. Section 6 presents a Monte Carlo study
that compares the new tests with competing ones, and it considers a real data set from
the financial market. The article concludes with discussions in Sect. 7.
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2 The case β → ∞
In this section, we show that the statistic Tn,β , after a suitable scaling, approaches a
linear combination of two well-known measures of multivariate skewness as β → ∞.

Theorem 2.1 We have (elementwise on the underlying probability space)

lim
β→∞ β3+d/2 96Tn,β

nπd/2 = 2b1,d + 3b̃1,d ,

where

b1,d = 1

n2

n∑

j,k=1

(
Y�
n, j Yn,k

)3
, b̃1,d = 1

n2

n∑

j,k=1

Y�
n, j Yn,k ‖Yn, j‖2 ‖Yn,k‖2

are multivariate sample skewness in the sense ofMardia (1970) andMóri et al. (1993),
respectively.

Proof Let b2,d = n−1 ∑n
j=1 ‖Yn, j‖4 denote multivariate sample kurtosis in the sense

of Mardia (1970). From (1.4) and

exp(y) = 1 + y + y2

2
+ y3

6
+ O(y4)

as y → 0, the result follows by very tedious but straightforward calculations, using
the relations

∑n
j=1 Yn, j = 0,

∑n
j=1 ‖Yn, j‖2 = nd,

∑n
j,k=1 ‖Yn, j + Yn,k‖2 = 2n2d,

n∑

j,k=1

‖Yn, j + Yn,k‖4 = 2n2
(
b2,d + d2 + 2d

)
,

n∑

j,k=1

‖Yn, j + Yn,k‖4Y�
n, j Yn,k = 8n2b2,d + 4n2b1,d + 2n2b̃1,d ,

n∑

j,k=1

‖Yn, j + Yn,k‖6 = 2n
n∑

j=1

‖Yn, j‖6 + 6(d + 4)n2b2,d

+ 8n2b1,d + 12n2b̃1,d .

For the derivation of the second but last expression, see the proof of Theorem 4.1 of
Henze et al. (2018). We stress that although b2,d and

∑n
j=1 ‖Yn, j‖6 show up in some

of the equations above, these terms cancel out in the derivation of the final result. 	

Remark 2.2 Interestingly, Tn,β exhibits the same limit behavior as β → ∞ as both
the statistic studied by Henze et al. (2018), which is based on a weighted L2-distance
involving both the empirical characteristic function and the empirical moment gene-
rating function, and the BHEP-statistic for testing for multivariate normality, which is
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based on the empirical characteristic function, see Theorem 2.1 of Henze (1997). At
first sight, Theorem 2.1 seems to differ from Theorem 4 of Henze and Koch (2017)
which covers the special case d = 1, but a careful analysis shows that—with the
notation τ(β) in that paper—we have limβ→∞ β7/2τ(β) = 0.

3 Asymptotic null distribution in the i.i.d. case

In this section, we consider the case that X1, X2, . . . are i.i.d. d-dimensional ran-
dom vectors with some non-degenerate normal distribution. The key observation for
deriving the limit distribution of Tn,β is the fact that

Tn,β =
∫

Rd
Wn(t)

2 wβ(t) dt,

where
Wn(t) = √

n (Mn(t) − m(t)) , t ∈ R
d , (3.1)

with Mn(t) given in (1.1). Notice that Wn is a random element of the Hilbert space

L2
β := L2

(
R
d ,Bd , wβ(t)dt

)
(3.2)

of (equivalence classes of) measurable functions f : Rd → R that are square inte-
grable with respect to the finite measure on the σ -field Bd of Borel sets of Rd given
by the weight function wβ defined in (1.3). The resulting norm in L2

β will be denoted

by ‖ f ‖L2β = √〈 f, f 〉. With this notation, Tn,β takes the form

Tn,β = ‖Wn‖2L2β . (3.3)

Writing “
D−→” for convergence in distribution of random vectors and stochastic pro-

cesses, the main result of this section is as follows.

Theorem 3.1 (Convergence of Wn under H0)
Suppose that X has some non-degenerate d-variate normal distribution, and that

β > 2 in (1.3). Then, there is a centered Gaussian random element W of L2β having
covariance kernel

C(s, t) = exp

(‖s‖2 + ‖t‖2
2

)(

es
�t − 1 − s�t −

(
s�t

)2

2

)

, s, t ∈ R
d ,

so that Wn
D−→ W as n → ∞.

In view of (3.3), the Continuous Mapping Theorem yields the following result.
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Corollary 3.2 If β > 2, then, under the null hypothesis H0,

Tn,β
D−→ ‖W‖2

L2β
as n → ∞.

Remark 3.3 The distribution of T∞,β := ‖W‖2
L2β

(say) is that of
∑∞

j=1 λ j N 2
j ,

where λ1, λ2, . . . are the positive eigenvalues of the integral operator f �→ A f
on L2

β associated with the kernel C given in Theorem 3.1, i.e., (A f )(t) =
∫
C(s, t) f (s) exp(−β‖s‖2)ds, and N1, N2, . . . are i.i.d. standard normal random vari-

ables. We did not succeed in obtaining explicit solutions of this equation. However,
since

E(T∞,β) =
∫

Rd
C(t, t) wβ(t) dt,

V(T∞,β) = 2
∫

Rd

∫

Rd
C2(s, t)wβ(s)wβ(t) dsdt

(see Shorack and Wellner 1986, p. 213), tedious but straightforward manipulations of
integrals yield the following result, which generalizes Theorem 2 of Henze and Koch
(2017).

Theorem 3.4 If β > 2, we have

(a)

E(T∞,β ) = πd/2
(

1

(β − 2)d/2
− 1

(β − 1)d/2
− d

2(β − 1)d/2+1
− d(d + 2)

8(β − 1)d/2+2

)

,

(b)

V(T∞,β) = 2πd
(

1

(β(β − 2))d/2 − 2d+1

ηd/2 − (1 + 2d)2d

ηd/2+1 − d(d + 2)2d

ηd/2+2

+ 1

(β − 1)d
+ d

2(β − 1)d+2 + 3d(d + 2)

64(β − 1)d+4

)

,

where η = 4(β − 1)2 − 1.

Proof of Theorem 3.1 In viewof affine invariance,we assumew.l.o.g. that the distribu-
tion of X is Nd(0, Id). In Henze et al. (2018), the authors considered the “exponentially
down-weighted empirical moment generating function process”

An(t) = exp

(

−‖t‖2
2

)

Mn(t), t ∈ R
d . (3.4)

Notice that, with the notation given in (3.2), we have

‖An‖2L2β = ‖Mn‖2L2γ ,
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where γ = β − 1 From display (10.5) and Propositions 10.3 and 10.4 of Henze et al.
(2018), we have

An(t) = exp

(

−‖t‖2
2

) √
n

⎛

⎝1

n

n∑

j=1

et
�X j − m(t)

⎞

⎠ + Vn(t) + Rn(t),

where
∫
Rd R2

n(t)wγ (t)dt = oP(1), and

Vn(t) = − 1

2
√
n

n∑

j=1

((
t�X j

)2 − ‖t‖2
)

− 1√
n

n∑

j=1

t�X j .

Display (3.4) and the representation of An as a sum yield

Wn(t) = 1√
n

n∑

j=1

Z j (t) + m(t)Rn(t),

where

Z j (t) = et
�X j − m(t) − m(t)

2

((
t�X j

)2 − ‖t‖2
)

− m(t)t�X j .

Notice that Z1, Z2, . . . are i.i.d. centered random elements of L2
β . Since

∫

Rd
(m(t)Rn(t))

2wβ(t) dt =
∫

Rd
R2
n(t)wγ (t) dt = oP(1),

a Central Limit Theorem in Hilbert spaces [see e.g., Bosq (2000)] shows that there is

a centered Gaussian random element W of L2
β , so thatWn

D−→ W. Using the fact that

t�X has the normal distribution N(0, ‖t‖2) and the relations

E

[

es
�X

(
t�X

)2
]

= m(s)

((
s�t

)2 + ‖t‖2
)

,

E

[
es

�X t�X
]

= m(s)s�t,

E

[(
s�X

)2 (
t�X

)2
]

= 2
(
s�t

)2 + ‖s‖2 ‖t‖2,

some straightforward algebra shows that the covariance kernel C(s, t) figuring in the
statement of Theorem 3.1 equals EZ1(s)Z1(t). 	
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4 Consistency

The next result shows that the test formultivariate normality based on Tn,β is consistent
against general alternatives.

Theorem 4.1 Suppose X has some absolutely continuous distribution, and that
MX (t) = E[exp(t�X)] < ∞, t ∈ R

d . Furthermore, let X̃ = �−1/2(X − μ), where
μ = E(X) and �−1/2 is the symmetric square root of the inverse of the covariance
matrix � of X. Letting MX̃ (t) = E[exp(t� X̃)], we have

lim inf
n→∞

Tn,β

n
≥

∫

Rd

(
MX̃ (t) − m(t)

)2
wβ(t) dt

almost surely.

Proof of Theorem 3.1 Because of affine invariance we may w.l.o.g. assume EX = 0
and � = Id . Fix K > 0 and put M◦

n (t) = n−1 ∑n
j=1 exp(t

�X j ). From the proof of
Theorem 6.1 of Henze et al. (2018) we have

lim
n→∞ max‖t‖≤K

∣
∣Mn(t) − M◦

n (t)
∣
∣ = 0

P-almost surely. Now, the strong law of large numbers in the Banach space of contin-
uous functions on B(K ) := {t ∈ R

d : ‖t‖ ≤ K } and Fatou’s lemma yield

lim inf
n→∞

Tn,β

n
≥ lim inf

n→∞

∫

B(K )

(Mn(t) − m(t))2 wβ(t) dt

≥
∫

B(K )

(
Eet

�X − m(t)
)2

wβ(t) dt

P-almost surely. Since K is arbitrary, the assertion follows. 	

Now, suppose that X has an alternative distribution (which is assumed to be stan-

dardized) satisfying the conditions of Theorem 4.1. Since E exp(t�X)−m(t) �= 0 for
at least one t , Theorem 4.1 shows that limn→∞ Tn,β = ∞ P-almost surely. Since, for
any given nominal level α ∈ (0, 1), the sequence of critical values of a level-α-test
based on Tn,β that rejects H0 for large values of Tn,β converges according to Theo-
rem 3.1, this test is consistent against such an alternative. It should be ’all the more
consistent’ against any distribution not satisfying the conditions of Theorem 4.1 but,
in view of the reasoning given in Csörgő (1989), the behavior of Tn,β against such
alternatives is a difficult problem.

5 Testing for normality in GARCH models

In this section, we consider the multivariate GARCH (MGARCH) model

X j = �
1/2
j (θ)ε j , j ∈ Z, (5.1)
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where θ ∈ � ⊆ R
v is a v-dimensional vector of unknown parameters. The unobserv-

able random errors or innovations {ε j , j ∈ Z} are i.i.d. copies of a d-dimensional
random vector ε, which is assumed to have mean zero and unit covariance matrix.
Hence,

� j (θ) = �(θ; X j−1, X j−2, . . .)

is the conditional covariancematrix of X j , given X j−1, X j−2, . . .. The explicit expres-
sion of� j (θ) depends on the assumedMGARCHmodel (see, e.g., Francq andZakoïan
2010, for a detailed description of several relevant models). The interest in testing for
normality of the innovations stems from the fact that this distributional assumption is
made in some applications, and that, if erroneously accepted, some inferential proce-
dures can lead to wrong conclusions (see, e.g., Spierdijk 2016, for the effect on the
assessment of standard risk measures such as the value at risk).

Therefore, an important step in the analysis of GARCHmodels is to check whether
the data support the distributional hypotheses made on the innovations. Because of
this reason, a number of goodness-of-fit tests have been proposed for the innovation
distribution. The papers byKlar et al. (2012) andGhoudi and Rémillard (2014) contain
an extensive review of such tests as well as some numerical comparisons between
them for the special case of testing for univariate normality. The proposals for testing
goodness-of-fit in the multivariate case are rather scarce.

The class of GARCH models has been proved to be particularly valuable in mode-
ling financial data. As discussed, among others in Rydberg (2000), one of the stylized
features of financial data is that they are heavy-tailed. From an extensive simulation
study (a summary is reported in Sect. 6), we learnt that, for i.i.d. data, the test of nor-
mality based on Tn,β exhibits a high power against heavy-tailed distributions. Because
of these reasons, this section is devoted to adapt that procedure to testing for normal-
ity of the innovations based on data X1, . . . , Xn that are driven by equation (5.1).
Therefore, on the basis of the observations, we wish to test the null hypothesis

H0,G : The law of ε is Nd(0, Id).

against general alternatives. Notice that H0,G is equivalent to the hypothesis that,
conditionally on {X j−1, X j−2, . . .}, the law of X j is Nd(0, � j (θ)), for some θ ∈ �.
Two main differences with respect to the i.i.d. case are: (a) the innovations in (5.1) are
assumed to be centered at zero with unit covariance matrix; and (b) the conditional
covariance matrix � j (θ) of X j is time-varying in a way that depends on the unknown
parameter θ and on past observations.

Notice that although H0,G is about the distribution of ε, the innovations are unob-
servable in the context of model (5.1). Hence, any inference on the distribution of the
innovations should be based on the residuals

ε̃ j (θ̂n) = �̃
−1/2
j (θ̂n)X j , 1 ≤ j ≤ n.

Recall that� j (θ) = �(θ; X j−1, X j−2, . . . ), but we only observe X1, . . . , Xn . There-
fore, to estimate � j (θ), apart from a suitable estimator θ̂n of θ , we also need
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to specify values for {X j , j ≤ 0}, say {X̃ j , j ≤ 0}. So we write �̃ j (θ) for
�(θ; X j−1, . . . , X1, X̃0, X̃−1 . . .). Under certain conditions, these arbitrarily fixed
initial values are asymptotically irrelevant.

Taking into account that the innovations havemean zero and unit covariancematrix,
we will work directly with the residuals, without standardizing them. Let MG

n be
defined as Mn in (1.1) by replacing Yn, j with ε̃ j (θ̂n), 1 ≤ j ≤ n, and define T G

n,β as

Tn,β in (3.3) with Wn changed for WG
n , where WG

n is defined as Wn in (3.1) with Mn

replaced by MG
n . In order to derive the asymptotic null distribution of WG

n , we will
make the assumptions (A.1)–(A.6) below. In the sequel, C > 0 and �, 0 < � < 1,
denote generic constants, the values of which may vary across the text, θ0 stands for
the true value of θ , and for any matrix A = (akj ), ‖A‖ = ∑

k, j |akj | denotes the
l1-norm (we use the same notation as for the Euclidean norm of vectors).

(A.1) The estimator θ̂n satisfies
√
n(θ̂n − θ0) = n−1/2 ∑n

j=1 L j + oP(1), where

L j = h j g j , g j = g(θ0; ε j ) is a vector of d2 measurable functions such that
E(g j ) = 0 and E(g�

j g j ) < ∞, and h j = h(θ0; ε j−1, ε j−2 . . .) is a v × d2-

matrix of measurable functions satisfying E(‖h j h�
j ‖2) < ∞,

(A.2) supθ∈�

∥
∥
∥�̃

−1/2
j (θ)

∥
∥
∥ ≤ C, 1 ≤ j ≤ n, supθ∈�

∥
∥
∥�

−1/2
j (θ)

∥
∥
∥ ≤ C, j ∈

Z, P-a.s.,
(A.3) supθ∈� ‖�1/2

j (θ) − �̃
1/2
j (θ)‖ ≤ C� j , 1 ≤ j ≤ n,

(A.4) E
∥
∥X j

∥
∥ς

< ∞ and E

∥
∥
∥�

1/2
j (θ0)

∥
∥
∥

ς

< ∞, j ∈ Z, for some ς > 0,

(A.5) for any sequence x1, x2, . . . of vectors of Rd , the function θ �→ �1/2(θ; x1,
x2, . . . ) admits continuous second-order derivatives,

(A.6) for some neighborhood V (θ0) of θ0, there exist p > 1, q > 2 and r > 1 so that
2p−1 + 2r−1 = 1 and 4q−1 + 2r−1 = 1, and, for each j ∈ Z,

E sup
θ∈V (θ0)

∥
∥
∥
∥
∥
∥

v∑

k,�=1

�
−1/2
j (θ)

∂2�
1/2
j (θ)

∂θk∂θ�

∥
∥
∥
∥
∥
∥

p

< ∞,

E sup
θ∈V (θ0)

∥
∥
∥
∥
∥

v∑

k=1

�
−1/2
j (θ)

∂�
1/2
j (θ)

∂θk

∥
∥
∥
∥
∥

q

< ∞,

E sup
θ∈V (θ0)

∥
∥
∥�

1/2
j (θ0)�

−1/2
j (θ)

∥
∥
∥
r

< ∞,

The next result gives the asymptotic null distribution of WG
n .

Theorem 5.1 (Convergence of WG
n under H0,G)

Let {X j } be a strictly stationary process satisfying (5.1), with X j being measurable
with respect to the sigma-field generated by {εu, u ≤ j}. Assume that (A.1)–(A.6) hold
and that β > 2. Then under the null hypothesis H0,G, there is a centered Gaussian
random element WG of L2β , having covariance kernel CG(s, t) = Cov(U (t),U (s)),
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so that WG
n

D−→ WG as n → ∞, where

U (t) = exp
(
t�ε1

)
− m(t) − m(t)a(t)�L1,

a(t)� = (t�μ1t, . . . , t�μvt), μk = E[A1k(θ0)], A1k(θ) = �
−1/2
1 (θ) ∂

∂θk
�

1/2
1 (θ),

1 ≤ k ≤ v.

From Theorem 5.1 and the Continuous Mapping Theorem we have the following
corollary.

Corollary 5.2 Under the assumptions of Theorem 5.1, we have

T G
n,β

D−→ ‖WG‖2
L2β

as n → ∞.

The standard estimation method for the parameter θ in GARCHmodels is the quasi
maximum likelihood estimator (QMLE), defined as

θ̂n = arg max
θ∈�

Ln(θ),

where

Ln(θ) = −1

2

n∑

j=1

�̃ j (θ), �̃ j (θ) = X�
j �̃ j (θ)−1X j + log det�̃ j (θ).

Comte and Lieberman (2003) and Bardet and Wintenberger (2009), among others,
have shown that under certain mild regularity conditions the QMLE satisfies (A.1) for
general MGARCH models.

As observed before, there are many MGARCH parametrizations for the matrix
� j (θ). Nevertheless, there exist only partial theoretical results for such models. The
Constant Conditional Correlation model, proposed by Bollerslev (1990) and extended
by Jeantheau (1998), is an exception, since its properties have been thoroughly stud-
ied. This model decomposes the conditional covariance matrix figuring in (5.1) into
conditional standard deviations and a conditional correlation matrix, according to
� j (θ0) = Dj (θ0)R(θ0)Dj (θ0), where Dj (θ) and R(θ) are d × d-matrices, R(θ) is

a correlation matrix, and Dj (θ) is a diagonal matrix so that σ 2
j (θ) = diag

{
D2

j (θ)
}

with

σ 2
j (θ) = b +

p∑

k=1

Bk X
(2)
j−k +

q∑

k=1

�kσ
2
j−k(θ).

Here, X (2)
j = X j �X j , where� denotes the Hadamard product, that is, the element by

element product, b is a vector of dimension d with positive elements, and {Bk}pk=1 and
{�k}qk=1 are d×d-matrices with non-negative elements. This model will be referred to
asCCC-GARCH(p,q).Under certainweak assumptions, theQMLEfor the parameters
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in this model satisfies (A.1), and (A.2)–(A.6) also hold, see Francq and Zakoïan (2010)
and Francq et al. (2017).

The asymptotic null distribution of TG
n,β depends on the equation defining the

GARCH model and on θ0 through the quantities μ1, . . . , μv , as well as on which
estimator of θ has been employed. Therefore, the asymptotic null distribution cannot
be used to approximate the null distribution of TG

n,β . Following Klar et al. (2012), we

will estimate the null distribution of TG
n,β by using the following parametric bootstrap

algorithm:

(i) Calculate θ̂n = θ̂n(X1, . . . , Xn), the residuals ε̃1, . . . , ε̃n and the test statistic
T G
n,β = T G

n,β (̃ε1, . . . , ε̃n).
(ii) Generate i.i.d. vectors ε∗

1, . . . , ε
∗
n from a Nd(0, Id) distribution. Let X∗

j =
�̃

1/2
j (θ̂)ε∗

j , j = 1, . . . , n.

(iii) Calculate θ̂∗
n = θ̂n(X∗

1, . . . , X
∗
n), the residuals ε̃∗

1, . . . , ε̃
∗
n , and approximate the

null distribution of TG
n,β by means of the conditional distribution, given the data,

of T G∗
n,β = T G

n,β (̃ε∗
1, . . . , ε̃

∗
n).

In practice, the approximation in step (iii) is carried out by generating a large
number of bootstrap replications of the test statistic TG

n,β , whose empirical distribution

function is used to estimate the null distribution of TG
n,β . Similar steps to those given

in the proof of Theorem 5.1 show that if one assumes that (A.1)–(A.6) continue to
hold when θ0 is replaced by θn , with θn → θ0 as n → ∞, and ε ∼ Nd(0, Id), then
the conditional distribution of TG∗

n,β , given the data, converges in law to ‖WG‖2
L2β
, with

WG as defined in Theorem 5.1. Therefore, the above bootstrap procedure provides a
consistent null distribution estimator.

Remark 5.3 The practical application of the above bootstrap null distribution esti-
mator entails that the parameter estimator of θ and the residuals must be calculated
for each bootstrap resample, which results in a time-consuming procedure. Following
the approaches in Ghoudi and Rémillard (2014) and Jiménez-Gamero and Pardo-
Fernández (2017) for other goodness-of-fit tests for univariate GARCH models, we
could use aweighted bootstrap null distribution estimator in the sense of Burke (2000).
From a computational point of view, it provides a more efficient estimator. Neverthe-
less, it can be verified that the consistency of the weighted bootstrap null distribution
estimator of TG

n,β requires the existence of the moment generating function of the true
distribution generating the innovations, which is a rather strong condition, specially
taking into account that the alternatives of interest are heavy-tailed.

As in the i.i.d. case, the next result shows that the test for multivariate normality
based on T G

n,β is consistent against general alternatives.

Theorem 5.4 Let {X j } be a strictly stationary process satisfying (5.1), with X j being
measurable with respect to the sigma-field generated by {εu, u ≤ j}. Assume that
(A.1)–(A.6) hold, that ε has some absolutely continuous distribution, and that Mε(t) =
E[exp(t�ε)] < ∞, t ∈ R

d . We then have

lim inf
n→∞

T G
n,β

n
≥

∫

Rd
(Mε(t) − m(t))2 wβ(t) dt
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in probability.

Similar comments to those made after Theorem 4.1 for the i.i.d. case can be done
in this setting.

Proof of Theorem 5.1 From the proof of Theorem 7.1 in Henze et al. (2018), it follows
that WG

n (t) = WG
1,n(t) + rn,1(t), with WG

1,n(t) = n−1/2 ∑n
j=1 Vj (t),

Vj (t) = exp
(
t�ε j

)
− m(t)a(t)�

√
n

(
θ̂n − θ0

) − m(t),

and ‖rn,1‖L2β = oP(1). By Assumption A.1, WG
1,n(t) = WG

2,n(t) + rn,2(t), with

WG
2,n(t) = n−1/2 ∑n

j=1Uj (t),

Uj (t) = exp(t�ε j ) − exp(−‖t‖2/2)a(t)�L j − exp(−‖t‖2/2),

and ‖rn,2‖L2β = oP(1).

To prove the result, wewill apply Theorem4.2 inBillingsley (1968) to {WG
2,n(t), t ∈

R
d} by showing that (a) for each positive M , {WG

2,n(t), t ∈ B(K )} converges in law

to {WG(t), t ∈ B(K )} in C(B(K )), the Banach space of real-valued continuous
functions on B(K ) := {t ∈ R

d : ‖t‖ ≤ K }, endowed with the supremum norm; (b)
for each ε > 0, there is a positive K so that

∫

Rd\B(K )

E

[
WG

2,n(t)
2
]
wβ(t) dt < ε, (5.2)

∫

Rd\B(K )

E

[
WG(t)2

]
wβ(t) dt < ε. (5.3)

	

Proof of (a): By applying the central limit theorem for martingale differences, the

finite-dimensional distributions of {WG
2,n(t), t ∈ R

d} converge to those of {WG(t), t ∈
R
d}. Hence, to prove (a), we must show that {WG

2,n(t), t ∈ B(K )} is tight. With this

aim,wewriteWG
2,n(t) = WG

3,n(t)−WG
4,n(t), withW

G
3,n(t) = n−1/2 ∑n

j=1{exp(t�ε j )−
m(t)} and WG

4,n(t) = m(t)a(t)�n−1/2 ∑n
j=1 L j . The mean value theorem gives

E

[
{exp

(
t�ε

)
− exp(s�ε)}2

]
≤ κ‖t − s‖2, s, t ∈ B(K ),

for some positive κ . From Theorem 12.3 in Billingsley (1968), the process
{WG

3,n(t), t ∈ B(K )} is tight. By the central limit theorem for martingale differences,
n−1/2 ∑n

j=1 L j converges in law to a v-variate zero mean normal random vector.

Hence, {WG
4,n(t), t ∈ B(K )}, being a product of a continuous function and a term

which is OP(1), is tight, and the same property holds for {WG
2,n(t), t ∈ B(K )}.
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Proof of (b): In view of E
[
WG

2,n(t)
2
]

= E
[
U1(t)2

]
< ∞, for each ε > 0, there is

some positive constant K so that (5.2) holds. Likewise, (5.3) holds, which completes
the proof. 	


Proof of Theorem 5.4 Let ε j (θ) = �
−1/2
j (θ)X j . Notice that ε j (θ0) = ε j . Let

M̃G
n (t) = n−1 ∑n

j=1 exp{t�ε̃ j (θ̂n)}, M̂G
n (t) = n−1 ∑n

j=1 exp{t�ε j (θ̂n)}, M◦
n (t) =

n−1 ∑n
j=1 exp{t�ε j } and B(K ) := {t ∈ R

d : ‖t‖ ≤ K }. To show the result we will
prove

(a) supt∈B(K ) |M̂G
n (t) − M◦

n (t)| = oP(1),
(b) supt∈B(K ) |M̃G

n (t) − M̂G
n (t)| = oP(1),

and the result will follow by using the same proof as in the i.i.d. case. 	


Proof of (a): Let θ̂n = (θ̂n1, . . . , θ̂nv)
�, θ0 = (θ01, . . . , θ0v)

� and A jk(θ) =
�

−1/2
j (θ) ∂

∂θk
�

1/2
j (θ). We have ε j (θ̂n) = ε j + �n, j , with �n, j = −∑v

k=1 A jk(θ̃n, j )

ε j (θ̂nk − θ0k), for some θ̃n, j between θ̂n and θ0. Observe that exp(t��n, j ) − 1 =
t��n, j exp(αn, j t��n, j ) for some αn, j ∈ (0, 1). Now (A.1) and (A.6) yield ‖�n, j‖ ≤
Dj‖ε j‖‖θ̂n−θ0‖ for large enoughn, withE(D2

j ) < ∞. TheCauchy–Schwarz inequal-
ity gives

∣
∣
∣M̂G

n (t) − M◦
n (t)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

exp
(
t�ε j

) {
exp

(
t��n, j

)
− 1

}
∣
∣
∣
∣
∣
∣
≤ r1,n(t)

1/2r2,n(t)
1/2,

where r1,n(t) = Mn(2t), and

r2,n(t) = ‖t‖2‖θ̂n − θ0‖2 exp
{

2‖t‖‖θ̂n − θ0‖ max
1≤ j≤n

D j‖ε j‖
}
1

n

n∑

j=1

D2
j‖ε j‖2.

From the strong law of large numbers in the Banach space of continuous functions on
B(K ), we have

sup
t∈B(K )

r1,n(t) ≤ sup
t∈B(K )

Mε(2t) + sup
t∈B(K )

∣
∣
∣MG

n (2t) + Mε(2t)
∣
∣
∣ < K1 P-a.s.

for some positive constant K1. From the ergodic theorem, n−1 ∑n
j=1 D

2
j‖ε j‖2 < K2

P-almost surely for some positive constant K2. Using stationarity and finite second-
order moments, if follows that max1≤ j≤n D j‖ε j‖/√n → 0, P-almost surely. Hence
(A.1) yields supt∈B(K ) r2,n(t) → 0, in probability. This concludes the proof of (a).
Proof of (b): The reasoning follows similar steps as the proof of fact (c.1) in the proof
of Theorem 7.1 in Henze et al. (2018) and is thus omitted. 	
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6 Monte Carlo results

This section describes and summarizes the results of an extensive simulation exper-
iment carried out to study the finite-sample performance of the proposed tests.
Moreover, we consider a real data set of monthly log returns. All computations have
been performed using programs written in the R language.

6.1 Numerical experiments for i.i.d. data

Upper quantiles of the null distribution of Tn,β have been approximated by gene-
rating 100,000 samples from a law Nd(0, Id). Table 1 displays some critical values
with the convention that an entry like −41.17 stands for 1.17 × 10−4. The results
show that large sample sizes are required to approximate the critical values by their
corresponding asymptotic values.

Anatural competitor of the test based on Tn,β is the test studied inHenze andWagner
(1997) (HW-test), which is based on the empirical characteristic function. The latter
procedure is simple to compute as well as affine invariant, and it has revealed good
power performance with regard to competitors. Another sensible competitor is the test
proposed in Henze et al. (2018) that will be called the hybrid test since it is based
on both the empirical characteristic function and the empirical moment generating
function. The performance of the test based on Tn,β is quite close to that of the hybrid
test. Their behavior in relation to the HW-test depends on whether the distribution is
heavy-tailed or not. We tried a number of non-heavy-tailed distributions (specifically,
the multivariate Laplace distribution, finite mixtures of normal distributions, the skew-
normal distribution, the multivariate χ2-distribution, the Khintchine distribution, the
uniform distribution on [0, 1]d and the Pearson type II family). For these distributions,
we observed that the powers of the proposed and the hybrid tests are either similar
to or smaller than that of the HW-test; for two-sided heavy-tailed distributions, the
new and the hybrid tests outperform the HW-test. This observation can be appreciated
by looking at Table 2, which displays the empirical power calculated by generating
1000 samples (in each case), for the significance level α = 0.05, from the following
two-sided heavy-tailed alternatives: (ASEθ ) the θ -stable and elliptically-contoured
distribution, (GNβ ) the multivariate β-generalized distribution, that coincides with
the normal distribution for θ = 2 and has heavy tails for 0 < θ < 2 (Goodman and
Kotz 1973), and the (Tθ ) multivariate Student’s t with θ degrees of freedom. The same
fact was also observed in the simulations of Zghoul (2010) for the test based on Tn,β

in the univariate case. For the alternative distributions presented in Table 2, the hybrid
test is slightly more powerful than the new test. Nevertheless, this is not always the
case, as can be perceived by looking at Table 3, where the test based on Tn,β has
larger power than the hybrid test for the one-sided heavy-tailed alternatives: (LNσ )
multivariate log-normal, built with independent components from exp(σ Z), Z having
a standard normal distribution, and (MPθ ) multivariate Pareto, built with independent
components from exp(E/θ), E having an exponential distribution with mean 1. Table
3 exhibits powers for sample size n = 20, because for these alternatives with n = 50
all powers are close to 1.
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Table 1 Critical points for π−d/2Tn,β

d n α β

2.5 3.0 3.5 4.0 5.0 6.0 10.0

2 20 0.10 −12.133 −27.513 −23.269 −21.639 −35.408 −32.266 −42.241

0.05 −13.391 −11.147 −24.857 −22.380 −37.638 −33.150 −43.025

50 0.10 −13.906 −11.246 −25.098 −22.436 −37.594 −33.078 −42.875

0.05 −16.614 −11.997 −27.802 −23.624 −21.092 −34.330 −43.897

100 0.10 −15.115 −11.539 −26.073 −22.838 −38.620 −33.429 −43.111

0.05 −18.677 −12.432 −29.168 −24.153 −21.209 −34.724 −44.143

200 0.10 −16.124 −11.757 −26.719 −23.085 −39.181 −33.616 −43.232

0.05 1.028 −12.726 −29.908 −24.382 −21.253 −34.845 −44.221

300 0.10 −16.794 −11.894 −27.114 −23.223 −39.466 −33.719 −43.296

0.05 1.132 −12.878 −11.026 −24.518 −21.275 −34.905 −44.232

400 0.10 −17.013 −11.925 −27.165 −23.248 −39.502 −33.721 −43.283

0.05 1.148 −12.868 −11.008 −24.417 −21.252 −34.843 −44.187

3 20 0.10 −13.555 −11.066 −24.095 −21.851 −35.218 −31.942 −41.413

0.05 −15.198 −11.504 −25.629 −22.503 −36.886 −32.518 −41.773

50 0.10 −17.188 −11.906 −26.760 −22.894 −37.598 −32.709 −41.828

0.05 1.153 −12.879 −29.789 −24.073 −21.032 −33.593 −42.334

100 0.10 −19.883 −12.433 −28.258 −23.426 −38.696 −33.043 −41.992

0.05 1.646 −13.732 −11.194 −24.788 −21.157 −33.945 −42.489

200 0.10 1.232 −12.851 −29.322 −23.781 −39.365 −33.231 −42.078

0.05 2.046 −14.319 −11.324 −25.167 −21.221 −34.123 −42.567

300 0.10 1.332 −12.979 −29.555 −23.849 −39.431 −33.242 −42.072

0.05 2.187 −14.441 −11.336 −25.156 −21.210 −34.073 −42.527

400 0.10 1.397 −13.061 −29.725 −23.893 −39.509 −33.260 −42.084

0.05 2.245 −14.481 −11.334 −25.122 −21.201 −34.046 −42.519

5 20 0.10 −15.968 −11.347 −24.130 −21.554 −33.275 −49.709 −53.884

0.05 −17.739 −11.691 −25.089 −21.886 −33.900 −31.142 −54.474

50 0.10 1.519 −12.868 −27.862 −22.731 −35.215 −31.460 −55.283

0.05 2.332 −14.130 −11.080 −23.633 −36.633 −31.809 −56.260

100 0.10 2.315 −13.947 −11.013 −23.381 −36.134 −31.667 −55.768

0.05 3.782 −15.884 −11.420 −24.530 −37.779 −32.051 −56.782

200 0.10 3.047 −14.744 −11.154 −23.736 −36.565 −31.755 −55.962

0.05 4.969 −16.964 −11.588 −24.896 −38.131 −32.112 −56.875

300 0.10 3.346 −15.016 −11.197 −23.829 −36.636 −31.769 −55.985

0.05 5.445 −17.343 −11.631 −24.960 −38.119 −32.100 −56.832

400 0.10 3.608 −15.234 −11.229 −23.889 −36.679 −31.776 −55.997

0.05 5.838 −17.586 −11.648 −24.958 −38.085 −32.085 −56.821
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Table 2 Percentage of rejection for nominal level α = 0.05 and n = 50

Test based on Tn,β Hybrid test HW-test
β γ β

d 2.5 5.0 10.0 1.3 1.5 2.5 0.1 0.5 1.0

ASE1.75 2 70.2 69.4 68.7 72.2 71.9 72.6 64.8 66.0 58.6

3 80.4 79.9 79.6 81.2 81.8 82.0 75.8 75.0 65.2

5 90.3 91.0 90.5 90.1 90.2 91.6 88.9 86.5 74.3

ASE1.90 2 39.7 39.2 37.9 40.6 39.5 39.8 35.7 33.1 26.3

3 49.4 48.5 47.6 49.8 50.6 50.4 44.7 41.7 28.4

5 61.1 62.0 61.2 60.1 60.1 62.2 56.2 50.1 32.3

GN1.5 2 22.4 21.8 20.1 27.6 25.5 25.4 17.4 18.1 13.4

3 19.3 21.1 20.0 22.3 23.4 22.7 18.2 16.9 12.9

5 20.7 21.9 21.6 20.7 22.1 24.0 18.3 16.6 11.7

GN1.6 2 13.8 13.6 12.9 15.3 13.7 14.1 11.8 11.4 9.3

3 15.6 16.0 15.8 16.2 17.0 17.6 14.1 13.2 9.8

5 14.1 15.5 14.6 14.1 14.0 14.9 13.1 12.4 8.7

T5 2 62.1 62.5 59.1 67.6 67.0 66.5 53.2 54.8 49.0

3 71.6 73.2 71.9 76.0 78.4 77.8 66.6 69.4 60.9

5 86.0 89.0 89.0 85.2 87.5 91.2 85.5 86.2 78.6

T7 2 41.9 40.1 38.2 45.0 44.2 44.1 35.0 34.7 27.1

3 55.5 56.0 54.6 56.8 60.1 60.1 50.5 49.8 37.3

5 68.3 71.7 72.9 68.2 70.7 74.2 67.6 66.3 47.7

Although in all tried cases, the powers of the test based on Tn,β and that of the
hybrid test are quite close, we must say that the practical application of the hybrid
test is limited to small sample sizes since the calculation of the associated test statistic
requires O(n4) computations, while the calculation of Tn,β only needs O(n2). For
this reason, we only generated 1000 Monte Carlo samples for Tables 2 and 3, because
with such a computational cost, a larger experiment becomes unaffordable.

Before ending this subsection, we comment on the choice of β for Tn,β . Although
the properties so far studied are valid for any β > 2, in practice, for finite-sample
sizes, we observed that the choice of β has an impact on the power of the proposed
test. In view of this fact, in our simulations, we tried a large number of values for β,
for Tn,β and the statistic of the HW-test as well as for the parameter γ involved in the
statistic of the hybrid test. The tables display the results for those values of β (also for
γ ) giving the highest power in most of the cases considered. The same can be said for
the simulations in the next subsection.

6.2 Numerical experiments for GARCH data

In our simulations, we considered a bivariate CCC–GARCH(1,1) model with

b =
(
0.1
0.1

)

, B1 =
(
0.1 0.1
0.1 0.1

)

, �1 =
(

γ 0.01
0.01 γ

)

, R =
(
1 r
r 1

)

,
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Table 3 Percentage of rejection for nominal level α = 0.05 and n = 20

Test based on Tn,β Hybrid test HW-test
β γ β

d 2.5 5.0 10.0 1.3 1.5 2.5 0.1 0.5 1.0

LN0.5 2 48.3 52.8 57.3 40.7 42.8 45.9 62.4 64.9 62.1

3 51.0 55.4 59.7 46.5 46.8 49.7 63.5 67.1 61.3

5 51.8 57.9 62.6 46.1 46.5 49.5 68.1 71.7 53.3

LN0.7 2 68.9 76.0 79.5 59.8 61.7 65.2 83.9 86.3 85.4

3 73.1 79.0 82.1 68.9 69.5 71.9 85.5 89.5 87.5

5 76.4 82.3 85.1 71.3 72.4 75.6 88.8 92.2 82.8

MP10 2 75.1 82.4 85.9 66.6 67.1 70.6 89.9 92.7 92.8

3 77.9 85.6 89.2 73.0 72.9 75.4 91.6 94.9 95.2

5 80.3 88.0 90.1 74.9 75.5 78.2 94.6 96.2 92.9

MP50 2 63.9 71.8 77.6 56.3 57.0 60.2 82.9 87.4 89.5

3 67.6 76.8 82.0 62.1 61.9 65.1 86.2 90.7 89.7

5 70.1 77.9 82.8 61.7 62.9 67.0 89.0 93.3 88.5

for γ = 0.3, 0.4, 0.5 and r = 0, 0.3, and a trivariate CCC–GARCH(1,1) model with
b = (0.1, 0.1, 0.1)�,

B1 =
⎛

⎝
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

⎞

⎠ , �1 =
⎛

⎝
γ 0.01 0.01

0.01 γ 0.01
0.01 0.01 γ

⎞

⎠ , R =
⎛

⎝
1 r r
r 1 r
r r 1

⎞

⎠

and γ and r as before. The parameters in the CCC-GARCHmodels were estimated by
their QMLE using the package ccgarch of the language R. For the distribution of
the innovations, we first took ε1, . . . , εn i.i.d. from a multivariate normal distribution
(N ) to study the level of the resulting bootstrap test. Then, to assess the power, we
considered the following heavy-tailed distributions: Tθ ,GNθ , and (AEP) a vectorwith
independent components, each having an asymmetric exponential power distribution
(Zhu and Zinde-Walsh 2009) with parameters α = 0.4, p1 = 1.182 and p2 = 1.820
(these settings gave useful results in practical applications for the errors in GARCH-
type models). As in the previous subsection, we also calculated the HW-test. Since
practical applications of MGARCHmodels involve large data sets, the hybrid test was
not included in our simulations.

Table 4 reports the percentages of rejections for nominal significance levelα = 0.05
and sample size n = 300, for r = 0, 0.3 and γ = 0.4. The resulting pictures
for γ = 0.3, 0.5 are quite similar so, to save space, we omit the results for these
values of γ . In order to reduce the computational burden, we adopted the warp-speed
method of Giacomini et al. (2013), which works as follows: rather than computing
critical points for eachMonte Carlo sample, one resample is generated for eachMonte
Carlo sample, and the resampling test statistic is computed for that sample; then the
resampling critical values for TG

n,β are computed from the empirical distribution
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Table 4 Percentage of rejections for nominal level α = 0.05, γ = 0.4 and n = 300

Test based on TG
n,β HW-test

β β

d r 2.1 2.2 2.3 2.4 2.5 1.0 1.5 2.0 2.5

N 2 0.0 4.96 4.85 4.81 4.79 4.73 5.06 4.80 4.97 4.82

0.3 4.14 4.33 4.38 4.40 4.27 4.95 5.45 5.36 5.29

3 0.0 4.54 4.71 4.73 4.74 4.73 4.64 4.64 4.88 4.51

0.3 4.96 4.85 4.81 4.79 4.73 5.06 4.80 4.97 4.82

T10 2 0.0 61.85 61.20 59.25 57.55 55.50 26.70 36.70 37.20 34.85

0.3 66.95 66.80 65.85 64.15 61.35 20.50 31.70 32.10 30.60

3 0.0 81.45 80.95 80.15 79.65 78.20 45.75 55.40 50.95 43.80

0.3 78.30 78.05 78.20 77.20 77.15 42.40 55.70 52.85 44.00

GN1.65 2 0.0 22.40 21.05 20.10 18.95 17.85 8.65 15.20 16.45 16.75

0.3 18.30 17.80 17.70 16.80 16.10 8.00 14.00 16.00 14.30

3 0.0 17.55 18.40 18.10 17.80 16.90 9.10 14.85 15.35 15.60

0.3 20.00 19.65 19.85 19.80 18.90 9.70 13.95 15.55 15.15

AEP 2 0.0 56.75 55.50 53.35 51.10 49.00 29.55 49.85 52.85 51.45

0.3 52.70 51.20 49.65 47.90 45.75 26.35 45.20 50.00 49.20

3 0.0 55.40 55.85 54.85 53.75 51.65 38.25 54.25 55.45 49.25

0.3 59.55 59.30 58.75 57.15 57.00 33.15 53.65 53.90 49.70

determined by the resampling replications of TG∗
n,β . In our simulations, we generated

10,000 Monte Carlo samples for the level and 2000 for the power. Looking at Table
4, we conclude that: the actual level of the proposed bootstrap test is very close to
the nominal level, and this is also true for the HW-test (although to the best of our
knowledge, the consistency of the bootstrap null distribution estimator of the HW-
test statistic has been proved only for the univariate case in Jiménez-Gamero 2014);
and with respect to the power, the proposed test in most cases outperforms the HW-
test.

6.3 A real data set application

As an illustration, we consider the monthly log returns of IBM stock and the S&P
500 index from January 1926 to December 1999 with 888 observations. This data
set were analyzed in Example 10.5 of Tsay (2010), where it is showed that a CCC-
GARCH(1,1) model provides an adequate description of the data, which is available
from the website http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/ of the author.
We applied the proposed test and the HW-test for testing H0,G . The p-values were
obtained by generating 1000 bootstrap samples. For all values of β in Table 4, we get
the same p-value, 0.000,which leads us to reject H0,G , as expected by looking at Fig. 1,
which displays the scatter plot of the residuals after fitting a CCC-GARCH(1,1) model
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Fig. 1 Scatter plot of the
residuals
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Fig. 2 Histograms of the residuals

to the log returns, and Fig. 2, that represents the histograms of the marginal residuals
with the probability density function of a standard normal law superimposed.

7 Conclusions

We have studied a class of affine invariant tests for multivariate normality both in
an i.i.d. setting and in the context of testing that the innovation distribution of a
multivariate GARCHmodel is Gaussian, thus generalizing results of Henze and Koch
(2017) in two ways. The test statistics are suitably weighted L2-statistics based on the
difference between the empirical moment generating function of scaled residuals of
the data and the moment generating function of the standard normal distribution in
R
d . As such, they can be considered as ’moment generating function analogues’ to

the time-honored class of BHEP-tests that use the empirical characteristic function.
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As the decay of a weight function figuring in the test statistic tends to infinity, the
test statistic approaches a certain linear combination of two well-known measures
of multivariate skewness. The tests are easy to implement, and they turn out to be
consistent against a wide range of alternatives. In contrast to a recently studied L2-
statistic of Henze et al. (2018) that uses both the empirical moment generating and
the empirical characteristic function, our test is also feasible for larger sample sizes
since the computational complexity is of order O(n2). Regarding power, the new tests
outperform the BHEP-tests against heavy-tailed distributions.
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