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1 Introduction

Let {Xn, n ≥ 1} be a sequence of identically distributed random variables, {ank, n ≥
1, 1 ≤ k ≤ n} an array of constants. A weighted sum is defined by

n∑

k=1

ank Xk . (1.1)

The ank are called weights. Since many useful linear statistics, e.g., least-squares
estimators and nonparametric regression function estimators, are of the form (1.1), it
is very interesting and meaningful to study the limiting behaviors for the weighted
sums of random variables.

The classical Kolmogorov strong law of large numbers states that if {Xn, n ≥ 1} is a
sequence of independent and identically distributed random variables with EX1 = 0,
then n−1 ∑n

k=1 Xk → 0 a.s. The Kolmogorov strong law of large numbers has been
extended to weighted sums by many authors. Let {Xn, n ≥ 1} be a sequence of
independent and identically distributed random variables, {ank, n ≥ 1, 1 ≤ k ≤ n}
an array of uniformly bounded constants, i.e., supn≥1 max1≤k≤n |ank | < ∞. Choi and
Sung (1987) showed that if EX1 = 0, then

n−1
n∑

k=1

ank Xk → 0 a.s. (1.2)

When the weights ank are α-th Cesàro uniformly bounded for some 1 < α ≤
∞, that is, supn≥1 n

−1 ∑n
k=1 |ank |α < ∞ (when α = ∞ we interpret this as

supn≥1 max1≤k≤n |ank | < ∞), Cuzick (1995) showed that (1.2) holds under the
moment conditions that EX1 = 0 and E |X1|β < ∞, where 1/α + 1/β = 1. When
α = ∞, this reduces to the result of Choi and Sung (1987). Bai and Cheng (2000)
extended and generalized the result of Cuzick (1995) to theMarcinkiewicz type strong
law, and Chen and Gan (2007) generalized the result of Bai and Cheng (2000) in some
directions. Huang et al. (2014) extended the corresponding result of Bai and Cheng
(2000) to ϕ-mixing random variables with

∑∞
n=1 ϕ1/2(n) < ∞.

When the weights ank are independent of n, i.e., akk = ak+1,k = · · · , it is possible
to prove (1.2) under weaker moment conditions. In fact, Baxter et al. (2004) showed
that if {Xn, n ≥ 1} is a sequence of independent and identically distributed random
variables with EX1 = 0, and {an, n ≥ 1} is a sequence of α-th Cesàro uniformly
bounded constants for some 1 < α < ∞, then

n−1
n∑

k=1

ak Xk → 0 a.s. (1.3)

For the sake of clarity, let us recall the concept of the ψ-mixing random variables
or random vectors.
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602 D. Hu et al.

Definition 1.1 For a sequence {Xn, n ≥ 1} of random variables or random vectors,
the ψ-mixing coefficient ψ(n) is defined as

ψ(n) = sup
m≥1

sup
A∈Fm

1 ,B∈F∞
m+n ,P(A)P(B) �=0

∣∣∣∣
P(AB)

P(A)P(B)
− 1

∣∣∣∣ ,

where Fm
n = σ(Xi : n ≤ i ≤ m). Then {Xn, n ≥ 1} is said to be ψ-mixing or

*-mixing if ψ(n) → 0 as n → ∞.

The concept of ψ-mixing was introduced by Blum et al. (1963). They proved the
Kolmogorov strong law of large numbers for identically distributedψ-mixing random
variables without any conditions on mixing rate. For ψ-mixing random variables with∑∞

n=1 ψ(n) < ∞, Yang (1995) obtained the moment inequality, exponent inequality
and strong law for weighted sums,Wang et al. (2010) obtained the maximal inequality
and gave some applications,Xu andTang (2013) discussed the strong law for Jamison’s
type weighted sums. Since ψ-mixing is stronger than ϕ-mixing (see, for example, Lin
and Lu 1997), the results on ϕ-mixing also hold for ψ-mixing.

Motivated by the work of Blum et al. (1963), it is interesting to obtain the limiting
behavior for some kind of mixing random variables without any conditions on mixing
rate. Shao (1988) obtained the complete convergence for ϕ-mixing random variables
without any conditions on mixing rate, Chen et al. (2009) extended the result of Shao
(1988) to the moving average processes based on ϕ-mixing random variables. Since
ψ-mixing implies ϕ-mixing, their result holds forψ-mixing random variables without
any conditions on mixing rate. However, it is not known whether (1.2) or (1.3) holds
for ϕ-mixing random variables without any conditions on mixing rate. In this paper,
we will prove that (1.2) and (1.3) holds for ψ-mixing random variables.

We now state the main results. The first one extends and generalizes that of Baxter
et al. (2004) from independent case to ψ-mixing, and that of Blum et al. (1963) from
partial sums to weighted sums.

Theorem 1.1 Let {Xn, n ≥ 1} be a sequence of identically distributed ψ-mixing ran-
dom variables, {an, n ≥ 1} a sequence of constants satisfying supn≥1 n

−1 ∑n
k=1 |ak |α

< ∞ for some 1 < α < ∞. Then EX1 = 0 and E |X1| < ∞ imply that (1.3) holds,
i.e., n−1 ∑n

k=1 ak Xk → 0 a.s. In particular,

n−1
n∑

k=1

Xk → 0 a.s. (1.4)

The second one extends and generalizes those of Choi and Sung (1987) and Cuzick
(1995) from independent case to ψ-mixing.

Theorem 1.2 Let {Xn, n ≥ 1} be a sequence of identically distributed ψ-mixing
random variables, {ank, n ≥ 1, 1 ≤ k ≤ n} an array of constants satisfying

sup
n≥1

n−1
n∑

k=1

|ank |α < ∞ (1.5)
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for some 1 < α ≤ ∞ (when α = ∞ we interpret this as supn≥1 max1≤k≤n |ank | <

∞). If E X1 = 0 and E |X1|β < ∞, where 1/α + 1/β = 1, then (1.2) holds, i.e.,
n−1 ∑n

k=1 ank Xk → 0 a.s.

Some lemmas and the proofs of the main results will be detailed in the next section.
The applications of Theorems 1.1 and 1.2 to the least-squares estimators will be shown
in Section 3.

Throughout this paper, let C be a positive constant which is not necessarily the
same one in each appearance. The symbol I (A) denotes the indicator function of the
event A, �x	 denotes the integer part of x , and #B denotes the number of elements
belonged to the set B.

2 Lemmas and Proofs

To prove Theorem 1.1, we need an analog of the Chung strong law of large numbers,
which slightly extends Theorem 2 of Blum et al. (1963), and Theorem 2.20 of Hall
and Heyde (1980).

Lemma 2.1 Let 1 < p ≤ 2, {Yn, n ≥ 1} be a sequence ofψ-mixing random variables
with EYn = 0 and E |Yn|p < ∞ for all n ≥ 1. Suppose that

∞∑

n=1

E |Yn|p
n p

< ∞ (2.1)

and

sup
n≥1

n−1
n∑

k=1

E |Yk | < ∞. (2.2)

Then

n−1
n∑

k=1

Yk → 0 a.s. (2.3)

Proof By Markov’s inequality and (2.1)

∞∑

n=1

P{Yn �= Yn I (|Yn| ≤ n)} =
∞∑

n=1

P{|Yn| > n} ≤
∞∑

n=1

E |Yn|p
n p

< ∞.

So to prove (2.3), by the Borel–Cantelli lemma, it suffices to prove that

n−1
n∑

k=1

Yk I (|Yk | ≤ k) → 0 a.s. (2.4)
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By EYn = 0 for all n ≥ 1, (2.1) and Kronecker’s lemma

∣∣∣∣∣n
−1

n∑

k=1

EYk I (|Yk | ≤ k)

∣∣∣∣∣ ≤ n−1
n∑

k=1

E |Yk |I (|Yk | > k) ≤ n−1
n∑

k=1

E |Yk |p
k p−1 → 0

as n → ∞. So to prove (2.4), it suffices to prove that

n−1
n∑

k=1

[Yk I (|Yk | ≤ k) − EYk I (|Yk | ≤ k)] → 0 a.s. (2.5)

Note that by (2.1)

∞∑

n=1

E |Yn I (|Yn| ≤ n) − EYn I (|Yn| ≤ n)|2
n2

≤
∞∑

n=1

EY 2
n I (|Yn| ≤ n)

n2
≤

∞∑

n=1

E |Yn|p
n p

< ∞

and by (2.2)

sup
n≥1

n−1
n∑

k=1

E |Yk I (|Yk | ≤ k) − EYk I (|Yk | ≤ k)| ≤ 2 sup
n≥1

n−1
n∑

k=1

E |Yk | < ∞.

Then (2.5) holds from an application of Theorem 2.20 of Hall and Heyde (1980), and
the proof is completed. 
�
Proof of Theorem 1.1 By Hölder’s inequality, we can assume that 1 < α ≤ 2 such
that supn≥1 n

−1 ∑n
k=1 |ak |α < ∞. By Abel’s method, we have that for all k ≥ 1

∞∑

n=k

|an|α
nα

≤ α

α − 1

(
sup
n≥1

n−1
n∑

k=1

|ak |α
)

· k1−α. (2.6)

On account of E |X1| < ∞
∞∑

n=1

P{Xn �= Xn I (|Xn|≤n)}=
∞∑

n=1

P{|Xn| > n} =
∞∑

n=1

P{|X1| > n}≤E |X1| < ∞,

and so to prove (1.3), by the Borel–Cantelli lemma, it suffices to prove that

n−1
n∑

k=1

ak[Xk I (|Xk | ≤ k) − EXk I (|Xk | ≤ k)] → 0 a.s. (2.7)
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and

n−1
n∑

k=1

ak EXk I (|Xk | ≤ k) → 0. (2.8)

By Lemma 2.1, to prove (2.7), it suffices to prove that (2.1) and (2.2) hold for p = α

and Yn = an[Xn I (|Xn| ≤ n)−EXn I (|Xn| ≤ n)], n ≥ 1. In fact, by the cr -inequality,
Hölder’s inequality and (2.6)

∞∑

n=1

E |Yn|α
nα

≤ C
∞∑

n=1

|an|αE |Xn|α I (|Xn| ≤ n)

nα
= C

∞∑

n=1

|an|αE |X1|α I (|X1| ≤ n)

nα

= C
∞∑

n=1

|an|α
nα

n∑

k=1

E |X1|α I (k − 1 < |X1| ≤ k)

= C
∞∑

k=1

E |X1|α I (k − 1 < |X1| ≤ k)
∞∑

n=k

|an|α
nα

≤ C
∞∑

k=1

k1−αE |X1|α I (k − 1 < |X1| ≤ k)

≤ CE |X1| < ∞.

By Hölder’s inequality, we have that for all n ≥ 1

n−1
n∑

k=1

E |Yk | ≤ 2n−1
n∑

k=1

|ak |E |Xk |I (|Xk | ≤ k) ≤ 2(E |X1|)
(
n−1

n∑

k=1

|ak |α
)1/α

≤ 2(E |X1|)
(
sup
n≥1

n−1
n∑

k=1

|ak |α
)1/α

< ∞.

Therefore, (2.7) holds. By E |X1| < ∞, E |X1|I (|X1| > n) → 0 and hence

n−1
n∑

k=1

[E |X1|I (|X1| > k)]s → 0

as n → ∞ for any s > 0. By EX1 = 0 and Hölder’s inequality

∣∣∣∣∣n
−1

n∑

k=1

ak EXk I (|Xk | ≤ k)

∣∣∣∣∣ ≤ n−1
n∑

k=1

|ak |E |X1|I (|X1| > k)

≤
(
sup
n≥1

n−1
n∑

k=1

|ak |α
)1/α

·
(
n−1

n∑

k=1

[E |X1|I (|X1| > k)]β
)1/β

→ 0 as n → ∞,
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i.e., (2.8) holds for 1/α + 1/β = 1. The proof is completed. 
�
To prove Theorem 1.2, the following two lemmas on ϕ-mixing random variables

are needed. The first one is a Rosenthal type inequality for ϕ-mixing random variables
(see Shao 1988). The second one shows that Theorem 1.1 holds for uniformly bounded
ϕ-mixing random variables without any conditions on mixing rate and is interesting in
itself. Sinceψ-mixing implies ϕ-mixing, Lemma 2.3 also holds forψ-mixing random
variables.

Lemma 2.2 Let {Yn, n ≥ 1} be a sequence of ϕ-mixing random variables with
E |Yn|s < ∞ for all n ≥ 1 and for some s ≥ 2. Then there exists a positive con-
stant C depending only on s and the ϕ-mixing coefficient ϕ(·) such that for all n ≥ 1

E

∣∣∣∣∣

n∑

k=1

(Yk − EYk)

∣∣∣∣∣

s

≤ C

×

⎧
⎪⎨

⎪⎩

⎡

⎣exp

⎛

⎝6
�log n	∑

i=1

ϕ1/2(2i )

⎞

⎠ · n max
1≤k≤n

EY 2
k

⎤

⎦
s/2

+
n∑

k=1

E |Yk |s
⎫
⎪⎬

⎪⎭
.

Remark 2.1 Set a(x) = ∑�log x	
i=1 ϕ1/2(2i ), x > 0. Then by ϕ(2n) → 0 as n → ∞,

limx→∞ a(x)/ log x = 0 and hence limx→∞ x−δ exp(sa(x)) = 0 for any s > 0 and
δ > 0. Therefore, the series

∑∞
n=1 n

−λ exp(sa(n)) converges for any s > 0 and λ > 1.

Lemma 2.3 Let {Yn, n ≥ 1} be a sequence of ϕ-mixing random variables with
supn≥1 |Yn| ≤ M a.s. for some constant M > 0, {ank, n ≥ 1, 1 ≤ k ≤ n} an
array of constants satisfying (1.5) for some 1 < α ≤ ∞. Then

n−1
n∑

k=1

ank(Yk − EYk) → 0 a.s. (2.9)

Proof Set a(n) = ∑�log n	
i=1 ϕ1/2(2i ), n ≥ 1. We first prove (2.9) for the case α = ∞.

When α = ∞, we have supn≥1 max1≤k≤n |ank | < ∞. By Markov’s inequality and
Lemma 2.2, we have that for any s > 2 and any ε > 0

P

{∣∣∣∣∣

n∑

k=1

ank(Yk − EYk)

∣∣∣∣∣ > εn

}

≤ Cn−s E

∣∣∣∣∣

n∑

k=1

ank(Yk − EYk)

∣∣∣∣∣

s

≤ Cn−s

{[
exp(6a(n)) · n max

1≤k≤n
E(ankYk)

2
]s/2

+
n∑

k=1

E |ankYk |s
}

≤ C exp(3sa(n)) · n−s/2 + Cn−s+1,
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which ensures by Remark 2.1 that

∞∑

n=1

P

{∣∣∣∣∣

n∑

k=1

ank(Yk − EYk)

∣∣∣∣∣ > εn

}
< ∞, ∀ ε > 0.

Then (2.9) holds by the Borel–Cantelli lemma.
We now prove (2.9) for the case 1 < α < ∞. Without loss of generality, we can

assume that for all n ≥ 1

n∑

k=1

|ank |α ≤ n. (2.10)

Then by Hölder’s inequality

max
1≤k≤n

|ank | ≤ n1/α,

n∑

k=1

|ank |s ≤ ns/α (2.11)

for all n ≥ 1 and for any s > α. Set

A(0)
n = {1, 2, . . . , n}, A(m)

n = {k : |ank |α > nm/β}, m ≥ 1,

where 1/α + 1/β = 1. Then A(0)
n ⊃ A(1)

n ⊃ · · · , and by (2.10) and the definition of
A(m)
n

n ≥
n∑

k=1

|ank |α ≥
∑

k∈A(m)
n

|ank |α > nm/β#A(m)
n ,

which implies that

#A(m)
n ≤ n1−m/β,m ≥ 1. (2.12)

Takem = 5 if α > 7/6, and takem ≥ 6 such that (m+2)/(m+1) < α ≤ (m+1)/m
if 1 < α ≤ 7/6. Then to prove (2.9), it suffices to prove that

n−1
∑

k∈A( j−1)
n \A( j)

n

ank(Yk − EYk) → 0 a.s., j = 1, . . . ,m, (2.13)

and

n−1
∑

k∈A(m)
n

ank(Yk − EYk) → 0 a.s. (2.14)
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By Lemma 2.2 and (2.11), we obtain that for any s > max{α, 2} and ε > 0

P

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣∣

∑

k∈A( j−1)
n \A( j)

n

ank(Yk − EYk)

∣∣∣∣∣∣∣
> εn

⎫
⎪⎬

⎪⎭

≤ Cn−s

⎧
⎨

⎩

[
exp(6a(n)) · #A( j−1)

n max
k∈A( j−1)

n \A( j)
n

E |ankYk |2
]s/2

+
∑

k∈A( j−1)
n \A( j)

n

E |ankYk |s
⎫
⎪⎬

⎪⎭

≤ C exp(3sa(n)) · n−s[2 j/α2−(3 j−1)/α+ j]/2 + Cn−s/β . (2.15)

It is easy to show that

2 j/α2 − (3 j − 1)/α + j > 0

for j = 1, . . . , 5 and for any 1 < α < ∞. The above also holds for 1 ≤ j ≤ m when
(m + 2)/(m + 1) < α ≤ (m + 1)/m. Then we can take s large enough such that

s[2 j/α2 − (3 j − 1)/α + j]/2 > 1, s/β > 1,

which ensures by Remark 2.1 that

∞∑

n=1

P

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣∣

∑

k∈A( j−1)
n \A( j)

n

ank(Yk − EYk)

∣∣∣∣∣∣∣
> εn

⎫
⎪⎬

⎪⎭
< ∞, ∀ ε > 0.

Then by the Borel–Cantelli lemma, (2.13) holds.
A similar method of (2.15) leads to

P

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣∣

∑

k∈A(m)
n

ank(Yk − EYk)

∣∣∣∣∣∣∣
> εn

⎫
⎪⎬

⎪⎭

≤ C exp(3sa(n)) · n−s[m+1−(m+2)/α]/2 + Cn−s/β .

Since we always have α > (m + 2)/(m + 1), we can take s large enough such that

s[m + 1 − (m + 2)/α]/2 > 1, s/β > 1,
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which ensures by Remark 2.1 that

∞∑

n=1

P

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣∣

∑

k∈A(m)
n

ank(Yk − EYk)

∣∣∣∣∣∣∣
> εn

⎫
⎪⎬

⎪⎭
< ∞, ∀ ε > 0.

By the Borel–Cantelli lemma, (2.14) holds. The proof is completed. 
�
Proof For any Δ > 0, set

Yn = Xn I (|Xn| ≤ Δ) − EXn I (|Xn| ≤ Δ),

Zn = Xn I (|Xn| > Δ) − EXn I (|Xn| > Δ)

for n ≥ 1. Since |Yn| ≤ 2Δ for all n ≥ 1, Lemma 2.3 implies that

n−1
n∑

k=1

ankYk → 0 a.s.

By Hölder’s inequality

1

n

∣∣∣∣∣

n∑

k=1

ank Zk

∣∣∣∣∣ ≤
(
1

n

n∑

k=1

|ank |α
)1/α

·
(
1

n

n∑

k=1

|Zk |β
)1/β

a.s.

and by Theorem 1.1

n−1
n∑

k=1

|Zk |β → E |X1 I (|X1| > Δ) − EX1 I (|X1| > Δ)|β

≤ 2βE |X1|β I (|X1| > Δ) a.s.

Noting that Xn = Yn + Zn for all n ≥ 1 and EX1 = 0, we have

lim sup
n→∞

1

n

∣∣∣∣∣

n∑

k=1

ank Xk

∣∣∣∣∣ ≤ 2 sup
n≥1

(
1

n

n∑

k=1

|ank |α
)1/α

· (E |X1|β I (|X1| > Δ))1/β a.s.,

which ensures (1.2) by letting Δ → ∞. 
�
Remark 2.2 The Kolmogorov strong law of large numbers holds for identically dis-
tributed ϕ-mixing random variables with

∑∞
n=1 ϕ1/2(2n) < ∞ (see, for example,

Theorem 8.2.2 of Lin and Lu 1997). By the same proof of Theorem 1.2, except that
Theorem 1.1 is replaced by Theorem 8.2.2 of Lin and Lu (1997), we can obtain that
Theorem 1.2 also holds for ϕ-mixing random variables with

∑∞
n=1 ϕ1/2(2n) < ∞.
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3 Applications

We consider the simple linear errors-in-variables (EV) regression model:

ηk = θ + βxk + εk, ξk = xk + δk, 1 ≤ k ≤ n, (3.1)

where θ, β, x1, . . . , xn are unknown parameters or constants, (εk, δk), 1 ≤ k ≤ n, are
random vectors and ξk, ηk, 1 ≤ k ≤ n, are observable variables. From (3.1), we have

ηk = θ + βξk + (εk − βδk), 1 ≤ k ≤ n.

As a usual regression model of ηk on ξk with the errors εk − βδk , the least-squares
(LS) estimators of β and θ are given as

β̂n =
∑n

k=1(ξk − ξ̄n)(ηk − η̄n)∑n
k=1(ξk − ξ̄n)2

, θ̂n = η̄n − β̂n ξ̄n,

where ξ̄n = n−1 ∑n
k=1 ξk , and other similar notations, such as η̄n, δ̄n and x̄n , are

defined in the same way.
Define sn = ∑n

k=1(xi − x̄n)2 for each n ≥ 1. Based on the above notations, we
have

β̂n − β =
∑n

k=1(δk − δ̄n)εk + ∑n
k=1(xk − x̄n)(εk − βδk) − β

∑n
k=1(δk − δ̄n)

2

∑n
k=1(ξk − ξ̄n)2

(3.2)

and

θ̂n − θ = x̄n(β − β̂n) + (β − β̂n)δ̄n + ε̄n − βδ̄n . (3.3)

This model was proposed by Deaton (1985) to correct the effects of the sampling
errors and is somewhat more practical than the ordinary regression model. Fuller
(1987) summarized many early works for the EV models. The last two decades, the
studies for the EV model have attracted much attention due to its simple form and
wide applicability, for more details, we refer to Liu and Chen (2005), Miao et al.
(2011) andWang et al. (2015) and their references. In particular, Liu and Chen (2005)
discussed the necessary and sufficient conditions for the strong consistency of β̂n and
the weak consistency of θ̂n under the assumptions that the errors (εn, δn), n ≥ 1, are
independent and identically distributed random variables. However, the independence
assumption for the errors is not always valid in many applications. In particular, when
the data are collected sequentially in time, e.g., consumer price index and rainfall by
year, the errors do not satisfy independence. The result of Liu and Chen (2005) has
been partially extended to the model with dependent errors. Fan et al. (2010) proved
the sufficient condition for the strong consistency of β̂n when the errors are stationary
α-mixing with a condition on mixing rate and with higher order moment conditions.
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As the applications of Theorems 1.1 and 1.2, we will extend and generalize the
results of Liu and Chen (2005) from the independent case to the ψ-mixing setting.

In the following, the strong consistency for LS estimators of the unknown param-
eters is given. The first one is the strong consistency for the estimator of β.

Theorem 3.1 Under the model (3.1), assume that {(εn, δn), n ≥ 1} is a sequence
of identically distributed ψ-mixing random vectors with Eε1 = Eδ1 = 0, 0 <

Eε21, Eδ21 < ∞. Then sn/n → ∞ implies that

β̂n → β a.s.

Conversely, if E(ε1δ1) − βEδ21 �= 0, then β̂n → β a.s. implies that sn/n → ∞.

Proof of sufficiency Assume that sn/n → ∞. To prove β̂n → β a.s., by (3.2), it
suffices to prove that

s−1
n

n∑

k=1

(δk − δ̄n)εk → 0 a.s., (3.4)

s−1
n

n∑

k=1

(xk − x̄n)(εk − βδk) → 0 a.s., (3.5)

s−1
n

n∑

k=1

(δk − δ̄n)
2 → 0 a.s., (3.6)

s−1
n

n∑

k=1

(ξk − ξ̄n)
2 → 1 a.s. (3.7)

By Theorem 1.1

s−1
n

n∑

k=1

(δk − δ̄n)εk = n

sn
·
(
1

n

n∑

k=1

εkδk − ε̄n δ̄n

)
→ 0 × [E(ε1δ1) − 0] = 0 a.s.

and

s−1
n

n∑

k=1

(δk − δ̄n)
2 = n

sn
·
(
1

n

n∑

k=1

δ2k − δ̄2n

)
→ 0 × (Eδ21 − 0) = 0 a.s.

Hence, (3.4) and (3.6) hold. Set ank = n(xk − x̄n)/sn for n ≥ 1 and 1 ≤ k ≤ n. Then

sup
n≥1

n−1
n∑

k=1

|ank |2 = sup
n≥1

n/sn < ∞.
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Therefore, by Theorem 1.2

s−1
n

n∑

k=1

(xk − x̄n)εk = n−1
n∑

k=1

ankεk → 0 a.s. (3.8)

and

s−1
n

n∑

k=1

(xk − x̄n)δk = n−1
n∑

k=1

ankδk → 0 a.s. (3.9)

Then (3.5) holds from (3.8) and (3.9). Note that

s−1
n

n∑

k=1

(ξk − ξ̄n)
2 = 1 + 2s−1

n

n∑

k=1

(xk − x̄n)δk + s−1
n

n∑

k=1

(δk − δ̄n)
2.

Then (3.7) holds by (3.6) and (3.9).

Proof of necessity Suppose that sn/n → ∞ does not hold. Taking a subsequence if
necessary, we may assume that

sn/n → c ∈ [0,∞) as n → ∞. (3.10)

By Theorem 1.1

n−1
n∑

k=1

(δk − δ̄n)εk → E(ε1δ1) a.s. (3.11)

and

n−1
n∑

k=1

(δk − δ̄n)
2 → Eδ21 a.s. (3.12)

Set ank = xk − x̄n for n ≥ 1 and 1 ≤ k ≤ n. By (3.10)

sup
n≥1

n−1
n∑

k=1

a2nk = sup
n≥1

sn/n < ∞.

Then by Theorem 1.2

n−1
n∑

k=1

(xk − x̄n)εk → 0 a.s.

n−1
n∑

k=1

(xk − x̄n)δk → 0 a.s., (3.13)
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which follow that

n−1
n∑

k=1

(xk − x̄n)(εk − βδk) → 0 a.s. (3.14)

By (3.10), (3.12) and (3.13)

n−1
n∑

k=1

(ξk − ξ̄n)
2 = sn

n
+ 2

n

n∑

k=1

(xk − x̄n)δk + 1

n

n∑

k=1

(δk − δ̄n)
2 → c + Eδ21 a.s.

(3.15)

Thus by (3.2), (3.11), (3.12), (3.14) and (3.15)

β̂n − β → E(ε1δ1) − βEδ21

c + Eδ21
a.s.,

which leads to a contradiction to β̂n → β a.s., so we have sn/n → ∞. The proof is
completed. 
�
Remark 3.1 When {(εn, δn), n ≥ 1} is a sequence of independent and identically
distributed random variables, Theorem 3.1 was proved by Liu and Chen (2005). When
{(εn, δn), n ≥ 1} is a sequence of stationary α-mixing with higher order moment
conditions E |ε1|2+t < ∞ and E |δ1|2+t < ∞ for some t > 0 and with a mixing
condition α(n) = O(log−γ n) for some γ > 1 + 2/t, Fan et al. (2010) proved
the sufficiency part of Theorem 3.1. Although ψ-mixing is stronger than α-mixing,
Theorem 3.1 is a complete extension of Liu and Chen (2005).

The second one is the strong consistency for the estimator of θ.

Theorem 3.2 Under theassumptions of Theorem3.1, further assume that supn≥1 nx̄
2
n/

s∗
n < ∞, where s∗

n = max{n, sn}. Then nx̄n/s∗
n → 0 implies that

θ̂n → θ a.s.

Conversely, if E(ε1δ1) − Eδ21 �= 0, then θ̂n → θ a.s. implies that nx̄n/s∗
n → 0.

Proof of sufficiency Assume that nx̄n/s∗
n → 0. By (3.11)

x̄n
s∗
n

n∑

k=1

(δk − δ̄n)εk = nx̄n
s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)εk → 0 a.s. (3.16)

and

lim sup
n→∞

∣∣∣∣∣
1

s∗
n

n∑

k=1

(δk − δ̄n)εk

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣∣
n

s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)εk

∣∣∣∣∣ ≤ |E(ε1δ1)| a.s.

(3.17)
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By (3.12)

x̄n
s∗
n

n∑

k=1

(δk − δ̄n)
2 = nx̄n

s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)
2 → 0 a.s. (3.18)

and

lim sup
n→∞

1

s∗
n

n∑

k=1

(δk − δ̄n)
2 = lim sup

n→∞
n

s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)
2 ≤ Eδ21 a.s. (3.19)

Note that

sup
n≥1

1

n

n∑

k=1

∣∣∣∣
nx̄n(xk − x̄n)

s∗
n

∣∣∣∣
2

= sup
n≥1

nx̄2nsn
(s∗

n )
2 ≤ sup

n≥1

nx̄2n
s∗
n

< ∞

and

sup
n≥1

1

n

n∑

k=1

∣∣∣∣
n(xk − x̄n)

s∗
n

∣∣∣∣
2

= sup
n≥1

nsn
(s∗

n )
2 ≤ 1 < ∞.

Hence, by Theorem 1.2

x̄n
s∗
n

n∑

k=1

(xk − x̄n)(εk − βδk) = 1

n

n∑

k=1

nx̄n(xk − x̄n)

s∗
n

(εk − βδk) → 0 a.s. (3.20)

and

1

s∗
n

n∑

k=1

(xk − x̄n)(εk − βδk) = 1

n

n∑

k=1

n(xk − x̄n)(εk − βδk)

s∗
n

→ 0 a.s. (3.21)

By the definition of s∗
n , (3.19) and (3.21)

min{1, Eδ21} ≤ lim inf
n→∞

1

s∗
n

n∑

k=1

(ξk − ξ̄n)
2

≤ lim sup
n→∞

1

s∗
n

n∑

k=1

(ξk − ξ̄n)
2 ≤ 1 + Eδ21 a.s. (3.22)

By (3.2), (3.16), (3.18), (3.20) and (3.22)

x̄n(β̂ − β) → 0 a.s. (3.23)
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By (3.2), (3.17), (3.19), (3.21) and (3.22)

lim sup
n→∞

|β̂n − β| ≤ |E(ε1δ1)| + Eδ21

min{1, Eδ21}
a.s. (3.24)

By (3.3), (3.23), (3.24), and noting that ε̄n → 0 a.s. and δ̄n → 0 a.s. by Theorem 1.1

θ̂ → θ a.s.

Proof of necessity Suppose that nx̄n/s∗
n → 0 does not hold. Taking a subsequence if

necessary, we may assume that

nx̄n/s
∗
n → c ∈ [−∞, 0) ∪ (0,∞] as n → ∞. (3.25)

Then

x̄n
s∗
n

n∑

k=1

(δk − δ̄n)εk = nx̄n
s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)εk → cE(ε1δ1) a.s. (3.26)

and

x̄n
s∗
n

n∑

k=1

(δk − δ̄n)
2 = nx̄n

s∗
n

· 1
n

n∑

k=1

(δk − δ̄n)
2 → cEδ21 a.s. (3.27)

Hence, by (3.2), (3.20), (3.22), (3.26) and (3.27)

lim inf
n→∞ |x̄n(β̂n − β)| ≥ |c[E(ε1δ1) − Eδ21]|

1 + Eδ21
a.s. (3.28)

Therefore, by (3.3), (3.28), (3.24), ε̄n → 0 a.s., and δ̄n → 0 a.s., we have

lim inf
n→∞ |θ̂n − θ | ≥ |c[E(ε1δ1) − Eδ21]|

1 + Eδ21
a.s.,

which leads to a contradiction to θ̂n → θ a.s., so we have nx̄n/s∗
n → 0. We complete

the proof. 
�
Remark 3.2 Even though the errors are independent, Theorem 3.2 is not known.

4 Conclusions

For a sequence {Xn, n ≥ 1} of identically distributedψ-mixing random variables with
EX1 = 0 and an array {ank, n ≥ 1, 1 ≤ k ≤ n} of constant weights, conditions on
both the weights and the moment of X1 have been given under which the weighted
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sums n−1 ∑n
k=1 ank Xk converge to 0 a.s. In general, the condition on weights ank is

supn≥1 n
−1 ∑n

k=1 |ank |α < ∞ for some 1 < α ≤ ∞ (when α = ∞ we interpret this
as supn≥1 max1≤k≤n |ank | < ∞), and the moment condition is E |X1|β < ∞, where
1/α+1/β = 1.When the weights ank are independent of n, i.e., akk = ak+1,k = · · · ,

the moment condition can be weakened to E |X1| < ∞.

The above results based on two types of weights have been applied to the simple
linear errors-in-variables regression model:

ηk = θ + βxk + εk, ξk = xk + δk, 1 ≤ k ≤ n,

where θ, β, x1, . . . , xn are unknown parameters or constants, {(εn, δn), n ≥ 1} is a
sequence of identically distributed ψ-mixing random vectors with Eε1 = Eδ1 = 0,
0 < Eε21, Eδ21 < ∞. Under the condition of E(ε1δ1) − βEδ21 �= 0, the necessary
and sufficient condition for the strong consistency of LS estimator β̂n is sn/n → ∞.

Namely,

β̂n → β a.s. ⇐⇒ sn/n → ∞.

Furthermore, under the conditions of supn≥1 nx̄
2
n/s

∗
n < ∞ and E(ε1δ1) − Eδ21 �= 0,

the necessary and sufficient condition for the strong consistency of LS estimator θ̂n is
nx̄n/s∗

n → 0, where s∗
n = max{n, sn}.
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