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1 Introduction

When comparing the survival times from two independent groups ( j = 1, 2), the
Mann–Whitney effect is an intuitive measure; see e.g. Koziol and Jia (2009). In a
classical survival settingwith continuous life-time distributions and randomcensoring,
it is given by the probability P(T1 > T2) that a random subject from group j = 1 (with
survival time T1) survives longer than a randomly chosen person from group j = 2
(with survival time T2). In case of uncensored data, this effect reduces to the well-
knownWilcoxon functional underlying the nonparametric Wilcoxon–Mann–Whitney
test. Depending on the field of application, it is also known as nonparametric treatment
effect (e.g. Brunner and Munzel 2000), stress–strength characteristic (e.g. Kotz et al.
2003) or probabilistic index (e.g. Thas et al. 2012).Moreover, in case of diagnostic tests
it has a direct interpretation as the area under the corresponding ROC curve, see e.g.
Lange and Brunner (2012), Pauly et al. (2016) and Zapf et al. (2015) as well as Zhou
et al. (2002) for more details on diagnostic accuracy measures. The Mann–Whitney
effect is often estimated by the c-index for concordance (e.g. Koziol and Jia 2009). As
pointed out by Acion et al. (2006), the Mann–Whitney effect is “a simple, clinically
relevant, and robust index” and thus “an ideal effect measure”, see also Kieser et al.
(2013). The same still holds true in case of survival outcomes that may be subject to
independent random censoring, see e.g. the glorification of the c-index in Hess (2010)
or Dunkler et al. (2010). An R-package for a general Wilcoxon–Mann–Whitney test
was propagated in De Neve et al. (2014).

In the present paper, we face the practically relevant situation where tied data are
often inevitable. Thus, to take ties appropriately into account, we use a generalized
definition of the Mann–Whitney effect: p = P(T1 > T2) + 1

2 P(T1 = T2), also
known as ordinal effect size measure in case of complete data (Ryu and Agresti 2008;
Konietschke et al. 2012). As an alternative to the log-rank test in group-sequential
designs, Brückner and Brannath (2016) analysed the average hazard ratio which is
related to p. They describe it as an “alternative effect parameter in situations with
non-proportional hazards, where the hazard ratio is not properly defined”.

Recently, a related effectmeasure, the so-calledwin ratio (for prioritized outcomes),
has been investigated considerably by several authors (Pocock et al. 2012; Rauch
et al. 2014; Luo et al. 2015; Abdalla et al. 2016; Bebu and Lachin 2016 as well as
Wang and Pocock 2016). It is given by the odds of the Mann–Whitney effect p, i.e.
w = p/(1 − p), also referred to as the odds of concordance; see Martinussen and
Pipper (2013) for a treatment in the context of a semiparametric regression model.
In our situation, p and w describe the probability that a patient of group 1 survives
longer than a patient of group 2. That is, p > 1/2, or equivalently w > 1, implies a
protective survival effect for group 1. Note that until now, ties have been excluded for
estimating these quantities which particularly led to the recent assessment of Wang
and Pocock (2016) that “we caution that the win ratio method should be used only
when the amount of tied data is negligible”.

In this paper, we propose and rigorously study different statistical inference pro-
cedures for both parameters p and w in a classical survival model with independent
random censoring, even allowing for ties in the data. While several authors (e.g. Nandi
andAich 1994; Cramer andKamps 1997;Kotz et al. 2003, and references therein) have
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considered inference for p under specific distributional assumptions, we here focus on
a completely nonparametric approach, not even assuming continuity of the data. Apart
from confidence intervals for p andw, this also includes one- and two-sided test proce-
dures for the null hypothesis of no group effect (tendency) H p

0 : {p = 0.5} = {w = 1}.
In the uncensored case, this is also called the nonparametric Behrens–Fisher problem,
see e.g. Brunner and Munzel (2000) and Neubert and Brunner (2007). To this end,
the unknown parameters p and w are estimated by means of normalized versions of
Kaplan–Meier estimates. These are indeed their corresponding nonparametric max-
imum likelihood estimates, see Efron (1967) as well as Koziol and Jia (2009) for
the case of continuous observations. Based on their asymptotic properties, we derive
asymptotically valid tests and confidence intervals. These may be regarded as exten-
sions of the Brunner–Munzel test Brunner and Munzel (2000) to the censored data
case. Since, for small sample sizes, the corresponding tests may lead to an invalid
α-level control (e.g. Medina et al. 2010 or Pauly et al. 2016 without censoring), we
especially discuss and analyse two different resampling approaches (bootstrapping
and permuting) to obtain better small sample performances.

The resulting tests are innovative in several directions compared to other existing
procedures for the two-sample survival set-up:

1. We focus on the null hypothesis H p
0 of actual interest. Before, only themore special

null hypothesis H S
0 : {S1 = S2} of equal survival distributions between the two

groups has been investigated, see e.g. Efron (1967), Akritas and Brunner (1997)
andAkritas (2011).Corresponding one-sided testing problems (for null hypotheses
involving distribution functions) based on the related stochastic precedence were
treated in Arcones et al. (2002) and Davidov and Herman (2012). Instead, our
procedures will not only assess the similarity of two survival distributions but also
quantify the degree of deviation by confidence intervals formeaningful parameters.

2. Themore complex null H p
0 has so far only been studied in the uncensored case; see

e.g. Janssen (1999), Brunner andMunzel (2000), DeNeve et al. (2013), Chung and
Romano (2016a), Pauly et al. (2016) and the references cited therein. The present
focus on the effect size p while allowing for survival analytic complications is
achieved by utilizing empirical process theory applied to appropriate functionals.

3. We do not rely on the (elsewhere omnipresent) assumption of existing hazard
rates. Instead, we adjust for ties by using normalized versions of the survival
function and the Kaplan–Meier estimator (leading to mid-ranks in the uncensored
case). This more realistic assumption of ties in the observations accounts for a
phenomenonwhich is oftentimes an intrinsic problemby study design. Therefore, a
methodology for continuous data (even for only testing H S

0 ) should not be applied.
Notable exceptions for the combination of survivalmethods anddiscontinuous data
are provided in Akritas and Brunner (1997) and Brendel et al. (2014) where the
hypothesis H S

0 is tested.
4. Finally, small sample properties of inference procedures relying on the asymp-

totic theory are greatly improved by applications of resampling techniques. These
utilized resampling techniques are shown to yield consistent results even in the
case of ties. Thereof, the permutation procedure succeeds in being even finitely
exact in the case of exchangeable survival data in both sample groups; see e.g.
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Lehmann and Romano (2010), Good (2010), Pesarin and Salmaso (2010), Pesarin
and Salmaso (2012), and Bonnini et al. (2014) for the classical theory of permu-
tation tests. In this perspective, the present paper not only states the first natural
extension of point estimates for p to tied survival data but especially introduces
the first inference procedures for H p

0 (tests and confidence intervals) with rigorous
consistency proofs. The latter have formerly not even been known in the contin-
uous survival case. An early reference for applications of permutation techniques
in survival analysis is Neuhaus (1993) who considered extensions of the log-rank
test; see Neuhaus (1994) for a treatment of tied data and Brendel et al. (2014) for
further generalizations. As an alternative method, we will also examine a pooled
bootstrap approach. A textbook overview of permutation techniques applied in
the survival context is given in Chapter 9 of Pesarin and Salmaso (2010). See also
Basso et al. (2009) who treated permutation tests for stochastic ordering. In a com-
parative simulation study, Arboretti et al. (2009) compared various permutation
and asymptotic tests for two-sample equality of survival functions under right-
censoring. Furthermore, Arboretti et al. (2010) combined multiple permutation
tests in a survival analytic framework. In the recent article Arboretti et al. (2017),
permutation combination tests are proposed to test differences in two samples of
survival data under both treatment-dependent and -independent censoring while
allowing for various weight functions.

With our assessment of the bootstrap and the permutation approach, we also
contribute to recent analyses in the statistical literature in which both methods, the
bootstrap and random permutation, have been compared in various contexts; see e.g.
Pauly (2011), Gel and Chen (2012), Santos and Ferreira (2012), Bonnini (2014), Yan
et al. (2015), Albert et al. (2015), and Friedrich et al. (2017). Usually, the permutation
technique is found to be preferable to the bootstrap.

The article is organized as follows. Section 2 introduces all required notation
and estimators, whose combination with the variance estimator in Sect. 3 yields
(non-resampling) inference procedures. Theoretical results concerning the resampling
techniques are presented in Sect. 4. A simulation study in Sect. 5.1 reports the improve-
ment of the levelα control by the proposed permutation andbootstrap techniques and in
Sect. 5.2 all developed test procedures are evaluated in terms of power via an additional
simulation study in which we also included the log-rank test. A final application of the
developed methodology to a tongue cancer data set Klein and Moeschberger (2003)
is presented in Sect. 6. This article’s results are discussed in Sect. 7 and theoretically
proven in Online Resource which also contains additional simulations results.

2 Notation, model, and estimators

Throughout the article, let (Ω,A, P) be a probability space. For a more formal intro-
duction of the concordance index p and the win ratio w, we employ some standard
notation from survival analysis. Thus, we consider two independent groups ( j = 1, 2)
of independent random variables T̃ j1, . . . , T̃ jn j : (Ω,A, P) → (0,∞), with distri-

bution function F̃j , j = 1, 2, and total sample size n = n1 + n2, n1, n2 ∈ N.
We will refer to these random variables as survival times and assume that they
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are identically distributed within each group. Their distributions may have discrete
components, which reflects the situation in most clinical studies (i.e. survival times
rounded to days or weeks). Since most studies pre-specify a point of time K > 0 after
which no further observation is intended, we also truncate the above survival times
to Tji = T̃ j i ∧ K , i = 1, . . . , n j , j = 1, 2, where ∧ denotes the minimum operator.
Denote their survival functions as S j (t) = 1 − Fj (t) ≡ P(Tj1 > t), j = 1, 2.
Thus, both sample groups may have different, even heteroscedastic distributions.
Their cumulative hazard functions are given by Λ j (t) = − ∫ t

0
dS j
S j− where the index

minus (here in S j−) always indicates the left-continuous version of a right-continuous
function. Note that this definition of Λ j implies that the survival functions have the
representations S j (t) = �u∈(0,t](1 − Λ j (du)), j = 1, 2, where � denotes the prod-
uct integral, i.e. the limit of products over fine partitions of the interval (0, t]; see
Gill and Johansen (1990) for details. The survival times are randomly right-censored
by independent, positive variables C j1, . . . , C jn j with possibly discontinuous, group-
specific censoring survival functions G j , j = 1, 2. Observation is thus restricted to
X j = {(X ji , δ j i ) : i = 1, . . . , n j }, j = 1, 2, where X ji = Tji ∧ C ji , δ j i = 1{X ji =
Tji }, 1 ≤ i ≤ n j . Note that the choice of K shall imply a positive probability of each
event {T̃ j i > K }. This constant K could, for example if all individuals enter into the
study at time 0, be the end-of-study time, i.e. the largest censoring time. For later use,
we introduce the counting process notation

N j;i (u) = 1{“observed event for ind. i ofgroup j until u”} = 1{X ji ≤ u, δi j = 1},
Y j;i (u) = 1{“ind. i of group j is under observation at time u”} = 1{X ji ≥ u}.

Summing up these quantities within each group results in Y j (u) = ∑n j
i=1 Y j;i (u), the

number of group- j subjects under study shortly before u, and N j (u) = ∑n j
i=1 N j;i (u),

the number of observed events in group j until time u. Denote by f ± = 1
2 ( f + f−)

the so-called normalized version of a right-continuous function f . With this notation,
the Mann–Whitney effect and the win ratio are given as

p = P(T11 > T21) + 1

2
P(T11 = T21) = −

∫
S±
1 dS2 = 1 −

∫
F±
1 dF2 (1)

andw = p/(1 − p), respectively. If not specified, integration is over [0, K ]. In this set-
up, we test the null hypothesis H p

0 : {p = 1/2} = {w = 1} that the survival times from
both groups are tendentiously equal against one- or two-sided alternatives.Wenote that
the usually considered null hypothesis H S

0 : {S1 = S2} of equal survival distributions is
more restrictive and implies H p

0 . Similarly, a stochastic order or precedence (Davidov
and Herman 2012) such as F1 � F2 implies p ≥ 1/2.

To test H S
0 for continuous survival times, Efron (1967) has introduced a natural esti-

mator for p, see also Koziol and Jia (2009), replacing the unknown survival functions

S j (t) in (1)with theKaplan–Meier estimators Ŝ j (t) = �u∈(0,t](1 − dN j (u)

Y j (u)
), j = 1, 2.

Since their normalized versions Ŝ±
j are nonparametricmaximum likelihood estimators

for the normalized survival functions S±
j , we obtain

123



644 D. Dobler, M. Pauly

p̂ = P̂(T11 > T21) + 1

2
P̂(T11 = T21) = −

∫
Ŝ±
1 dŜ2 (2)

and ŵ = p̂/(1 − p̂) as nonparametric maximum likelihood plug-in estimators of
p and w, respectively. Similar estimators for p have been proposed by Akritas and
Brunner (1997) and Brunner and Munzel (2000). The latter quantity ŵ has been
introduced by Pocock et al. (2012) for uncensored observations (without ties) with the
nice interpretation as total number of winners divided by the total number of losers in
group 1 (where T1i wins against T2� if T1i > T2�).

Thus, the statistics Vn( 12 ) =
√

n1n2
n ( p̂− 1

2 ) orUn(1) =
√

n1n2
n (ŵ−1)maymeasure

deviations from H p
0 . In order to obtain adequate critical values for testing H p

0 or
constructing one- or two-sided confidence intervals for the Mann–Whitney effect p
and the win ratio w, we study their limit behaviour under the asymptotic frameworks

0 < lim inf (n1/n) ≤ lim sup (n1/n) < 1 (3)

or n1/n → κ ∈ (0, 1) (4)

as min(n1, n2) → ∞. Here, (4) is used in intermediate results, whereas our main
theorems will only rely on the weaker assumption (3).

We denote by “
d−→” and “

p−→” convergence in distribution and in outer probability
as n → ∞, respectively, both in the sense of van der Vaart and Wellner (1996). The
following central limit theorem for p̂ is the normalized counterpart of the asymptotics
due to Efron (1967) and is proven bymeans of the functional δ-method in combination
with the weak convergence theorem for the Kaplan–Meier estimator as stated in van
der Vaart and Wellner (1996, Section 3.9). Throughout, let an = √

n1n2/n.

Theorem 1 (i) Suppose (4) holds, then the Mann–Whitney statistic Vn = Vn(p) =
an( p̂− p) is asymptotically normal distributed, i.e. Vn

d−→ Z ∼ N (0, σ 2) as n → ∞.
The limit variance is σ 2 = (1 − κ)σ 2

12 + κσ 2
21, where for 1 ≤ j �= k ≤ 2,

σ 2
jk =

∫ ∫
Γ ±±

j (u, v)dSk(u)dSk(v) and Γ j (u, v) =
∫ u∧v

0

S j (u)S j (v)dΛ j

S j−G j−
.

(5)
Moreover, Γ ±±

j denotes the covariance function normalized in both arguments given

by Γ ±±
j (u, v) = [Γ j (u, v) + Γ j (u−, v) + Γ j (u, v−) + Γ j (u−, v−)]/4.

(ii) Under the conditions of (i), the win ratio statistic Un(w) = an(ŵ − w) asymptot-
ically follows a normal-N (0, σ 2/(1 − p)4)-distribution.

Remark (a) Efron (1967) used a version of the Kaplan–Meier estimator that always
considered the last observation as uncensored. Moreover, the restrictive null hypoth-
esis H S

0 : {S1 = S2} was used to simplify the variance representation under the null.
(b)Without a restriction at some point of time K , a consistent estimator for theMann–
Whitney effect requires consistent estimators for the survival functions on their whole
support. This involves the condition − ∫

(dS j )/G j− < ∞, j = 1, 2, which is obvi-
ously only possible if the support of S j is contained in the support of G j ; see e.g.
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Gill (1983), Ying (1989) and Akritas and Brunner (1997). However, this assumption
is often not met in practice, e.g. if G j (u) = 0 < S j (u) for some point of time u > 0.

Since the variances σ 2
jk are unknown under the null H p

0 , the test statistics Vn( 12 )

and Un(1) are asymptotically non-pivotal. Thus, their estimation from the data is
mandatory in order to obtain consistent tests and confidence intervals for p and w.

3 Variance estimation and studentized test statistics

Asymptotically pivotal test statistics result from studentized versions of p̂ and ŵ.
Replacing all unknown quantities in (5) with consistent estimators, a plug-in estimator
for the limit variance σ 2 of Vn = an( p̂ − p) is σ̂ 2 = a2

n (̂σ 2
12 + σ̂ 2

21), where

σ̂ 2
jk =

∫ ∫
Γ̂ ±±

j (u, v)dŜk(u)dŜk(v) and Γ̂ j (u, v) =
∫ u∧v

0

Ŝ j (u)Ŝ j (v)dN j

(Y j − 
N j )Y j
(6)

for 1 ≤ j �= k ≤ 2. Here, the function 
 f (u) = f (u) − f (u−) contains all jump
heights of a right-continuous function f .

Lemma Under (4), σ̂ 2 is consistent for σ 2 defined in Theorem 1, i.e. σ̂ 2 p−→ σ 2.

This result directly leads to the studentized statistics Tn(p) = an( p̂ − p)/σ̂ and
Wn(w) = an(ŵ − w)(1 − p̂)2/σ̂ = an(ŵ − w)/[̂σ(1 + ŵ)2] which are both asymp-
totically standard normal asmin(n1, n2) → ∞ by Slutzky’s theorem and the δ-method
only assuming (3). Indeed, under (3), Theorem 1 and Lemma 3might be applied along
each convergent subsequence of n1/n. Since all resulting limit distributions of Tn(p)

and Wn(p) are pivotal, i.e. independent of κ , this weak convergence must hold for
the original sequence as well. Thus, two-sided confidence intervals for p and w of
asymptotic level (1 − α) ∈ (0, 1) are given by

In = [
p̂ ∓ z1−α/2σ̂ /an

]
(for p) and

[
ŵ ∓ z1−α/2σ̂ (1 + ŵ)2/an

]
(forw), (7)

respectively, where z1−α denotes the (1 − α)-quantile of N (0, 1). Moreover,

ϕn = 1{Tn(1/2) > z1−α} and ψn = 1{Wn(1) > z1−α} (8)

are consistent asymptotic level α tests for H p
0 : {p = 1

2 } = {w = 1} against the
one-sided alternative hypothesis H p

1 : {p > 1
2 } = {w > 1}, i.e. as n → ∞,

E(ϕn) → α1{p = 1/2} + 1{p > 1/2} and E(ψn) → α1{w = 1} + 1{w > 1}.
One-sided confidence intervals and two-sided tests can be obtained by inverting the
above procedures. For larger sample sizes (n j > 30 depending on the magnitude of
censoring), the above inference methods (7) and (8) are fairly accurate; see the sim-
ulation results in Sect. 5. For smaller sample sizes, however, these procedures tend
to have inflated type-I error probabilities. Therefore, we propose different resampling
approaches and discuss their properties in the following section. For ease of presen-
tation, we only consider resampling tests for H p

0 : {p = 1
2 } in order to concentrate on
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one parameter of interest (i.e.on p) only. Nevertheless, the results directly carry over
to construct resampling-based confidence intervals for p and w, respectively.

4 Resampling the Mann–Whitney statistic

Even in the continuous case, Koziol and Jia (2009) pointed out that “with small sam-
ples sizes a bootstrap approach might be preferable” for approximating the unknown
distribution of Vn = Vn(p) = an( p̂− p). To this end, we consider different resampling
methods, starting with Efron’s classical bootstrap. Here the bootstrap sample is gener-
ated by drawingwith replacement from the original data pairs; see Efron (1981). Large
sample properties of the bootstrapped Kaplan–Meier process and extensions thereof
have been analysed e.g. in Akritas (1986), Lo and Singh (1986), Horvath and Yandell
(1987), andDobler (2016). Calculating the bootstrap version of p̂ via bootstrapping for
each sample group and using their quantiles leads to a slightly improved control of the
type-I error probability in comparison with the asymptotic test (8). However, this way
of bootstrapping results in a still too inaccurate behaviour in terms of too large devia-
tions from the α = 5% level (results not shown). This technique is typically improved
by resampling procedures based on the pooled data Z = {(Zi , ηi ) : i = 1, . . . , n}
given by

(Zi , ηi ) = (X1i , δ1i )1{i ≤ n1} + (X2(i−n1), δ2(i−n1))1{i > n1}, i = 1, . . . , n,

i.e. the pairs (Zi , ηi ) successively take all the values of the first (i ≤ n1) and of the
second sample group (i > n1). See e.g. Boos et al. (1989), Janssen and Pauls (2005)
and Neubert and Brunner (2007) for empirical verifications for other functionals in
this matter. Boos et al. (1989) and Konietschke and Pauly (2014) also demonstrate
that random permuting of and bootstrapping from pooled samples may yield superior
results, where the first has the additional advantage of leading to finitely exact testing
procedures in case of S1 = S2 and G1 = G2. We investigate both techniques in more
detail below. The dependence of the underlying probability space of p ∈ (0, 1) is sub-
sequently denoted by Pp and the corresponding expectation by E p. Online Resource
contains asymptotic results on the pooled (bootstrap) and permutation Kaplan–Meier
estimator. Therefore, only the description of both resamplingmethods and the resulting
final theorems are given here.

The pooled bootstrap We independently draw n times with replacement from the
pooled data Z to obtain the pooled bootstrap samples Z∗

1 = (Z∗
1i , η

∗
1i )

n1
i=1 and

Z∗
2 = (Z∗

2i , η
∗
2i )

n2
i=1. Denote the corresponding Kaplan–Meier estimators based on

these bootstrap samples as S∗
1 and S∗

2 . These may also be regarded as the n j out of
n bootstrap versions of the Kaplan–Meier estimator Ŝ based on the pooled sample
Z. All in all, this results in the pooled bootstrap version p∗ = − ∫

S∗±
1 dS∗

2 of p̂. A
suitable centring term for p∗ is based on the pooled Kaplan–Meier estimator and is
given by − ∫

Ŝ±dŜ = 1
2 . Thus, we study the distribution of V ∗

n = an(p∗ − 1
2 ) for

approximating the null distribution of Vn( 12 ) = an( p̂ − 1
2 ).
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The large sample properties of V ∗
n are studied with the help of empirical process

theory. In the convergence results stated below the càdlàg space D[0, K ] is always
equipped with the sup-norm; cf. van der Vaart and Wellner (1996). The technical
Lemma 2 and Theorem 4 in Online Resource show the large sample behaviour of Ŝ
and the bootstrapped counterpart S∗, respectively.

Since pooled sampling affects the covariance structure of the Kaplan–Meier
estimator, a studentization for V ∗

n becomes mandatory. Following the general recom-
mendation to bootstrap studentized statistics (see e.g. Hall and Wilson 1991; Janssen
and Pauls 2005, or Delaigle et al. 2011), we introduce the bootstrap variance estimator

σ ∗2 = n2

n

∫ ∫
n1Γ

∗±±
1 (u, v)dS∗

2 (u)S∗
2 (v) + n1

n

∫ ∫
n2Γ

∗±±
2 (u, v)dS∗

1 (u)S∗
1 (v),

with bootstrapped Greenwood-type covariance Γ ∗
j (u, v) = ∫ u∧v

0
S∗

j (u)S∗
j (v)dN∗

j
(Y ∗

j −
N∗
j )Y

∗
j

in

which N∗
j and Y ∗

j are the pooled bootstrapped counting processes based on the j th
bootstrap sample Z∗

j , j = 1, 2. We state our main result on the pooled bootstrap.

Theorem 2 Assume (3). Then the studentized bootstrap statistic T ∗
n = V ∗

n /σ ∗ always
approximates the null distribution of Tn(1/2) in outer probability, i.e. we have for any
choice of p and as min(n1, n2) → ∞:

sup
x

∣
∣Pp(T

∗
n ≤ x |Z) − P1/2 (Tn(1/2) ≤ x)

∣
∣ p−→ 0. (9)

Moreover, denoting by c∗
n(1−α) the conditional (1 − α)-quantile of T ∗

n given Z, it
follows that ϕ∗

n = 1{Tn(1/2) > c∗
n(1−α)} is a consistent asymptotic level α test for

H p
0 : {p = 1

2 } against H p
1 : {p > 1

2 } that is asymptotically equivalent to ϕn, i.e. we
have E p(|ϕ∗

n − ϕn|) → 0.

Random permutation An alternative resampling technique to Efron’s bootstrap is the
permutation principle. The idea is to randomly interchange the group association of
all individuals while maintaining the original sample sizes. The test statistic is then
calculated anew based on the permuted samples. A big advantage of permutation
resampling over the pooled bootstrap is the finite exactness of inference procedures
on the smaller null hypothesis H S,G

0 : {S1 = S2 andG1 = G2} ⊂ H p
0 ; see e.g.

Neuhaus (1993) and Brendel et al. (2014) in case of testing H S
0 and Janssen (1997),

Janssen (1999), Neubert and Brunner (2007), Chung and Romano (2013, 2016b),
Pauly et al. (2015) as well as Pauly et al. (2016) for uncensored situations.

Therefore, let π : Ω → Sn be independent of Z and uniformly distributed on the
symmetric group Sn , the set of all permutations of (1, . . . , n). The permuted samples
are obtained as Zπ

1 = (Zπ(i), ηπ(i))
n1
i=1 and Zπ

2 = (Zπ(i), ηπ(i))
n
i=n1+1. Plugging

the Kaplan–Meier estimators Sπ
1 and Sπ

2 based on these permuted samples into the
Wilcoxon functional (1) leads to the permutation version pπ = − ∫

Sπ±
1 dSπ

2 of p̂. The
permutation sampling is equivalent to drawing without replacement from the pooled
sample Z. Again, the limit variance of V π

n = an(pπ − 1
2 ) is in general different

from σ 2 and again studentizing V π
n is necessary. This is achieved by utilizing the
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permutation version σπ2 of σ̂ 2 which is the same as σ ∗2 while replacing all ∗ with π .
Thereby, the permutation counting processes Nπ

j and Y π
j based on the j th permuted

sample Zπ
j , j = 1, 2, are used. This yields the studentized permutation statistic T π

n =
V π

n /σπ . Note that it is indeed the permutation version of Tn(1/2) which is necessary
for maintaining the exactness property under H S,G

0 . Below, we prove that T π
n also

approximates the asymptotic null distribution of Tn( 12 ) in general.

Theorem 3 Assume (3). Then the studentized permutation statistic T π
n = V π

n /σπ

always approximates the null distribution of Tn(1/2) in outer probability, i.e. we have
for any choice of p and as min(n1, n2) → ∞:

sup
x

∣
∣Pp

(
T π

n ≤ x |Z) − P1/2 (Tn(1/2) ≤ x)
∣
∣ p−→ 0. (10)

Moreover, denoting by cπ
n (1−α) the conditional (1 − α)-quantile of T π

n given Z, it
follows that ϕπ

n = 1{Tn(1/2) > cπ
n (1−α)} possesses the same asymptotic properties

as ϕ∗
n in Theorem 2. Furthermore, ϕπ

n is even a finitely exact level α test under H S,G
0 .

5 Finite sample properties

5.1 Coverage probabilities of confidence intervals

In this section, we study the finite sample properties of the proposed approximations.
In particular, we compare the actual coverage probability of the asymptotic two-sided
confidence interval In given in (7) with that of the corresponding bootstrap and per-
mutation confidence intervals

I ∗
n = [

p̂ ∓ c∗
n(1 − α/2)̂σ /an

]
and I π

n = [
p̂ ∓ cπ

n (1 − α/2)̂σ /an
]
,

respectively. To this end, the following distribution functions F̃1 and F̃2, frequently
occurring in the survival context, have been chosen in our simulation study:

(1) Group 1: Exponential distribution with mean 1/2, i.e. F̃1 = Exp(1/2).
Group 2: Exponential mixture distribution: F̃2 = 1

3 Exp(1/1.27)+ 2
3 Exp(1/2.5).

(2) Group 1: Weibull distribution with scale parameter 1.65 and shape parameter 0.9.
Group 2: Standard lognormal distribution.

(3) Both groups: Weibull distribution with unit scale and shape parameter 1.5.
(4) Group 1: Weibull distribution with scale parameter 2 and shape parameter 1.5.

Group 2: Gamma distribution with scale 0.5 and shape parameter 3.4088.

For achieving p ≈ 1/2 in each set-up, the terminal times were chosen as K ≈
1.6024, 1.7646, 2, and 3, respectively. Censoring is realized using i.i.d. exponentially
distributed censoring variables C ji with different means such that the (simulated) cen-
soring probability (after truncation at K ) for each of both sample groups is between
41.0 and 43.6% (strong), between 21.2 and 26.4% (moderate), and exactly 0% (no
censoring). See e.g. Chapter 1 in Bagdonavičius and Nikulin (2002), Chapter 2 in
Klein and Moeschberger (2003) or Sections 2.4 and 10.4 in Moore (2016) as well as
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Model 3 in Bajorunaite and Klein (2008) for similar survival and censoring distribu-
tions.

The sample sizes range over n1 = n2 ∈ {10, 15, 20, 25, 30, 50, 100} as well as
n2 = 2n1 ∈ {20, 30, 40, 50, 60, 100, 200} and finally n1 = 2n2 running through
the same set. Simulating 10,000 individuals each, the approximate percentages of
observations greater than K for strong, moderate, and no censoring are, respectively:

• Set-up (1): 0.36/0.32 1.19/1.35 4.12/4.26

• Set-up (2): 12.16/10.44 22.3/17.43 34.26/28.37

• Set-up (3): 1.54 3.28 6.02

• Set-up (4): 5.58/3.6 10.16/6.59 15.94/10.35

where the values for both sample groups are separated by “/” in case of set-ups (1),
(2), or (4). The pre-specified confidence level is 1 − α = 95%. Each simulation was
carried out using N = 10,000 independent tests, eachwith B = 1999 resampling steps
in R version 3.2.3 (R Development Core Team 2016). All Kaplan–Meier estimators
were calculated using the R package etm by Allignol et al. (2011). In comparison
with the pooled bootstrap confidence interval I ∗

n , the permutation-based confidence
interval I π

n provides even finitely exact inference if the restricted null hypothesis
H S,G
0 : {S1 = S2 andG1 = G2} is true (as in the third set-up).
The simulation results for all scenarios are summarized in Tables 1, 2, and 3; the

latter is given in Online Resource. Considering first the asymptotic confidence interval
In , we see quite satisfactory coverage probabilities in the uncensored case in any of the
set-ups (1)–(4) forn1, n2 ≥ 20 even though they are still slightly too low (93.1–94.9%).
This is in line with previous findings of α-level control of rank-based tests for H p

0
(e.g. Neubert and Brunner 2007 or Pauly et al. 2016). The undercoverage, however,
gets much worse if the sample sizes are smaller (90.9–93.2%) or if the censoring
rates are increased (coverage partially below 89%). The bootstrap-based confidence
intervals I ∗

n and the permutation-based confidence intervals I π
n appear to bemuchmore

reliable, even under censoring and for small sample sizes. While the bootstrap-based
intervals I ∗

n tend to be slightly conservative (i.e. have too large coverage probabilities)
in case of strong censoring and very small samples sizes n1, n2 ∈ {10, 15, 20}, the
permutation-based intervals I π

n show excellent coverage probabilities even in these
extreme scenarios. Furthermore, we see empirical evidence for the finite exactness
of I π

n in set-up (3) in which In and I ∗
n are generally outperformed, especially under

strong censoring. Apart from that, the empirical coverage probabilities of I π
n and I ∗

n
are generally comparable and clearly support our conjecture of a greater reliability in
comparison with In .

All in all, the permutation procedure can be generally recommended, even for very
small sample sizes such as n1 = n2 = 10 and even in case of censoring rates of about
40%. In the censored case, the bootstrap procedure shows a similar coverage (with a
minor conservativeness for strong censoring) but does not possess the nice exactness
property under H S,G

0 . The asymptotic procedure In can only be recommended for

123



650 D. Dobler, M. Pauly

Table 1 Simulated coverage probabilities (in %) of two-sided asymptotic 95% confidence intervals for
p = 0.5 and equal sample sizes n1 = n2

Set-up Censoring Strong Moderate None

n1, n2 In I∗
n Iπ

n In I∗
n Iπ

n In I∗
n Iπ

n

(1) 10, 10 88.4 96.5 95.1 90.9 95.2 94.8 91.4 95.0 95.0

15, 15 91.1 96.5 95.4 92.4 95.2 94.9 93.0 95.1 95.1

20, 20 92.0 96.2 95.2 93.3 95.4 95.3 93.6 95.0 95.1

25, 25 92.8 95.8 94.9 94.0 95.2 95.2 93.7 94.9 94.9

30, 30 93.1 95.3 94.7 94.2 95.3 95.2 93.9 95.0 94.9

50, 50 93.7 95.1 94.6 95.0 95.6 95.5 94.0 94.5 94.6

100, 100 94.9 95.4 95.2 95.2 95.4 95.3 94.9 95.1 95.1

(2) 10, 10 90.3 95.7 95.0 91.6 95.1 94.9 91.5 94.9 94.9

15, 15 92.6 95.6 95.1 92.5 95.0 94.8 92.7 95.0 95.0

20, 20 93.7 95.6 95.3 93.7 95.1 95.1 93.4 94.9 94.9

25, 25 93.2 94.8 94.7 94.0 95.0 95.1 93.3 94.6 94.6

30, 30 93.8 95.2 95.1 93.9 95.2 95.1 93.9 94.8 94.9

50, 50 93.7 94.5 94.5 94.1 94.7 94.7 94.7 95.3 95.2

100, 100 94.0 94.4 94.4 94.9 95.1 95.2 94.7 94.9 94.9

(3) 10, 10 88.7 95.9 94.8 90.9 94.8 94.5 90.9 94.8 94.7

15, 15 91.8 96.0 95.2 92.4 95.0 95.0 93.2 95.2 95.3

20, 20 92.8 95.5 94.9 93.2 95.2 95.1 93.4 94.9 95.0

25, 25 93.1 95.0 94.8 93.6 95.1 95.1 93.6 94.8 94.8

30, 30 93.9 95.6 95.4 93.8 94.8 94.8 93.8 94.7 94.8

50, 50 93.9 94.7 94.6 94.3 94.9 94.8 94.5 95.1 95.1

100, 100 94.4 94.9 94.8 95.0 95.3 95.2 94.7 94.9 95.0

(4) 10, 10 88.9 95.5 94.6 91.3 95.3 95.0 91.6 95.0 95.0

15, 15 92.4 96.0 95.5 92.3 95.1 94.8 92.1 94.5 94.4

20, 20 92.4 95.3 95.0 93.0 95.0 94.9 93.1 94.5 94.7

25, 25 92.8 94.8 94.7 93.5 94.9 94.9 93.6 94.7 94.8

30, 30 93.5 95.1 94.9 93.6 94.8 94.8 93.3 94.3 94.2

50, 50 94.0 94.8 94.8 94.3 95.0 95.0 94.4 95.1 95.2

100, 100 94.6 94.9 94.9 95.0 95.3 95.3 94.8 95.1 95.1

Each empirical coverage probability closest to the nominal level 95% is printed in bold

larger sample sizes, especially in the presence of strong censoring. For the latter,
sample sizes of at least n1, n2 ≥ 100 are required to obtain coverage probabilities
close to the nominal confidence level of 95%.

5.2 Power comparisons

In a second set of simulations, we assessed the power of all two-sided counterparts
of ϕn, ϕ∗

n , and ϕπ
n to detect one-sided shift alternatives. For notational convenience,
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Table 2 Simulated coverage probabilities (in %) of two-sided asymptotic 95% confidence intervals for
p = 0.5 and unequal sample sizes 2n1 = n2

Set-up Censoring Strong Moderate None

n1, n2 In I∗
n Iπ

n In I∗
n Iπ

n In I∗
n Iπ

n

(1) 10, 20 89.9 96.2 95.1 91.4 95.1 94.8 92.0 95.1 95.0

15, 30 91.5 95.3 94.6 93.0 95.0 94.9 92.7 94.7 94.8

20, 40 92.6 95.3 94.8 93.6 95.1 94.9 93.7 95.2 95.2

25, 50 93.5 95.5 95.1 93.7 95.1 94.8 93.9 95.0 95.0

30, 60 93.6 95.3 95.0 94.2 95.2 95.1 93.7 94.7 94.7

50, 100 94.3 95.2 94.9 94.5 95.1 95.0 94.2 94.7 94.6

100, 200 94.8 95.1 95.1 95.0 95.2 95.3 94.9 95.1 95.1

(2) 10, 20 90.5 95.1 94.6 91.3 94.6 94.5 91.9 94.8 94.8

15, 30 91.7 94.7 94.4 92.2 94.5 94.4 92.4 94.5 94.3

20, 40 92.5 94.6 94.6 93.5 94.8 94.9 93.6 94.9 94.9

25, 50 93.3 94.5 94.5 93.5 94.7 94.8 93.6 94.8 94.8

30, 60 93.8 94.9 94.8 93.8 95.0 94.9 94.2 95.0 95.0

50, 100 94.2 94.8 94.9 93.7 94.3 94.2 94.4 94.9 95.0

100, 200 94.3 94.6 94.6 94.9 95.2 95.2 95.0 95.1 95.2

(3) 10, 20 90.1 95.6 94.8 91.2 94.9 94.7 91.9 95.0 95.0

15, 30 91.6 94.8 94.4 92.6 94.8 94.7 92.7 94.7 94.7

20, 40 92.8 94.8 94.7 93.7 95.1 95.1 93.5 94.9 94.8

25, 50 93.7 95.2 95.0 94.0 95.2 95.2 93.9 94.9 94.9

30, 60 93.7 94.9 95.0 94.2 95.3 95.2 93.7 94.6 94.5

50, 100 94.2 95.0 95.0 94.3 94.9 95.0 94.2 94.7 94.7

100, 200 94.5 94.8 94.8 94.4 94.8 94.8 94.9 95.2 95.1

(4) 10, 20 89.4 94.7 94.2 90.6 94.4 94.2 91.7 94.5 94.5

15, 30 91.7 94.9 94.5 92.2 94.4 94.5 92.5 94.4 94.3

20, 40 92.5 94.7 94.5 92.9 94.7 94.6 93.2 94.7 94.7

25, 50 93.6 95.1 95.1 93.2 94.7 94.6 93.6 94.7 94.6

30, 60 93.8 95.1 95.0 93.8 94.9 94.7 93.6 94.7 94.7

50, 100 94.2 94.9 94.9 94.4 95.0 95.0 94.4 94.8 94.9

100, 200 94.3 94.6 94.7 94.7 94.9 94.9 94.6 94.8 94.8

Each empirical coverage probability closest to the nominal level 95% is printed in bold

we will use the same names for the present tests. The shift alternatives are obtained
by subtracting a shift parameter μ ∈ {0, 0.1, . . . , 1} from the survival times of the
second group, i.e. F̃2,μ(x) = F̃2(x + μ). To have another competitor to the present
tests, we also simulated the power of the log-rank test which is actually a test for the
null hypothesis H S

0 instead of H p
0 . However, in the present shift model, the distribution

functions only imply H p
0 in case of μ = 0 for the subsequent choices of F̃1 and F̃2.

We utilized the function survdiff of the R package survival (Therneau and Lumley
2017) for calculating the log-rank test outcomes. We focused on the above set-ups
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Fig. 1 Power comparisons between ϕn (solid line), ϕ∗
n (dashed line), ϕπ

n (dotted line), and the log-rank
test (dot-dashed line) for small sample sizes n1 = 10, n2 ∈ {10, 20} and set-ups (2) and (3). The narrow,
horizontal line represents the nominal level α = 5%

(2) and (3) and coupled those, respectively, with those choices of the above censoring
distributions leading to the moderate and strong censoring regimes under H p

0 .
The results are presented in Fig. 1 for the sample sizes n1 = 10, n2 ∈ {10, 20}

(and Figure 3 in Online Resource for n1 = 20, n2 = 10). As expected, the powers
of all test procedures generally increase if the sample size is increased. Among the
Mann–Whitney statistic-based tests ϕn, ϕ∗

n , and ϕπ
n , we see that the asymptotic test

ϕn has the highest power. This is no surprise, though, as it comes at the cost of an
inflated type-I error rate under H p

0 : μ = 0; see the simulation results of Sect. 5.1
above. Therefore, we exclude ϕn from further discussion. The remaining two tests,
ϕ∗

n , and ϕπ
n , keep the nominal level approximately equally well. The power of both is

comparable under set-up (2), but it is greater for ϕπ
n in the third set-up.

In contrast, the log-rank test is slightly liberal under H p
0 (type-I error rates of 5.3–

6.6%). However, this does not even result uniformly in the greatest power: While it is
clearly greater than the power of ϕ∗

n and ϕπ
n under set-up (3) and n1 = 20, n2 = 10,

the power is only slightly elevated in the cases n1 = 20, n2 = 10 (second set-up) and
n1 = n2 = 10 (third set-up). In the remaining three combinations, the power of the
log-rank test is apparently inferior to the power of ϕ∗

n , and ϕπ
n .

Again, it needs to be emphasized that the log-rank test is originally constructed
for a different testing problem under proportional hazards. If H p

0 is true while H S
0

is not, this necessarily implies that the involved cumulative hazard functions cross.
Therefore, slight departures from such null hypotheses still result in crossing hazards
which usually imply a sub-optimal power of the log-rank test. Of course, its power
would be greater in case of proportional hazards alternatives; see e.g. Tables 1 and 2
in Brückner and Brannath (2016) or Figures 5 to 7 in Brendel et al. (2014) for the loss
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of power of the log-rank test when a proportional hazards alternative is replaced by a
non-proportional hazards alternative.

As a final conclusion, we summarize that ϕ∗
n and ϕπ

n appear to be the most reliable
procedures (with a view towards control of the nominal level and power) whereof the
permutation test is slightly preferable. In terms of power, ϕ∗

n and ϕπ
n seem to be at least

competitive to the log-rank test, while their test statistic is based on a meaningful, real-
valued quantity, whereas the interpretation of the log-rank test statistic is cumbersome
in the absence of proportional hazards.

6 Application to a data example

To illustrate the practical applicability of our novel approaches, we reconsider a data
set containing survival times of tongue cancer patients, cf. Klein and Moeschberger
(2003). The data set is freely available in the R package KMsurv via the command
data(tongue). It contains 80 patients of which n1 = 52 are suffering from an
aneuploid tongue cancer tumour (group 1) and n2 = 28 are suffering from a diploid
tumour (group 2). Observation of 21 patients in group 1 and of six patients in group
2 have been right-censored; for all others, the time of death has been recorded. Thus,
the corresponding censoring proportions are intermediate between the “strong” and
“moderate” scenarios of Sect. 5. Note that the data set actually contains ties: among the
uncensored survival times, there are 27 different times of death in the first group, 20
different in the second group, and 39 different in the pooled sample. Moreover, there
are three individuals in group 1 with censoring time exceeding the greatest recorded
time of death in this group; for group 2 there is one such individual. As a reasonable
value for restricting the time interval, we may thus choose K = 200 weeks which still
precedes all just mentioned censoring times.

TheKaplan–Meier estimators of both recorded groups are plotted in Fig. 2. It shows
that the aneuploid Kaplan–Meier curve is always above the Kaplan–Meier curve of the
diploid group. We would, therefore, like to examine whether this gap already yields
significant results concerning the probability of concordance.
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Fig. 2 Kaplan–Meier estimators for diploid (dashed line) and aneuploid tumour (solid line) patients
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The data evaluation resulted in a point estimate p̂ ≈ 0.6148 indicating a larger
survival probability of the aneuploid group in comparison with the diploid. To infer
this, we obtained these one- and two-sided 95% confidence intervals (based on normal,
bootstrap, and permutation quantiles) for the probability p, that a randomly chosen
individualwith an aneuploid tumour survives longer than a patientwith diploid tumour:

• Asymptotic intervals: Two-sided: [0.490, 0.740], One-sided: [0.510, 1.000],

• Bootstrap intervals: Two-sided: [0.457, 0.772], One-sided: [0.505, 1.000],

• Permutation intervals: Two-sided: [0.467, 0.763], One-sided: [0.506, 1.000].

The intervals were calculated using the asymptotic normal quantile as well as B =
9999 resampling iterations for each of the bootstrap and the permutation technique.

By inverting these confidence intervals, it can be readily seen that the two-sided
null hypothesis H p

0 : {p = 1/2} cannot be rejected by any of the two-sided procedures
since p = 1/2 is contained in all two-sided intervals. Here, slightly larger sample sizes
might have caused significant results as the lower bounds of all three intervals are not
far from 1/2. We like to note that the asymptotic two-sided interval is the shortest one
which is in line with our simulation results from Sect. 5: the corresponding empirical
coverage probabilities for In in Table 3 for n1 = 50 and n2 = 25 suggest that the actual
coverage probability (for p = 1/2) is somewhere between 93 and 94.5%, that is, In

is slightly liberal. On the other hand, I ∗
n and I π

n turned out to be much more reliable
under these scenarios such that their widths seem to be much more realistic. That the
permutation-based interval is slightly smaller than the bootstrap-based interval is in
line with the power simulations as presented in Fig. 1: the permutation method always
seemed to yield a slightly more powerful inference method than the pooled bootstrap.

However, if we were only interested in detecting an effect in favour of the
aneuploid group, we have to consider the corresponding one-sided tests to avoid pos-
sible directional errors. In particular, the results for testing the one-sided hypothesis
H p
0,≤ : {p ≤ 1/2} are borderline significant: it can be rejected by all three approaches

at level 5%, but the lower bounds of the intervals are just above 1/2. We note that
multiplicity issues have not been taken into account.

7 Summary and discussion

In this article, novel inference procedures for the Mann–Whitney effect p and the
win ratio w are introduced both of which are meaningful and well-established effect
measures (especially in biometry and survival analysis). In comparison with the usual
survival hypothesis H S

0 : {S1 = S2}, we were the first who particularly developed
asymptotic confidence intervals for p and w as well as tests for the more interesting
composite null hypothesis H p

0 : {p = 1/2} in the two-sample survival model with
right-censored data. By utilizing normalized Kaplan–Meier estimates, these can even
be constructed for discontinuously distributed survival times that may be subject to
independent right-censoring. Applying empirical process theory, we showed that point
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estimates of p and w are asymptotically normal. By introducing novel variance esti-
mates, this leads to asymptotic inference procedures based on normal quantiles. To
improve their finite sample performance, bootstrap and permutation approaches have
been considered and shown to maintain the same asymptotic properties. In our sim-
ulation study, it could be seen that the proposed permutation procedure considerably
improves the finite sample performance of our procedure. Moreover, it is even finitely
exact if data is exchangeable (i.e. whenever both survival and censoring distributions
are equal) and can thus be recommended as the method of choice. In the special con-
tinuous situation with complete observations, a similar result has recently been proven
in Chung and Romano (2016a).

Note that the proposed method can also be applied in the ‘winner-loser’ set-ups
considered in Pocock et al. (2012) or Wang and Pocock (2016), where now even the
neglected ties can be taken into account.We plan to do this in the near future.Moreover,
extensions of the proposed techniques to other models such as multiple samples and
multivariate or specific paired designs (e.g. measurements before and after treatment)
will also be considered in a forthcoming paper.
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