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Abstract This paper deals with the estimation and prediction problems of spatio-
temporal processes by using state-space methodology. The spatio-temporal process
is represented through an infinite moving average decomposition. This expansion
is well known in time series analysis and can be extended straightforwardly in
space–time. Such an approach allows easy implementation of the Kalman filter pro-
cedure for estimation and prediction of linear time processes exhibiting both short-
and long-range dependence and a spatial dependence structure given on the loca-
tions. Furthermore, we consider a truncated state-space equation, which allows to
calculate an approximate likelihood for large data sets. The performance of the
proposed Kalman filter approach is evaluated by means of several Monte Carlo
experiments implemented under different scenarios, and it is illustrated with two
applications.
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1 Introduction

In the last decade, there has been an increasing interest in modeling spatio-temporal
data that result from dynamic processes in constant evolution in both space and time.
Geostatistics has been used to deal with such spatio-temporal processes by providing
covariance models to analyze the dependence structure. Since the eighties, a wealth
of papers have provided a variety of spatio-temporal models that have been used in
many scientific areas, such as hydrology, environmental sciences, geology, astronomy,
neuroscience, ecology, atmospheric sciences, oceonography, and economy; this list is
indeed virtually endless [see for instance, Eynon and Switzer (1983), Bilonick (1985),
Oehlert (1993) among others]. Usually, the proposed models exhibit a hierarchical
structure incorporating spatial or spatio-temporal dependencies. Indeed, approaches
based on hierarchical spatio-temporal structures have been used to achieve flexible
models that capture the dynamic behavior of the data. This has been the case in Brown
et al. (1994) who applied a hierarchical model to a relatively low-dimensional space–
time air pollution problem. Similarly, Handcock and Wallis (1994) used a Bayesian
kriging approach for space–timemodeling ofmeteorological fields.Waller et al. (1997)
employed hierarchical Bayesian space–time models for mapping disease rates. Wikle
et al. (1998) used this class of models in the analysis of monthly averaged maximum
temperature data distributed in space and time, and Hughes et al. (1999) used hidden
Markovmodels with unobserved weather states to model space–time atmospheric pre-
cipitation. We can also find applications in environmental pollution problems, where,
for example, Ippoliti (2001) analyzed the levels of sulfur dioxide in Milan (Italy),
providing a spatio-temporal state-space representation. Fasso et al. (2007) combined
the state-space method with calibration techniques and applied them to fine particulate
matter (PM10) data in the spatio-temporal dimension. Cameletti et al. (2013) consid-
ered a hierarchical spatio-temporal model for particulate matter concentrations. This
proposal involves aGaussianField, affectedby ameasurement error, and a state process
characterized by a first-order autoregressive dynamic model and spatially correlated
innovations. Another interesting spatio-temporal application for the interpolation of
daily rainfall data using state-spacemodels has been proposed byMilitino et al. (2015).
For an overview of hierarchical dynamical spatio-temporal models, the recent book
by Cressie and Wikle (2011) provides an excellent starting point for researchers in
this area.

In these modeling exercises, the Kalman filter algorithm has proved to be a power-
ful tool for the statistical treatment of state-space models, providing the estimation of
parameters (given in the state vector) and the prediction of unobserved values at a spe-
cific location. For instance, Huang and Cressie (1996) and Wikle (2003) developed
empirical Bayesian space–time Kalman filter models for the investigation of snow
water equivalent and monthly precipitation. Mardia et al. (1998) considered a mixed
approach between the Kalman filter algorithm and Kriging methodology (named as
kriged Kalman Filter), in which the state equation incorporates different forms of
temporal dynamics to model space–time interactions. Wikle and Cressie (1999) pre-
sented an approach to space–timeprediction that achieves dimension reduction through
a spatio-temporal Kalman filter. Xu and Wikle (2007) proposed a spatio-temporal
dynamic model formulation with restricted parameter matrices based on prior scien-
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tific knowledge, and developed a general expectation–maximization (GEM) algorithm
to carry out the estimations. Stroud et al. (2010) applied a dynamic state-space model
to a sequence of SeaWiFS satellite images on the LakeMichigan, where a great amount
of sediments was observed after a great storm. In this study, the authors implemented
a comprehensive version of the Kalman filter, called ensemble Kalman filter, which
allows to deal with problems of nonlinearities and high dimensionality inherent in
satellite images. They were able to provide maps of concentrations of sediments
with uncertainties in space and time. To deal with forecasting on spatio-temporal
processes, Zes (2014) used the state-space system and time-varying parameter least
squares autoregressive system, with their respective solving algorithms, the Kalman
filter, and autoregressive adaptive least squares (ALS). More recently, Bocquet et al.
(2015) discussed the methods available for data assimilation in atmospheric models,
including ensembleKalman filter. A common feature in the above-mentioned papers is
that the unobserved state vector is responsible of capturing the temporal dependence
through a Markovian temporal evolution, with autoregressive or vector autoregres-
sive type of models. This means that the proposed approaches belong to the class of
short-memory models in time series data.

Our approach considers a more general framework. Specifically, we allow to cap-
ture the temporal dependence of both short- and long-memory processes, as well as
modeling the spatial dependence. We use the Kalman filter algorithm for estimation
and prediction of spatio-temporal processes, but on the basis of a new updating scheme
of the unobserved state vector, which is different from the above-mentioned proposals
for the following reasons:

– We propose the use of an infinite moving average expansion (MA(∞)) as a form
of representing linear processes to deal with spatio-temporal models.

– Our proposal includes short- or long-memory models to capture the temporal
dependence, such as ARMA(p, q) and ARFIMA(p, d, q) models.

– Instead of directly calculating the likelihood of the spatio-temporal process, we
propose an approximation to the likelihood function based on the truncated state-
space representation. This, to some extent, reduces the size of memory required
and overcomes the computational burdens.

– Finally, a methodology of imputation of missing observations is also proposed.

The plan of the paper is the following. Section 2 discusses a class of spatio-temporal
processes and their representation inMA(∞) expansions. Section 3 presents the state-
space models and the Kalman filter algorithm for estimating the parameters involved
in the temporal dependence and the spatial structure. In Sect. 4, a simulation study
reveals the adequacy and the good behavior of our proposal under a variety of practical
scenarios. Section 5 applies our proposal to global total column ozone levels and Irish
wind speed data. The paper ends with some final conclusions and a discussion.

2 A class of spatio-temporal processes

Consider the class of spatio-temporal processes given by the infinite moving average
expansion,
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Yt (s) = Mt (s)β + εt (s), (1)

εt (s) =
∞∑

j=0

ψ jηt− j (s), (2)

for t = 1, . . . , T , where s represents a location in the spatial domain D ⊂ R
2,

β = [β1, . . . , βp]� is a vector of parameters Mt (s) = [M (1)
t (s), . . . , M (p)

t (s)] is a
p-dimensional vector of non-stochastic regressors, {ψ j } is a sequence of coefficients
satisfying

∑∞
j=0 ψ2

j < ∞, and {ηt (s)} a sequence of temporally independent and
spatially stationary Gaussian processes, with E(ηt (s)) = 0 ∀ s ∈ D, and covariance
function

cov(ηt (s), ηt (s′)) = Cη(‖s − s′‖; θ), s, s′ ∈ D. (3)

Here, Cη : [0,∞) → R such that the composition Cη ◦ ‖·‖ : R2 → R is an isotropic
covariance function (Daley and Porcu 2014), where ‖·‖ is the Euclidean distance, ◦
denotes composition, and θ is a parameter vector. This representation is similar to
the well-known MA(∞) decomposition for the error sequence {εt (s)}. We say that a
stationary process with lag-h temporal covariance κ(h) is said to have short-memory
if
∑∞

h=−∞ |κ(h)| < ∞, and in this case the process in (2) will be called a short-
memory process. On the other hand, if

∑∞
h=−∞ |κ(h)| = ∞, the process in Eq. (2)

will be called a long-memory process. Another characterization is based directly on the
MA(∞) decomposition of the process (2). It is said that the process {εt (s)} has short-
memory if ψ j ∼ exp(−aj) for j ≥ 1, with a a positive constant. On the other hand,
the process has long-memory if ψ j ∼ jd−1 for some d ∈ (0, 1/2) [see Palma et al.
(2013)]. Here, ∼ means that the ratio of both sides tends to one. We now consider the
issue of the spatial and temporal dependencies of the process Yt (s). In the case of the
MA(∞) decomposition for the spatio-temporal process defined by (1), the covariance
across both space and time is given by

cov
(
Yt (s),Yt ′(s

′)
) =

∞∑

i, j=0

ψ jψi cov
(
ηt− j (s), ηt ′−i (s

′)
)

= Cη(ξ)

∞∑

j=0

ψ jψ j+|t−t ′| = Cη(ξ)κ(h),

where ξ = ‖s− s′‖, s, s′ ∈ D, h = t − t ′, t, t ′ ∈ Z+ and κ(·) is a temporal covariance
function. Thus, the spatio-temporal covariance function of the process Yt (s) can be
written as the product of a purely spatial with a purely temporal covariance function.
In such a case, we say that Yt (s) has a separable spatio-temporal covariance function
(Gneiting 2002). For a neater and self-contained exposition,we discuss some examples
below.

Example 1 As an example of short-memory process,we consider the regressionmodel
with autoregressive moving average errors, denoted by ARMA(p, q), and defined as
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εt (s) =
p∑

j=1

φ jεt− j (s) +
q∑

j=1

θ jηt− j (s) + ηt (s), s ∈ D,

for t = 1, 2 . . . , T . When p = q = 1, i.e., εt (s) = φεt−1(s) + θηt−1(s) + ηt (s),
we obtain a special case of the errors in (2) with coefficients ψ j = (φ − θ) φ j−1 for
j ≥ 1 and ψ j = 1 for j = 0 in the MA(∞) process (hereafter, we assume that
ψ0 = 1, unless specified otherwise) . When q = 0, we have an autoregressive AR(p)
process defined as εt (s) = ∑p

j=1 φ jεt− j (s) + ηt (s), for t = 1, 2 . . . , T . If p = 1,
then εt (s) = φεt−1(s) + ηt (s), this process is a special case of the errors in (2) with
coefficients ψ j = φ j in the MA(∞) process. Straightforward calculations show that

the temporal covariance function from an AR(1) process is κ(h) = φh

1−φ2 for h > 0,
see Mikosch et al. (1995) for other MA(∞) representations on ARMA models.

Example 2 Other example of the regressionmodel (1) is the stationary fractional noise
(FN) errors (2) with infinite moving average coefficients ψ j = Γ ( j+d)

Γ ( j+1)Γ (d)
, where

Γ (·) is the Gamma function and d is the long-memory coefficient. The expected
value is given by E(Yt (s)) = Mt (s)β, while the temporal covariance function is
κ(h) = σ 2 Γ (1−2d)Γ (h+d)

Γ (1−d)Γ (d)Γ (h+1−d)
, for h > 0, with d ∈ (0, 1/2). A natural extension of

the FN model is the stationary autoregressive fractionally integrated moving average
ARFIMA(p, d, q) process, defined by Φ (B) εt (s) = Θ (B) (1 − B)−d ηt (s), for t =
1, 2, . . . T , where B is the backward shift operator, Φ (B) = 1 + φ1B + · · · + φpB p

is an autoregressive polynomial, and Θ (B) = 1 + θ1B + · · · + θq Bq is a moving
average polynomial. The infinite moving average coefficientsψ j satisfy the following
relation

ψ0 = 1, ψ j = π j (d) +
min( j,p)∑

i=1

φiψ j−i +
min( j,q)∑

i=1

θiπ j−i (d), j ≥ 1,

where the weights π j (d) are given by π j (d) = Γ ( j+d)
Γ ( j+1)Γ (d)

, for 0 < d < 1/2; see
Kokoszka and Taqqu (1995) for more details.

For the spatial covariance structure defined in (3), we consider the general class of
Matérn covariance models (Matérn 1986) given by

Cη(ξ ; θ) = σ 2

2ν−1Γ (ν)

(
2
√

νρξ
)ν

Kν

(
2
√

νρξ
)
, ξ ≥ 0, θ = (σ 2, ρ, ν)�, (4)

where ρ > 0, ν ≥ 0, σ 2 > 0 and Kν is the modified Bessel function of the second
kind of order ν. Known special cases will be shown in detail in Sect. 4.

3 State-space representation

Before starting with the state-space (SS throughout) representation defined through
Eq. (1), a general version of the SS system for spatio-temporal processes is given by
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Yt (s) = [Gt (s) Mt (s)
] [ Xt (s)

β t (s)

]
+ Wt (s),

[
Xt+1(s)
β t+1(s)

]
=
⎡

⎣
Ft (s) 0

0 Ip

⎤

⎦
[
Xt (s)
β t (s)

]
+
[
H
0

]
Vt (s), (5)

where Yt (·) is the observation for time t at location s ∈ D, Gt (s) is an observation
operator,Mt (s) is a vector of exogenous or predetermined variables, [Xt (s) β t (s)]�
is a state vector, and Wt (s) is an observation noise with variance RW . In addition,
Ft (·) is a state transition operator, Ir denotes the r ×r identity matrix hereafter, H is a
linear operator, Vt (s) is a spatially colored, temporally white and Gaussian with mean
zero and covariance function cov(Vt (s), Vt (s′)) = CV (ξ ; θ), and Vt (s) is uncorrelated
with Wt (s), i.e., E(Wt (s)Vt ′(s)) = 0 for all s ∈ D and for all t, t ′ ∈ Z+.

The process (1) can be represented by a SS system as above by generalizing the
infinite-dimensional equations given by Hannan and Deistler (1988) and Ferreira et al.
(2013) to the spatio-temporal case. This can be achieved by assignation of the ( j + 1)
component of the state vector as the lag in j steps of the process {ηt (s)} defined in
the model error {εt (s)} , i.e., X ( j+1)

t (s) = ηt− j (s) for j = 0, 1, . . .. In such a case,
the process specified by (1) can be represented by the following infinite-dimensional
state-space system

Yt (s) = [G Mt (s)
] [ Xt (s)

β(s)

]
,

[
Xt+1(s)
β(s)

]
=
⎡

⎣
Ft 0

0 Ip

⎤

⎦
[
Xt (s)
β(s)

]
+
[ [

1 0 0 0 . . .
]�

0

]
ηt+1(s), (6)

for t = 1, . . . , T , where G = [
1 ψ1 ψ2 . . .

]
, Ft =

⎡

⎣
0� 0

I∞ 0

⎤

⎦, I∞ =

diag{1, 1, . . .}, and RW = 0, i.e., we assume that our observed data are measured
without an additive error. From these equations, observe that H = [1, 0, 0, . . .]�
and Vt (s) = ηt+1(s). Estimation techniques related to (6) have a notorious computa-
tional burden; for this reason, we truncate the expansion in (2) after some m ∈ Z+
components, so that an approximation for {Yt (s)} can be written as

Yt (s) = Mt (s)β +
m∑

j=0

ψ jηt− j (s), s ∈ D, (7)

for some positive integer m. Thus, the finite-dimensional SS representation of model
(7) is considered, with observation and state equations given by

Yt (s) = [ [ 1 ψ1 ψ2 · · · ψm
]
, Mt (s)

] [ Xt (s)
β(s)

]
,
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[
Xt+1(s)
β(s)

]
=
⎡

⎣
Ft 0�

0p×(m+1) Ip

⎤

⎦
[
Xt (s)
β(s)

]
+
[ [

1 0 0 . . . 0
]�

0p×1

]
ηt+1(s),

(8)

where Ft =
⎡

⎣
0� 0

Im 0m×1

⎤

⎦. It is worth noting that the matrices involved in the

truncated Kalman equations have the following dimensions. For MR(p×q) being the
space of real-value matrices of dimension p× q, we have G ∈ MR(1×(m+1)), Xt (s) ∈
MR((m+1)×1), F ∈ MR((m+1)×(m+1)) and H ∈ MR((m+1)×1). The following result
establishes the asymptotic magnitude of the truncation error when approximating (1)
by (7).

Proposition 1 For given m ∈ Z+, t ∈ Z and s = (s1, s2, . . . , sn)�. Let ηt (s) =
(ηt (s1), . . . , ηt (sn))� and rm(s) : D → MR(n×n) be the error variancematrix, defined
as rm(s) = Var(

∑∞
j=0 ψ jηt− j (s) −∑m

j=0 ψ jηt− j (s)). Then, for large m, n, a > 0
and 0 < d < 1/2, we have the following:

‖rm(s)‖ ∼
{O(nm2d−1), for a long − memory process
O(n exp (−am)), for a short − memory process,

where ‖A‖ = max1≤i≤n
∑n

j=1 | ai j | is the infinity norm of A.

Proof For an infinite moving average process {Yt (s)}, the error variance matrix for
the truncated series is

rm(s) = Var

⎛

⎝
∞∑

j=0

ψ jηt− j (s) −
m∑

j=0

ψ jηt− j (s)

⎞

⎠ = Var

( ∞∑

k=m+1

ψkηt−k(s)

)

= [Cη(‖si − s j‖)
]n
i, j=1

∞∑

k=m+1

ψ2
k = cnbm,

where the coefficients satisfy ψm ∼ Θ(1)
Φ(1)

md−1

Γ (d)
, as m → ∞ and where d is the long-

memory parameter, see Corollary 3.1 of Kokoszka and Taqqu (1995). In particular,
if {Yt (s)} is a FN(d) process with ψm = Γ (m+d)

Γ (m+1)Γ (d)
, by applying the Stirling’s

approximation we have ψm ∼ md−1

Γ (d)
, m → ∞. Furthermore, using Lemma 3.3 of

Palma (2007) we get

∞∑

k=m+1

ψ2
k ∼ m2d−1Γ (d)−1(2d − 1)−1, 0 < d < 1/2, (9)

so that (9) implies bm = O(m2d−1) when m → ∞. On the other hand, ‖cn‖∞ =
max1≤i≤n

∑n
j=1 | Cη(‖si − s j‖) |≤ nσ 2 where σ 2 = Cη(0; θ). Thus, cn = O(n) for
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large n, proving the result. The proof for the case of a short-memory process is similar
to the previous case, using ψm ∼ exp (−am) when m → ∞.

Some comments are in order. First, space–time asymptotics is still an open problem
in the geostatistical literature. Most of the contributions are devoted to either of these
two approaches: on the one hand, one might fix the number of spatial sites and let the
number of temporal observations tend to infinity. This is the approach followed, for
instance, by Li et al. (2008). According to this framework, evaluating the performance
of our estimators amounts to apply mutandis the results in Chan and Palma (1998).
Another approachmight be obtained by increasing domain asymptotics (Guyon 1995).
In this case, space–time asymptotics would be covered by the results in Guyon (1995).
A very tempting approach might be to consider infill asymptotics in space and increas-
ing domain in time. To the knowledge of the authors, this approach is not available in
the literature and represents a major challenge.

3.1 Derivation of the Kalman filter algorithm

We now develop the Kalman filter algorithm for the spatio-temporal process defined
in Eq. (7) with the associated SS representation given in (8). The Kalman filter is a
powerful tool to make inferences about the state vector, which allows to calculate the
conditional mean and covariance matrix of the state vector [Xt (s),β(s)]�. For the
sake of simplicity, we restrict our attention to studying the behavior of the parameter
estimates of the error {εt (·)} process in the regression model (1), i.e.,

Yt (s) =
m∑

j=0

ψ jηt− j (s), s ∈ D, (10)

in such a case, the state vector is reduced down to Xt (s). The Kalman filter recur-
sive equations are well known, but we present them here to setup notation, and for a
self-contained exposition. First, define the n × 1 vector Yt = [Yt (s1), . . . ,Yt (sn)]�
containing the data values at n spatial locations, {si }ni=1, at time t and let Xt =
[Xt (s1), . . . , Xt (sn)]� be ann×1vector for an unobservable spatio-temporal state pro-
cess for n locations, where each component of this state vector are (m+1)-dimensional
vectors. Let X̂t (s) = E(Xt (s)|X1, . . . ,Xt ) the best linear unbiased predictor (BLUP)
of the unobserved state Xt (s) and let Ωt (s, s′) = cov(Xt (s) − X̂t (s), Xt (s′) − X̂t (s′))
be the state prediction error variance-covariance matrix. Finally, the initial state vector
has mean X̂1(s) = E([η0(s), η−1(s), . . . , η1−m(s)]�) = 0((m+1)×1) and covariance
matrix

Ω1(s, s′) = cov([η0(s), η−1(s), . . . , η1−m(s)]�, [η0(s′), η−1(s′), . . . , η1−m(s′)]�)

= diag(cov(η0(s), η0(s′)), . . . , cov(η1−m(s), η1−m(s′))),

which is a (m + 1) × (m + 1) matrix. The Kalman filter allows to estimate the state
vector, Xt+1(s) for s ∈ D and its prediction error based on the information available
at time t . These estimates are given by
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X̂t+1(s) = F X̂t (s) + Θt (s)�−1
t (Yt − Ŷb f t ), (11a)

Ωt+1(s, s′) = FΩt (s, s′)F� + CHV (s, s′) − Θ�
t (s)�−1

t Θt (s′), (11b)

where

�t = Var(Yt − Ŷt),

= Var(G(Xt − X̂t )),

=
⎡

⎢⎣
GΩt (s1, s1)G� · · · GΩt (s1, sn)G�

...
. . .

...

GΩt (s1, sn)G� · · · GΩt (sn, sn)G�

⎤

⎥⎦ ,

Θ�
t (s) = cov(Xt+1(s),Yt − Ŷt ),

=
⎡

⎢⎣
cov(Xt+1(s),Yt (s1) − Ŷt (s1))

...

cov(Xt+1(s),Yt (sn) − Ŷt (sn))

⎤

⎥⎦

�

=
⎡

⎢⎣
FΩt (s, s1)G�

...

FΩt (s, sn)G�

⎤

⎥⎦

�

,

Ŷt (s) = E(Yt (s)|Y1, . . . ,Yt) = GX̂t(s),

CHV (s, s′) = cov(HVt (s), HVt (s′)) = HCV (ξ)H� =
(
Cη(ξ) 0

0 0

)
,

where Θ�
t (s) ∈ MR((m+1)×n) and CHV (s, s′) ∈ MR((m+1)×(m+1)). Let θ be a param-

eter vector specifying model (10), then the log-likelihood function L(·) (up to a
constant), can be obtained from (11),

L(θ) = −1

2

T∑

t=1

log |�t (θ)| + εt (θ)��t (θ)−1εt (θ),

where εt (θ) = (Yt − Ŷt
)
is the innovation vector, and�t (θ) is the innovation covari-

ance matrix at time t obtained using the parameter value θ . Hence, the approximate
maximum likelihood estimates (MLE) provided by the Kalman equations (11) is given
by θ̂ = argmaxθ∈Θ L(θ), where Θ is a parameter space. Note that the Kalman equa-
tions (11) can be applied directly to the general state-space representation (5), yielding
in this case an exact MLE. In order to obtain predictions of unobserved values at a
location s0, we define the best linear predictor as

ŶT+k(s0) = E(YT+k(s0)|Y1, . . . ,YT ), s0 ∈ D, (12)

which is the k-step-out-sample predictor based on the finite past for k = 1, . . . , K .
These forecasts and their mean squared prediction error are obtained from the Kalman
recursive equations given by (11), as follows

ŶT+k(s0) = E(YT+k(s0)|Y1, . . . ,YT ) = G E(XT+k(s0)|Y1, . . . ,YT )

= GF E(XT+k−1(s0)|Y1, . . . ,YT )

...

= GFk−1
E(XT+1(s0)|Y1, . . . ,YT ) = GFkX̂T (s0). (13)
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Additionally, its mean squared prediction error is calculated using the following recur-
sive relations

ΩT+1(s0, s0) = FΩT (s0, s0)F� + CHV (s0, s0)

ΩT+2(s0, s0) = F2ΩT (s0, s0)(F�)2 + FCHV (s0, s0)(F)� + CHV (s0, s0)

...

ΩT+k(s0, s0) = FkΩT (s0, s0)(F�)k +
k−1∑

j=0

F jCHV (s0, s0)(F�) j .

Furthermore, the prediction error variance �T+k(s0, s0) satisfies

�T+k(s0, s0) = Var(YT+k(s0) − ŶT+k(s0)|Y1, . . . ,YT )

= Var(GXT+k(s0) + WT+k(s0) − GX̂T+k |Y1, . . . ,YT )

= GΩT+k(s0, s0)G�

= GFkΩT (s0, s0)(F�)kG� + G
k−1∑

j=0

F jCHV (s0, s0)(F�) j G�.

(14)

3.2 Missing observations

The analysis of missing observations in time series is an issue that has been treated by
several authors, see Harvey (1989) and Durbin and Koopman (2012), among others.
The SS method and its associated Kalman filter algorithm provides a simple method-
ology for handling missing values.

In order to describe this procedure, we assume that for the set of missing obser-
vations Yt (s) for t = n + 1, . . . , T − n, the vector εt (s) and the matrix Θt (s) of the
Kalman filter are set to zero, and the Kalman updates become

X̂t+1(s) = FXt (s),

Ωt+1(s, s′) = FΩt (s, s′)F� + CHV (s, s′), s, s′ ∈ D,

for t = n + 1, . . . , T − n. This imputation procedure provides an alternative method
to the forecasts of YT+k(s) together with their forecast error, and this can be obtained
merely by treating Yt (s) for t = T + 1, . . . , T + k as missing observations, and
continuing the Kalman filter beyond t = T with εt (s) = 0 and Θt (s) = 0 for t > T .
This procedure for forecasting is an elegant feature of SS methods for time series
analysis.
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4 Simulation studies

For the simulation studies, we used R free software (Core Team 2017) and C subrou-
tines connected to R (Peng and de Leeuw 2002) through the interface called .C. The
numerical optimization of the Gaussian log-likelihood function to obtain the QML
estimates was carried out using the nlminb command of R. This method makes use
of the subroutine “BFGS” corresponding to a quasi-Newton method (Broyden 1969;
Fletcher 1970; Goldfarb 1970). We used nlminb because this optimizer can be imple-
mented even when the sample size is small, obtaining convergence in the optimization
process. In addition, it is less sensitive to initial values compared to other optimizers.
We use Monte Carlo experiments to analyze the finite sample behavior of the Kalman
filter estimator, for both short- and long-memory spatio-temporal processes, as detailed
through Sect. 2. In particular, we consider two models, the first is an ARMA(1, 1), a
short-memory case, and the second is an ARFIMA, a long-memory case.

4.1 Short-memory case

Consider an ARMA(1, 1) model for the errors defined by (1) with

εt (s) = φεt−1(s) + θηt−1(s) + ηt (s), ψ j = (φ − θ) φ j−1 for j ≥ 1, (15)

where {ηt (·)} are independent over time, and follow a stationary, zero mean Gaussian
spatial random process and covariance function given by Eq. (3). We consider the
general class of Matérn covariance models defined by Eq. (4). In particular, we use
two types of covariance functions generating two possible models:

– Model 1 ν = 1
2 , corresponding to the exponential model

Cη(ξ ; θ) = σ 2 exp{−ρξ}, ξ ≥ 0, θ = (σ 2, ρ, 1/2)�, and

– Model 2 ν = 3
2 , which leads to

Cη(ξ ; θ) = σ 2 (1 + ρξ) exp{−ρξ}, ξ ≥ 0, θ = (σ 2, ρ, 3/2)�.

The choice of ν in Cη affects the mean square (m.s.) differentiability of the associate
randomfield. ForModel 1, the associatedGaussian randomfieldwill be a.s. continuous
but no m.s. differentiable. For Model 2, it will be m.s. differentiable. We assume to
observe a spatio-temporal process {εt (si ) : i = 1, . . . , n; t = 1, . . . , T }, on a regular,
rectangular grid of n × n = N spatial locations in [1, n]2, and at equidistant time
points. For the data generation scheme, the process is generated recursively from (15)
with initial values η1(s) ∼ N (0,Cη(0)) and ε1(s) = Cη(0)/(1 − φ2) + η1(s). Each
realization is of length T = 100, 250. In addition, the parameters of the covariance
function are considered constant, with different values for σ 2 and ρ. Finally, we
simulate eachprocess 100 times, and for each simulation theKalmanfilter estimates are
evaluated by the relative bias (RelBias) and by the mean square error (MSE) defined as
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Fig. 1 MSE as a function of m and (φ, ρ) for the MA approximation of an AR(1) spatio-temporal process
with covariance function following an exponential model. In a the empirical MSE of φ. In b the empirical
MSE of the covariance parameter ρ

RelBias(θ) = 1
100

∑100
i=1

(
θ̂i/θi − 1

)
and MSE(θ) = 1

100

∑100
i=1

(
θ̂i − θi

)2
, where

θ̂i is the Kalman filter estimate of θi for the i th realization. A preliminary assessment
of the SS approach is related to the choice of the truncation level, which has an
influence on the parameter estimates. Figure 1 plots the estimated MSE for an AR(1)
model for different values of φ and ρ as a function of the truncation level, m, for the
MA(∞) decomposition. Figure 2 displays theMSE for different values of d and ρ as a
function of the truncation level, m, based on a FN(d) model. In both cases, we use the
Model 1 as spatial covariance function with σ 2 = 1, T = 250 and N = 100 spatial
locations. In these graphs, darker regions represent the minimal empirical MSE, while
lighter regions indicate greater MSE values. Note that, for the long-memory case an
improvement in terms of MSE is evidenced when the truncation parameter ism ≥ 10.
Similar results are obtained in Chan and Palma (1998) with m > 6 when considering
only the temporal domain. The short-memory case requires a lower level of truncation
(m = 5) on the state-space representation to guarantee the efficient performance of the
truncated MLE estimates. In light of this evidence and due to space constraints, only
a subset (m = 5, 10) of the results are presented; however, other results and codes are
available from the authors upon request.

Table 1 shows the estimates of the parameters for two truncation levels, m = 5, 10
and N = 100 spatial locations. We have used a combination of parameter values that
reproduce widely encountered situations in practical analysis. These scenarios are
shown in Table 1. Note that the estimates are very close to their theoretical counter-
parts. Furthermore, it is noteworthy that goodness-of-fit criteria such as the standard
deviation (SD), bias and

√
MSE are very similar in relation to the level of truncation.

In effect, if the truncation parameter is m = 5, the truncated Kalman filter works
extremely well for both sample sizes.
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Fig. 2 MSEas a functionofm and (d, ρ) for theMAapproximationof aFN(d) spatio-temporal processwith
covariance function following an exponential model . In a empirical MSE of the long-memory parameter
d. In b empirical MSE of the covariance parameter ρ

4.2 Long-memory case

Consider now the following stationary ARFIMA(0, d, 1) model defined by

εt (s) = (1 − θB)(1 − B)−dηt (s), ψ j = Γ ( j + d)

Γ ( j + 1)Γ (d)
+ θ

Γ ( j + d − 1)

Γ ( j)Γ (d)
,

for j ≥ 1, where Γ (·) is the Gamma function, d is the long-memory coefficient such
that 0 < d < 1/2 and θ is a moving average coefficient satisfying |θ | < 1. Concerning
the innovations {ηt (s)}, these were generated considering the same spatial structure
as for the short-memory case. The samples from this ARFIMA process are generated
using the innovation algorithm; see Brockwell and Davis (1991), page 172. In this
implementation, the temporal covariance of the process {εt (s)} is given by

κT (h) = Γ (1 − 2d)Γ (h + d)

Γ (1 − d)Γ (d)Γ (h + 1 − d)
×
[
1 + θ2 − θ

h − d

h − 1 + d
− θ

h + d

h + 1 − d

]
,

for h > 0. We offer some practical combination of parameter values commonly
encountered in data set analysiswith long-range dependence. Table 2 reports the results
from the Monte Carlo simulations for several parameter values and two truncation
levels, m = 5, 10. The simulations are based on sample sizes T = 100, 250 and 100
replications. As indicated in the previous case, the observed means for the estimates
are close to their expected values. In contrast to the findings in the short-memory
case, a long-memory process requires a higher level of truncation on the state-space
representation to guarantee the efficient performance of the truncated MLE estimates.
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Table 1 Results for the Kalman filter estimates for an ARMA(1, 1) model with observed locations on the
square [0, 10]2

Model Parameter Estimation

φ θ σ 2 ρ φ̂ θ̂ σ̂ 2 ρ̂

m = 5 T = 100

Model 1 0.45 0.3 0.5 0.35 Mean 0.4462 0.3009 0.5025 0.3465

SD 0.0120 0.0136 0.0198 0.0168

RelBias −0.0085 0.0031 0.0051 −0.0101√
MSE 0.0126 0.0135 0.0198 0.0171

0.65 0.8 0.1 0.9 Mean 0.5722 0.7768 0.1020 0.8996

SD 0.0047 0.0060 0.0019 0.0240

RelBias −0.1198 −0.0290 0.0197 −0.0004√
MSE 0.0780 0.0240 0.0027 0.0239

Model 2 0.45 0.3 0.5 0.35 Mean 0.4459 0.3012 0.5028 0.3489

SD 0.0118 0.0134 0.0291 0.0079

RelBias −0.0090 0.0039 0.0055 −0.0032√
MSE 0.0125 0.0134 0.0297 0.0080

0.65 0.8 0.1 0.9 Mean 0.5723 0.7762 0.1022 0.8985

SD 0.0050 0.0061 0.0036 0.0148

RelBias −0.1195 −0.0298 0.0215 −0.0017√
MSE 0.0778 0.0246 0.0042 0.0148

T = 250

Model 1 0.45 0.3 0.5 0.35 Mean 0.4476 0.3012 0.4976 0.3519

SD 0.0165 0.0180 0.0186 0.0155

RelBias −0.0053 0.0041 −0.0049 0.0055√
MSE 0.0166 0.0179 0.0187 0.0155

0.65 0.8 0.1 0.9 Mean 0.5717 0.7739 0.1026 0.8984

SD 0.0031 0.0035 0.0013 0.0171

RelBias −0.1204 −0.0327 0.0256 −0.0018√
MSE 0.0783 0.0264 0.0029 0.0171

Model 2 0.45 0.3 0.5 0.35 Mean 0.4464 0.3033 0.5031 0.3492

SD 0.0087 0.0095 0.0188 0.0047

RelBias −0.0080 0.0110 0.0061 −0.0024√
MSE 0.0093 0.0100 0.0190 0.0048

0.65 0.8 0.1 0.9 Mean 0.5713 0.7739 0.1025 0.8998

SD 0.0038 0.0041 0.0023 0.0088

RelBias 0.1210 −0.0327 0.0253 −0.0002√
MSE 0.0787 0.0264 0.0034 0.0088
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Table 1 continued

Model Parameter Estimation

φ θ σ 2 ρ φ̂ θ̂ σ̂ 2 ρ̂

m = 10 T = 100

Model 1 0.45 0.3 0.5 0.35 Mean 0.4484 0.2987 0.5015 0.3476

SD 0.0074 0.0148 0.0243 0.0217

RelBias −0.0055 −0.0051 0.0017 −0.0115√
MSE 0.0123 0.0132 0.0152 0.0073

0.65 0.8 0.1 0.9 Mean 0.6415 0.8014 0.0993 0.8991

SD 0.0024 0.0041 0.0021 0.0213

RelBias −0.0146 0.0034 −0.011 −0.0010√
MSE 0.0043 0.0131 0.0039 0.0065

Model 2 0.45 0.3 0.5 0.35 Mean 0.4501 0.3017 0.5031 0.3491

SD 0.0133 0.0084 0.0123 0.0063

RelBias 0.0008 0.0091 0.0062 −0.0045√
MSE 0.0101 0.0204 0.0037 0.0103

0.65 0.8 0.1 0.9 Mean 0.6465 0.8024 0.0993 0.9015

SD 0.0102 0.0132 0.0055 0.0242

RelBias −0.0140 0.0016 −0.0068 0.0007√
MSE 0.0156 0.0134 0.0053 0.0086

T = 250

Model 1 0.45 0.3 0.5 0.35 Mean 0.4504 0.3075 0.4984 0.3495

SD 0.0064 0.0232 0.0128 0.0121

RelBias 0.0008 0.0159 −0.0068 −0.0045√
MSE 0.0212 0.0149 0.0130 0.0084

0.65 0.8 0.1 0.9 Mean 0.6477 0.8037 0.0998 0.9016

SD 0.0027 0.0053 0.0018 0.0327

RelBias −0.0139 0.0031 −0.0015 0.0018√
MSE 0.0046 0.0089 0.0026 0.0055

Model 2 0.45 0.3 0.5 0.35 Mean 0.4465 0.3032 0.5010 0.3498

SD 0.0120 0.0181 0.0189 0.0080

RelBias −0.0009 0.0088 0.0020 −0.0005√
MSE 0.0095 0.0173 0.0028 0.0080

0.65 0.8 0.1 0.9 Mean 0.6415 0.8011 0.0997 0.9007

SD 0.0085 0.0073 0.0038 0.0169

RelBias −0.0131 0.0013 −0.0035 0.0008√
MSE 0.0120 0.0074 0.0038 0.0073

123



236 G. Ferreira et al.

Table 2 Results for the Kalman filter estimates for an ARFIMA(0, d, 1) model with observed locations
on the square [0, 10]2

Model Parameter Estimation

d θ σ 2 ρ d̂ θ̂ σ̂ 2 ρ̂

m = 5 T = 100

Model 1 0.15 0.45 1.5 0.55 Mean 0.1888 0.4840 1.5112 0.5483

SD 0.0524 0.0535 0.0400 0.0191

RelBias 0.2585 0.0756 0.0074 −0.0031√
MSE 0.0648 0.0630 0.0413 0.0190

0.35 0.2 0.8 0.75 Mean 0.3920 0.1870 0.8564 0.7494

SD 0.0248 0.0342 0.0240 0.0288

RelBias 0.1199 −0.0650 0.0705 −0.0008√
MSE 0.0487 0.0364 0.0612 0.0287

Model 2 0.15 0.45 1.5 0.55 Mean 0.1828 0.4911 1.4476 0.5812

SD 0.0862 0.0675 0.2414 0.1112

RelBias 0.2190 0.0913 −0.0349 0.0568√
MSE 0.0919 0.0787 0.2458 0.1150

0.35 0.2 0.8 0.75 Mean 0.3897 0.1902 0.8598 0.7482

SD 0.0177 0.0205 0.0367 0.0147

RelBias 0.1134 −0.0489 0.0748 −0.0024√
MSE 0.0434 0.0226 0.0701 0.0148

T = 250

Model 1 0.15 0.45 1.5 0.55 Mean 0.1810 0.4763 1.5072 0.5495

SD 0.0269 0.0273 0.0270 0.0129

RelBias 0.2069 0.0584 0.0048 −0.0009√
MSE 0.0409 0.0378 0.0278 0.0129

0.35 0.2 0.8 0.75 Mean 0.3863 0.1852 0.8555 0.7499

SD 0.0126 0.0119 0.0144 0.0167

RelBias 0.1037 −0.0742 0.0694 −0.0001√
MSE 0.0384 0.0190 0.0573 0.0167

Model 2 0.15 0.45 1.5 0.55 Mean 0.2096 0.5065 1.5100 0.5499

SD 0.0903 0.0924 0.0753 0.0113

RelBias 0.3975 0.1255 0.0067 −0.0001√
MSE 0.1079 0.1079 0.0756 0.0113

0.35 0.2 0.8 0.75 Mean 0.3834 0.1862 0.8551 0.7499

SD 0.0260 0.0237 0.0406 0.0164

RelBias 0.0955 −0.0692 0.0689 −0.00013√
MSE 0.0422 0.0273 0.0683 0.0163
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Table 2 continued

Model Parameter Estimation

d θ σ 2 ρ d̂ θ̂ σ̂ 2 ρ̂

m = 10 T = 100

Model 1 0.15 0.45 1.5 0.55 Mean 0.1594 0.4563 1.5096 0.5475

SD 0.0252 0.0276 0.0446 0.0204

RelBias 0.0624 0.0140 0.0064 −0.0045√
MSE 0.0268 0.0281 0.0454 0.0205

0.35 0.2 0.8 0.75 Mean 0.3829 0.1996 0.8327 0.7469

SD 0.0318 0.0382 0.0323 0.0388

RelBias 0.0941 −0.0021 0.0409 −0.0042√
MSE 0.0457 0.0381 0.0459 0.0387

Model 2 0.15 0.45 1.5 0.55 Mean 0.1671 0.4599 1.5038 0.5501

SD 0.0616 0.0705 0.1065 0.0175

RelBias 0.1139 0.0222 0.0025 0.0002√
MSE 0.0636 0.0708 0.1060 0.0174

0.35 0.2 0.8 0.75 Mean 0.3896 0.2083 0.8333 0.7492

SD 0.0176 0.0188 0.0349 0.0138

RelBias 0.1131 0.0413 0.0416 −0.0010√
MSE 0.0433 0.0205 0.0481 0.0138

T = 250

Model 1 0.15 0.45 1.5 0.55 Mean 0.1584 0.4574 1.5057 0.5500

SD 0.0331 0.0371 0.0451 0.0206

RelBias 0.0561 0.0165 0.0038 0.0000√
MSE 0.0340 0.0377 0.0453 0.0205

0.35 0.2 0.8 0.75 Mean 0.3837 0.2027 0.8280 0.7515

SD 0.0226 0.0236 0.0255 0.0322

RelBias 0.0964 0.0135 0.0350 0.0019√
MSE 0.0405 0.0237 0.0378 0.0320

Model 2 0.15 0.45 1.5 0.55 Mean 0.1587 0.4544 1.5011 0.5505

SD 0.0345 0.0377 0.0634 0.0097

RelBias 0.0577 0.0098 0.0007 0.0010√
MSE 0.0354 0.0378 0.0631 0.0097

0.35 0.2 0.8 0.75 Mean 0.3852 0.2022 0.8287 0.7519

SD 0.0232 0.0250 0.0366 0.0150

RelBias 0.1005 0.0111 0.0359 0.0026√
MSE 0.0421 0.0250 0.0464 0.0151
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Another important aspect that should be assessed is the out-of-sample predictive
ability of our methodology. To this end, we simulated a dataset under ARMA(1, 1)
and ARFIMA(0, d, 1) models, and for both cases we used the Model 1 as spatial
covariance structure. For each simulated dataset, we fitted three models, giving rise
to three cases of comparison, namely AR(1), ARMA(1, 1) and ARFIMA(0, d, 1).
We used cross-validation techniques to compare these three cases. Cross-validation
is implemented on the observed data with K time points deleted for each location s,
i.e., {Yt (si ) : t = 1, . . . , T − K ; i = 1, . . . , n}, and then predicting {Ŷtk (si )}Kk=1 from
the remaining data. We used the cross-validation statistics suggested by Carroll and
Cressie (1997), given by

CR1(si ) =
∑K

k=1

[
Ytk (si )−Ŷtk (si )

]
[∑K

k=1 �tk (si )
]1/2 , CR2(si ) =

{∑K
k=1

[
Ytk (si )−Ŷtk (si )

]2
∑K

k=1 �tk (si )

}1/2

,

CR3(si ) =
{

K∑

k=1

[
Ytk (si ) − Ŷtk (si )

]2

T

}1/2

,

where Ŷtk (si ) is the prediction of the process at location si and tk (k = 1, . . . , K ), and
�tk (si ) is the corresponding prediction variance. These values are obtained from (13)
and (14), respectively. CR1 indicates the unbiasedness of the predictor and should be
approximately equal to zero. CR2 checks the accuracy of the standard deviation of the
prediction error and should be approximately equal to one. CR3 is a measure of good-
ness of prediction. One would like CR3 to be small, which indicates that the predicted
values are close to the true values. For the data generation scheme, ARMA(1, 1)
is generated with parameters (φ, θ, σ 2, ρ) = (0.45, 0.3, 0.5, 0.35) whereas for the
ARFIMA(0, d, 1) we used (d, θ, σ 2, ρ) = (0.15, 0.45, 1.5, 0.55) with sample sizes
of T = 250, N = 25 locations and truncation level, m = 10. Table 3 displays the
average on the locations of the cross-validation statistics based on predictions for 5
days, i.e., K = 5. It can be noticed that all these measures favor our true simulated
data.

Table 3 Cross-validation statistics

Model Case Criterion

Ave(CR1) Ave(CR2) Ave(CR3)

ARMA(1, 1) 1 −0.4734 0.8353 0.2704

2 −0.3472 0.8771 0.2432

3 −0.6397 0.7317 0.3206

ARFIMA(0, d, 1) 1 −0.3243 0.7915 0.3645

2 −0.2905 0.7874 0.3663

3 −0.1706 0.9915 0.2292

Case 1: AR(1), case 2 : ARMA(1, 1), case 3: ARFIMA(0, d, 1)
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Table 4 Results for the Kalman filter estimates for an AR(1)with observed locations on the square [0, 10]2

% NA T = 15 T = 50

0% 10% 20% 0% 10 % 20%

φ̂ 0.6390 0.6315 0.5994 0.6414 0.6354 0.6057

ρ̂ 0.5177 0.5181 0.5075 0.4996 0.4995 0.4989

σ̂ 2 1.0089 0.8810 0.8120 1.0056 0.9122 0.8207
√
MSE(φ̂) 0.0244 0.0543 0.0659 0.0183 0.0456 0.0849√
MSE(ρ̂) 0.0994 0.0708 0.0999 0.0012 0.0022 0.0025

√
MSE(σ̂ 2) 0.1010 0.1492 0.2097 0.0349 0.0935 0.1825

Case of a small number of observations and missing data

4.3 Estimation with a small number of observations and missing data

The performance of the Kalman filter estimator when the size of the time series is
small and has missing observations is assessed in this section. For this case, we use an
AR(1) for the temporal structure, and for the spatial dependence we use a third model
defined as

– Model 3: ν = ∞, corresponding to the Gaussian model

Cη(ξ ; θ) = σ 2 exp{−ρ2ξ2}, ξ ≥ 0, θ = (σ 2, ρ,∞)�.

We consider a regular grid on the square [0, 10]2 and level of truncation m = 5. In
addition, we incorporate 10% and 20% of missing values, which have been randomly
selected for each simulation over 10 locations specified in the cartesian plane with
coordinates (i, 8) for i = 1, . . . , 10. For the AR(1) case, we consider φ = 0.65,
variance scale σ 2 = 1 and spatial correlation ρ = 0.5. Finally, we work with sample
sizes T = 15, 50, and 100 replications.

Table 4 shows the estimates of the parameters and the mean square errors. Note
that these estimates are very close to their theoretical counterparts. As expected, the
precision of the estimates worsens as the percentage of missing data increases.

5 Real data applications

5.1 TOMS data

The Kalman filter algorithm presented in Sect. 3.1 is now applied to Level 3 Total
Ozone Mapping Spectrometer (TOMS) data. TOMS Level-3 data have been analyzed
in some recent papers, including Jun and Stein (2008) and Porcu et al. (2015). We
refer to these papers for a detailed description of the data. It is worth pointing out that
TOMS data are located on a spatially regular grid of 1◦ latitude by 1.25◦ longitude
away from the poles, i.e., from a latitude interval [−89.5, 89.5] to a longitude interval
[−180, 180]. We focus our analysis on selected 140 spatial points with all temporal
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Table 5 Parameter estimates for the TOMS data

Model Parameter

φ1 φ2 θ σ 2 ρ

Model 1

AR(1) 0.6145 48.3142 0.3156

AR(2) 0.6257 0.0021 46.6578 0.2738

ARMA(1, 1) 0.6347 0.0012 45.6745 0.8934

Model 2

AR(1) 0.6245 46.8182 0.4209

AR(2) 0.6198 0.0032 45.8765 0.6367

ARMA(1, 1) 0.6265 0.0011 44.7924 0.9356

Model 3

AR(1) 0.6246 47.1875 0.6235

AR(2) 0.6285 −0.0011 46.1764 0.5678

ARMA(1, 1) 0.6269 0.0017 45.8182 0.6899

observations for a total of 2100 observations, both in space and time. In addition, we
converted coordinates from longitude/latitude to universal transverse mercator (utm)
coordinates. The projections are obtained using spTransform from the rgdal
package (Bivand et al. 2015) which uses the PROJ.4 projection library to perform
the calculations. The temporal covariance was analyzed by considering three struc-
tures, namely AR(1), AR(2) and ARMA(1,1) models. For the spatial covariance, we
considered Model 1, 2 and 3 as described in the previous Section. Table 5 reports
the parameter estimates using the Kalman filter with truncation level m = 5. From
Table 5, we note that the difference between the estimation performance is not so
apparent. On the other hand, parameters φ2 and θ provide relatively little information
compared to the other parameters, indicating that the temporal model has a potential
correlation structure of AR(1) type. We computed these statistics for predicting the
last day of measurement, i.e., K = 1. The averages of the cross-validation statistics
are presented in Table 6.We note no significant difference between all these measures.
Nevertheless, we can conclude that for Model 1 and AR(1) model, the CR3 exhibits
a smaller value than the other cases. Figure 3 displays the performance of this model
in terms of the marginal spatial semivariograms and marginal sample autocorrelation
function (ACF). As shown in this figure, the Kalman filter estimation offers a better
fit for the modeling of TOMS data.

5.2 Irish wind data

Wind energy has grown significantly in developed countries and supplying electricity
depends on methods of predicting wind speed in certain locations. The Irish wind
speed data have been studied by several authors, in particular, Haslett and Raftery
(1989), Gneiting (2002), Stein (2005) and Bevilacqua et al. (2012). Following Haslett
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Table 6 Cross-validation
statistics for the TOMS data

Model Ave(CR1) Ave(CR2) Ave(CR3)

Model 1

AR(1) −0.0128 1.1104 3.6452

AR(2) −0.0178 1.1297 3.7494

ARMA(1, 1) −0.0181 1.1284 3.7523

Model 2

AR(1) −0.0187 1.1121 3.7142

AR(2) −0.0177 1.1210 3.7525

ARMA(1, 1) −0.0179 1.1212 3.7519

Model 3

AR(1) −0.0137 1.1107 3.6875

AR(2) −0.0167 1.1210 3.7521

ARMA(1, 1) −0.0177 1.1219 3.7623
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Fig. 3 TOMS data: a marginal spatial semivariogram versus estimated spatial semivariogram b marginal
sample ACF versus estimated temporal AR(1) model

and Raftery (1989), we omitted the Rosslare station and then considered a square root
transformation to have deseasonalized data. The seasonal component was estimated
by calculating the average of the square roots of the daily means over all years and
stations for each day of the year, and regressing the result on a set of annual harmonics.
We refer to their paper for a detailed description of these data. Following Haslett and
Raftery (1989), we use a long-memory process to model the temporal dependence,
and an exponential model for the spatial covariance, defined as

Cη(ξ ; θ) =
{

σ 2 exp{−ρξ} if ξ �= 0
1 if ξ = 0,
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Table 7 Cross-validation
statistics for the Irish wind data

Model Ave(CR1) Ave(CR2) Ave(CR3)

AR(1) 0.3567 0.5678 0.9235

ARMA(1, 1) 0.4572 0.4367 1.0456

FN(d) 0.2769 0.8269 0.6908

ARFIMA(1, d, 0) 0.2631 0.8179 0.6798

ARFIMA(2, d, 0) 0.2853 0.8254 0.6917

where θ = (σ 2, ρ)�, with σ 2 ∈ (0, 1] and ρ > 0. In this direction, we have proposed
three differentmodels for the temporal dependence, namely FN (d), ARFIMA(1, d, 0)
andARFIMA(2, d, 0). In order to evaluate a possible structure of short-memory on the
temporal covariance, ARMA(1, 1) and AR(1) models are also proposed. In addition,
we considered all data except the last week, which will be used as a validation set. In
order to obtain the Kalman filter estimation, we used a truncation level m = 10. The
parameters estimated for these cases are given as follows:

– For the AR(1) model, φ̂ = 0.8564, σ̂ 2 = 0.7654 and ρ̂ = 0.00438, whereas for
the ARMA(1, 1), φ̂ = 0.6523, θ̂ = 0.3812, σ̂ 2 = 0.5841 and ρ̂ = 0.00817.

– For the FN(d) model, the estimates are: d̂ = 0.3373, σ̂ 2 = 0.98799 and ρ̂ =
0.00137.

– For the ARFIMA(1, d, 0) model, we have that d̂ = 0.3137, φ̂ = 0.04386, σ̂ 2 =
0.98878 and ρ̂ = 0.00147.

– For the ARFIMA(2, d, 0) model, d̂ = 0.3251, φ̂1 = 0.0101, φ̂2 = −0.0599,
σ̂ 2 = 0.99786 and ρ̂ = 0.00164.

To choose the best model, we considered the previous defined cross-validation statis-
tics. In this case, we perform predictions for 7days, i.e., K = 7. From Table 7, we can
see that for the ARFIMA(1, d, 0) model, the CR3 exhibits a smaller value than the
other cases. From these results, we focus on the goodness-of-fit analysis of the long-
memorymodels. Figure 4 exhibits two panels exploring the correlations of the stations
and the marginal sample ACF. Note that from panel (b) all the marginal sample ACF
decay slowly, confirming a long-memory behavior. The dashed line represents the
FN(d) model, the continuous line corresponds to the ARFIMA(1, d, 0) model, while
the dotted line represents the behavior of the ARFIMA(2, d, 0) case. It seems that the
ARFIMA(1, d, 0) model offers a better fit to the temporal sample ACF, whereas the
behavior of the spatial correlations are very similar.

6 Discussion

In this article, we have proposed a state-space methodology to model spatio-temporal
processes. In particular, we have proposed tomodel the temporal dependence structure
both short- and/or long-memory through the infinite moving average representation
MA(∞). In this context, we have incorporated the ARFIMA models to quantify the
temporal correlation and Matérn covariance models to characterize the spatial corre-
lation in the spatio-temporal processes. In terms of the estimation procedure, we have
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Fig. 4 Irish wind data: a distance correlation plot and b sample ACF. FN(d) model (dashed line),
ARFIMA(1, d, 0) (continuous line), ARFIMA(2, d, 0) (dotted line)

proposed an approximation to the likelihood functions via truncation which provides
an efficient means to calculate the MLE. Simulation studies evidenced that the pro-
posed approach can be extremely efficient for small truncation levels. Furthermore, this
approach allows to overcome the computational burdens while reducing substantially
the size of the required memory whenever we deal with large spatio-temporal datasets.

In addition, we used the Kalman filter algorithm to obtain the k- step ahead pre-
diction and handle missing values without any additional assumption or additional
procedure of imputation to fill in the missing values. These features provide clear
advantages over alternatives procedures that deal with spatio-temporal models.

An interesting direction for future research is to use state-space models in the
MA(∞) expansion to incorporate non-stationarity, by introducing time-varying mod-
els and/or location-dependence processes on the observation operatorGt (s). Although
this would imply a significant increase of parameters to be estimated, it would require
onlyminor changes in the algorithms presented here. Rao (2008) proposed a local least
squares method to estimate the parameters of a spatio-temporal model with location-
dependent parameters which are used to describe spatial non-stationarity, and we have
recently begun to work combining these two ideas.
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