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Abstract A nonparametric latency estimator for mixture cure models is studied in
this paper. An i.i.d. representation is obtained, the asymptotic mean squared error
of the latency estimator is found, and its asymptotic normality is proven. A bootstrap
bandwidth selectionmethod is introduced and its efficiency is evaluated in a simulation
study. The proposed methods are applied to a dataset of colorectal cancer patients in
the University Hospital of A Coruña (CHUAC).
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1 Introduction

In the last two decades there has been a remarkable progress in cancer treatments,
which led to longer patient survival and improved their quality of life. Consequently,
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a spate of statistical research to develop cure models arose. These models are a useful
tool to analyze and describe cancer survival data, since they express and predict the
prognosis of a patient considering, as a novelty, the real possibility that the subject may
never experience the event of interest. Importantly, curemodels should not be used in an
indiscriminate way (see Farewell 1986). They generally require long-term follow-up
and large sample sizes, aswell as empirical and biological evidence of a nonsusceptible
subpopulation.More specifically, they are used to estimate the probability of cure, also
known as incidence, and the survival function of the uncured population denoted by
latency.

Cure models can be split into two major types: the mixture and the nonmixture
models. Mixture cure models were proposed by Boag (1949). They consider the sur-
vival function as a mixture of two groups of subjects: the susceptible group and the
cured group. An important benefit of themixture cure model is that it allows covariates
to have different influence on patients who will experience the event of interest (e.g.,
death by the cancer under study) and on those who will not.

In the literature, the covariate effect is generally expressed parametrically or semi-
parametrically (see, among others, Farewell 1982; Goldman 1984; Kuk and Chen
1992; Maller and Zhou 1996; Sposto et al. 1992; Chappell et al. 1995; Taylor 1995;
Peng and Dear 2000; Sy and Taylor 2000; Peng 2003; Yu and Peng 2008). Recently
Louzada and Cobre (2012) considered recurrent event data in the presence of a cure
fraction. Very few papers exist that use a nonparametric view to deal with the problem
(see Maller and Zhou 1992; Laska and Meisner 1992; Wang et al. 2012). In the dis-
cussion by Van Keilegom to the paper González-Manteiga and Crujeiras (2013), the
problem of goodness-of-fit tests for regression models with cured data is briefly consi-
dered. A completely nonparametric approach to the mixture cure model was firstly
addressed by Xu and Peng (2014), proposing a nonparametric incidence estimator
which works with continuous covariates, and proving its consistency and asymptotic
normality. This nonparametric incidence estimator was studied later by López-Cheda
et al. (2017), who obtained an i.i.d. representation, the asymptotically optimal band-
width and proposed a bootstrap bandwidth selector. Regarding the latency function,
a nonparametric estimator was proposed by López-Cheda et al. (2017), but no fur-
ther properties were studied. The present paper contributes to this lacuna studying the
asymptotic properties of that nonparametric latency estimator and proposing a boot-
strap bandwidth selector. This enables the mixture cure model with covariates to be
addressed in a completely nonparametric way.

The rest of the paper is organized as follows. Section 2 introduces the notation and
presents the nonparametric mixture cure model and the nonparametric latency estima-
tion. The asymptotic results for this estimator as well as the required assumptions are
also introduced in Sect. 2. An i.i.d. representation is presented, an asymptotic expres-
sion for the mean squared error is found and the asymptotic normality is established
for the nonparametric latency estimator. The problem of choosing the smoothing para-
meter is addressed in Sect. 3, where a bootstrap bandwidth selector is presented. The
practical performance of this bootstrap bandwidth selector is assessed by a simulation
study in Sect. 4. The application of these methods to a colorectal cancer data set is
considered in Sect. 5. A final Appendix contains the proofs of the theoretical results
stated in Sect. 2.
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Nonparametric latency estimation for mixture cure models 355

2 Main results

2.1 Notation and nonparametric estimators

To distinguish between cured and uncured subjects we use a binary indicator: ν. If the
subject belongs to the susceptible group we set ν = 0. This means that the individual
will experience the event of interest if followed during enough time. If the subject is
cured we set ν = 1. In such a case the event will never be experienced by that subject.
The probability of being cured and the survival function in the group of uncured
patients may depend on a vector of covariates, X, measured on the subject. Let us
consider p(x) = P(ν = 0|X = x), the conditional probability of not being cured, and
let Y be the time to the event of interest. If ν = 1, we set Y = ∞.

We define F(t |x) = P(Y ≤ t |X = x), the conditional distribution function of
Y . When the cure probability is positive, then the corresponding survival function,
S(t |x), is improper. In other terms, limt→∞ S(t |x) = 1 − p(x) > 0.

Using the conditional survival function for susceptible subjects, S0(t |x) = P(Y >

t |X = x, ν = 0), the mixture cure model can be written as:

S(t |x) = 1 − p(x) + p(x)S0(t |x). (1)

The function 1 − p(x) is called the incidence and S0(t |x) is the latency.
Random right censoring is assumed. The censoring time is denoted by C and

G denotes its distribution function (Ḡ is its survival function). The variable C is
assumed to be independent of Y given the covariates X. The observed time is defined
as T = min{Y,C} and δ = 1{Y ≤ C} is the uncensoring indicator. We denote by
H the distribution function of T . It is clear that δ = 0 for all the cured patients,
and also for uncured patients with censored lifetime (T = C). From now on we
restrict ourselves to the case where X is a univariate continuous covariate X with
density function m(x). As a consequence of the previous definitions and assump-
tions, the sample is denoted by {(Xi , Ti , δi ), i = 1, . . . , n}, which collects i.i.d.
observations of the random vector (X, T, δ). Whenever is needed (X(i), T(i), δ(i))

will denote the observation corresponding to the i th order statistic with respect to
the sample (T1, T2, . . . , Tn), where X(i) and δ(i) are the concomitants of the X and
δ-samples.

The conditional distribution, survival and subdistribution functions are denoted by
G(t |x) = P (C ≤ t |X = x), Ḡ(t |x) = 1 − G(t |x), H(t |x) = P (T ≤ t | X = x),
H1(t |x) = P (T ≤ t, δ = 1|X = x) and Hc,1(t) = P (T < t |δ = 1).

We will consider the nonparametric approach in mixture cure models by López-
Cheda et al. (2017). It departs from the generalized Kaplan–Meier estimator by Beran
(1981) to estimate the conditional survival function:

Ŝh(t |x) =
∏

T(i)≤t

(
1 − δ(i)Bh(i)(x)∑n

r=i Bh(r)(x)

)
, (2)
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356 A. López-Cheda et al.

where Bh(i)(x) = Kh(x−X(i))/
∑n

j=1 Kh(x−X( j)) are the Nadaraya–Watson (NW)

weights and Kh(·) = 1
h K

( ·
h

)
the rescaled kernel with bandwidth h > 0. We denote

by F̂h(t |x) = 1 − Ŝh(t |x) the Beran estimator of F(t |x).
Departing from the Beran estimator, Xu and Peng (2014) introduced a kernel type

estimator for the incidence function:

1 − p̂h(x) =
n∏

i=1

(
1 − δ(i)Bh(i)(x)∑n

r=i Bh(r)(x)

)
= Ŝh(T

1
max|x), (3)

where T 1
max = maxi :δi=1(Ti ) is the largest uncensored failure time. These authors

proved the consistency and asymptotic normality of p̂h(x). López-Cheda et al. (2017)
obtained an i.i.d. representation and the asymptotically optimal bandwidth, proposed
a bootstrap bandwidth selector for p̂h(x), and introduced the following nonparametric
latency estimator:

Ŝ0,h(t |x) = Ŝh(t |x) − (1 − p̂h(x))

p̂h(x)
, (4)

with Ŝh(t |x), in (2), the Beran estimator of S(t |x) and 1− p̂h(x) the estimator by Xu
and Peng (2014) in (3). They also addressed identifiability of model (1). Note that the
optimal bandwidth for Ŝ0,h(t |x) is not necessarily the optimal bandwidth for p̂h(x).
A more general function than (4) using different bandwidths for the incidence and for
the improper survival function:

Ŝ0,h1,h2(t |x) = Ŝh1(t |x) − (1 − p̂h2(x))

p̂h2(x)
(5)

could be considered as an estimator of the latency. However, it does not yield necessar-
ily a proper survival function since its limit as t tends to infinity needs not to be zero.
In fact, it is not even guaranteed to be non-negative. On the other hand, as it will be
shown in Sect. 4.1, the optimal values for h1 and h2 in (5) are nearly equal. As a con-
sequence, in this work only the asymptotic properties of the nonparametric latency
estimator in (4), that depends on one unique bandwidth h, will be studied. Similar
theoretical results, not included in this paper, are easily extended to the estimator in
(5).

Let us define: τS0(x) = sup {t : S0(t |x) > 0}. Since S(t |x) is an improper survival
function and 1 − H(t |x) = S(t |x)Ḡ(t |x), then τH (x) = τG(x), where τH (x) =
sup {t : H(t |x) < 1} and τG(x) = sup {t : G(t |x) < 1}.

Let τ0 = supx∈D τS0(x), where D is the support of X . As in Xu and Peng (2014),
we consider

τ0 < τG(x) , ∀x ∈ D. (6)

The rationale of this condition has been discussed by López-Cheda et al. (2017), Xu
and Peng (2014) andMaller and Zhou (1992, 1996). Note that if the censoring variable
takes values always below a time τG < τ0, the largest uncensored observation may
occur at a time not larger than τG and therefore always before τ0. Laska and Meisner
(1992) stated that, for a large sample size, the nonparametric incidence estimator in
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(3) is an estimator of 1 − p(x) + p(x)S0(τG), which is strictly larger than 1 − p(x).
Specifically, as it is mentioned in Maller and Zhou (1992), consistent estimates of
the incidence are possible if and only if there is zero probability of a susceptible
individual surviving longer than the largest possible censoring time. That is, condition
(6) guarantees that censored subjects beyond the largest observable failure time are
cured, since the support of the censoring variable, C , is not contained in the support
of Y , the time to occurrence of the event. Therefore, the nonparametric estimator does
not overestimate the true cure rate. A nonparametric test for this condition on the
censoring mechanism was proposed by Maller and Zhou (1992) in an unconditional
setting, and by López-Cheda et al. (2017) with covariates.

2.2 Theoretical results

The following assumptions are needed to prove the asymptotic results in this section.

(A1) X , Y and C are absolutely continuous random variables.
(A2) Condition (6) holds.
(A3) (a) Let I = [x1, x2] be an interval contained in the support of m, and Iδ =

[x1 − δ, x2 + δ] for some δ > 0 such that 0 < γ = inf[m (x) : x ∈ Iδ] <

sup[m (x) : x ∈ Iδ] = Γ < ∞ and 0 < δΓ < 1. Then for all x ∈ Iδ the
random variables Y and C are conditionally independent given X = x .

(b) There exist a, b ∈ R, with a < b satisfying 1 − H(t |x) ≥ θ > 0 for
(t, x) ∈ [a, b] × Iδ .

(A4) The first derivative of the function m(x) exists and is continuous in x ∈ Iδ and
the first derivatives with respect to x of the functions H(t |x) and H1(t |x) exist
and are continuous and bounded in (t, x) ∈ [0,∞) × Iδ .

(A5) The second derivative of the function m(x) exists and is continuous in x ∈ Iδ
and the secondderivativeswith respect to x of the functions H(t |x) and H1(t |x)
exist and are continuous and bounded in (t, x) ∈ [0,∞) × Iδ .

(A6) The first derivatives with respect to t of the functions G(t |x), H(t |x), H1(t |x)
and S0(t |x) exist and are continuous in (t, x) ∈ [a, b] × D.

(A7) The second derivatives with respect to t of the functions H(t |x) and H1(t |x)
exist and are continuous in (t, x) ∈ [a, b] × D.

(A8) The second partial derivatives with respect to t and x of the functions H(t |x)
and H1(t |x) exist and are continuous and bounded for (t, x) ∈ [0,∞) × D.

(A9) Thefirst and second derivatives of the distribution and subdistribution functions
H(t) and Hc,1(t) are bounded away from zero in [a, b]. Moreover, H ′

c,1(τ0) >

0.
(A10) The functions H(t |x), S0(t |x) and G(t |x) have bounded second-order deriva-

tives with respect to x for any given value of t .
(A11) The kernel function, K , is a symmetric density vanishing outside (−1, 1) and

the total variation of K is less than some λ < ∞.
(A12) The density function of T , fT , is bounded away from 0 in [0,∞).

The proof of Theorem 1 is based on Theorem 2 in Iglesias-Pérez and González-
Manteiga (1999), where the assumptions (A1), (A3)–(A9) and (A11)–(A12) are
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required. Assumptions (A2) and (A10) ensure that Theorem 2 in Iglesias-Pérez and
González-Manteiga (1999), stated for a fixed t such that 1 − H(t |x) ≥ θ > 0 ∈
[a, b] × Iδ , can be applied to the random value t = T 1

max. Assumptions (A4)–(A8)
and (A10) are regularity conditions for the functions involved in the proofs and in the
asymptotic results.

In Theorem 1 we obtain an i.i.d. representation for Ŝ0,h(t |x) in (4).

Theorem 1 Suppose that conditions (A1)–(A12) hold, together with ln n
nh → 0 and

h = O
(( ln n

n

)1/5)
, then we have an i.i.d. representation for the nonparametric latency

estimator for any t ∈ [a, b]:

Ŝ0,h(t |x) − S0(t |x) =
n∑

i=1

ηh(Ti , δi , Xi , t, x) + O

((
ln n

nh

)3/4
)

a.s.,

where

ηh(Ti , δi , Xi , t, x) = − S(t |x)
p(x)

B̃h,i (x)ξ(Ti , δi , t, x)

− (1 − p(x))(1 − S(t |x))
p2(x)

B̃h,i (x)ξ(Ti , δi ,∞, x),

ξ (Ti , δi , t, x) = 1{Ti ≤ t, δi = 1}
1 − H(Ti |x) −

∫ t

0

1{u ≤ Ti }dH1(u|x)
(1 − H(u|x))2 (7)

and

B̃h,i (x) =
1
nh K

(
x−Xi
h

)

m(x)
.

From Theorem 1, important properties of the nonparametric latency estimator can
be obtained: the first one is the asymptotic expression of themean squared error (MSE)
given in Theorem 2, and the second one is the asymptotic normality, shown in Theorem
3. But first some notation will be introduced. Let us define

Φ(y, t, x) = E [ξ(T, δ, t, x)|X = y] , (8)

Φ1(y, t, x) = E
[
ξ2(T, δ, t, x)|X = y

]
(9)

and
Φ2(y, t, x) = E [ξ(T, δ, t, x)ξ(T, δ,∞, x)|X = y] ,

with ξ in (7). The asymptotic bias and variance of the latency estimator will be
expressed in terms of the following functions:
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B1 (t, x) = S(t |x)
p(x)m(x)

(
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

)
, (10)

B2 (t, x) = (1 − p(x))(1 − S(t |x))
p2(x)m(x)

× (
Φ ′′ (x,∞, x)m(x) + 2Φ ′ (x,∞, x)m′(x)

)
, (11)

where

Φ (y, t, x) =
∫ t

0

dH1 (v|y)
1 − H(v|x) −

∫ t

0
(1 − H(v|y)) dH1(v|x)

(1 − H(v|x))2 ,

and Φ ′ and Φ ′′ are the derivatives of Φ(y, t, x) with respect to y. Furthermore,

V1 (t, x) =
(
S(t |x)
p(x)

)2
Φ1(x, t, x)

m(x)
, (12)

V2 (t, x) =
(

(1 − p(x))(1 − S(t |x))
p2(x)

)2
Φ1(x,∞, x)

m(x)
, (13)

V3 (t, x) = (1 − p(x))S(t |x)(1 − S(t |x))
p3(x)m (x)

Φ2(x, t, x), (14)

respectively, where

Φ1(x, t, x) = Φ2(x, t, x) =
∫ t

0

dH1 (v|x)
(1 − H(v|x))2 .

Note that, except for some constants, B1(t, x) in (10) and B2(t, x) in (11) are the
dominant terms of the asymptotic bias of the estimators Ŝh and 1− p̂h in (2) and (3),
respectively. Similarly, the terms V1(t, x) in (12) and V2(t, x) in (13) are the dominant
terms of the corresponding asymptotic variances of Ŝh and 1 − p̂h . Finally, V3(t, x)
in (14) accounts for the covariance of both estimators.

Theorem 2 Under assumptions (A1)–(A10), if ln nnh → 0 and h = O
(( ln n

n

)1/5)
, then

the asymptotic mean squared error of the latency estimator is

AMSE(Ŝ0,h(t |x)) = h4

4
dK B2 (t, x) + cK

nh
V (t, x) + o(h4) + O

(
1

n

)
, (15)

where dK = ∫
v2K (v)dv, cK = ∫

K 2(v)dv,

B (t, x) = B1 (t, x) + B2 (t, x) , (16)

V (t, x) = V1 (t, x) + V2 (t, x) + 2V3 (t, x) , (17)

with t ∈ [a, b], B1, B2, V1, V2 and V3 in (10)–(14).
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Theorem 3 Under assumptions (A1)–(A10), if h → 0 and (ln n)3

nh → 0, it follows
that, for any t ∈ [a, b],

(a) If nh5 → 0, then

√
nh

(
Ŝ0,h(t |x) − S0(t |x)

)
d−→ N (0, V (t, x) cK ) .

(b) If nh5 → C5 > 0, then

√
nh

(
Ŝ0,h(t |x) − S0(t |x)

)
d−→ N

(
B (t, x)C5/2dK , V (t, x) cK

)
.

3 Bandwidth selection

FromTheorem2, the asymptoticmean integrated squared error of the latency estimator
is:

AMISE(Ŝ0,h(·|x)) = 1

4
d2K h

4
∫

B2 (t, x) dt + cK
nh

∫
V (t, x) dt + o(h4) + O

(
1

n

)
,

where B(t, x) and V (t, x) are defined in (16) and (17). The bandwidth which mini-
mizes the asymptotic mean integrated squared error is

hAMISE(x) =
(

cK
∫
V (t, x)dt

d2K
∫
B2(t, x)dt

)1/5

n−1/5,

which depends on plenty of unknown functions that are very hard to estimate. Conse-
quently, we propose to select the bandwidth using the bootstrap method.

3.1 Bootstrap bandwidth selector

The bootstrap bandwidth selector is theminimizer of the bootstrap version of themean
integrated squared error (MISE), that can be approximated, using Monte Carlo, by:

MISE∗
x,g(h) � 1

B

B∑

j=1

∫ (
Ŝ∗( j)
0,h (t |x) − Ŝ0,g(t |x)

)2
w(t)dt, (18)

wherew is an appropriate weight function, Ŝ∗( j)
0,h (t |x) is the kernel estimator of S0(t |x)

in (4) using bandwidth h and based on the j th bootstrap resample, and Ŝ0,g(t |x) is the
same estimator computed with the original sample and pilot bandwidth g.

We consider an unconditional censoring bootstrap resampling, assuming that
G(t |x) = G(t), ∀x, t :
1. For i = 1, 2, . . . , n, generate C∗

i from the product-limit estimator ĜKM .
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2. For i = 1, 2, . . . , n, fix the bootstrap covariates X∗
i = Xi and generate Y ∗

i from

Ŝ0,g(·|X∗
i ) with probability p̂g(X∗

i ), and Y ∗
i = ∞ otherwise.

3. Finally, define T ∗
i = min{Y ∗

i ,C∗
i } and δ∗

i = 1{Y ∗
i ≤ C∗

i } for i = 1, 2, . . . , n.
4. Repeat Steps 1–3 above B times to generate bootstrap resamples of the form{

(X (b)
1 , T ∗(b)

1 , δ
∗(b)
1 ), . . . , (X (b)

n , T ∗(b)
n , δ

∗(b)
n )

}
, b = 1, . . . , B.

5. For the bth bootstrap resample (b = 1, 2 . . . , B), compute Ŝ∗(b)
0,h (t |x) with band-

width hl ∈ {h1, . . . , hL} .
6. With the original sample and pilot bandwidth g, compute Ŝ0,g(t |x).
7. For each bandwidth hl in {h1, . . . , hL}, compute the Monte Carlo approximation

of MISE∗
x,g(hl) as in (18).

8. Find h∗
x = argminhl∈{h1,...,hL } MISE∗

x,g(hl).

4 Simulation study

Good practical behavior of the nonparametric latency estimator has been preliminarily
reported byLópez-Cheda et al. (2017). The purpose of this simulation study is to assess
the performance of the bootstrap bandwidth selector for the nonparametric latency
estimator. We will work with the same two models considered by López-Cheda et al.
(2017). For bothmodels, the censoring times are generated according to an exponential
distribution with mean 10/3 and the covariate X has a U (−20, 20) distribution.

Model 1 The probability of not being cured is a logistic function and the latency is
close to fulfill the proportional hazards model, truncated to guarantee condition (6):

p(x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
and S0(t |x) = exp(−λ(x)t) − exp(−λ(x)τ0)

1 − exp(−λ(x)τ0)
1{t ≤ τ0},

with β0 = 0.476 and β1 = 0.358, τ0 = 4.605 and λ (x) = exp ((x + 20)/40). A
percentage of 54% of the patients are censored and 47% are cured.

Model 2 The probability of not being cured is

p(x) = exp
(
β0 + β1x + β2x2 + β3x3

)

1 + exp
(
β0 + β1x + β2x2 + β3x3

) ,

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027 and β3 = 0.0020, and S0(t |x) =
1
2

(
exp(−α(x)t5) + exp(−100t5)

)
with α(x) = 1

5 exp((x + 20)/40). In this case, the
percentages of cure and censoring are slightly higher than for Model 1: around 62%
of the individuals are censored and 53% are cured.

In order to approximate the bootstrap version of the MI SEx of the nonparametric
latency estimator, m = 1000 trials and B = 200 bootstrap resamples of sizes n = 50,
n = 100 and n = 200 were drawn and used the Epanechnikov kernel. We considered
a grid of 35 bandwidths (from 5 to 100) equispaced on a logarithmic scale. Note
that, although the covariate X ∈ U (−20, 20), we only work with x ∈ [−10, 20].
The reason is that p(x) � 0 for −20 ≤ x ≤ −10. This implies that almost all the
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subjects are cured, and therefore the estimation of the survival function of the uncured
population can not be obtained. Similarly as for the nonparametric incidence estimator
(see López-Cheda et al. 2017), the effect of the choice of the pilot bandwidth, g, on
the bootstrap bandwidth, h∗

x , is very weak. In this simulation study, we considered the
same naive pilot bandwidth selector, g = C(X[n] − X[1]) · n−1/9, as in López-Cheda
et al. (2017), with C = 0.75, and where X[n] (X[1]) is the maximum (minimum) value
of the observed values of the covariate X .

In Fig. 1 the density of the bootstrap bandwidths, h∗
x , is compared with the optimal

hMISE,x bandwidth. The MISE values obtained considering these bandwidths are also
shown. It is noteworthy thatMISE(Ŝ0,h(·|x)), and consequentlyMISE∗

x,g(h), is almost
constant in a very wide interval around its minimizer. This feature implies that very
different bandwidths could yield very similar good estimates in terms ofMISE.We can
appreciate how the bootstrap bandwidthmight be larger (smaller) than hMISE inModel
1 (Model 2), for most of the covariate values, reflected in a very little difference in
terms of MISE between the estimates with the optimal and the bootstrap bandwidths.

4.1 Results when using two bandwidths to estimate S0

We will present some results for the latency estimator in (5), that is, if two different
bandwidths are considered: h1 for the incidence and h2 for the improper survival
function S. Note that, for the sake of brevity, we only work with Model 1 and sample
size n = 100, considering m = 1000 samples. Figure 2 (left) shows the MISE,
approximated by Monte Carlo, of the nonparametric latency estimator Ŝ0,h1,h2(t |x) in
(5) as a function of (h1, h2) for the covariate value x = 5 (the MISE for other values
of x is similar, not shown). We can see that the minimum MISE (dark-grey color)
is reached around the diagonal, that is, when h1 = h2. Figure 2 (right) provides the
optimal bandwidths (h1, h2) as a function of x . Note that for most of the covariate
values both optimal bandwidths are very similar, being even equal for the values of x
larger than 5.

Therefore, as pointed out inSect. 2, little efficiency is lostwhen consideringoneonly
bandwidth h1 = h2 to estimate S0, while this guarantees that the resulting estimator
is a proper survival function.

5 Application to colorectal cancer data

The proposed method was applied to the dataset used in López-Cheda et al. (2017),
composed of 414 colorectal cancer patients from CHUAC (Complejo Hospitalario
Universitario de A Coruña), Spain. The variable of interest is the follow-up time, in
months, since the diagnosis until death. Two covariates are considered: the stage (from
1 to 4) and the age (from 23 to 103). The percentage of censoring varies from 30% to
almost 71%, depending on the stage. In Table 1 we show a summary of the data set.

Due to the small sample sizes in each stage, the results are presented in two groups:
Stages 1–2 and Stages 3–4. Note that B = 200 bootstrap resamples are drawn. Similar
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Fig. 1 MISE contour plot depending on the bandwidth and on the covariate, for Model 1 (left) andModel 2
(right), with sample sizes n = 50 (top), n = 100 (center) and n = 200 (bottom). The density of the bootstrap
bandwidth is displayed in grayscale and the hMISE bandwidth, for each covariate value, is represented with
crosses
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Fig. 2 MISE(h1, h2) of Ŝ0,h1,h2 for x = 5 and the grid of bandwidths (equispaced on a logarithmic scale)
where h1 = h2 are represented with black dots (left), and optimal (h1, h2) bandwidths, in terms of MISE
(right)

Table 1 Colorectal cancer patients from CHUAC

Stage Number of patients Number of censored data % censoring

1 62 44 70.97

2 167 92 55.09

3 133 53 39.85

4 52 16 30.77

414 205 49.52

Fig. 3 Latency estimation for patients in Stages 1–2 (left) and 3–4 (right) with ages 35 (solid line), 50
(dashed line) and 80 (dotted line), computed using the nonparametric estimator, Ŝ0,h(t |x), with the bootstrap
bandwidth, h∗

x
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to the simulation study in Sect. 4, we considered a grid of 35 bandwidths from h1 = 5
to h35 = 100 equispaced on a logarithmic scale.

The latency estimation computed with the bootstrap bandwidth, Ŝ0,h∗(t |x), for
different ages (35, 50 and 80) is shown in Fig. 3. We can observe that for Stages 1–2
the covariate age does not seem to be determining for the latency estimation, since
all the estimated latency functions are very similar for the whole grid of ages. On
the contrary, for Stages 3–4 the latency estimation varies considerably depending on
the age. For example, the probability that the follow-up time since the diagnosis until
death is larger than 4.5 years (54 months) is around 0.2 for patients with ages 35 and
50, whereas for 80- year-old patients, that probability is larger than 0.4.
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Appendix

Proof of Theorem 1 The nonparametric estimator of S0(t |x) in (4) can be decomposed
as follows:

Ŝ0,h(t |x) − S0(t |x) = A11 + A21 + A12 + A22, (19)

where the dominant terms of the i.i.d. representation of Ŝ0,h(t |x) derive from

A11 = Ŝh(t |x) − S(t |x)
p(x)

and A21 = 1 − S(t |x)
p2(x)

( p̂h(x) − p(x)), (20)

and the remaining terms

A12 = (Ŝh(t |x) − S(t |x))(p(x)− p̂h(x))

p̂h(x)p(x)
and A22= S(t |x)−1

p2(x)

(
p̂h(x) − p(x)

)2

p̂h(x)
(21)

will be proved to be negligible.
The i.i.d. representation of the term A11 in (20) follows, under assumptions (A1)–

(A7), (A11) and (A12), from that of Ŝh(t |x) in Theorem 2 of Iglesias-Pérez and
González-Manteiga (1999):

A11 = − S(t |x)
p(x)

n∑

i=1

B̃h,i (x)ξ(Ti , δi , t, x) + O

((
ln n

nh

)3/4
)

a.s. (22)

Under assumptions (A1)–(A12), the dominant terms of the i.i.d. representation of
A21 in (20) come from the i.i.d. representation of p̂h(x) in Theorem 3 of López-Cheda
et al. (2017):
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A21 = − (1 − S(t |x))
p2(x)

(1 − p(x))
n∑

i=1

B̃h,i (x)ξ(Ti , δi ,∞, x) + O

((
ln n

nh

)3/4
)

a.s.

(23)
We continue by proving the negligibility of A12 in (21). Under assumptions (A3a),

(A4), (A5) and (A11), we apply Lemma 5 in Iglesias-Pérez and González-Manteiga
(1999) to obtain

Ŝh(t |x) − S(t |x) = O

(√
ln ln n

nh
+ h2

)
a.s.

and, similarly from Theorem 3.3 in Arcones (1997) and the Strong Law of Large
Numbers (SLLN),

p̂h(x) − p(x) = O

(√
ln ln n

nh
+ h2

)
a.s. (24)

It is straightforward to check that if the bandwidth satisfies h → 0, ln n
nh → 0 and

nh5
ln n = O(1), with the convergence p̂h(x) → p(x) a.s. proved in Lemma 7 of López-
Cheda et al. (2017), it directly follows that

A12 = O

((
ln n

nh

)3/4
)

a.s. (25)

With respect to A22 in (21), if h → 0, ln n
nh → 0 and nh5

ln n = O(1), using the almost
sure consistency of p̂h(x), it follows from (24) that

A22 = O

((
ln n

nh

)3/4
)

a.s. (26)

The proof of the theorem follows from the decomposition (19) and the results (22),
(23), (25) and (26). �

Proof of Theorem 2 From Theorem 1, the latency estimator can be decomposed as

Ŝ0,h(t |x) − S0(t |x) = C1 + C2 + O

((
ln n

nh

)3/4
)

a.s.,

where

C1 = − S(t |x)
p(x)

n∑

i=1

B̃h,i (x)ξ(Ti , δi , t, x),

C2 = − (1 − p(x))(1 − S(t |x))
p2(x)

n∑

i=1

B̃h,i (x)ξ(Ti , δi ,∞, x),

123



Nonparametric latency estimation for mixture cure models 367

with B̃h,i (x) in (8) and ξ in (7). Then, the AMSE of Ŝ0,h(t |x) is

AMSE(Ŝ0,h(t |x)) = E(C2
1 ) + E(C2

2 ) + 2E(C1 · C2). (27)

We start with the first term of AMSE(Ŝ0,h(t |x)). Note that

E(C2
1 ) = Var(C1) + (E(C1))

2, (28)

where

Var(C1) = 1

nh2

(
S(t |x)
p(x)

)2 1

m2(x)
Var

(
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

)
(29)

and

Var

(
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

)

= E

(
K 2

(
x − X1

h

)
ξ2(T1, δ1, t, x)

)
−

[
E

(
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

)]2
.

(30)

Let us consider Φ1(y, t, x) defined in (9). From a change of variable and a Taylor
expansion, then the first term in (30) is

E

[
K 2

(
x − X1

h

)
ξ2(T1, δ1, t, x)

]
= hΦ1(x, t, x)m(x)cK + O(h3). (31)

For the second term in (30), applying a change of variable, a Taylor expansion, and
taking into account the symmetry of K , it follows that

[
E

(
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

)]2
=

[
Φ(x, t, x)m(x)h + O(h3)

]2 = O(h6),

(32)
where Φ(y, t, x) = E [ξ(T, δ, t, x)|X = y] and, as will be proved in Lemma 4,
Φ(x, t, x) = 0 for all t ≥ 0.

From (29), (30), (31) and (32), then

Var(C1) = 1

nh

(
S(t |x)
p(x)

)2 1

m(x)
Φ1(x, t, x)cK + O

(
h

n

)
.

Continuing with the second term in the right-hand side of (28):

E(C1) = −1

h

S(t |x)
m(x)p(x)

E

[
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

]
.
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Using a Taylor expansion, and Φ(x, t, x) = 0 ∀t ≥ 0, then

E(C1) = −1

2
h2

S(t |x)
p(x)m(x)

dK
(
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

) + o(h2).

So the first term of AMSE(Ŝ0,h(t |x)) in (27) is

E(C2
1 ) = 1

4
h4d2K

[
S(t |x)

p(x)m(x)

(
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

)]2

+ 1

nh

(
S(t |x)
p(x)

)2 1

m(x)
Φ1(x, t, x)cK + o(h4) + O

(
h

n

)
. (33)

Following the same ideas as those for C1, we obtain for C2 that

E(C2
2 ) = 1

nh

(
(1 − S(t |x))(1 − p(x))

p2(x)

)2 1

m(x)
Φ1(x,∞, x)cK

+1

4
h4d2K

[
(1 − S(t |x))(1 − p(x))

p2(x)m (x)

× (
Φ ′′ (x,∞, x)m(x) + 2Φ ′ (x,∞, x)m′(x)

)]2
o(h4) + O

(
h

n

)
.

(34)

We continue studying the third term of AMSE(Ŝ0,h(t |x)) in (27):

E (C1 · C2) = (1 − p(x))S(t |x)(1 − S(t |x)
p3(x)

[
n(n − 1)αβ + nγ

]
,

where

α = E
[
B̃h1(x)ξ(T1, δ1, t, x)

]
,

β = E
[
B̃h1(x)ξ(T1, δ1,∞, x)

]
,

γ = E
[
B̃2
h1(x)ξ(T1, δ1, t, x)ξ(T1, δ1,∞, x)

]
.

Using a Taylor expansion and Φ(x, t, x) = 0 for all t ≥ 0, the terms α and β are

α = 1

2

h2

n
dK

1

m(x)

(
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

) + o

(
h2

n

)
, (35)

β = 1

2

h2

n
dK

1

m(x)

(
Φ ′′ (x,∞, x)m(x) + 2Φ ′ (x,∞, x)m′(x)

) + o

(
h2

n

)
.(36)
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For the term γ , it follows that

γ = 1

n2h2
1

m2(x)

∫
K 2

(
x − y

h

)
Φ2(y, t, x)m(y)dy

= 1

n2h

1

m(x)
Φ2(x, t, x)cK + O

(
h

n2

)
, (37)

where Φ2(y, t, x) = E [ξ(T, δ, t, x)ξ(T, δ,∞, x)|X = y] . From (35), (36) and (37),
the third term of AMSE(Ŝ0,h(t |x)) in (27) is:

E (C1 · C2) = (1 − p(x))S(t |x)(1 − S(t |x)
p3(x)

[
1

4
h4d2K

1

m2(x)

× (
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

)

× (
Φ ′′ (x,∞, x)m(x) + 2Φ ′ (x,∞, x)m′(x)

)

+ 1

nh

1

m(x)
Φ2(x, t, x)cK

]
+ o

(
h4

)
+ O

(
h

n

)
. (38)

Compiling (33), (34) and (38), the AMSE(Ŝ0,h(t |x)) in (27) is

AMSE(Ŝ0,h(t |x)) = 1

nh

1

m(x)
cK

((
S(t |x)
p(x)

)2

Φ1(x, t, x)

+
(

(1 − S(t |x))(1 − p(x))

p2(x)

)2

Φ1(x,∞, x)

+ 2
(1 − p(x))S(t |x)(1 − S(t |x))

p3(x)
Φ2(x, t, x)

)

+1

4
h4d2K

1

m2(x)

(
S(t |x)
p(x)

(
Φ ′′ (x, t, x)m(x) + 2Φ ′ (x, t, x)m′(x)

)

+ (1 − S(t |x))(1 − p(x))

p2(x)
(Φ ′′ (x,∞, x)m(x)

+ 2Φ ′ (x,∞, x)m′(x))
)2

+ o(h4) + O

(
h

n

)
.

Since, from (40) and (41), in Lemmas 5 and 6 it is proven that

Φ1(x, t, x) = Φ2(x, t, x) =
∫ t

0

dH1 (v|x)
(1 − H(v|x))2 ,

and considering (10)–(14), the AMSE of Ŝ0,h(t |x) is, finally, that in (15).
This completes the proof. �
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Lemma 4 The term Φ (y, t, x) in (8) has the following expression:

Φ (y, t, x) =
∫ t

0

dH1 (v|y)
1 − H(v|x) −

∫ t

0
(1 − H(v|y)) dH1(v|x)

(1 − H(v|x))2 ,

and consequently, Φ (x, t, x) = 0 for any t ≥ 0.

Proof of Lemma 4 Let us recall Φ (y, t, x) = E [ξ(T, δ, t, x)|X = y], then

Φ (y, t, x) = E

[
1{T ≤ t, δ = 1}
1 − H(T |x)

∣∣∣∣X = y

]
− E

[∫ t

0

1{y ≤ T }dH1(u|x)
(1 − H(u|x))2

∣∣∣∣X = y

]

= A′ − A′′.

We start with A′:

A′ = E

[
1{T ≤ t}

1 − H(T |x) E (δ|T, X = y)

]
=

t∫

0

q(v, y)dH(v|y)
1 − H(v|x) =

∫ t

0

dH1 (v|y)
1 − H(v|x) ,

where q (t, y) = E (δ|T = t, X = y) and H1 (t |y) = P (T ≤ t, δ = 1|X = y).
We continue with A′′:

A′′ =
∫ t

0
E [1{v ≤ T }|X = y]

dH1(v|x)
(1 − H(v|x))2 =

∫ t

0
(1 − H(v|y)) dH1(v|x)

(1 − H(v|x))2 .

Then,

Φ (y, t, x) =
∫ t

0

dH1 (v|y)
1 − H(v|x) −

∫ t

0
(1 − H(v|y)) dH1(v|x)

(1 − H(v|x))2 , (39)

and therefore, Φ (x, t, x) = 0 for any t ≥ 0. �

Lemma 5 The term Φ1(y, t, x) in (9) verifies, for any t ∈ [a, b],

Φ1 (x, t, x) =
∫ t

0

dH1 (v|x)
(1 − H(v|x))2 . (40)

Proof of Lemma 5 Note that Φ1 (y, t, x) = E
[
ξ2(T, δ, t, x)|X = y

]
, with ξ in (7).

Then,

Φ1 (y, t, x) = E

[
1{T ≤ t, δ = 1}
(1 − H(T |x))2

∣∣∣∣X = y

]

+E

[∫ t

0

∫ t

0

1{u ≤ T }1{v ≤ T }
(1 − H(u|x))2 (1 − H(v|x))2 dH

1(u|x)dH1(v|x)
∣∣∣∣X = y

]

−2E

[
1{T ≤ t, δ = 1}
1 − H(T |x)

∫ t

0

1{u ≤ T }dH1(u|x)
(1 − H(u|x))2

∣∣∣∣X = y

]

= A + B − 2C.
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The first term in the decomposition of Φ1 (y, t, x) is

A =
∫ t

0

q (v, y)

(1 − H(v|x))2 dH(v|y) =
∫ t

0

dH1 (v|y)
(1 − H(v|x))2 .

The second term is

B =
∫ t

0

∫ t

0

1 − H (max (w, v) |y)
(1 − H(v|x))2 (1 − H(w|x))2 dH

1(v|x)dH1(w|x).

Integrating in the supports {(v,w) ∈ [0, t] × [0, t] /v ≤ w} and {(v,w) ∈ [0, t]
× [0, t] /w < v}, the term B is

B = 2
∫ t

0

1

(1 − H(v|x))2
(∫ t

v

1 − H (w|y)
(1 − H(w|x))2 dH

1(w|x)
)
dH1(v|x).

Finally, the third term in the decomposition of Φ1 (y, t, x) is

C =
∫ t

0

1

(1 − H(u|x))2
(∫ t

u

dH1 (v|y)
1 − H(v|x)

)
dH1(u|x).

Note that, for y = x , we have that B = 2C . This completes the proof. �


Lemma 6 The expression for the termΦ2(x, t, x), for any t ∈ [a, b], is the following:

Φ2(x, t, x) =
∫ t

0

dH1 (v|x)
(1 − H(v|x))2 . (41)

Proof of Lemma 6 Recall Φ2(y, t, x) = E [ξ (T, δ, t, x) ξ(T, δ,∞, x)|X = y] with
ξ in (7). Then:

Φ2(y, t, x)

= E

[
1{T ≤ t, δ = 1}
(1 − H(T |x))2

∣∣∣∣X = y

]

−E

[
1{δ = 1}

1 − H(T |x)
∫ ∞

0

1{u ≤ T ≤ t}
(1 − H(u|x))2 dH

1(u|x)
∣∣∣∣X = y

]

−E

[
1{δ = 1}

1 − H(T |x)
∫ t

0

1{v ≤ T }
(1 − H(v|x))2 dH

1(v|x)
∣∣∣∣X = y

]

+E

[∫ t

0

1{v ≤ T }dH1(v|x)
(1 − H(v|x))2

∫ ∞

0

1{u ≤ T }dH1(u|x)
(1 − H(u|x))2

∣∣∣∣X = y

]

= A − B − C + D.
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Straightforward calculations yield:

A =
∫ t

0

dH1 (v|y)
(1 − H(v|x))2 ,

B =
∫ ∞

0

(∫ t

u

dH1 (v|y)
1 − H(v|x)

)
dH1(u|x)

(1 − H(u|x))2 ,

C =
∫ t

0

(∫ ∞

v

dH1 (u|y)
1 − H(u|x)

)
dH1(v|x)

(1 − H(v|x))2 ,

D =
∫ t

0

1

(1 − H(v|x))2
(∫ ∞

0

1 − H (max (u, v) |y)
(1 − H(u|x))2 dH1(u|x)

)
dH1(v|x).

Integrating in the supports {(u, v) ∈ [0,∞) × [0, t] /v ≤ u} and {(u, v) ∈ [0,∞)

× [0, t] /u < v} = {(u, v) ∈ [0, t] × [0, t] /u < v}, the term D is

D =
∫ t

0

(∫ ∞

v

1 − H (u|y)
(1 − H(u|x))2 dH

1(u|x)
)

dH1(v|x)
(1 − H(v|x))2

+
∫ ∞

0

(∫ t

u

1 − H (v|y)
(1 − H(v|x))2 dH

1(v|x)
)

dH1(u|x)
(1 − H(u|x))2 .

When y = x , then D = C + B, which concludes the proof. �


Proof of Theorem 3 Under assumptions (A1)–(A10) and using Theorem 1,
√
nh(

Ŝ0,h(t |x) − S0(t |x)
)
has the same limit distribution as

√
nh

n∑

i=1

ηh(Ti , δi , Xi , t, x) = − (I + I I + I I I + I V ) ,

where

I = √
nh

1

nh

S(t |x)
p(x)m(x)

×
n∑

i=1

[
K

(
x − Xi

h

)
ξ(Ti , δi , t, x) − E

(
K

(
x − Xi

h

)
ξ(Ti , δi , t, x)

)]
,

I I = √
nh

1

nh

(1 − p(x))(1 − S(t |x))
p2(x)m (x)

×
n∑

i=1

[
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x) − E

(
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x)

)]
,

I I I = √
nh

1

nh

S(t |x)
p(x)m(x)

n∑

i=1

E

[
K

(
x − Xi

h

)
ξ(Ti , δi , t, x)

]
,
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I V = √
nh

1

nh

(1 − p(x))(1 − S(t |x))
p2(x)m (x)

n∑

i=1

E

[
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x)

]
.

The deterministic part b(t, x) comes from I I I + I V . Recall the functionΦ(y, t, x)
in (39), since Φ(x, t, x) = 0, then

E

[
K

(
x − X

h

)
ξ(T, δ, t, x)

]

= 1

2
h3dK

(
Φ ′′(x, t, x)m(x) + 2Φ ′(x, t, x)m′(x)

) + o(h3). (42)

Therefore,

I I I =
√
nh5

S(t |x)
p(x)m(x)

1

2
dK

(
Φ ′′(x, t, x)m(x) + 2Φ ′(x, t, x)m′(x)

)
(1 + o (1)) ,

I V =
√
nh5

(1 − p(x))(1 − S(t |x))
p2(x)m (x)

1

2
dK

× (
Φ ′′(x,∞, x)m(x) + 2Φ ′(x,∞, x)m′(x)

)
(1 + o(1)) .

If nh5 → 0, then I I I + I V = o (1) and b (t, x) = 0. On the other hand, if
nh5 → C5 then

b(t, x) = C5/2 S(t |x)
p(x)m(x)

1

2
dK

(
Φ ′′(x, t, x)m(x) + 2Φ ′(x, t, x)m′(x)

)

+C5/2 (1 − p(x))(1 − S(t |x))
p2(x)m (x)

1

2
dK (Φ ′′(x, ∞, x)m(x) + 2Φ ′(x, ∞, x)m′(x)).

As for the asymptotic distribution of I + I I , it is immediate to prove that:

I + I I =
n∑

i=1

(
γi,n(x, t) + Γi,n(x, t)

)
,

where

γi,n(x, t) = 1√
nh

S(t |x)
p(x)m(x)

×
[
K

(
x − Xi

h

)
ξ(Ti , δi , t, x) − E

(
K

(
x − Xi

h

)
ξ(Ti , δi , t, x)

)]
,

Γi,n(x, t) = 1√
nh

(1 − p(x))(1 − S(t |x))
p2(x)m (x)

×
[
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x) − E

(
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x)

)]
,
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are n independent variables with mean 0. To prove the asymptotic normality of I + I I ,
it is only necessary to show that σ 2

i,n (x, t) = Var
(
γi,n(x, t) + Γi,n(x, t)

)
< ∞,

σ 2
n (x, t) = ∑n

i=1 σ 2
i,n (x, t) is positive and that the Lindeberg’s condition is satisfied,

so Lindeberg’s theorem for triangular arrays (Theorem 7.2 in Billingsley (1968), p.
42) can be applied to obtain

∑n
i=1

(
γi,n(x, t) + Γi,n(x, t)

)

σn (x, t)
→ N (0, 1) ,

and consequently,

√
nh

∑n
i=1 ηh(Ti , δi , Xi , t, x)

σn (x, t)
→ N (0, 1) .

We will start proving that the variance

σ 2
i,n (x, t) = Var

(
γi,n(x, t)

) + Var
(
Γi,n(x, t)

) + 2Cov
(
γi,n(x, t), Γi,n(x, t)

)
(43)

is finite. Note that

Var
(
γi,n(x, t)

) = 1

nh

(
S(t |x)

p(x)m(x)

)2 {
E

[
K 2

(
x − X1

h

)
ξ2(T1, δ1, t, x)

]

−E

[
K

(
x − X1

h

)
ξ(T1, δ1, t, x)

]2}
.

Let us define Φ1(y, t, x) = E
[
ξ2(T, δ, t, x)|X = y

]
, using (42), then the first term

in (43) is

Var
(
γi,n(x, t)

) = 1

n

(
S(t |x)
p(x)

)2
Φ1(x, t, x)

m (x)
cK + O

(
h2

n

)
. (44)

In a similar way, the second term in (43) is

Var
(
Γi,n(x, t)

) = 1

n

(
(1 − p(x))(1 − S(t |x))

p2(x)

)2
Φ1(x,∞, x)

m (x)
cK + O

(
h2

n

)
.

(45)
Finally, for the third term in (43),

Cov
(
γi,n(x, t), Γi,n(x, t)

)

= 1

nh

{
E

[
K 2

(
x − Xi

h

)
ξ(Ti , δi ,∞, x)ξ(Ti , δi , t, x)

]

−E

[
K

(
x − Xi

h

)
ξ(Ti , δi , t, x)

]
E

[
K

(
x − Xi

h

)
ξ(Ti , δi ,∞, x)

]}
.
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Let us considerΦ2(y, t, x) = E [ξ(T, δ, t, x)ξ(T, δ,∞, x)|X = y]. Applying Taylor
expansions, the third term in (43) is

Cov
(
γi,n(x, t), Γi,n(x, t)

) =1

n

(1− p(x))S(t |x)(1−S(t |x))
p3(x)m(x)

Φ2(x, t, x)cK + O

(
h

n

)
.

(46)
The results (44), (45) and (46), together with (40) and (41), lead to

σ 2
i,n (x, t) = cK

n
(V1 (t, x) + V2 (t, x) + 2V3 (t, x)) + O

(
h

n

)
,

where V1 (t, x), V2 (t, x) and V3 (t, x) are defined in (12), (13) and (14), respectively.
As a consequence, σ 2

i,n (x, t) < ∞. The finiteness of the variance σ 2
n (x, t) is also

proved, since

σ 2
n (x, t)=

n∑

i=1

σ 2
i,n (x, t)=V1 (t, x) cK +V2 (t, x) cK+2V3 (t, x) cK +O (h) < +∞.

We continue studying Lindeberg’s condition:

1

σ 2
n (x, t)

n∑

i=1

∫

{|γi,n(x,t)+Γi,n(x,t)|>εσn(x,t)}
(γi,n(x, t) + Γi,n(x, t))

2dP → 0,∀ε > 0.

(47)

Let us define the indicator function Ii,n(x, t) = 1
{(

γi,n(x, t)+Γi,n(x, t)
)2

>ε2σ 2
n

(x, t)}. Then (47) can be expressed as

1

σ 2
n (x, t)

E

[
n∑

i=1

(γi,n(x, t) + Γi,n(x, t))
2 Ii,n (x, t)

]
= 1

σ 2
n (x, t)

E (ηn (x, t)) ,

with

ηn (x, t) =
n∑

i=1

(γi,n(x, t) + Γi,n(x, t))
2 Ii,n (x, t) .

Since 1
nh → 0, and the functions K and ξ are bounded, one has:

∃n0 ∈ N/n ≥ n0 ⇒ Ii,n(w) = 0,∀w and ∀i ∈ {1, 2, . . . , n}
⇔ ∃n0 ∈ N/n ≥ n0 ⇒ ηn(w) = 0,∀w.

Since ηn(x, t) is bounded, then the previous condition implies that ∃n0 ∈ N/n ≥
n0 ⇒ E(ηn(x, t)) = 0, and then limn→∞ 1

σ 2
n
E(ηn(x, t)) = 0.Therefore, Lindeberg’s

condition is proved. All these previous arguments lead to the proof of Theorem 3. �
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