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Abstract In the framework of quantile regression, local linear smoothing techniques
have been studied by several authors, particularly by Yu and Jones (J Am Stat Assoc
93:228–237, 1998). The problemof bandwidth selectionwas addressed in the literature
by the usual approaches, such as cross-validation or plug-in methods. Most of the
plug-in methods rely on restrictive assumptions on the quantile regression model
in relation to the mean regression, or on parametric assumptions. Here we present
a plug-in bandwidth selector for nonparametric quantile regression that is defined
from a completely nonparametric approach. To this end, the curvature of the quantile
regression function and the integrated squared sparsity (inverse of the conditional
density) are both nonparametrically estimated. The newbandwidth selector is shown to
workwell in different simulated scenarios, particularlywhen the conditions commonly
assumed in the literature are not satisfied. A real data application is also given.
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1 Introduction

Although mean regression is still a traditional benchmark in regression studies, the
quantile approach is receiving increasing attention, because it allows a more complete
description of the conditional distribution of the response given the covariate, and it
is more robust to deviations from error normality.

The quantile regression model could be stated as

Y = qτ (X) + ε

where Y is the response variable of interest, X is the covariate, qτ is the quan-
tile regression function of order τ and ε represents the error. Then, the conditional
τ -quantile of ε given X will be zero, that is, P(ε ≤ 0|X) = τ almost surely.

Estimation of the quantile regression model exploits the fact that the conditional
quantile, qτ (x), is the value a that minimizes the expectation

E[ρτ (Y − a)|X = x],

where ρτ (u) = u(τ − I(u < 0)) and I(·) is the indicator function of an event.
Koenker andBassett (1978) can be considered a seminalwork in estimating conditional
quantiles in a parametric setup following this idea.

Along this work, we will focus on the univariate regression context, that is, the
covariate X is assumed to be one-dimensional. Yu and Jones (1998) studied a local
linear estimator of the quantile regression in a nonparametric framework. To this end, a
random sample of independent observations (X1,Y1), . . . , (Xn,Yn) of the pair (X,Y )

is supposed to be available. Then, the estimator will be q̂τ,h(x) = â, where â and ̂b
are the minimizers of

n
∑

i=1

ρτ (Yi − a − b(Xi − x)) K

(

Xi − x

hτ

)

,

where K is a kernel function and hτ is a bandwidth parameter.
Several authors have addressed the problem of bandwidth selection as Yu and

Jones (1998), Abberger (1998), Yu and Lu (2004), Ghouch and Genton (2012) or
Abberger (2002). In this work, a plug-in rule is designed to choose the bandwidth
parameter, hτ . The plug-in technique consists of minimizing the dominant terms of
the mean integrated squared error (MISE) of the estimator. For the local linear quantile
regression, it can be written as [see Fan et al. (1994) and Yu and Jones (1998)]

MISE (q̂τ,hτ ) = E

∫

(

q̂τ,hτ (x) − qτ (x)
)2

g(x) dx

∼= 1

4
h4τμ2(K )2

∫

q(2)
τ (x)2g(x) dx + R(K )τ (1 − τ)

nhτ

∫

1

f (qτ (x)|x)2 dx (1)
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where g is the density of X , f (qτ (x)|x) is the conditional density of Y at qτ (x) given
X = x , q(2)

τ is the second derivative of qτ , μ2(K ) = ∫

u2K (u) du and R(K ) =
∫

K 2(u) du.
An asymptotically optimal bandwidth can be derived as

hAMISE,τ =
[

R(K ) τ (1 − τ)

n μ2(K )2
∫

q(2)
τ (x)2 g(x) dx

∫

1

f (qτ (x)|x)2 dx

]1/5

(2)

Note that μ2(K ) and R(K ) are obtained from the kernel function, while the two
integrals in (2) are unknown and have to be estimated. Expression (2) is quite similar
to the plug-in rule for mean regression. The curvature (integrated squared second
derivative) is now calculated for the quantile regression function instead of the mean
regression, while the integrated squared sparsity (where “sparsity” means the inverse
of the conditional density) replaces the integrated conditional variance that appeared
in mean regression. See Ruppert et al. (1995) where a plug-in rule is given for local
linear mean regression.

Because of these similarities with mean regression, Yu and Jones (1998) proposed
to use Ruppert et al. (1995) bandwidth with some simple transformations based on
the assumptions of homoscedasticity and error normality. Homoscedasticity is useful
to have the same curvature for any τ as in mean regression, while normality allows to
estimate the sparsity from the conditional variance.

The purpose of this work is to provide a plug-in bandwidth for local linear quantile
regression without imposing restrictions on the conditional variability and the error
distribution. Instead, nonparametric estimations of the curvature at the given quantile
τ will be used, as well as nonparametric estimations of the sparsity.

Other proposals in the literature for bandwidth selection in nonparametric quantile
regression were given, based on cross-validation techniques. In particular, Abberger
(1998) proposed to minimize in h the cross-validation function given by:

CV(h) =
n

∑

i=1

ρτ

(

Yi − q̂−i
τ,h(Xi )

)

(3)

where q̂−i
τ,h(Xi ) is the estimator of the τ -quantile function obtained from a sample

without the i th individual.
In Sect. 2, a preliminary rule of thumb is obtained, and afterwards, the proposed

plug-in rule is derived. In Sect. 3, a simulation study is given to explore the virtues of
the new bandwidth selectors in comparison with Yu and Jones (1998) and Abberger
(1998) proposals. Section 4 contains the main conclusions. In “Appendix”, mean
squared errors of curvature and sparsity estimators are derived.

2 Proposed selectors

As any plug-in rule, the crucial ingredients of our proposed selectors will be the
estimators of unknown quantities, which in our case are the curvature and the sparsity.
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Our first proposal will consist of a rule of thumb, where the estimators are defined on
a simple partition of the sample in blocks.

2.1 Rule of thumb

Following the ideas in Ruppert et al. (1995), a rule of thumb can be constructed by
doing the next steps:

1. Partition the range of X into N blocks with the same number of observations. The
original sample {(X1,Y1), . . . , (Xn,Yn)} is subsequently split into the N blocks.
A polynomial of order 4 is adjusted at each block, thus providing N polynomials
that will be denoted by q̂τ, j with j = 1, . . . , N . The number of blocks will be
chosen as ̂N following the Mallows’s Cp criterion [see Mallows (1973)] adapted
to the quantile frameworks, that is, ̂N will minimize

Cp(N ) = RSQ(N )

RSQ(Nmax)/(n − 5Nmax)
− (n − 10N )

where RSQ(N ) is the residual sum of quantile losses given by ρτ and summed
over each blocked quartic fit, when the number of blocks is N , Nmax =
max{min([n/20], N∗), 1} and N∗ = 5. Here [·] denotes the integer part of a
number.

Remark 1 Following the ideas of Ruppert et al. (1995) in mean regression, we have
considered polynomials of order 4 because it is the lowest degree that a polynomial
admits estimates of the quantity ϑ24 = ∫

q(2)
τ (x) q(4)

τ (x) g(x) dx other than zero. This
integral ϑ24 will be involved in the mean squared error of curvature estimator, see
equation (4).

2. Estimate the curvature as:

̂ϑB = 1

n

n
∑

i=1

̂N
∑

j=1

q̂(2)
τ, j (Xi )

2 I (Xi ∈ Block j).

Observe that we are using the notation ϑ = ∫

q(2)
τ (x)2 g(x) dx .

3. Estimate the sparsity at each block j by means of

ŝ j (τ ) = r[τ+d j ] − r[τ−d j ]
2 d j

where r[τ−d j ] and r[τ+d j ] are the sample quantiles of orders (τ −d j ) and (τ +d j ),
respectively, of the residuals from the quartic fit at block j . This type of sparsity
estimator was suggested by Siddiqui (1960) and studied by Bloch and Gastwirth
(1968). For the parameter d j , the selector proposed by Bofinger (1975) will be
used here. Finally, the integrated squared sparsity will be estimated by
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ŝ2B =
̂N

∑

j=1

ŝ2j l j

where l j denotes the length of block j .
4. Finally, the selector from the rule of thumb will be obtained as:

̂hτ,RT =
(

R(K ) τ (1 − τ) ŝ2B
n μ2(K )2 ̂ϑB

)1/5

.

2.2 Plug-in rule

The plug-in rule will come from a more elaborated estimation of the curvature and the
sparsity.

Curvature estimation

Now the second derivative of the regression will be nonparametrically estimated at
each sample observation. In order to do this, a local polynomial of order 3 will be
adjusted. Let us call q̃(2)

τ,hc
(Xi ) to its second derivative at Xi , for i = 1, . . . , n. Then,

we can consider the following curvature estimator:

̂ϑhc = 1

n

n
∑

i=1

q̃(2)
τ,hc

(Xi )
2

At this point, a pilot bandwidth hc for curvature estimation should be selected. The
criterion for selecting hc will be the mean squared error of the curvature estimator. As
in the case of classical mean regression, see Ruppert et al. (1995), the asymptotic mean
squared error coincides, up to terms not depending on the bandwidth and negligible
terms, with the asymptotic squared bias, which is given by

MSE
(

̂ϑhc

) ∼=
[

δ1 h
2
c

∫

q(2)
τ (x)q(4)

τ (x)g(x)dx

+ δ2 τ(1 − τ)
1

nh5c

∫

1

f (qτ (x)|x)2 dx
]2 (4)

where

δ1 = 1

6
(α31μ4(K ) + α33μ6(K ))

δ2 = 4

(

α2
31

∫

K 2(v)dv + α2
33

∫

v4K 2(v)dv + 2α31α33

∫

v2K 2(v)dv

)

μi (K ) =
∫

vi K (v)dv
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428 M. Conde-Amboage, C. Sánchez-Sellero

α31 = −μ2(K )2μ6(K ) + μ2(K )μ4(K )2

μ2(K )μ4(K )μ6(K ) − μ4(K )3 − μ2(K )3μ6(K ) + μ2(K )2μ4(K )2

α33 = μ2(K )μ6(K ) − μ4(K )2

μ2(K )μ4(K )μ6(K ) − μ4(K )3 − μ2(K )3μ6(K ) + μ2(K )2μ4(K )2

Minimizing the last expression, the asymptotically optimal pilot bandwidth will be

h̃c = C(K )

(

τ(1 − τ)
∫

1/ f (qτ (x)|x)2dx
| ∫ q(2)

τ (x)q(4)
τ (x)g(x)dx | n

)1/7

where

C(K ) =

⎧

⎪

⎨

⎪

⎩

C I =
(

5δ2
2δ1

)1/7
if

∫

q(2)
τ (x)q(4)

τ (x)g(x)dx > 0

C I I =
(

δ2
δ1

)1/7
if

∫

q(2)
τ (x)q(4)

τ (x)dx < 0

To compute this pilot bandwidth, preliminary estimations of the integrated squared
sparsity and the integral ϑ24 = ∫

q(2)
τ (x)q(4)

τ (x)g(x)dx are required. They will be
obtained from blocked estimators as those considered for the rule of thumb. They can
be denoted by ŝ2B and ̂ϑ24,B. The resulting estimated pilot bandwidth will be

̂hc = C(K )

(

τ(1 − τ) ŝ2B
|̂ϑ24,B| n

)1/7

.

Finally, the curvature estimator will be given by

̂ϑα
̂hc

= 1

n

n
∑

i=1

q̃(2)
τ,̂hc

(Xi )
2

I ((1 − α)a + αb < Xi < αa + (1 − α)b)

where the sample was trimmed at each border a and b, by a small proportion α ∈
[0, 1], assuming that the covariate is supported in the interval [a, b]. This strategy was
already used by Ruppert et al. (1995) in their estimation of similar quantities for mean
regression. It is intended to prevent from the variability of local polynomial kernel
estimates of high derivatives near the boundaries. Following their suggestion, we will
take α = 0.05.

Sparsity estimation

Since the sparsity, denoted by sτ (x), is the derivative of the quantile regression func-
tion, qτ (x), with respect to τ , we propose an estimate of this kind:

ŝτ,ds,hs(x) = q̂τ+ds,hs(x) − q̂τ−ds,hs(x)

2 ds
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where q̂τ+ds,hs and q̂τ−ds,hs are local linear quantile regression estimates at the quantile
orders (τ + ds) and (τ − ds), respectively, and hs denotes their bandwidth.

Note that we need two pilot bandwidths, ds and hs. The bandwidth ds is placed in
the Y -axis and plays a similar role to that of the bandwidth d j in the rule of thumb. The
bandwidth hs is necessary to compute the nonparametric estimations of the regression
functions.

The choice of the two pilot bandwidths will be based on the asymptotic mean
squared error, which comes from the asymptotic squared bias and variance:

MSE

(∫

ŝ2τ,ds,hs(x) dx

)

∼=
[

1

ndshs

∫

a(x) dx + d2s

∫

b(x) dx + h2s

∫

c(x) dx

]2

+ 1

nds

∫

d(x) dx + 1

n2d2s hs

∫

e(x) dx (5)

where

a(x) = 1

2

R(K ) sτ (x)2

g(x)

b(x) = 1

3
sτ (x) s

(2,τ )
τ (x)

c(x) = μ2(K ) sτ (x)
∂q(2)

τ (x)

∂τ

d(x) = 2
sτ (x)4

g(x)

e(x) =
(

1

2
R(K ∗ K ) − R(K )

)

sτ (x)4

g(x)2

(6)

where ∗ represents the convolution and s(2,τ )
τ (x) = ∂2

∂τ 2
sτ (x).

Minimization with respect to ds and hs can be carried out by means of optimization
algorithms as Newton–Raphson or Nelder and Mead (1965)’s method. Estimation of
the six integrals in expression (5) is done by blocks. The resulting pilot bandwidths
will be denoted by ̂ds and̂hs and the estimation of the integrated squared sparsity by
ŝ2
τ,̂ds,̂hs

. Now details are given on how to estimate the unknown integrals.

– Estimation of
∫

a(x) dx Note that a(x) = (1/2) R(K ) sτ (x)2 (g(x))−1. We will
make use of the sparsity estimation at each block, ŝ j , together with a simple
estimation of covariate density at that block, which could be given by n j/(nl j ),
where n j is the number of observations at block j . Then, this integral can be
estimated by:

̂
∫

a(x) dx = 1

2
R(K )

̂N
∑

j=1

ŝ2j

(

n l j
n j

)

l j .

– Estimation of
∫

b(x) dx Recall that b(x) = (1/3) sτ (x) s
(2,τ )
τ (x), where s(2,τ )

τ (x)
is the second derivative of sτ (x) with respect to τ . The problem of estimating the
second derivative of the sparsity without covariates was considered by Bofinger
(1975). We apply her proposal to the residuals at each block
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ŝ(2,τ )
j = 1

2δ3
(

r([nτ ]+2m) − 2 r([nτ ]+m) + 2 r([nτ ]−m) − r([nτ ]−2m)

)

where the value of m is taken as m = [nδ] = [cn8/9] with c = 0.25, fol-
lowing Sheather and Maritz (1983) proposal. Then, the considered integral is
estimated as

̂
∫

b(x) dx = 1

3

̂N
∑

j=1

ŝ j ŝ
(2,τ )
j l j .

– Estimation of
∫

c(x) dx The novel ingredient in c(x) is ∂q(2)
τ (x)/∂τ . Since this

is a derivative with respect to τ , it can be estimated by

̂
∂q(2)

τ (x)

∂τ
= q(2)

τ+dc
(x) − q(2)

τ−dc
(x)

2dc

In order to choose the pilot bandwidth dc, a location and scale model, given by
Y = qτ (X) + σ(X)ε, is assumed. Here, ε is assumed independent of X and
with a zero τ th quantile. Note that under this model, for each τ1, τ2 ∈ (0, 1),
qτ2(x) − qτ1(x) = σ(x)(cτ2 − cτ1), where cτ1 and cτ2 are τ1 and τ2 quantiles of ε,
respectively. Thus,

∂q(2)
τ (x)

∂τ
= σ (2)(x)sτ (x).

This expression leads to consider for dc the same selector proposed by Bofinger
(1975) to estimate the sparsity without covariates. This selector will also be based
on the assumption of normality for ε. Finally, we arrive at the following estimator
at block j

̂
(

∂q(2)
τ

∂τ

)

j

= 1

n j

n
∑

i=1

q̂(2)
τ+̂dc, j

(Xi ) − q̂(2)
τ−̂dc, j

(Xi )

2̂dc
I (Xi ∈ Block j),

and the subsequent estimation of the integral

̂
∫

c(x) dx = μ2(K )

̂N
∑

j=1

ŝ j

̂
(

∂q(2)
τ

∂τ

)

j

l j

– Estimation of
∫

d(x) dx and
∫

e(x) dx Note that d(x) = 2 sτ (x)4 (g(x))−1 and
e(x) = (0.5R(K ∗ K ) − R(K )) sτ (x)4 g(x)−2. Similarly to the previous inte-
grals, these integrals can be estimated by
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̂
∫

d(x) dx = 2

̂N
∑

j=1

ŝ4j

(

n l j
n j

)

l j

̂
∫

e(x) dx =
(

1

2
R(K ∗ K ) − R(K )

) ̂N
∑

j=1

ŝ4j

(

n l j
n j

)2

l j .

Finally, the plug-in bandwidth selector is obtained as

̂hτ,PI =
(

R(K ) τ (1 − τ) ŝ2
τ,̂ds,̂hs

n μ2(K )2 ̂ϑ
̂hc

)1/5

.

Remark 2 In the framework of local linear smoothing quantile regression, Yu and
Jones (1998) presented a different approach based on inverting a local linear condi-
tional distribution estimator that is called double-kernel estimator. Later, Jones and
Yu (2007) proposed an improvement of their previous double-kernel estimator. Both
estimators need bandwidth selectors. The choice of the main bandwidth (h1 in their
notation) could be done by the plug-in rule proposed here. A small experiment is given
at the end of the simulation study to show the performance of the new plug-in rule in
double-kernel estimators.

2.3 Theoretical performance

The selector from the rule of thumb includes inconsistent estimators of curvature and
sparsity. Thus, consistency properties cannot be derived for this selector. Meanwhile,
convergence of the plug-in bandwidth selector to the optimal bandwidth relies on the
asymptotic properties of curvature and sparsity estimators, ̂ϑ

̂hc and ŝ2
τ,̂ds,̂hs

, respec-
tively. The same arguments given in Ruppert et al. (1995) in the case of local linear
mean regression can be followed here. The main difference comes from the sparsity
estimator, which replaces the conditional variance in AMISE representation.

From expression (5), it can be obtained that for sequences of pilot bandwidths
ds = Dsn−1/5 and hs = Hsn−1/5, where Ds > 0 and Hs > 0 are constants, ŝ2τ,ds,hs −
∫

s2τ (x) dx = OP (n−2/5). Even though this rate of convergence is slower than root-
n, it is enough to achieve that the relative rate of the plug-in bandwidth selector is
dominated by curvature estimation, that is,

(̂hτ,PI − hMISE)/hMISE = −1

5
(̂ϑhc − ϑ)/ϑ + OP (n−2/5)

where ϑ = ∫

q(2)
τ (x)g(x) dx is the true curvature.

Now, from expression (4), and for a sequence of pilot bandwidths hc = Hcn−1/7,
with Hc > 0 a certain constant, we have that, conditionally on X1, . . . , Xn ,

(̂hτ,PI − hMISE)/hMISE
p−→ L (7)
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where L=− 1
5ϑ

−1
{

δ1
∫

q(2)
τ (x)q(4)

τ (x)g(x)dx H2
c + δ2 τ(1 − τ)

∫

s2τ (x) dx H−5
c

}

.

A detailed proof of (7)would follow the steps given in Sánchez-Sellero et al. (1999).
Expression (7) shows that the relative rate of convergence of̂hτ,PI is Op(n−2/7) for any
choice of Hc. Observe now that the asymptotically optimal pilot bandwidth h̃c allows
to make L equal to zero, thanks to an ideal choice of Hc. This pilot bandwidth would
lead to an improved Op(n−5/14) relative rate of convergence for the plug-in bandwidth
selector. To obtain this in practice, consistent estimators of the unknown quantities
in h̃c would be needed, which could be quite complicated. Our proposed estimated
pilot bandwidth, ĥc, is based on rule-of-thumb estimates of the unknown quantities,
which are simple to implement although they do not guarantee consistency, neither
improved rate of convergence. The theoretical performance of the plug-in bandwidth
selector is then similar to that of Ruppert et al. (1995) bandwidth selector for mean
regression. The only differencewas found in the sparsity estimation,which replaces the
conditional variance estimation. We can conclude that the slower rate of convergence
of the sparsity estimation does not have an effect on the rate of convergence of the
plug-in selector.

3 Simulation study

In this section, a simulation study is presented to analyse the behaviour of the newband-
width selectors in comparison with already existing selectors. The natural competitors
would be Yu and Jones (1998)’s bandwidth and Abberger (1998)’s cross-validation
bandwidth. As regards Yu and Jones (1998)’s bandwidth, some theoretical consider-
ations are useful as an orientation to a meaningful comparison. Recall the expression
given in (2) for the asymptotically optimal bandwidth

hAMISE,τ =
[

R(K ) τ (1 − τ)

n μ2(K )2
∫

q(2)
τ (x)2 g(x) dx

∫

1

f (qτ (x)|x)2 dx

]1/5

.

Observing that the same type of bandwidth for mean regression is given by

hAMISE,MEAN =
[

R(K )

n μ2(K )2
∫

m(2)(x)2 g(x) dx

∫

σ 2(x) dx

]1/5

,

where m is the mean regression and σ 2 is the conditional variance, Yu and Jones
(1998) proposed to use the following selector:

̂hYJ,τ = ̂hRSW

[

τ(1 − τ)

φ(Φ−1(τ ))2

]1/5

wherêhRSW is the Ruppert et al. (1995)’s plug-in selector for local linear mean regres-
sion and the last factor is a correction for quantile regression. Yu and Jones (1998)’s
selector is based on assuming that quantile and mean regression have the same cur-
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vature and the error distribution is normal. The last factor then relates the conditional
sparsity with the conditional variance under normality.

SincêhRSW converges to hAMISE,MEAN,̂hYJ converges to

hAMISE, YJ,τ = hAMISE,MEAN

[

τ(1 − τ)

φ(Φ−1(τ ))2

]1/5

which is generally different from the asymptotically optimal bandwidth for quantile
regression, hAMISE,τ .Meanwhile, the proposed plug-in selector̂hNP converges to hAMISE,τ .
Then, for a sample size large enough, the new bandwidth is expected to outperform
Yu and Jones (1998)’s selector, the latter selector being generally inconsistent. This
simulation study will help to assess the consequences of these facts from smaller to
larger sample sizes, and in models where the difference between hAMISE,YJ,τ and hAMISE,τ

can be controlled.
In particular, for any homoscedastic quantile regression model Y = qτ (X) + ε,

where the model error ε has τ -quantile zero and is assumed independent of X , the
curvatures of mean and quantile regression coincide, and then, the quotient between
hAMISE,YJ,τ and hAMISE,τ will be

Ratio = hAMISE,YJ,τ

hAMISE,τ

= 5

√

σ 2 fε(F
−1
ε (τ ))2

φ(Φ−1(τ ))2
(8)

where fε and Fε are the density and distribution functions of ε and σ 2 denotes the
variance of ε. Then, the ratio between both AMISE bandwidths only depends on the
error distribution for any homoscedastic regression model. Some calculations lead
to the following ratio between asymptotic mean integrated squared errors of the two
bandwidths:

AMISE(hAMISE,YJ,τ )

AMISE(hAMISE,τ )
= 1

5
Ratio4 + 4

5
Ratio−1 (9)

where Ratio is defined in (8). Note that, by construction, the ratio between AMISEs
is always larger or equal to one. Part (a) of Fig. 1 shows the values taken by the ratio
defined in (8) as a function of the quantile order τ and for three error distributions:
exponential with expectation one, uniform on the interval (0, 1) and beta with param-
eters 5 and 1. Part (b) of Fig. 1 shows the values taken by the ratio defined in (9) as a
function of τ and for the same three error distributions.

As shown in Fig. 1, we observe that the differences between both AMISE band-
widths will be bigger as long as the error distribution differs from the Gaussian
distribution. Furthermore, if we fix an error distribution, the compared behaviour of
both optimal bandwidths will depend on the quantile of interest.

Our first simulated model is given by

Model 1: Y = 10(X4 + X2 − X) + ε,
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Fig. 1 Representations of the ratios between the AMISE bandwidths [detailed in (8)] and the MISE values
[detailed in (9)] as a function of the quantile order τ and for three error distributions. The dashed line
represents the uniform distribution, the dotted line represents the beta distribution, and the dashed and
dotted line represents the exponential distribution
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Fig. 2 Scatterplots of a sample of size 200, together with five quantile regression functions: τ = 0.1
(dotted line), τ = 0.25 (dashed line), τ = 0.5 (solid line), τ = 0.75 (dashed line) and τ = 0.9 (dotted
line), corresponding to Model 1 in (a) and Model 2 in (b)

where X follows a uniformdistribution on the interval (0, 1) and ε is the unknownerror,
which is drawn independently of X . Note that in this case, qτ (X) = 10(X4+X2−X)+
cτ where cτ represents the τ -quantile of the error distribution. This notation is common
for all the homoscedastic models that will be considered. In this model, the error
follows an exponential distributionwith expectation 1, which is one of the distributions
represented in Fig. 1. Part (a) of Fig. 2 shows a scatterplot of one sample of size 200
drawn from this model, together with three quantile functions, for τ = 0.1, 0.25, 0.5.

Figure 3 represents the boxplots corresponding to the four bandwidth selectors: the
plug-in selector proposed byYu and Jones (1998), the selector based on the new rule of
thumb, the new plug-in selector and the cross-validation selector. They are denoted by
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Fig. 3 Boxplot representations of Yu and Jones (1998)’s selector (YJ), the new rule of thumb (RT), the
new plug-in selector (NP) and the cross-validation selector (CV), from 1000 replications of Model 1 for
different values of τ and the sample size, n. The dashed line represents the MISE bandwidth, the dotted
line represents the Yu and Jones (1998)’s AMISE bandwidth, and the dashed and dotted line represents the
AMISE bandwidth
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YJ, RT, NP and CV, respectively. The boxplots were obtained from 1000 replications
of Model 1 for different values of τ , and sample sizes n = 100, 500. Three horizontal
lines are added to the plots, representing the optimal bandwidths with three criteria:
MISE (dashed line), Yu and Jones (1998)’s AMISE (dotted line) and AMISE (dashed
and dotted line). The best of these bandwidths would be the one optimizing the MISE,
so the performance of each selector is related to its approximation to this bandwidth.
The AMISE bandwidth is an approximation to theMISE bandwidth. In fact, both lines
approach to each other for increasing sample size. Meanwhile, Yu and Jones (1998)’s
AMISE (YJ-AMISE) bandwidth do not approximate to MISE bandwidth even for a
very large sample size. This is the cause for inconsistency of Yu and Jones (1998)’s
selector. However, for a small sample size, the errors of approximation between the
three bandwidths can be confounded. As regards the value of τ , Fig. 3 shows that for
τ = 0.5 the three bandwidths are quite similar, while for τ = 0.1 they are far apart.

Yu and Jones (1998)’s selector estimates YJ-AMISE bandwidth, while the new
selectors estimate AMISE bandwidth. For sample size n = 500, this leads to a clearer
better performance of the new bandwidths, while for small sample size n = 100, the
errors between optimal bandwidths are still confounded. The cross-validation band-
width is generally centred to the MISE bandwidth, but its variability is clearly larger.

Now we are going to evaluate the performance of each selector in terms of the
observed integrated squared error (OISE) in one thousand simulated samples. Follow-
ing Jones (1991), for each sample the OISE will be computed for the local linear fit
with the considered bandwidth selectors, that is,

OISE(̂hτ ) = 1

n

n
∑

i=1

(

q̂τ,̂hτ
(Xi ) − qτ (Xi )

)2
,

where ̂hτ plays the role of some bandwidth selector. Then, the sample means of
the OISEs (denoted by SMISE) over the simulated samples will be employed for
comparison.

To complete the presentation, a new model is included, again homoscedastic but
with a larger curvature:

Model 2: Y = 1 − 48X + 218X2 − 315X3 + 145X4 + ε,

where X follows a uniform distribution on the interval (0, 1) and ε follows an exponen-
tial distribution with expectation 1 and is drawn independently of X . Part (b) of Fig. 2
shows a scatterplot and three quantile functions, for τ = 0.1, 0.25, 0.5, corresponding
to Model 2.

Table 1 contains the sample mean of the integrated squared error for the considered
bandwidth selectors for several samples sizes and values of τ . We can observe that
the new plug-in rule shows a better performance in terms of SMISE than the plug-in
selector proposed by Yu and Jones (1998), for almost all sample sizes for τ = 0.10
and 0.25. For τ = 0.50, the SMISE associated with both plug-in rules is quite similar.
Note that in this case the ratio described in (8) is near to 1 as shown in Fig. 2. That is,
for τ = 0.5 the two AMISE bandwidths are almost equal.
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Table 1 Sample mean of the integrated squared error (given values were multiplied by 103) associated
with the considered bandwidth selectors, from 1000 replications of Model 1 and Model 2, with several
sample sizes n and values of τ

Model 1 Model 2

τ n YJ RT NP CV YJ RT NP CV

0.10 100 29.51 32.41 29.69 28.67 32.21 48.65 31.79 31.44

500 6.93 4.71 4.65 5.48 7.16 5.99 5.49 6.26

1000 4.01 2.41 2.39 2.78 4.50 3.06 2.95 3.34

0.25 100 48.81 45.82 43.49 52.64 51.66 59.66 50.58 56.84

500 11.23 9.31 9.43 11.65 12.42 11.61 11.12 13.54

1000 6.28 5.02 5.09 6.02 7.57 6.39 6.28 7.36

0.50 100 94.01 88.23 89.12 103.71 107.46 109.01 99.69 116.28

500 21.97 21.61 21.98 26.62 26.23 26.35 26.36 31.56

1000 12.04 11.80 12.03 14.23 14.98 14.86 14.99 17.41

0.75 100 220.00 243.79 226.03 241.79 264.25 286.24 248.07 264.26

500 50.84 54.21 52.19 63.58 63.07 66.13 62.61 76.70

1000 28.24 29.58 28.56 34.76 35.35 36.46 35.28 42.77

0.90 100 528.90 853.22 768.06 558.42 647.76 776.51 791.56 586.72

500 132.19 227.02 168.36 153.09 161.88 235.36 180.48 181.56

1000 71.18 114.67 83.08 85.45 89.12 120.62 91.86 103.66

On the other hand, the results associated with quantiles τ = 0.75 and 0.90 are better
for the selector presented by Yu and Jones (1998). These results are consequence of
the proximity of the ratio (9) to 1 (see Fig. 1) and a low density of the error distribution
at these high quantiles. A ratio (9) close to 1 means that inconsistency of Yu and Jones
(1998)’s selector has not a severe effect for small sample sizes. A low density of the
error distribution at the considered quantile makes curvature and sparsity estimation
more difficult. In a sense, we are in ideal conditions for Yu and Jones (1998)’s selector
versus the new plug-in selector: being curvature and sparsity similar to their analogues
in mean regression, and easier to estimate in mean regression.

In any case, it should observed that due to inconsistency of Yu and Jones (1998)’s
selector, for a sample size large enough SMISE will be better for the plug-in selector
proposed here. Table 2 shows this behaviour. Table 2 does not include results for the
cross-validation selector because of its computational cost for large sample sizes.

It is interesting to emphasize the good behaviour of the rule of thumb, despite its
simplicity. For a fair interpretation, we should note that the considered models are
homoscedastic and contain polynomial quantile regression functions of order 4, these
being ideal conditions for the rule of thumb. The cross-validation bandwidth shows a
generally worst SMISE in the considered scenarios.

Now, we will analyse how the performance of the considered bandwidth selectors
depends on the error distribution. To do this, we will generate samples from these two
models:
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Table 2 Sample mean of the integrated squared error (given values were multiplied by 104) associated
with the considered bandwidth selectors, from 1000 replications of Model 1 and Model 2, with several
sample sizes n and values of τ

Model 1 Model 2

τ n YJ RT NP YJ RT NP

0.10 5000 12.79 5.56 5.57 15.57 7.19 7.13

10000 8.07 3.17 3.18 10.10 4.05 4.06

0.25 5000 16.66 12.63 12.63 22.12 16.36 16.39

10000 9.84 7.27 7.30 13.40 9.43 9.52

0.50 5000 30.60 30.00 30.16 39.75 38.69 38.89

10000 17.73 17.38 17.46 23.31 22.53 22.70

0.75 5000 75.04 75.98 74.81 94.17 95.01 94.19

10000 41.33 41.63 41.11 53.25 53.74 53.50

0.90 5000 19.00 25.92 19.54 23.79 23.07 23.78

10000 10.75 13.23 10.44 13.51 14.85 13.13
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Fig. 4 Scatterplots of a sample of size 200 drawn from Model 4 and Model 5, where the error follows a
standard normal distribution. The lines are quantile functions for τ = 0.25 (dashed line), τ = 0.5 (solid
line) and τ = 0.75 (dashed and dotted line)

Model 3: Y = 1 − 48X + 218X2 − 315X3 + 145X4 + ε

Model 4: Y = sin(5πX) + ε

where X follows a uniform distribution on the interval (0, 1) and ε is independent
of X and follows one of these distributions: standard normal, uniform on the interval
(−3, 3), Student’s t with two degrees of freedom and standard log normal. Quantile
function in Model 3 coincides with that of Model 2, while the error distribution now
takes different shapes. Model 4 is represented in Part (a) of Fig. 4, with a standard
normal distribution.
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Table 3 Sample mean of the integrated squared error (given values were multiplied by 102) associated
with the considered bandwidth selectors, from 1000 replications of Model 3 and Model 4 with τ = 0.5,
and several error distributions and sample sizes

Model 3 Model 4

ε n YJ RT NP CV YJ RT NP CV

N (0, 1) 100 13.33 13.85 13.01 14.88 15.18 18.11 15.29 16.73

500 3.47 3.54 3.46 4.25 3.92 4.25 3.95 4.74

1000 1.98 2.02 1.99 2.37 2.23 2.35 2.24 2.59

U (−3, 3) 100 52.17 52.33 51.08 56.68 59.27 63.07 57.64 62.01

500 14.61 14.95 14.26 17.36 16.31 18.48 16.24 19.43

1000 8.49 8.57 8.25 10.04 9.36 10.39 9.31 11.19

t2 100 23.78 20.81 19.78 21.49 29.63 31.03 26.16 24.43

500 4.88 4.56 4.49 5.34 6.64 5.57 5.41 6.05

1000 2.93 2.54 2.51 2.99 3.77 3.01 2.95 3.28

log N (0, 1) 100 22.11 20.17 18.43 21.37 28.37 28.01 21.56 23.74

500 4.32 4.02 3.98 4.82 4.82 4.57 4.36 5.17

1000 2.49 2.18 2.19 2.58 2.76 2.44 2.34 2.72

Table 3 shows the sample mean of the integrated squared errors for the compared
bandwidth selectors, under Model 3 and Model 4. In all cases, the quantile function is
estimated for τ = 0.5. The new plug-in rule outperforms the other three selectors. Yu
and Jones (1998)’s selector shows a good performance for the standard normal error
distribution, where its assumptions are completely satisfied. However, the new plug-in
rule has similar results to Yu and Jones (1998)’s selector, even under these conditions,
which shows that in this case quantile estimations of curvature and sparsity are not
much less efficient than its estimations under mean regression. For distributions far
from normality, as Student’s t distribution or log normal, the new plug-in rule shows
a clearly better behaviour. All these results are to be attributed to sparsity estimation,
which is inconsistently biased inYu and Jones (1998)’smethod.Note that the simulated
models are homoscedastic, and then, quantile curvature coincideswithmean curvature.

The rule of thumb is slightly worse than the plug-in rule, although the difference is
moderate in many cases. In particular, rule of thumb results are better under Model 3
than under Model 4, because the quantile function under Model 3 is better suited for
blocked polynomial estimations carried out in the rule of thumb method. The cross-
validation selector is generally worse than plug-in methods, and particularly worse
than the new plug-in rule.

Moreover, we are going to consider the following heteroscedastic quantile regres-
sion model:

Model 5: Y = sin(5πX) + (sin(5πX) + 2)ε

where X follows a uniform distribution on the interval (0, 1) and ε is independent of
X . Note that in this case qτ (X) = sin(5πX)+(sin(5πX)+2)cτ where cτ denotes the
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Table 4 Sample mean of the integrated squared error (given values were multiplied by 102) associated
with the compared bandwidth selectors, from 1000 replications of Model 5 and for several values of τ and
the sample size n

Standard Gaussian Student t with 3 degrees of freedom

τ n YJ RT NP CV YJ RT NP CV

0.25 100 61.15 54.01 50.75 50.07 107.41 99.51 84.74 66.21

500 14.05 12.93 11.54 13.27 19.29 16.23 15.21 16.65

1000 7.96 7.76 6.73 7.85 10.42 8.73 8.14 9.30

0.50 100 60.04 64.32 56.88 63.08 79.28 74.23 69.68 78.93

500 14.44 16.61 14.53 17.89 18.11 20.22 18.48 21.09

1000 8.27 9.28 8.31 1.01 9.86 10.77 10.56 11.92

0.75 100 89.13 10.27 83.48 90.10 154.98 208.38 148.07 145.09

500 21.16 23.88 20.06 24.89 37.37 37.25 30.64 38.01

1000 12.40 13.42 11.57 14.47 20.11 19.21 16.46 20.71

τ -quantile of the error distribution. Firstly, ε is drawn from the standard normal distri-
bution. Then, the main deviation of Model 5 from Yu and Jones (1998)’s assumptions
is the fact that curvature depends on the quantile order, τ , and then, it is not equal to
the curvature of mean regression function. Part (b) of Fig. 4 shows a representation of
Model 5. A scatterplot together with three quantile functions (for τ = 0.25, 0.5, 0.75)
is shown. It can be seen how heteroscedasticity leads to different curvatures of the
quantile regression function for different values of τ . Secondly, we will suppose that
the error follows a Student t distribution with three degrees of freedom. In this second
situation, neither of the assumptions considered by Yu and Jones (1998) are verified.

In Table 4, the sample mean of the integrated squared error from each of the band-
width selectors is given for several samples sizes and values of τ . The new plug-in
method provides better results than its competitors. Note that for τ = 0.5 and Gaus-
sian error distribution quantile regression coincides withmean regression, so this setup
would be quite favourable for Yu and Jones (1998)’s selector. In this case, both plug-in
selectors shows similar results. For quantile orders far from the median, advantages
of the new plug-in rule are more noticeable. Furthermore, the differences between the
sample mean of the integrated squared error associated with both plug-in methods
are bigger when we suppose that the error follows a Student t distribution, as it was
expected.

Now, we are going to check the robustness of the new method to deviations from
some smoothness conditions assumed for the quantile regression model. In particular,
we are going to generate values from a model that is not differentiable:

Model 6: Y = 5|X | + σ(X) ε

where X follows a uniform distribution on the interval (−1, 1) and ε is independent of
X . Two possible error distributions will be considered: a χ -squared distribution with
two degrees of freedom and a Student’s t distribution with two degrees of freedom.
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Fig. 5 Scatterplots of samples of size 200 drawn from Model 6, where the error follows a χ -squared
distribution with two degrees of freedom. The lines represent the median regression function

Table 5 Sample mean of the integrated squared error (given values were multiplied by 102) associated
with the compared bandwidth selectors, from 1000 replications of Model 6 and for several sample sizes, n

σ(x) = 1 σ(x) = |x | + 2

ε n YJ RT NP CV YJ RT NP CV

χ2
2 100 31.03 27.22 27.53 31.85 185.15 158.15 160.94 175.17

500 6.95 6.95 6.88 7.84 37.04 36.63 36.24 42.42

1000 3.85 3.76 3.88 4.24 19.86 19.50 19.44 22.37

t2 100 20.08 15.22 16.34 17.13 120.74 84.10 84.48 86.37

500 4.29 3.74 4.02 4.15 19.11 18.27 18.62 21.08

1000 2.51 2.12 2.41 2.26 10.28 9.67 10.09 11.02

Note that in this case qτ (X) = 5|X | + σ(X) cτ where cτ denotes the τ -quantile of
the error distribution. Two different options will be considered for the function σ(X):
σ(X) = 1 (homoscedastic model) and σ(X) = (|X | + 2) (heteroscedastic model).
Figure 5 shows a representation of Model 6.

Table 5 shows the sample mean of the integrated squared error when estimating
the median regression with each of the bandwidth selectors. The new rule-of-thumb
and plug-in methods provide better results than the other selectors in most of the
considered scenarios. No relevant anomalies were observed in the performance of the
selectors when smoothness conditions are not satisfied.

In a last experiment, we carried out some simulations to show the usefulness of the
new plug-in selector for double-kernel methodology. In each of the two double-kernel
estimators, one proposed by Yu and Jones (1998) and the other proposed by Jones and
Yu (2007), two bandwidths are required. One of these bandwidths (h1 in their notation)
plays amore relevant role and behaves as a classical bandwidth for local linear quantile
regression. In both works, the authors proposed to use the selector proposed by Yu and
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Table 6 Sample mean of the integrated squared error (given values were multiplied by 102) associated
with the considered estimators: ordinary local linear estimator, double-kernel estimator presented by Yu and
Jones (1998) (DK YJ) and double-kernel estimator presented by Jones and Yu (2007) (DK JY ), from 1000
replications of Model 3, for two error distributions, three values of τ and two sample sizes. Four bandwidth
selectors were considered: the plug-in selector proposed by Yu and Jones (1998) (YJ), the selector based
on the new rule of thumb (RT), the new plug-in selector (denoted by NP) and the cross-validation selector
(CV)

Ordinary Local linear DK YJ DK JY

ε τ n YJ RT NP CV YJ NP YJ NP

t2 0.25 100 69.80 115.17 41.77 42.24 76.89 53.35 66.26 45.92

500 7.36 7.94 7.08 8.51 7.82 7.21 7.09 7.88

0.50 100 25.61 24.16 23.31 25.40 26.36 24.09 23.56 20.95

500 4.88 4.56 4.49 5.34 5.16 4.79 4.51 4.54

0.75 100 62.75 231.53 63.83 38.18 57.95 247.97 60.78 132.50

500 8.0 7.73 7.29 9.06 10.49 9.27 8.58 7.86

logN (0, 1) 0.25 100 10.88 9.26 7.19 8.59 114.19 8.08 9.88 7.29

500 2.11 1.60 1.53 1.84 2.08 1.63 1.96 1.61

0.50 100 25.98 20.47 18.81 21.76 27.68 20.37 24.35 18.54

500 4.30 3.98 3.94 4.77 5.55 4.90 4.61 4.16

0.75 100 86.09 101.81 76.23 66.36 92.00 85.60 79.93 76.87

500 14.13 13.29 12.13 16.30 16.16 16.05 13.16 13.07

Jones (1998) for this main bandwidth. Then, we are going to compare the plug-in rule
and Yu and Jones (1998)’s rule, when applied to the selection of this bandwidth h1
for double-kernel estimators. The second and less relevant bandwidth will be chosen
following the authors’ advices. Data will be drawn fromModel 3 used previously that
is given by

Model 3: Y = 1 − 48X + 218X2 − 315X3 + 145X4 + ε

where X follows an uniform distribution on the interval (0, 1) and ε is independent of
X and follows one of these two distributions: Student’s t with two degrees of freedom
and standard log normal.

Table 6 contains the sample mean of the integrated squared error (SMISE) obtained
from 1000 Monte Carlo replications, for different estimators: ordinary local linear
estimator, double-kernel estimator proposed by Yu and Jones (1998) (denoted by DK
YJ) and double-kernel estimator proposed by Jones and Yu (2007) (denoted by DK
JY). Furthermore, the different bandwidth selectors used along this simulation study
will be considered: YJ, RT, NP and CV. To simplify the comparison, for double-kernel
estimator only YJ and NP selectors will be considered.

According to the results shown in Table 6, we can conclude that the new plug-in
rule improves the performance of both double-kernel estimators. Only for a Student’s
t distribution with two degrees of freedom, τ = 0.75 and n = 100, Yu and Jones
(1998)’ bandwidth leads to a better performance. Note also that ordinary local linear
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estimator and the double-kernel estimator presented by Jones and Yu (2007) behave
similarly when the new plug-in selector is used.

4 Real data application

The data setMammals, included in the R package quantreg, contains 107 observations
on the maximal running speed of mammal species and their body mass. Figure 6
represents the scatterplot of these two variables, together with local linear quantile fits
for τ = 0.25, 0.5 and 0.75. Koenker (2005) uses this data set to illustrate how sensitive
the least-squares fitting procedure is to outlying observations (see pp. 232–234). Here,
we only consider local linear quantile fits, and we will compare bandwidth selectors.
Note that the proposed plug-in bandwidth selector is based on quantile techniques,
while Yu and Jones (1998)’s selector is based on classical estimates of curvature and
conditional variance and then could be sensitive to outliers. It can also be observed that
the chosen data set shows asymmetry of the response (the maximal running speed)
conditionally to the explanatory variable (the body weight), with more conditional
density around high quantiles and lower density around low quantiles.

Solid lines in Fig. 6 represent local linear quantile fits with the new plug-in band-
width selector, while dotted lines are obtained with Yu and Jones (1998)’s rule. For
τ = 0.5, both fits are quite similar. In this case, the proposed plug-in bandwidth takes
the value 1.36, while Yu and Jones (1998)’s bandwidth takes the value 1.16. As a
consequence, the dotted line seems slightly more wiggly, maybe due to the effect of
outliers on curvature and conditional variance estimation. For τ = 0.25, the band-
widths are 1.59 for the new rule and 1.20 for Yu and Jones (1998)’s rule. Then, the
dotted line is even more wiggly than the solid line, showing spurious fluctuation. Note
that the density of the response around the 0.25 conditional quantile is low. This fact
is taken into account by the new plug-in rule, but not by Yu and Jones (1998)’s rule.
On the contrary, the density of the response around the 0.75 conditional quantile is
high. The selected bandwidths are 0.97 for the new rule and 1.20 for Yu and Jones
(1998)’s rule. Thus, the dotted line is over-smoothed and hides relevant features in the
data. In particular, the change in slope around 1 Kg of weight is not detected by the
dotted line. It can also be observed that Yu and Jones (1998)’s rule selects the same
bandwidth for 0.25 and 0.75 quantiles. This is a general behaviour of this rule, which
takes the same value for τ and (1 − τ) conditional quantiles, as a consequence of
assuming that the conditional distribution of the response is Gaussian. Then, it does
not take into account possible asymmetries in the conditional distribution, as it is the
case in this real data situation.

5 Conclusions and extensions

Wehave proposed a new plug-in bandwidth selector for local linear quantile regression
based on a nonparametric approach. This new method involves nonparametric esti-
mation of the curvature of the quantile regression function and the integrated squared
sparsity. Convergence of the new rule to the optimal bandwidth is shown, with the
same rate as for mean regression selectors.
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Fig. 6 Local linear quantile regression fits for Mammals data set with τ = 0.25, 0.5 and 0.75. Solid lines
are obtained with bandwidths selected by the new plug-in rule. Dotted lines result from bandwidths selected
by Yu and Jones (1998)’s rule

Thanks to a Monte Carlo simulation study, we have shown that the new proposal
shows a good behaviour in terms of the sample mean of the integrated squared error
compared with its natural competitors in both homoscedastic and heteroscedastic sce-
narios. Moreover, we have presented a simple rule of thumb that shows a quite good
performance on a wide range of situations.

An R package called BwQuant has been developed to enable any user to apply the
techniques proposed in this paper: rule of thumb and plug-in rule. The natural competi-
tors, cross-validation and Yu and Jones (1998)’s bandwidths, were also implemented.
Moreover, we have included a function that estimates the quantile regression function
using local linear kernel regression.

The developed methodology can be used in the double-kernel estimator proposed
by Yu and Jones (1998) and Jones and Yu (2007), as it was illustrated in a last exper-
iment at the end of the simulation study. Moreover, the proposed techniques can be
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extended to the case of a multidimensional covariate, particularly to nonparametric
additive models in a quantile regression context as those considered by Yu and Lu
(2004). Similarly to Yu and Jones (1998), Yu and Lu (2004) proposed a heuristic rule
for selecting the smoothing parameter, using Opsomer and Ruppert (1998)’s band-
width for mean regression with some transformation based on assumptions such as
homoscedasticity and error normality. A plug-in rule specifically designed for addi-
tive quantile regression would be more appropriate when these assumptions are not
satisfied. This plug-in rule would benefit from the ideas given in this paper.
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Appendix: Mean squared error of curvature and sparsity estimators

Here expressions (4) and (5) are derived.Theygive approximations to themean squared
error of curvature and sparsity estimators, respectively. A complete development of
these expressions can be seen in Chapter 3 of Conde-Amboage (2017).

Derivation of (4)

In order to derive the asymptotic mean integrated squared error of the curvature esti-
mator, the following assumptions will be needed:

C1 The density function of the explanatory variable X , denoted by g, is differentiable,
and its first derivative is a bounded function.

C2 The kernel function K is symmetric and nonnegative, has a bounded support and
verifies that

∫

K (u) du = 1,μ6(K ) = ∫

u6K (u) du < ∞ and
∫

K 2(u) du < ∞.
Moreover, it is assumed that the bandwidth parameter hc verifies that hc → 0 and
nh5c → ∞ when n → ∞.

C3 The conditional distribution function F(y|X = x) of the response variable is three
times derivable in x for each y and its first derivative verifies that F (1)(qτ (x)|X =
x) = f (qτ (x)|X = x) �= 0. Moreover, there exist positive constants c1 and c2
and a positive function Bound(y|X = x) such that

sup
|xn−x |<c1

f (y|X = xn) ≤ Bound(y|x)

and
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∫

|ψτ (y − qτ (x))|2+δ Bound(y|X = x) dy < ∞
∫

(ρτ (y − t) − ρτ (y) − ψτ (y)t)
2 Bound(y|X = x) dy = o(t2), as t → 0

where ψτ (r) = τ I(r > 0) + (τ − 1)I(r < 0).
C4 The function qτ1(x) has a continuous fourth derivative with respect to x for

any τ1 in a neighbourhood of τ . These derivatives will be denoted by q(i)
τ with

i ∈ {1, 2, 3, 4}. Moreover, all these derivatives are bounded functions in a neigh-
bourhood of τ .

Applying the arguments of the proof of Theorem 3 in Fan et al. (1994) to a local
polynomial of order 3, the estimator of the second derivative can be approximated by

q̃(2)
τ,hc

(x) ∼= q(2)
τ (x) + 2h−2

c
1

f (qτ (x)|x)g(x)Vn,τ (x)

where

Vn,τ (x) = 1

nhc

n
∑

i=1

ψτ

(

Y (3)
i

)

(

α31 + α33

(

Xi − x

hc

)2
)

K

(

x − Xi

hc

)

,

where Y (3)
i = Yi − qτ (x) − q(1)

τ (x)(Xi − x) − (1/2)q(2)
τ (x)(Xi − x)2 −

(1/6)q(3)
τ (x)(Xi − x)3 and ψτ (z) = τ − I(z < 0). Note that assumptions C1-C4

were used here.
Now, expectation and variance of q̃(2)

τ,hc
(x) can be obtained by some algebraic cal-

culations:

E

(

q̃(2)
τ,hc

(x)
) ∼= q(2)

τ (x) + 1

2
δ1q

(4)
τ (x)h2c

Var
(

q̃(2)
τ,hc

(x)
) ∼= δ2

1

nh5c

τ(1 − τ)

f (qτ (x)|x)2g(x)
where δ1 and δ2 were defined in expression (4). Recall that the curvature estimator is
given by

̂ϑhc = 1

n

n
∑

i=1

q̃(2)
τ,hc

(Xi )
2.

Then, combining expectation and variance of q̃(2)
τ,hc

(Xi ) conditionally to Xi , and taking
expectation with respect to Xi , we obtain

E
(

̂ϑhc

) ∼= ϑ + δ1 h
2
c

∫

q(2)
τ (x)q(4)

τ (x)g(x) dx

+ δ2 τ(1 − τ)
1

nh5c

∫

1

f (qτ (x)|x)2 dx
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Additional calculations, which can be found in Conde-Amboage (2017), show that the
dominant terms in the variance of̂ϑhc are of orders n

−1 and n−2 h−9
c . The term of order

n−1 does not depend on hc, while the term of order n−2 h−9
c is negligible with respect

to the asymptotic squared bias. Because of this, the asymptotically optimal bandwidth
can be obtained by minimizing the asymptotic squared bias. This fact, together with
last expression for E

(

̂ϑhc

)

, leads to expression (4).

Derivation of (5)

The following conditions will be assumed in order to derive the asymptotic mean
integrated squared error of the sparsity estimator:

S1 The conditional density function f (y|X = x) of the response variable is twice
derivable in x for each y and f (i)(qτ (x)|X = x) �= 0 with i = 0, 1, 2. Moreover,
there exist positive constants c1 and c2 and a positive function Bound(y|X = x)
such that

sup
|xn−x |<c1

f (y|X = xn) ≤ Bound(y|X = x)

and

∫

|ψτ (y − qτ (x))|2+δ Bound(y|X = x) dy < ∞

∫

(ρτ (y − t) − ρτ (y) − ψτ (y)t)
2 Bound(y|X = x) dy = o(t2), as t → 0

where ψτ (r) = τ I(r > 0) + (τ − 1)I(r < 0).
S2 The function qτ1 has a continuous second derivative for any τ1 in a neighbourhood

of τ as a function of x . These derivatives will be denoted by q(i)
τ . Moreover, all

these functions are bounded functions in a neighbourhood of τ .
S3 The density function of the explanatory variable X , denoted by g, is differentiable,

and this first derivative is a bounded function.
S4 The kernel K is symmetric and nonnegative, has a bounded support and verifies that

∫

K (u) du < ∞,
∫

K (u)2 du < ∞ and μ2(K ) < ∞. Moreover, the bandwidth
parameters verify that ds → 0, hs → 0 and ndshs → ∞ when n → ∞.

S5 The function qτ1 has a continuous and bounded forth derivative with respect to τ1

for any τ1 in a neighbourhood of τ . Moreover, q(2)
τ1 has a continuous and bounded

second derivative with respect to τ1 for any τ1 in a neighbourhood of τ .

Recall the definition of the proposed sparsity estimator

ŝτ,ds,hs(x) = q̂τ+ds,hs(x) − q̂τ−ds,hs(x)

2 ds
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where q̂τ+ds,hs and q̂τ−ds,hs are local linear quantile regression estimates at the quantile
orders (τ + ds) and (τ − ds), respectively, and hs denotes their bandwidth. Applying
Fan et al. (1994)’s results, we have

q̂τ+ds,hs(x) ∼= qτ+ds(x) + 1

f (qτ+ds(x)|x)g(x)
Uτ+ds,hs(x)

where

Uτ+ds,hs(x) = 1

nhs

n
∑

i=1

ψτ+ds

(

Y (1)
i

)

K

(

x − Xi

hs

)

, (10)

and Y (1)
i = Yi − qτ+ds(x) − q(1)

τ+ds
(x)(Xi − x). Analogously for q̂τ−ds,hs(x).

Substituting these expressions in the definition of ŝτ,ds,hs(x), we have

ŝτ,ds,hs(x) = A(x) + B(x) (11)

with

A(x)=qτ+ds(x) − qτ−ds(x)

2 ds
, B(x) = 1

g(x)

(

Uτ+ds,hs(x)

f (qτ+ds(x)|x)
− Uτ−ds,hs(x)

f (qτ−ds(x)|x)
)

.

Note that A(x) is not random and can be approximated by a Taylor expansion as

A(x) ∼= sτ (x) + 1

6
s(2,τ )
τ (x)d2s

if S2 follows. Moreover, based on arguments developed in Lemma 2 of Fan et al.
(1994), the expectation and variance of B(x) can be approximated by

E(B(x)) ∼= 1

2
μ2(K )

∂q(2)
τ (x)

∂τ
h2s

Var(B(x)) ∼= 1

2ndshs

∫

K 2(u) du

f (qτ (x)|x)g(x)

if assumptions S1-S5 follow.
From these results, the asymptotic bias of the estimated squared sparsity is given

by

Bias

(∫

ŝ2τ,ds,hs(x) dx

)

∼=
[

1

ndshs

∫

a(x) dx + d2s

∫

b(x) dx + h2s

∫

c(x) dx

]2

where a(x), b(x) and c(x) are given in (6).
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In view of expression (11), the asymptotic variance of sparsity estimator can be
decomposed as follows

Var

[∫

ŝτ,ds,hs(x)
2 dx

]

∼= Var

[∫

(

A(x)2 + B(x)2 + 2A(x)B(x)
)

dx

]

= Var

[∫

B(x)2 dx

]

+ 4 Var

[∫

A(x)B(x) dx

]

+ 4 Cov

[∫

B(x)2 dx,
∫

A(x)B(x) dx

]

.

Each of the previous terms can be expressed as covariances ofU -expressions like that
given in (10) evaluated at different points x and quantiles τ + ds and τ − ds. These
covariances can be computed (under assumptions S1, S2, S4 and S5) using similar
arguments to those employed by Fan et al. (1994), adapting their ϕ function (given in
equation (2.1) on p. 435) to each covariance. Then, the asymptotic variance of sparsity
estimator can be approximated as follows

Var

[∫

ŝτ,ds,hs(x)
2 dx

]

∼= 1

nds

∫

d(x) dx + 1

n2d2s hs

∫

e(x) dx

where d(x) and e(x) are given in (6). Then, in view of the computed asymptotic bias
and variance, expression (5) can be derived.
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