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Abstract A system with n independent components which works if and only if a least
k of its n components work is called a k-out-of-n system. For exponentially distributed
component lifetimes, we obtain point and interval estimators for the scale parameter
of the component lifetime distribution of a k-out-of-n system when the system failure
time is observed only. In particular, we prove that the maximum likelihood estimator
(MLE) of the scale parameter based on progressively Type-II censored system lifetimes
isunique. Further, we propose a fixed-point iteration procedure to compute the MLE for
k-out-of-n systems data. In addition, we illustrate that the Newton—Raphson method
does not converge for any initial value. Finally, exact confidence intervals for the scale
parameter are constructed based on progressively Type-II censored system lifetimes.

Keywords Progressive Type-II censoring - k-out-of-n system - MLE - Fixed-point
iteration - Exact confidence intervals - Exponential distribution

Mathematics Subject Classification 62F10 - 62NO1 - 62N05

1 Introduction

Terminating of a lifetime test before all objects have failed is a common practice.
In a Type-II censoring process, the monitoring of failures continues up to a prefixed
number of failures so that only v observations of a random sample of size w are
available (v, w e N ={1,2,3,...}, 1 <v < w). Progressive Type-II censoring is a
generalization due to Cohen (1963) which works as follows. Consider an experiment

B E. Cramer
erhard.cramer @rwth-aachen.de

I TInstitute of Statistics, RWTH Aachen University, 52056 Aachen, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11749-017-0569-8&domain=pdf
http://orcid.org/0000-0001-8354-5425

788 M. Hermanns, E. Cramer

where w identical objects are put on a lifetime test. The number of observed failure
times v and the censoring plan (Ry, ..., R,) with >/ R; = w — v are prefixed
before the beginning of the lifetest. After observing the first failure time Yi.,.y,, R| €
No = {0, 1,2, ...} objects are randomly removed from the remaining w — 1 (still
functioning) objects. At the second failure time Y>.,.,,, R2 € Ny objects are withdrawn
from the remaining w — 2 — R; objects. Continuing this censoring process, R; € Ny
objects are randomly removed at the i-th failure time Y.y, from the remaining w —i —
le_:ll R; objects. At the v-th failure time Y. .,,, all remaining Ry = w—v— Zt% R;
objects are censored. For details, see Balakrishnan and Cramer (2014). For a censoring
plan (R, ..., Ry), the joint probability density function (pdf) of progressively Type-II
censored order statistics Y.y, - - -, Yu:p:w based on a cumulative distribution function
(cdf) F with pdf f is given by

v

A =TT e =Fon™). y<- <y, (M

i=1

where, for brevity, Y = (Y1.p:ws - s Yovw), Y = (V1 ..., Yu), and y; = Z;zi(Rj +
1),i = 1,...,v, represents the number of surviving objects before the i-th failure
(see Balakrishnan and Cramer (2014), p. 22). Many authors have discussed progres-
sive Type-II censoring for different lifetime distributions and related inference (see
Balakrishnan and Cramer (2014), Balakrishnan (2007), Balakrishnan and Aggarwala
(2000)). In particular, likelihood inference is widely used in the context of progres-
sively Type-II censoring (see Balakrishnan and Kateri (2008), Pradhan and Kundu
(2009)). In this paper, parametric inference for the component lifetime distribution
based on k-out-of-n system lifetime data is addressed when

1. The n € N components of the k-out-of-n system are supposed to have independent
and identically distributed lifetimes,

2. Thesystem lifetimes Y1, ..., Yy, of w independent k-out-of-n systems are available
only, and

3. The sample Y1, ..., Yy, of w k-out-of-n system lifetimes is subject to progressive
Type-1II censoring with censoring plan (Rj, . .., R,) resulting in v observed failure
times Y.y, - -« Yyrprw-

Notice that, for w = 1, inference is based on a single order statistic X,,_x+1., With
k € {1, ..., n}. This problem has been discussed computationally in Glen (2010) for
an exponential and Rayleigh distribution, respectively. For exponential populations,
best linear unbiased estimators based on a single order statistic have been discussed in
Harter (1961) (see also Kulldorff (1963)). It should be mentioned that this inferential
problem has already been discussed when all component failures of each system have
been observed, i.e., X145 .-, Xn—k+1m.i>» 1| <i < w (see, e.g., Cramer and Kamps
(1996), Balakrishnan et al. (2001), Balakrishnan and Cramer (2014)). Notice that this
scenario corresponds to multiple Type-II right censored samples whereas we consider
a progressively sample of the maxima X,,_j41.., | <i < w.

A k-out-of-n system works when at least k of its components work. It fails when
the (n — k + 1)-th component failure occurs. Thus, supposing X1, ..., X, to be the
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component lifetimes of a k-out-of-n system, the lifetime of the k-out-of-n system is
given by the (n — k 4 1)-th order statistic X,,—g+1,,. Thus, the cdf F and pdf f of the
system lifetime with known parameter k, n € N and component lifetime cdf G are
given by

n

Fiy= ) (?)(G(z))"(l—G(t»"—", t>0, )

i=n—k+1

f(t)=(n—k+1)( " )g(t)(G(t))”"‘(l—G(r))k—l, t>0. (3
n—k+1

Therefore, we have a progressively Type-II censored sample Yi.y.y, - .., Yy geN-
erated from an i.i.d. sample Y1, ..., Y, with Y; ~ F, 1 < j < w. Thus, we can
interpret the data as a progressively Type-II censored sample of independent order
statistics. It is clear that our results can be applied to test situations without censoring
(Ry = --- = R, = 0), that is, the data consists of w independent order statistics
Xk:n,la B Xk:n,w-

In the following, we are interested in inferential procedures for the component life-
time distribution G. Notice that the failure times of the components in each system
are not available and that the cdf of Y; is a function of G. In the literature, two cases
of this setting have been discussed so far. For k = n, we have series systems data.
Several authors have discussed progressively Type-II censored series system lifetime
data which is also called first failure progressive Type-II censoring (see Balakrishnan
and Cramer 2014, Section 25.4). This model has been introduced by Wu and Kus
(2009) who discussed likelihood inference in the case of series system lifetime data
with Weibull distributed component lifetimes. Further references for other lifetime
distributions are provided in Balakrishnan and Cramer (2014, p. 529). Balakrishnan
and Cramer (2014) showed that progressively Type-II censored order statistics of
series system lifetimes have the same distribution as progressively Type-II censored
order statistics from the component lifetime distribution with a different censoring
plan. Therefore, progressively censored series system data can be handled as standard
progressively censored data with a modified censoring plan. For k = 1, parallel sys-
tems data is given. Progressively Type-II censored parallel system lifetimes have been
studied first by Pradhan (2007) who considered maximum likelihood estimation of
the scale parameter in case of parallel systems with exponentially distributed compo-
nent lifetimes. Continuing this work, Hermanns and Cramer (2017) proved that the
MLE is unique and that it can be calculated by a fixed-point iteration procedure. As
a generalization, this article focuses on inference for the lifetime distribution of the
more general k-out-of-n structure with exponentially distributed component lifetimes.
A k-out-of-n system with exponentially distributed component lifetimes has been dis-
cussed by Pham (2010) who considered the uniformly minimum variance unbiased
estimator and the MLE based on both non-censored data and Type-II censored data. In
addition, we prove that the MLE of the scale parameter based on progressively Type-
II censored systems data is unique and can be determined by a modified fixed-point
iteration procedure. Further, it turns out that the Newton—Raphson procedure does not
converge when the initial value is not close enough to the solution of the likelihood
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equation. We illustrate by simulations that the percentage of non-converging situa-
tions may be rather large (see Sect. 2.2). Hence, our fixed-point iteration is a suitable
choice to calculate the MLE. Furthermore, we derive exact confidence intervals for
the scale parameter in Sect. 2.3. Proofs of the theorems and lemmas can be found in
“Appendix”.

2 Exponential component lifetimes

In this section, let G, (y) = 1 —exp(— Ay), y > 0, be the cdf of an exponential distri-
bution with scale parameter A > 0. For the case k = 1 (parallel system), Hermanns and
Cramer (2017) showed that the MLE uniquely exists. Further, they established a fixed-
point iteration procedure to compute the MLE. For k = n, we can use the connection
between series system lifetimes and component lifetimes according to Balakrishnan
and Cramer (2014). Hence, we assume 1 < k < n in the following.

2.1 Likelihood inference

Suppose the system lifetimes of w k-out-of-n systems with exponentially distributed
component lifetimes are progressively Type-II censored with a prefixed censoring plan
Ry, ..., Ry. Let G,_g41::5 be the cdf of the n — k 4 1-th order statistic based the
population cdf G,. Using (1), for A > 0and 0 < y; < --- < yy, the log-likelihood
function is given by

ly(y: 2) =In(C) + vIn() — ik Y yi(n — k) Y In (1 = exp(=yih)

i=1 i=1

+ Y RiIn(H (3, 2)), )
i=1
where
n—k n ‘ )
Hiy 0 =3 ( j)(l — exp(—yA) (exp(—y2))"™
j=0
=1- Gn—k—i—l:n;k()’)v A, y = O, (5)

and C =In ([T, yi) +vIn ((2 — k4 1)(,_}_)) is independent of the parameter A.
For the derivative of the log-likelihood function, we need the partial derivative of H
with respect to (w.r.t.) A, that is,

ad ad
—Hy,A) = ——G,_kx1n:
EYS (y ) Y n k+l.n,k(y)

a
= —k(n " k) (GON" (1= G ! = Ga()
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- —k n G n—k 1-G k A 0 (6)
= n—k Y (Gr()" T ( A5, A,y >0.

Here, we have used G, (y)/dA = yG,.(y), y > 0, and the representation of the pdf
of the n — k + 1-th order statistic based on G,. For0 < y; < --- < y,, the likelihood
equation can be written as

al ! i exp(—yilL)
—Y(y, ———ka,—l—(n—k) %
1

no\ v (G (1 = Gy
— k Riyi s n
<" - k) ; Y026 (1) (G ) (1= Gy

=——nZyl+(n—k>Zyl(1—exp< yid) ™!
i=1
v 0 -1
—k( " )ZR,-y,- > ( " )(eXp(yik)—l)j =0.
n—k i=1 j=—(n—k) JAn—k

)

Obviously, the likelihood equation 7 Ay (y; &) = 0 can not be solved explicitly for
A > 0 so that numerical methods have to be applied. Of course, the second partial
derivative of the log-likelihood function should be negative for the solution . To get
an expression for the second derivative of ly, we need the following identity

0
n .
a( > ( . )(exp(m) - 1)!)/%
. j+n—k
Jj=—(n—k)
—1 " ‘
= 2 j(j ne k)(exp()’i?») — 1)/ exp(yit)yi <0, A >0,
Jj==(n=k)
which yields

321Y v ! 2 CXP(_}’ik)
Tz M= _k).zy" (1 — exp(—yi1))?

( ) Z Riy? St i J () @xp (it = 1~ exp(yin)
(Z?‘:—(n—k) (jm_s) (exp(yir) — 1)j)
< O, A > 0 (8)

Notice that the sum in the denominator is always negative since j € {— (n — k),
., — 1}. Furthermore, all weights are positive. This proves that the log-likelihood
function ly is strictly concave. Hence, a local maximum at an inner point (0, 00)
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792 M. Hermanns, E. Cramer

Fig.1 Log-likelihood function ly (y; -) (solid blue line), see (4), and partial derivative dly /dA(y; -) (dashed
red line), see (7), for a simulated sample of 2-out-of-4 system lifetimes with Exp(2)-distributed component
lifetimes and censoring plan (1, 2, 0, 0, 2)

yields the global maximum of ly on (0, c0). Theg\rem 1 shows that the likelihood
equation has exactly one solution so that the MLE Appp, is unique. The proof is given
in “Appendix”. An illustration is depicted in Fig. 1.

Theorem 1 The likelihood given in Eq. (7) has an unique solution /):ML > 0 showing
that the MLE of X is unique.

Numerical methods have to be applied to obtain the MLE amr. The fixed-point
iteration proposed in Theorem 2 converges for every initial value A9 > 0 to the MLE
/XML. The same idea has previously been successfully applied in Hermanns and Cramer
(2017) for the simpler setting of parallel systems. However, for general k and n, the
situation is more involved. First, we need the following lemma.

Lemma 1 For 1 < k < n, the function ¢ : (0, 00) — R defined by
Yty (n) (@ = DI (e —e* 4 1)
2
0 ,
(ijf(nfk) (jamt) (¥ = UJ)

attains a global minimum ¢min < 0 on (0, 00). Further, ¢ is bounded from below by

¢(x) = . x€(0,00)., 9

14+ (m—k)e
3526 (i) 6= D7
ZﬁU%LDQ—U”U+F@—D”»

((20)

" :min(—

(10)
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Fig. 2 Graphs of the function ¢ on (0, 10), with k = 2, n = 4 (long dashed red line), k = 3, n = 5 (space
dashed blue line), k = 2, n = 7 (dashed green line) and k = 3, n = 10 (solid orange line)

Furthermore, we have limy_, o4 ¢ (x) = 0 and limy_, o, ¢ (x) = —1/(',:).
In particular, —1/(}) = ¢min > ¢*.

Theorem 2 Suppose 1 < k <nand0 < y; < --- < y, is an observation of the
sample Y1.pps - -y Yoy Let
n4k ny iy yi—¢*k(,",) D Riyi
a = max , - ; (11)
2k kY imi(Ri+ Dy
where ¢* is the lower bound of the function ¢ given in (10). Then, the function
£:(0,00) = (0,00), % x Lo x)+ki(R +1)
: (0, 00) — (0, 00), — ——(y; : ;
KX (R + yi \a 0% -

has an unique fixed-point, i.e., the MLE AML of A. Hence, the sequence (Aj)pen,
defined recursively by Apy1 = §(Ap), h € No = {0, 1,2, ...}, converges for every
Ao € (0, 00) to the MLE lyy..

Remark 1 An alternative fixed-point procedure can be defined by replacing the lower
bound ¢* of the function ¢ by its global minimum ¢p;, in the definition of a in (11).
Then, the fixed-point iteration still converges to the MLE e for every Ag € (0, 00).
The proof proceeds along the same lines as that one provided in “Appendix” for Theo-
rem 2. Notice that, for given values k and n, ¢nin has to be computed numerically only
once (some selected values are given in Table 1). However, the fixed-point iteration
defined via ¢min might converge faster in certain situations (cf. Sect. 2.2).

Notice that the function ¢ does not depend on the data but, as can be easily seen
from (11), the parameter a in the fixed-point iteration does in most cases.

We have calculated the minimum ¢, using the Newton—Raphson method. To
ensure that the fixed-point iteration with ¢mi, still works, we rounded the absolute
values of the computed minimum ¢, of ¢ for given k and n. Some selected results
are provided in Table 1. Further, we provide the lower bound ¢* for the different
combinations of k and n. Some plots of ¢ are depicted in Fig. 2.
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794 M. Hermanns, E. Cramer

Table 1 Absolute values of the minimum ¢y,i, and of the lower bound ¢* of the function ¢ defined in (9)

(k, n) 2,4 (3,5) 2,7) (3, 10) 9, 10) (5, 15)
/(5 0.1667 0.1000 0.0476 0.0083 0.1000 0.0003
brmin| 0.1870 0.1102 0.0595 0.0107 0.1028 0.0005
6] 0.7427 0.4858 0.3474 0.0806 0.3514 0.0037

Remark 2 Tt should be mentioned that the preceding results for the exponential dis-
tribution can also be applied to distributions with proportional hazard rates, i.e.,
1 — F, = (1 — Fy)*, where the parameter A > 0 is unknown and Fj is a known
distribution. This includes, e.g., Weibull distribution with known shape parameter,
particular Burr XII-distributions, and Pareto distributions. The application can be done
by a transformation of a given sample X1, ..., X, based on the cdf 1 — Fj to a sam-
ple Zi, ..., Z, of exponentially distributed lifetimes. The transformation is given by
Z; = —1In(1 — Fy(X;)) ~ Exp(A) fori =1,...,n.

Remark 3 In a test situation without censoring, thatis R} = --- = R, = 0, the data
are given by a sample Xy, 1, ..., Xk, Oof independent order statistics. Then, the
results of Theorems 1 and 2 simplify. The likelihood equation is given by

oly v v v B
LR =m0y it 1=k Yy (1= exp(—yid) T =0,
i=1 i=1

In particular, we get a = max((n + k)/(2k), n/k) = n/k which is independent of the
data. Then, the fixed-point function is given by

A doly

: (0, 0, , A ——
§:(0,00) = (0, 00) H”Zfzwi .

(y; A) + A.

2.2 Simulation results and comparison of Newton—Raphson and fixed-point
iteration procedures

The proposed fixed-point iteration procedure converges for every initial parameter
Ao € (0, 00) according to the Banach fixed-point theorem. In the context of system
lifetime data or progressive censoring, the Newton—Raphson method is widely used to
compute the MLE (see, e.g., Pradhan (2007) or Potdar and Shirke (2014)). Hermanns
and Cramer (2017) showed by a detailed simulation study that the Newton—Raphson
procedure converges only for some initial parameters based on parallel systems data.
They recommended to use the fixed-point iteration when one has no reasonable
guess about the solution of the likelihood equation. As a further alternative to the
Newton—Raphson method, they introduced a "'mixed’ procedure where the first step is
performed as a fixed-point iteration and the Newton—Raphson method is used after-
ward. Of course, this idea of a "'mixed’ procedure can be applied to k-out-of-n systems
data, too. In order to compare the three methods, we generated samples yy, ..., y, of
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Table 2 12 progressive censoring plans considered in the simulation study

w v (Ri,..., Ry) Plan
10 5 (1,2,0,0,2) [1]
10 5 1,1,1,1, 1) 2]
10 5 0,0,0,0,5) [3]
50 35 Ri = 10, R35 =5, R; = O fori # 16, 35 [4]
50 35 R; =1fori >21,R; =0fori <21 [5]
50 35 R3ys =15, R; = 0fori # 35 [6]
100 50 Rag = 25, Rsg = 25, R; = 0 for i # 26,50 (7]
100 50 Ri=1fori=1,...,50 [8]
100 50 Rsg = 50, R; = 0 for i # 50 [9]
20 10 R =3,Rs=3,Rig=4,R; =0fori #1,5,10 [10]
20 10 R;=1fori=1,...,10 [11]
20 10 Rio =10, R; =0fori # 10 [12]
progressively Type-II censored order statistics Y1.y.y, - - - , Yy:p:p Using the algorithm

presented in Balakrishnan and Cramer (2014, p. 194). Since the quantile function F~!
is not available in closed form, we inverted the cdf computationally. The simulation
study has been performed for 12 different censoring plans (Ry, ..., R;). These plans
are specified in Table 2.

The results in Tables 3, 4, 5 and 6 are the average of N = 10, 000 simulated samples
using Maple 2016. Table 3 shows the results for the fixed-point iteration procedure
based on ¢*, and Table 4 shows the results for the fixed-point iteration with ¢min.
The first two columns in Tables 3 and 4 give the censoring plan R and the initial
value A9 > 0, respectively. Columns 3, 8, and 12 contain the mean of the MLEs /):ML
computed by the Newton—Raphson method, the fixed-point iteration and the *mixed’
procedure, respectively. In columns 4, 9, and 13, the corresponding sample standard
error (SSE) of ’):ML with

1

SSE (%) = WZ@ -5’ (12)
i=1

is given. For the Newton-Raphson procedure, the sample standard error is based on
these cases only where the procedure converges. N* denotes the total number of these
cases. In column 5 and 14, the percentage of converging sequences of the simulated
samples p is shown. Further, we add the average number of iteration steps i in columns
6, 10 and 15, and the average computation time 7 in columns 7, 11 and 16. As a
stopping criterion, we used the absolute difference between two iteration steps with
a tolerance of 0.0001. To show the non-convergence of the Newton—Raphson method
and the *mixed’ procedure with an initial value far away from the maximum likelihood
estimate, we compare the percentage of converging sequences for larger initial values
for the Newton—Raphson method and the *mixed’ procedure in Table 5. Further, we
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800 M. Hermanns, E. Cramer

present some results for other "'mixed’ procedures with two and three steps performed
by the fixed-point iteration.
From Tables 3 and 4, we conclude for 2-out-of-4 systems:

— All five methods yield the same average estimate and the same SSE of XML
(provided that the generated sequence of estimates converges). When the Newton—
Raphson method converges, it yields the same estimate as the fixed-point methods.

— The Newton—Raphson procedure does not converge for all initial values Ao €
[0.2, 0.8] (the percentage of converging sequences p is given in column 5).

— The ’mixed’ procedures seem to converge for nearly all initial values Aoy €
[0.2, 0.8]. The percentage p of converging sequences is below 100% only for
the initial value Ao = 0.8.

— The ’mixed” procedures need less iteration steps i and less computation time 7
than the Newton—Raphson method.

— The fixed-point iterations seem to converge faster than the Newton—Raphson
method (see average computation time 7). However, as is shown by the results for
the "'mixed’ procedures, the Newton—Raphson method seems to converge faster
when the iterate is close to the solution of the equation (cf. average computation
time 7 in column 11 and 16 for censoring plans [4], [5], [6], [7], [9] and [12]). This
underlines the usefulness of *mixed’ procedures in accelerating the computation.
However, in some cases the price to pay may be that the iteration does not converge
(see Table 5).

— The two fixed-point iteration methods have no significant difference in the average
computation time 7. The fixed-point iteration based on ¢* is faster for censoring
plans [4], [5], [6], [7], [9] and [12], while the fixed-point iteration defined via @min
is faster for censoring plans [1], [2], [8] and [11].

From Table 5, we conclude that

— The Newton—Raphson procedure and the *mixed’ procedures converge only in a
small neighborhood of the MLE.

— More iteration steps of the fixed-point iteration in a *'mixed’ procedure lead to a
higher percentage of convergence.

The procedures that include the Newton—Raphson method are sensitive to the initial
value. One has to increase the steps of the fixed-point iteration with the number of
components to get a converging sequence. Hence, if one has no guess about the value
of the MLE it is recommended to use the fixed-point iterations.

Remark 4 Of course, it is possible to apply other numerical methods to compute
the MLE. For example, the Nelder—Mead simplex algorithm converges for a strictly
concave function on R with bounded level sets (see Lagarias et al. (1998)). Further
simulations show that our introduced fixed-point iteration procedures converge faster
(cf. average computation time in Table 6). Notice that the simulated samples used to
establish the results in Table 6 are not the same as those used to compute Tables 3 and
4. Furthermore, it is worth mentioning that other initial values as those used in Table
6 deliver similar results.
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Table S Percentage of k n R A Steps of fixed-point procedure
convergence of
Newton—Raphson method and 0 1 2 3
‘mixed’ procedures for
2-out-of-4 and 3-out-of-10 2 4 (1 L5 71.5 100 100 100
systems for true value A = 0.5, 3.0 1.06 94.9 100 100
initial value X and censoring 45 0.00 47.8 100 100
plans as given in Table 2
2 4 [2] 1.5 72.8 100 100 100
3.0 1.07 95.8 100 100
4.5 0.00 48.2 100 100
2 4 [4] 1.5 9.34 60.9 99.4 100
3.0 0.07 3.14 50.1 99.2
4.5 0.00 0.14 10.3 79.8
2 4 [5] 1.5 9.34 61.9 99.4 100
3.0 0.05 3.11 50.1 99.1
4.5 0.00 0.13 10.3 80.2
3 10 [1] 1.5 97.8 100 100 100
3.0 10.8 100 100 100
4.5 0.04 99.6 100 100
3 10 [2] 1.5 98.2 100 100 100
3.0 11.1 100 100 100
4.5 0.03 99.7 100 100
3 10 [4] 1.5 9.82 84.9 100 100
3.0 0.14 10.7 94.3 100
4.5 0.00 0.93 54.2 99.9
3 10 [5] 1.5 9.77 85.2 100 100
3.0 0.05 10.5 94.3 100
4.5 0.01 0.73 54.6 99.9

2.3 Exact confidence intervals

To obtain exact confidence intervals of the parameter A, we use an approach described
by Wu and Kus (2009) or Wu (2002) to construct exact confidence intervals for
the distribution parameter by a transformation to the exponential distribution using
normalized spacings. We need a strictly increasing continuous transformation

of the random variables Y1, ..., Y, to Exp(1)-distributed random variables, i.e.,
Z; =y (Y;) ~ Exp(1) fori =1, ..., w. For k-out-of-n systems with i.i.d. lifetimes
Y1, ..., Y, and Exp())-distributed component lifetimes, these transformed random

variables are given by

n

Zi=—In(1 - F(¥;)) = ~In (1 - > (”) (G (Y)Y (1~ Gx(n»"—f)
j=n—k+1 J
= —1In <1 — Z (j) (11— exp(—YiA))j (exp(—Y,-)»))”fj ), i=1,...,w.

j=n—k+1

@ Springer



802 M. Hermanns, E. Cramer

Table 6 Average MLEs (/X\ML) for true value A = 0.5 and average computation time (7) for 2-out-of-4
systems, initial value Ao = 0.5 (g = 0.5, A1 = 1 for Nelder—Mead simplex) and censoring plans as given
in Table 2

R Nelder—Mead procedure Fixed-point procedure with ¢* Fixed-point procedure with ¢,
ML 7 ML 7 ML i
[1] 0.5338 0.0860 0.5338 0.0013 0.5338 0.0011
[2] 0.5334 0.0865 0.5334 0.0013 0.5334 0.0011
[3] 0.5324 0.0852 0.5324 0.0013 0.5324 0.0008
[4] 0.5455 0.0655 0.5455 0.0013 0.5455 0.0006
[5] 0.5476 0.0653 0.5476 0.0014 0.5476 0.0007
[6] 0.5450 0.0648 0.5450 0.0015 0.5450 0.0007
[7] 0.5458 0.0649 0.5458 0.0015 0.5458 0.0006
[8] 0.5402 0.0658 0.5402 0.0011 0.5402 0.0009
[9] 0.5487 0.0648 0.5487 0.0015 0.5487 0.0006
[10]  0.5453 0.0697 0.5453 0.0011 0.5453 0.0012
[11]  0.5423 0.0659 0.5423 0.0011 0.5423 0.0010
[12]  0.5431 0.0650 0.5431 0.0015 0.5431 0.0006

The progressively Type-II censored order statistics have the following representation,
fori=1,...,v:

n

Ziw =—In (1 -y (3‘) (1 — exp(—Yipmh) (exp(—Yi;v:wA»"‘f)

j=n—k+1

The construction of exact confidence intervals for the parameter A is based on this
representation and the pivot

v
n= 2Z(Ri +DZiyw

i=1

=—23 (Ri+DIn (1— > (']’) (1= exp(=Yimh)’ (exp(=Yinmh))" ™ )

i=1 j=n—k+1

where n ~ Xzzv according to Wu and Kus (2009, p. 3663). Further, we have to show
that 7, as a function of A > 0, is strictly increasing.

Lemma 2 Suppose 0 < y1 < -+ < yp is a sample of Y1y, - - Yoo and

i=1 j=n—k+1
(13)
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The function n is strictly increasing on (0, 00) and the equation n(A) = t has an
unique solution for every t > Q.

Therefore, it is possible to obtain exact confidence intervals for the parameter A > 0.

Theorem 3 Let Yi.y:, - - ., Yyp:w be progressively Type-1I censored order statistics
from k-out-of-n system lifetimes, where the component lifetimes are exponentially
distributed with parameter A > 0. Let (R, ..., Ry) be the censoring plan and Xzzv B)
be the B-quantile of the x>-distribution with 2v degrees of freedom. Forany a € (0, 1),
a (1 — a)-confidence interval for X is given by

(n[v. 2] Y. .0 —ar)]),

where 1 [Y, t] is the unique solution for A of the equation

-2 Z(R,» +1)n (1 -
i=1

n n - -
Z <]) (1 — exp(=Yi.p:wr))’ (exp(=Yipwh))" 1> iy

j=n—k+1

In Table 7, the average lower and upper limits 2 and X, of the exact confidence
intervals are simulated for 2-out-of-4 system lifetimes and 3-out-of-10 system lifetimes
when A = 0.5. The results in Table 7 are the average of N = 10, 000 simulated
samples. Notice that these results are based on different simulated samples than those
used in the simulation study summarized in Tables 3 and 4. Moreover, we have added
the standard error (SSE) of A; and A, (see (12)) and the coverage probabilities p. of the
proposed confidence intervals. The MLE of A has been computed by the introduced
fixed-point iteration procedures with an initial value A9 = 0.5 and a tolerance of
0.0001.

3 Conclusion and discussion

In the present paper, we propose a modified fixed-point procedure to compute the
maximum likelihood estimate when the data is given by progressively Type-II censored
k-out-of-n systems data with exponentially distributed component lifetimes. We have
shown that the maximum likelihood estimator uniquely exists. Further simulations
show that the fixed-point procedure is more suitable than the widely used Newton—
Raphson method because the Newton—Raphson method does not converge when the
initial value is too far away from the solution of the likelihood equation (see Tables
3,4 and 5). Moreover, we propose "mixed’ procedures which combine both methods.
First, the fixed-point method is used to compute a suitable estimate of the MLE.
Then, we switch to the (locally faster) Newton—Raphson procedure. However, further
simulations in Table 5 illustrate that this does not overcome the problem of non-
convergence in any case but may lead to some improvement. Therefore, if one has no
reasonable guess about the solution of the likelihood equations it is recommended to
use the fixed-point method.
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804 M. Hermanns, E. Cramer

Table 7 Average MLEs and 95%-confidence intervals for true value 2 = 0.5 based on simulated samples
of 2-out-of-4 system lifetimes and 3-out-of-10 system lifetimes (average lower limit A;, average upper limit
A, standard errors (SSE), and coverage probability p.)

kK n R AML SSE ~ SSE *r SSE Pe

2 4 [1] 0.5313 0.1363 0.3063 0.0799 0.8127 0.2093 95.09

[2] 0.5328 0.1387 0.3070 0.0809 0.8143 0.2123 95.09
[3] 0.5322 0.1362 0.3122 0.0804 0.8036 0.2064 94.94
2 4 [4] 0.5455 0.1797 0.2747 0.0929 0.9241 0.3064 94.69
[5] 0.5439 0.1760 0.2738 0.0907 0.9211 0.2997 95.09
[6] 0.5467 0.1794 0.2756 0.0927 0.9264 0.3060 95.00
2 4 [7] 0.5456 0.1781 0.2749 0.0918 0.9243 0.3033 9491
[8] 0.5437 0.1615 0.2906 0.0879 0.8679 0.2588 95.23
[9] 0.5461 0.1799 0.2755 0.0935 0.9258 0.3077 95.09

2 4 [10] 0.5447 0.1710 0.2786 0.0903 0.8989 0.2831 95.18
[11] 0.5434 0.1617 0.2904 0.0882 0.8674 0.2594 94.84
[12] 0.5467 0.1805 0.2757 0.0937 0.9267 0.3087 94.67

3 10 [1] 0.5121 0.0765 0.3702 0.0585 0.6729 0.1028 95.22
[2] 0.5115 0.0762 0.3696 0.0584 0.6717 0.1023 95.38
[3] 0.5111 0.0732 0.3756 0.0555 0.6647 0.0973 95.22
3 10 [4] 0.5174 0.1006 0.3400 0.0706 0.7423 0.1470 95.20
[5] 0.5150 0.1009 0.3384 0.0706 0.7387 0.1472 94.98
[6] 0.5159 0.1021 0.3392 0.0713 0.7403 0.1488 95.02
3 10 [7] 0.5179 0.1016 0.3406 0.0711 0.7433 0.1484 95.31
[8] 0.5140 0.0874 0.3562 0.0640 0.6945 0.1204 94.66
[9] 0.5167 0.1019 0.3396 0.0711 0.7413 0.1485 94.91

3 10 [10] 0.5157 0.0947 0.3435 0.0690 0.7184 0.1340 95.16
[11] 0.5140 0.0861 0.3565 0.0631 0.6949 0.1187 95.08
[12] 0.5180 0.1020 0.3405 0.0716 0.7432 0.1493 95.17

Acknowledgements The authors are grateful to two anonymous reviewers and an associate editor for their
comments and suggestions which led to an improved version of the manuscript.

4 Appendix

Proof (Theorem 1) We consider the limits of %(y; A) for A — O and A — oo,

lim O (43 = —n Y yi+ lim G +n—k) Yy yi(l - exp(—ym»—l)

i=1 i=1

=00 >0,
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. dly v v n v n -1
lim —(yiA)=-n)» kY vi—k > Riyi
Jim (5 A) ni_1y1+(n )Hy, (n_k> 2 iYi ((n_k>>

v
—k > (R + 1y <0.

As a consequence the function BlY £ (y; A) has to be zero for some % > 0 since it
is a continuous function. Thus, A is a solution of the likelihood equation. The first

derivative %(y; M) is strictly decreasing since 2 a)@ Y(y; 1) < O for A > 0, see (8)

Therefore, A is the unique solution of the equation 5 ly X(y; &) = 0,4 > 0. Then, A
the global maximum of /y and the MLE of A since lY 1s a strictly concave functlon on

(0, 00). O
Proof (Lemma 1) First, we rewrite ¢ (x) for x € (0, 00):
Z5)':—(11—10 (jns) (€ = D/ (jxet — e + 1)
N2
(Z(J)'=—<n—k> (jmi) (¥ =1 )
Tz (i) @ =07 (14 £5)
n—k n 2 '
<Zj O(n k— ])(ex_l) )

Let x € (0, 1]. Then, a lower bound results from the inequalities

¢(x) =

1+ (n — k) 2% Q) 14+ (n—k)e
¢x) = ——; - > = —,
Z —g (n k— /) (er =1~ / Zj:](; (n—k—j) (e—1) J

where we used the inequality e* — 1 > x, x € [0, 00), in (x). For x € [1, o0) and
J € Np, we obtain

_ jxe* 1 jxe* 1 je
X _ 1 1 — < .
(e ) <+e"—1) e"—l—i_(ex—l)z_e—1+(e—1)2

In the last inequality, we used that W is strictly decreasing on [1, 00). As a direct
consequence, we find

27;6 (n—llz—j) (=1 (el + (ejel)z)
(T (i) )

n—k n —-J j -
_Zj=0(n k) D (14 jete—D l), x €[1, 00).

(()

¢ (x)

v

v

@ Springer



806 M. Hermanns, E. Cramer

Hence, the function ¢ is bounded and continuous on (0, c0). Then, the function ¢ has
a global minimum ¢, on the interval (0, 0o). Obviously, ¢ (x) < 0, x € (0, 0o0). The
limits for x — 0+ and x — oo are easily obtained by standard calculations.

Proof (Theorem 2) The proof uses the Banach fixed-point theorem (cf. Papageorgiou
and Kyritsi-Yiallourou 2009, p. 226) for the continuous continuation of £ on [0, 00).
For the definition of the continuous continuation of £ on [0, 00), we need the following
limit

. oly - . A
fim gy iR vk = e x fimy
1=
=v+m—kv=m—k+ Do,
where we have used 1’Hospital’s rule to get limj_.q 1_;‘—_)” = lim; _, ﬁ =
fori =1, ..., v. Then, the limit of & for A — 0 is given by

1 (m—k+ Do
- >
akY i (Ri+ Dy

li L) =
Jlim §(A)
Therefore, the continuous continuation of & on [0, co) is defined as follows

B £, A € (0, 00),
& :[0,00) > [0,00), At> }in})é‘;(k), r=0.

Since g(O) > ( we conclude that & = 0 can not be a fixed-point of E;-“ on [0, c0). Hence,
a fixed-point of E must be a fixed-point of &, too. Notice that we need the continuous
continuation of E on [0, co) for formal reasons in order to get a complete metric space.
Now, according to the Banach fixed-point theorem, we have to show

(1) €10, 00) C [0, 00) and
(I1) & is Lipschitz continuous with Lipschitz constant K € [0, 1).

Due to E(O) > 0, it is sufficient to show &(0, c0) C (0, 00) to ensure E[O, 00) C
[0, 00). According to Eq. (8), the first derivative of the log-likelihood function adl—)f (y; A)
is strictly decreasing and the limit for A — oo is given by —k _/_; (R; + 1)y;. Then,
IV (y;2) > —k S0_ (R; + 1)y; for & € (0, 00). It follows £(%) > 0 for 1 € (0, 00)
since a > % > 1. Therefore, condition (/) is satisfied.

The functions & and E are differentiable on (0, co) and have the same derivative.
To ensure condition (1), it is sufficient to show that the derivative is bounded in the
interval [—K, K] with K = sup, |%$(A)| € [0, 1) (see Arikawa and Furukawa 1999,

p. 176). We define

n . i—1
Aii = Yk YT i=1,...,vand j = —(m —k),...,0.
ij (j+n—k> (e ) i vand j (n )
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Then, we get
( A) +K82[ (y: 2)
952 y;
——nzy-+<n—k>i ) D
= l = Gi() n—k/ = Z?_ (i Aij (€ — 1)

— (n— k),\z 21

Gk(yt (
(Gryi)?*

Pty Aij e
2
0 X
(Zj:—(n—k) Aij (e — 1))

)ZRlyl

) —Ayi(1 = Ga(y))

- ~ G0
=—n) yit+tm=KbY ¥
i=1 i=1

(Ga(y))?

v
n
+ k<n _ k) zlzRiyz‘d)(Yi?»), x> 0.
i=

Usingx > 1 —e™*

l—e™ —xe

0<

- l—e™ — (l — e_x) e

and ¢ > x + 1 for x > 0, we have

(=)

Substituting x = Ay; > 0, we get

~ Ga(y) = il = Ga(y)
0<2 (G102 -

i=1

(14)

where y = % >/ vi. Applying Lemma 1, this yields

BlY 3 lY
W AT i) <
dly 3 lY
Using
T pp—
A kR (R +

dly 0
A+ )\
D)yi < ;&)

v v v
_nzyi + (n _k)Zyi = —kzyi and
i=1 i=1 i=1
v n v
—n ;yi +k(n B k) ERiyﬂﬁ*
1= 1=

Iy
e (y; k)) A >0,
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we get

d 1 v
Doy <t Zimd oy

da ai_((Ri + 1Dy

i5(/\) > _1”2;):1 yi — k(") 2= Riyig* L
a a kY P ((Ri + 1y

Thus, we know f—ké‘(k) € (=1,1) for A € (0,00). To ensure sup, |5175(A)| €
[0, 1), it is sufficient to show that lim; ¢ %S(A), lim; ., oo dd—kf()\) € (—1,1). Using

limy_0 G (y;) = 0, limy o Gy (y;) = oo fori = 1,..., v and I’Hospital’s rule in
(*), we get
Gi(yi) = 2yi (1 = G(3) & . ik . 1
im 5 = lim ————— = lim — = — and
A—0 (G.()) r—=02Gy(y;)  A—02e~ Vi 2
i Gry) =2y 1= Go(yi) . Gi(y) —Aye ™
im 5 = lim 5 =
A—00 (G (i) A—00 (G (i)

Then, we arrive at

tim (Y oy 0+ 22N
il o Y anz Y

v v v
i=1

i=1 i=1

v v v
—ny yi+ =k v~k Riy
i=1 i=1 i=1

v
=—k Y (Ri + Dy,

i=1

. dly ) 321Y )
i (G i #3550

where we used the limits of ¢. Then, the limits of %é are given by

d 1 k 1 k
lim —E(A,): ; /a _I’l+ Zyl (’g) __.I’l+ Z—l and
0 dA kY [(Ri + Dy 2 & a 2k
(15)
d 1/a a 1 2k
lim —&Q) = —kY (Ri+ 1Dy |=—=>— —1.
m g™ kZ}’zl(Rl-—i—l)yi( ,;( it )y’) a- n+k
(16)

The inequality () is only strict for censored data,i.e., (R1, ..., Ry) # (0, ..., 0).For
the non-censored case, we have ¢ = max (%, %) = % because k < n. Then, we get
limy 0 &&(0) = — 12K~ 1 Hence, we have lim; .0 £-£(1), limy 00 -£(1) €
(—1, 0). Therefore, condition (/1) ~is satisfied. Using Banach’s fixed-point theorem,
we know that a fixed-point A of & exists, which is a fixed-point of &, too. Then,

@ Springer



Inference with progressively censored k-out-of-n... 809

‘rg—f(y; X) — 0 and X is the MLE of A. Furthermore, the Banach fixed-point theorem

yields that the sequence Ap4+1 = E(Ah) = &(A\p,) converges to A for every g € (0, 00).
m}

Proof (Lemma 2) Fori = 1,..., v, the inner part of the logarithm in (13) can be
rewritten as

-y (’;) (1 — exp(—yiA) (exp(—y;2))" ™

Jj=n—k+1

n—k
=y (’;) (Gr(y)) (1= Gryi)"™ = H(yi, 1.
j=0

According to (6), the derivative of H w.r.t. A is given by

oH

SOk = —k(n " k)y,- (G (1= Galyk

and thus negative. Hence, the inner part of the logarithm is strictly decreasing in A so
that n(A) strictly increases in A. The limits of n(A) for A — 0 and A — oo are

v
lim n(1) = —2 ;(R,- +1)In(l) =0 and
iz
v
li ) = lim —2) (R + 1) In(x) = oo.
Jim 500 = lim =23 (R + 1) In(x) = 00

i=1

Hence, the function n : (0, co) — (0, 00) is strictly increasing and continuous so that
the equation n(A) = ¢ has an unique solution for ¢ > 0. O

Proof (Theorem 3) From Lemma 2, the solutions n[Y, x3,(«/2)] and
n[Y. x3,(1 — a/2)] exist. Using n ~ x3,, we have

P(n|Y. b @] <n<n|Y. 3,0 -a))

=P (@2 <n < x50 -a/)
=(l-a/2)—a2=1-a.

Notice that, according to Lemma 2, 7 is strictly increasing in A so that the direction
of the inequalities does not change. O
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