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1 Introduction

Let us consider a finite populationU = {1, . . . , N }of size N . Let yU = (y1, . . . , yN )T,
where y j ∈ R is the value of the study variable Y for the j th population element. For
simplicity in notation, along this paper it will be assumed that Y is scalar, nevertheless
all methods and results presented here are valid for Y ∈ R

d , for any fixed d ∈ N.
The basic question in survey sampling is to estimate a linear parameter θγ = γ T

U yU ,

with γ T
U = (γ1, . . . , γN ) a known parameter vector. Usually, survey sampling focuses

on the estimation of the finite population total, the mean on the whole population or on
a domain and the population distribution function (df) at a fixed point or at all points,

FN (t) = 1

N

∑

j∈U
Δ(y j ≤ t), t ∈ R,

where Δ(A) = 1 if A is true, and Δ(A) = 0 otherwise. The estimation of the
df is of interest per se and because it provides a useful tool for making inferences
on the population. For example, Wang (2012) proposed goodness-of-fit procedures
for a study variable based on divergence measures between the design weighted
estimator of the df and the hypothesized distribution; Conti (2014) studied the estima-
tion of the df with applications to the construction of confidence bands, comparison
of two populations and testing for the nullity of certain dependence measures of
two variables. These articles study the limit in law of {√n(F̂N ,π (t) − FN (t)), t ∈
R}, where F̂N ,π (t) denotes the Horvitz–Thompson (HT) estimator of FN (t), (also
{√n(F̂N ,H (t) − FN (t)), t ∈ R}, where F̂N ,H (t) denotes the Hájek estimator of
FN (t)). Wang (2012) did it under a superpopulation setting with FN replaced by
its superpopulation analogue, obtaining that the covariance of the limit process has
two components, one resulting from finite population sampling and the other from
the variation of the superpopulation df itself; by contrast, these processes were stud-
ied in Conti (2014) under a design-based framework, obtaining a different limit
process.

In the context of sampling from a random variable (sfarv), it is well-known that the
empirical distribution function (edf) provides a helpful device for making inferences
on the random variable generating the data. The inferential procedures proposed in
the articles in the above paragraph are sample survey versions/adaptations of some
existing procedures based on the edf in the context of sfarv. Another quite valuable
means for making inferences in such a context is the characteristic function (cf). The
cf has been used in sampling from finite populations as a tool to derive results (see,
for instance, the paper by Erdös and Rényi (1959), which uses the cf of the sum of
the study variable in all samples to derive a central limit theorem for simple random
sampling; or the book by Tillé (2006), that employs the cf of a sampling design to get
properties of the sampling design). Nevertheless, to the best of our knowledge, the cf
of a study variable has not been considered as a population parameter deserving to be
estimated.

Proceeding as in the sfarv context, we define the cf associated to the study variable
Y in the finite population U as
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On the estimation of the characteristic function in finite… 97

CN (t) =
∫

exp(iyt)dFN (y) = 1

N

∑

j∈U
exp(iy j t) = RN (t) + iIN (t), t ∈ R,

with RN (t) = 1
N

∑
j∈U cos(t y j ), IN (t) = 1

N

∑
j∈U sin(t y j ). Note that for each fixed

t , RN (t) and IN (t) are linear parameters, therefore, given a sample s from U , they
can be unbiasedly estimated by their HT estimators,

R̂N ,π (t) = 1

N

∑

j∈s

cos(t y j )

π j
, ÎN ,π (t) = 1

N

∑

j∈s

sin(t y j )

π j
,

where {π j = P( j ∈ s), j ∈ U } are the first order inclusion probabilities. These esti-
mators can be alternatively obtained as follows: CN (t) can be estimated by replacing
FN (y) by its HT estimator

F̂N ,π (y) = 1

N

∑

j∈s

Δ(y j ≤ y)

π j
, y ∈ R,

obtaining

ĈN ,π (t) =
∫

exp(iyt)dF̂N ,π (y) = 1

N

∑

j∈s

exp(iy j t)

π j
= R̂N ,π (t) + i ÎN ,π (t),

t ∈ R. The problem with the estimator ĈN ,π (t) is that since, in general, F̂N ,π (y) is
not a df, it may not be a proper cf (it happens when ĈN ,π (0) = 1

N

∑
j∈s π j

−1 �= 1).
This can be avoided by considering the Hájek estimator of FN (y),

F̂N ,H (y) = 1

N̂π

∑

j∈s

Δ(y j ≤ y)

π j
, y ∈ R,

with N̂π = ∑
j∈s π−1

j , which is a true df. We can thus define the Hájek estimator of
CN (t) as

ĈN ,H (t) =
∫

exp(iyt)dF̂N ,H (y) = 1

N̂π

∑

j∈s

exp(iy j t)

π j
= R̂N ,H (t) + i ÎN ,H (t),

t ∈ R, with R̂N ,H (t) = N R̂N ,π (t)/N̂π and ÎN ,H (t) = N ÎN ,π (t)/N̂π , which is a
proper cf.

The estimation of the population cf at a single point has little (or no) concern since
CN (t) is seldom an interesting parameter. Nevertheless, it will be seen that CN (t) can
be a useful tool for making inferences in finite populations. With this aim, this paper
studies the performance of ĈN ,π (t) and ĈN ,H (t) as estimators of the whole cf for
general sample designs. Under certain conditions on the sample design, it will be seen
that the asymptotic behavior is quite similar to that obtained in the sfarv. Specifically,
for high entropy designs and for the Hájek estimator, it is shown that the empirical
characteristic function (ecf) process converges in law to a limit which is, up to a
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98 M. D. Jiménez-Gamero et al.

multiplicative constant depending on the design, equal to the one obtained in the sfarv
setting. This let us propose procedures for testing several hypotheses of interest, in
parallel to some well-established cf-based procedures in the sfarv context such as tests
for the two-sample problem (see Meintanis 2005; Henze et al. 2005; Alba-Fernández
et al. 2008; Hušková and Meintanis 2008, for sfarv), testing for independence of
two variables (see Csörgő 1985; Székely et al. 2007; Meintanis and Iliopoulos 2008;
Hlávka et al. 2011, for sfarv) and testing for symmetry (see Feuerverger and Mureika
1977; Neuhaus and Zhu 1998; Henze et al. 2003, for sfarv).

The paper is organized as follows. Section 2 describes the setting and lists the
assumptions used to prove the results in next sections. Section 3 studies the limit law
of the ecf process when the cf is estimated by means of the HT estimator and of the
Hájek estimator. Sections 4–6 give applications of the obtained results to the problems
of testing for the equality of two (or more) populations, testing for the independence of
two (or more) study variables and testing for the symmetry of the study variable about
an known or unknown point, respectively. The proposed procedures are illustrated
with numerical simulations. Section 7 contains some concluding remarks. All proofs
are sketched in the supplementary material.

Before ending this section, we introduce some notation: along this paper M denotes

a generic positive constant taking many different values;
P−→ denotes convergence in

probability; for any complex number x = a+ ib, a, b ∈ R, |x | = (a2+b2)1/2 denotes
its modulus; if w is a nonnegative function satisfying

0 <

∫
w(t)dt < ∞, (1)

where an unspecified integral denotes integration over R, then L2(w) = {g :
R → C : ‖g‖2w = ∫ |g(t)|2w(t)dt < ∞}; if g1, g2 ∈ L2(w) then, 〈g1, g2〉w =∫
g1(t)ḡ2(t)w(t)dt ; C(K ) denotes the space of continuous complex-valued functions

defined on K , endowed with the usual supremum norm.

2 The setting and assumptions

Throughout this paper a sample s is a subset of n distinct units from U , where n ∈ N

is a constant, called the sample size. Let S be the set of all samples s from U . Any
function P on S satisfying P(s) ≥ 0, ∀s ∈ S, and ∑

s∈S P(s) = 1 is called a fixed
size sampling design (without replacement). For each j ∈ U , let δ j (s) = Δ( j ∈ s),
that is, δ j is a Bernoulli random variable taking the value 1 when the unit j is included
in the sample. Note that

∑
j∈U δ j = n.

Let p1, . . . , pN be N positive numbers so that
∑

j∈U p j = n. A Poisson sampling
designwith parameters p1, . . . , pN is a sampling design such that the randomvariables
δ1, . . . , δN are independent with P(δ j = 1) = p j , 1 ≤ j ≤ N . The rejective sampling
is aPoisson sampling conditionally on

∑
j∈U δ j = n. The entropyof a sampling design

is defined as

H(P) = −
∑

s∈S
P(s) log{P(s)},
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On the estimation of the characteristic function in finite… 99

with 0 log(0) = 0. The rejective sampling has maximal entropy among the sampling
designs of constant sample size n and fixed first order inclusion probabilities (Hájek
1981, Theorem 3.4). The type of designs considered in this work are (asymptotically)
close to the rejective sampling. The closeness will be measured as follows: let P be
a sampling design and let PR be the rejective sampling design having the same first
order inclusion probabilities as P , then the Kullback–Leibler divergence between P
and PR ,

D(P||PR) :=
∑

s∈S
P(s) log

{
P(s)

PR(s)

}
,

will be used to quantify how close is P to PR .
Next we list some assumptions required to derive the results in the subsequent

sections.

Assumption A.1 The population and the sampling design belong to a sequence of
populations and fixed size sampling designs, respectively, indexed by ν. The sample
size nν , the population size Nν and the sampling designs {Pν(s), s ⊆ Uν} (and hence
the associated inclusion probabilities) also vary with ν. Nν increases with ν. All limits
are takenwhen ν → ∞ but, to simplify notation, ν will be suppressed.All convergence
results are to be interpreted as being with respect to the sequence of sampling designs.

Assumption A.2 dN
N → d, for some 0 < d < ∞, where dN = ∑

j∈U π j (1 − π j ).

Assumption A.3 n
N → f , for some 0 < f < 1.

Assumption A.4 min j∈U π j ≥ M , ∀N .

Assumption A.5 AN = 1
N

∑
j∈U 1

π j
→ A, for some A > 0.

Assumption A.6 For each population {UN , N ≥ 1}, let P be the actual sampling
design and let PR be the rejective sampling design having the same first order inclusion
probabilities as P . Then, D(P||PR) → 0.

Assumption A.7 1
N

∑
j∈U π j cos(t y j ) − n

N RN (t) → 0, 1
N

∑
j∈U π j sin(t y j ) −

n
N IN (t) → 0, ∀t .

Assumption A.8 1
N

∑
j∈U 1

π j
cos(t y j ) − AN RN (t) → 0, 1

N

∑
j∈U 1

π j
sin(t y j )

−AN IN (t) → 0, ∀t .
Assumption A.9 CN (t) → C(t), ∀t , where C(t) = R(t) + iI (t) is a cf.

Some comments are in order: Assumption A.1 is commonly assumed in design-
based inference (see, for example, Isaki and Fuller 1982). As stated at the end of this
assumption, all convergence results will be interpreted with respect to the sequence
of sampling designs. For instance, we say that K = oP (n−σ ) if Pν(nσ

ν |K | > ε) → 0,
∀ε > 0, when ν → ∞, and we say that K = OP (n−σ ) if ∀ε > 0 ∃M = M(ε) > 0
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100 M. D. Jiménez-Gamero et al.

and ν(ε) such that Pν(nσ
ν |K | ≤ M) ≥ 1 − ε, ∀ν ≥ ν(ε). Recall that the subindex ν

will be omitted.
Assumption A.2 implies that dN → ∞. Since d ≤ n, Assumption A.2 implies that

n → ∞. It also follows that f ≥ d.
Let fN (t) = 1

N

∑
j∈U π j cos(t y j ) − n

N RN (t). Then

| fN (t)| =
∣∣∣∣∣∣
1

N

∑

j∈U

(
π j − n

N

)
cos(t y j )

∣∣∣∣∣∣
≤ 1

N

∑

j∈U

(
π j + n

N

)
= 2

n

N
.

The same bound is valid for fN (t) = 1
N

∑
j∈U π j sin(t y j ) − n

N IN (t). Therefore, the
dominated convergence theorem and Assumption A.7 imply that

∫ ⎧
⎨

⎩
1

N

∑

j∈U
π j cos(t y j ) − n

N
RN (t)

⎫
⎬

⎭

2

w(t)dt → 0,

∫ ⎧
⎨

⎩
1

N

∑

j∈U
π j sin(t y j ) − n

N
IN (t)

⎫
⎬

⎭

2

w(t)dt → 0,

for any nonnegative functionw satisfying (1). Analogously, Assumptions A.8 and A.9
imply

∫ ⎧
⎨

⎩
1

N

∑

j∈U

cos(t y j )

π j
− AN RN (t)

⎫
⎬

⎭

2

w(t)dt → 0,

∫ ⎧
⎨

⎩
1

N

∑

j∈U

sin(t y j )

π j
− AN IN (t)

⎫
⎬

⎭

2

w(t)dt → 0

and

∫
|CN (t) − C(t)|2 w(t)dt → 0,

respectively, for any nonnegative function w satisfying (1).
Assumption A.9 holds if, for each N , y1, . . . , yN are realizations of independent,

identically distributed (iid) random variables with common cf C(t).
Assumptions A.7 and A.8 say that {cos(t y j ), j ∈ U } (also {sin(t y j ), j ∈ U })

and {π j , j ∈ U } (also {1/π j , j ∈ U }) are asymptotically uncorrelated ∀t . This is
true for the simple random sampling and for sampling designs with π j ∝ x j , where
x1, . . . , xN denote the values in the population units of a variable X , and there is no
relationship among the y j s and the x j s. This requirement is also called for in Conti
(2014).
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On the estimation of the characteristic function in finite… 101

Hájek (1964) showed the asymptotic normality of the HT estimator of the total of a
population for the rejective sampling. For equal first order inclusion probabilities, the
rejective sampling coincides with the simple random sampling, which can be easily
carried out. For unequal first order inclusion probabilities, the rejective sampling is
hard to implement in the sense that it is very time consuming. Because of this reason
Berger (1998) investigated other designs for which such estimator keeps on being
asymptotically normal. Assumption A.2 is required in both papers. Berger (1998,
Theorem 5) showed that Assumption A.6 is necessary for the asymptotic normality,
that is, the designs must be close to the rejective design in the sense stated by this
assumption. Examples of designs satisfying Assumption A.6 are the Rao-Sampford
sampling and the successive sampling (see Berger 1998).

3 Limit of the ecf process

Let us consider the ecf process {Zn(t) = √
n(ĈN ,π (t) − CN (t)), t ∈ Υ }, for some

Υ ⊆ R (the choice of Υ will depend on the distance to be considered), that is a finite
population version of the ecf process for iid data which, as observed before, is the
basis of a number of inferential procedures in sfarv. To propose a finite population
version of such procedures, this section is devoted to study this process. Observe that
the realizations of Zn are elements in C[t1, t2], for any finite t1, t2 ∈ R, with t1 < t2
(Υ = [t1, t2]); they can be also seen as elements in L2(w), for any nonnegative w

satisfying (1) (Υ = R). We will study the convergence of {Zn(t), t ∈ Υ } in both
spaces, with special emphasis on the second one, since most proposed procedures
in the iid framework are based on L2(w) norms of appropriate functions of the ecf
process.

For the process {Zn(t), t ∈ [t1, t2]} to converge in law in C[t1, t2] to a process, say
{Z(t), t ∈ [t1, t2]}, we must check the convergence in law of the finite-dimensional
distributions (fidis) and the tightness of {Zn(t), t ∈ [t1, t2]}. In the statistical literature
on iid data, several authors have given conditions for the sequence of ecfs to be tight.
For example, in Feuerverger and Mureika (1977), it is shown that E |Y |1+α < ∞,
for some α > 0, is a sufficient condition for the tightness; Marcus (1981) gave a
necessary and sufficient condition in terms of the integrability of certain function
involving the covariance function of {Z(t), t ∈ [t1, t2]} (observe that such condition
is also necessary in our setting because it is equivalent to the a.s. sample-continuity of
Z(t)); Csörgő (1981) gave a sufficient condition in terms of the behaviour of the tails
of the population df. Next we give a sufficient condition which is analogous to the
one in Feuerverger and Mureika (1977). It assumes that the study variable has finite
(1 + α)-order moment, for some α > 0.

Let {Z(t) = ReZ(t) + iImZ(t), t ∈ Υ } be a zero-mean complex valued Gaussian
process with covariance structure

Cov{ReZ(t), ReZ(s)} = 1

2
f (A − 1){R(t+s)+R(t−s)}− f

(1 − f )2

d
R(t)R(s),

Cov{ReZ(t), ImZ(s)} = 1

2
f (A − 1){I (t+s) + I (t − s)} − f

(1 − f )2

d
R(t)I (s),
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102 M. D. Jiménez-Gamero et al.

Cov{ImZ(t), ImZ(s)} = 1

2
f (A − 1){−R(t + s)+R(t − s)}− f

(1 − f )2

d
I (t)I (s).

Proposition 1 Suppose that the sampling design P satisfies Assumptions A.1–A.9.
Let t1, t2 ∈ R with t1 < t2. If

1

N

∑

j∈U
|y j |1+α ≤ M, ∀N , (2)

for some 0 < α ≤ 1, then {Zn(t), t ∈ [t1, t2]} converges in law to {Z(t), t ∈ [t1, t2]}
in C[t1, t2].

Observe that for each N , exists M = M(N ) so that 1
N

∑
j∈U |y j |1+α ≤ M(N ).

Condition (2) requires that the upper bound M does not depend on N . This condition
is clearly satisfied if, for each N , y1, . . . , yN are realizations of iid random variables
with finite moment of order 1 + α.

The next result shows that {Zn(t), t ∈ R} also converges in law to {Z(t), t ∈ R}
in L2(w), for any nonnegative function w satisfying (1). In contrast to the result in
Proposition 1, no additional assumption such as (2) is required.

Proposition 2 Suppose that the sampling design P satisfies Assumptions A.1–A.9.
Let w be a nonnegative function satisfying (1), then {Zn(t), t ∈ R} converges in law
to {Z(t), t ∈ R} in L2(w).

As argued in the Introduction, it may be preferable to work with the process
{Wn(t) = √

n(ĈN ,H (t) − CN (t)), t ∈ Υ }. Note that

Wn(t) = √
n{ĈN ,H (t) − CN (t)} = N

N̂π

Yn(t),

with Yn(t) = √
n
{
ĈN ,π (t) − N̂π

N CN (t)
}
. From the proof of Proposition 1 it follows

that if the sampling design P satisfiesAssumptionsA.1–A.6, then N/N̂π = 1+oP (1),
and thus

Wn(t) = (1 + oP (1))Yn(t).

Therefore, if {Yn(t), t ∈ Υ } converges in law to some random variable, then
{Wn(t), t ∈ Υ } converges to the same limit. We next study the convergence in law of
{Yn(t), t ∈ Υ }.

Let {Y (t) = ReY (t) + iImY (t), t ∈ Υ } be a zero-mean complex valued Gaussian
process with covariance structure

Cov{ReY (t), ReY (s)} = f (A − 1) {0.5[R(t + s) + R(t − s)] − R(t)R(s)} ,

Cov{ReY (t), ImY (s)} = f (A − 1) {0.5[I (t + s) + I (t − s)] − R(t)I (s)} ,

Cov{ImY (t), ImY (s)} = f (A − 1) {0.5[−R(t + s) + R(t − s)] − I (t)I (s)} .
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On the estimation of the characteristic function in finite… 103

Note that the covariance kernel of {Y (t), t ∈ Υ } is f (A − 1) times the covariance
kernel of the limit of the ecf process in the iid case (see, for example, Feuerverger and
Mureika 1977). For simple random sampling the factor f (A − 1) becomes 1 − f .

The results below state analogous results to those in Propositions 1 and 2 for
{Yn(t), t ∈ Υ }.
Proposition 3 Suppose that the assumptions in Proposition 1 hold, then {Yn(t), t ∈
[t1, t2]} converges in law to {Y (t), t ∈ [t1, t2]} in C[t1, t2].
Proposition 4 Suppose that the assumptions in Proposition 2 hold, then {Yn(t), t ∈
R} converges in law to {Y (t), t ∈ R} in L2(w).

Corollary 1 Suppose that the assumptions in Proposition 1 hold, then {Wn(t), t ∈
[t1, t2]} converges in law to {Y (t), t ∈ [t1, t2]} in C[t1, t2].
Corollary 2 Suppose that the assumptions in Proposition 2 hold, then {Wn(t), t ∈ R}
converges in law to {Y (t), t ∈ R} in L2(w).

Therefore, asymptotically, {Wn(t), t ∈ Υ } behaves just like {√ f (A − 1)Qn(t),
t ∈ Υ }, where {Qn(t), t ∈ Υ } is the ecf process associated to a random sample
Y1, . . . ,Yn from a population with cf C(t), that is, Qn(t) = √

n{Ĉn(t) − C(t)}, with
Ĉn(t) = n−1 ∑n

j=1 exp(itY j ). As a consequence, all inferential procedures designed
for iid data in the sfarv framework based on the ecf process could be easily adapted
for the current setting. Specifically, next sections give applications to some testing
problems.

At this point one may wonder if the results in the above propositions keep on
being true when CN (t) is replaced by C(t), the answer is not. In fact, it only makes
sense under a superpopulation model where y1, . . . , yN are realizations of iid random
variables with common cf C(t) and recall that the inferences in this paper are design-
based.

Remark 1 As observed in the Introduction, although for simplicity in notation the
study variable Y has been assumed to be real, all above results remain valid for d-
variateY , with the appropriate changes (in Propositions 1 and 3 andCorollary 1, [t1, t2]
is replaced by an arbitrary compact set in R

d ; in Propositions 2 and 4 and Corollary
2, w is proportional to a probability density function on R

d ).

4 Application 1: the two-sample problem

Consider two finite populations (or subpopulations or strata from a finite population),
say U1 and U2, with sizes N1 and N2. Let y1,1, . . . , y1,N1 and y2,1, . . . , y2,N2 be the
values of the study variable in populations U1 and U2, respectively. Let CNk (t) and
FNk (t) denote the cf and df, respectively, of population k, k = 1, 2. Let sk be a sample
of size nk from populationUk , selected according to the sampling design Pk , with first
order inclusion probabilities πk

j , j ∈ Uk , k = 1, 2. Let Ak and fk denote the limits of
ANk and nk/Nk , respectively, k = 1, 2.

The problem of testing whether two samples come from the same population is
a classical one in Statistics, which has generated a considerable amount of papers
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104 M. D. Jiménez-Gamero et al.

with many different approaches, in the context of sfarv. As observed in Conti (2014),
in case of survey data, the literature mainly focuses on categorical variables, where
Wald-type or Chi-square type statistics can be used (see, for instance, Särndal et al.
1992), requiring the data to be grouped in classes. If such classes are not natural,
it is unclear how to construct them and (even more seriously) what is the effect of
data-based classes on the distribution of the resulting test statistic. To overcome these
difficulties for non-grouped data, Conti (2014) proposed a finite population version
of the Kolmogorov–Smirnov test in the context of design-based inference, and Wang
(2012) proposed edf-based tests for the equality of two superpopulation distributions.

In the context of sfarv, the test in Meintanis (2005) (see also Anderson et al. 1994;
Henze et al. 2005; Alba-Fernández et al. 2008), which is based on comparing the
ecf of the samples, competes very satisfactorily with the Kolmogorov–Smirnov two-
sample test. Specifically, he proposed to reject the null hypothesis for large values of
‖Ĉn1 − Ĉn2‖2w, where Ĉnk is the ecf of Yk,1, . . . ,Yk,nk , which are iid from a random
variable with cf Ck(t), k = 1, 2, and n1, n2 are such that

n1
n1 + n2

→ τ ∈ (0, 1). (3)

Under the null hypothesis, that is, when C1(t) = C2(t) = C(t), he showed that
n1n2
n1+n2

‖Ĉn1 − Ĉn2‖2w converges in law to ‖D0T ‖2w, where {D0T (t), t ∈ R} is a zero-
mean complex valued Gaussian process described in that paper.

Next, we study a finite population version of such test. The objective is testing

H0T : FN1(t) = FN2(t), ∀t ∈ R ⇐⇒ CN1(t) = CN2(t), ∀t ∈ R.

With this aim, in view of the results in Sect. 3, we consider the following test statistic

D = ‖ĈN1,H − ĈN2,H‖2w,

for some nonnegative function w satisfying (1), where ĈNk ,H (t) stands for the Hájek
estimator of CNk (t), k = 1, 2. The test statistic D satisfies the following.

Proposition 5 Suppose that P1 and P2 satisfy the assumptions in Proposition 2, then
D = ‖CN1 − CN2‖2w + r1 + r2, with rk = oPk (1), k = 1, 2.

Therefore, when H0T is true D = r1 +r2, and thus D converges in probability to 0,
but when H0T is false D converges to a positive quantity, provided that w is such that
‖CN1 −CN2‖2w > 0 whenever CN1 �= CN2 . Thus, a reasonable test should reject H0T
for large values of D. To decide what are large values of D we need to know the null
distribution of D or an approximation of it. A way to approximate the null distribution
of D is by means of its asymptotic null distribution, which is given in the next result.
To derive it, we will assume that the two samples are independent. Observe also that
from Assumption A.9, CNk (t) → Ck(t), ∀t , Ck(t) being a cf, k = 1, 2. Therefore,
under H0T , C1(t) = C2(t) = C(t) (say), ∀t .
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Proposition 6 Suppose that P1 and P2 satisfy the assumptions in Proposition 2, that
the samples are independent, that H0T is true and that n1, n2 satisfy (3), then

n1n2
n1 + n2

D
L−→ κ‖D0T ‖2w,

where
κ = (1 − τ) f1(A1 − 1) + τ f2(A2 − 1). (4)

The distribution of ‖D0T ‖2w is unknown because it depends on the unknown
common cf C(t) (see, for example, Meintanis 2005). In the context of sfarv, Alba-
Fernández et al. (2008) showed that it can be consistently approximated by means
of permutation or bootstrap procedures. For the bootstrap approximation, two inde-
pendent random samples, Y ∗

1,1, . . . , Y
∗
1,n1

and Y ∗
2,1, . . . ,Y

∗
2,n2

are generated from the
pooled sample and the null distribution of the test statistic is approximated bymeans of
the conditional distribution, given the data, of ‖C∗

n1−C∗
n2‖2w, whereC∗

nk denotes the ecf
of Y ∗

1,1, . . . ,Y
∗
1,nk

, k = 1, 2. The permutation approximation is analogously obtained,
with the samples obtained by randomly permuting the pooled sample. Therefore, to
approximate the null distribution of D, we treat the elements in s1 and s2 as if they
were two random samples from independent random variables. Specifically, to esti-
mate the p-value, p, of the observed value of the test statistic D, Dobs , we proceed as
follows: generate B bootstrap (or permutation) replications of DRV = ‖Ĉn1 − Ĉn2‖2w
as explained before, say D∗1

RV , . . . , D∗B
RV , and then approximate p by

p̂ = 1

B
card{b : Dobs ≤ κ̂D∗b

RV },

with
κ̂ = n2

n1 + n2

n1
N1

(AN1 − 1) + n1
n1 + n2

n2
N2

(AN2 − 1), (5)

for some large B (it is usually taken equal to 1000).

Remark 2 For the construction of the test statistic D, we have considered the Hájek
estimators of the population cfs. Ifwe instead consider theHTestimators then the result
in Proposition 5 continue to be true. The reason for considering the Hájek estimators
is that the asymptotic null distribution coincides with that obtained in the iid case that,
although also unknown, can be consistently estimated.

Remark 3 Anexpression, useful fromacomputational point of view, of the test statistic
D is

D = 1

N̂ 2
1,π

∑

j,k∈s1

u(y1, j − y1,k)

π1, jπ1,k
+ 1

N̂ 2
2,π

∑

m,v∈s2

u(y2,m − y2,v)

π2,mπ2,v

− 2

N̂1,π N̂2,π

∑

j∈s1,m∈s2

u(y1, j − y2,m)

π1, jπ2,m
,

where u(t) = ∫
cos(xt)w(x)dx .
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Remark 4 Since two distinct characteristic functions can be equal in a finite interval
(Feller 1971, p. 479), a general way to ensure ‖CN1 − CN2‖2w > 0 whenever CN1 �=
CN2 , is by taking w(t) > 0, ∀t ∈ R.

Remark 5 The test can be extended to test for the equality of k ≥ 2 populations
following the procedure proposed in Hušková and Meintanis (2008) in the setting of
sfarv.

Remark 6 As pointed out by an anonymous reviewer, the test statistic D is not scale
invariant. Nevertheless, D can be done scale invariant by choosing the weight function
depending on the common scale parameter, say w(t) = w(t; σ), in a similar fashion
to Lemma 2 in Jiménez-Gamero et al. (2009) for the goodness-of-fit problem, and
considering D̂ = ∫ |ĈN1,H (t)− ĈN2,H (t)|2w(t; σ̂ )dt , for some adequate estimator σ̂

of σ . Moreover, it is easy to check that if σ̂ converges in probability to σ and w(t; σ)

is such that |w(t; σ) − w(t; γ )| ≤ w0(t; σ)|σ − γ |, ∀ γ in an open neighborhood of
σ , with

∫
w0(t; σ)dt < ∞, then the asymptotics are not altered, they are the same as

if the weight function w(t; σ) is used.

To numerically study the performance of the proposed approximation to the null
distribution, as well as the power of the test, we conducted a simulation study. With
this aim, we generated a finite population {(y j , x j ), 1 ≤ j ≤ N } of size N = 10,000
as follows: y1, . . . , yN are iid from a law N (0, 1) and x1, . . . , xN are iid from a law
U (0, 1); y1, . . . , yN are the values of the study variable, and x1, . . . , xN will be used
to define the first order inclusion probabilities. To study the level of the proposed
test, we generated two samples of the population with sizes n1 = n2 = 200, 250.
Two designs were considered to draw the samples: simple random sampling without
replacement (srs in the tables) and the Rao-Sampford sampling (sam in the tables)
with inclusion probabilities proportional to z = (1 − a)x + a for several values
of a (note that z1, . . . , zN are iid from a law U (a, 1)). Observe that in the simple
random sampling all first order inclusion probabilities are equal and that by moving
the value of a in the Rao-Sampford sampling we can control how different are the first
order inclusion probabilities. The column headed coc in Table 1 displays the quotient
max j π j/min j π j (≈1/a) for the Rao-Sampford samplingwhich, in a sense, measures
how far is this sampling from the simple random sampling. Twoweight functions were
considered: w1, the probability density function (pdf) of a Laplace distribution with
variance 2, giving rise to u(t) = 1/(1 + t2), and w2, the pdf of a standard normal
distribution, giving rise to u(t) = exp(−0.5t2). The associated statistics are denoted
as D1 and D2, respectively. 2000 pairs of samples were generated from the population
in each case. For each pair of samples, B = 1000 bootstrap samples were generated
from the pooled sample to estimate the p value. We also included in our simulation
study the Kolmogorov–Smirnov test proposed in Conti (2014) (denoted as K S in the
tables). Its p-value was also approximated with bootstrap, multiplying the bootstrap
replications of the test statistic by

√
κ̂ . As suggested by an anonymous referee, we

also calculated the p-values by wrongly assuming that the samples come from sfarv,
that is, by ignoring the factor κ̂ . Obviously, such effect will depend on the value of κ̂ ,
which is showed in Table 1 joint with the obtained results. In all cases two nominal
levels were considered: 5 and 10 %.
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Looking at Table 1, it can be concluded the following: as expected, the effect of
ignoring the factor κ̂ depends on the value of such factor, the further is κ̂ from 1,
the further from the nominal levels are the empirical percentages of rejection; the
approximation is reasonably good for all test statistics, specially when n1 = n2 =
250, when the quotient max j π j/min j π j is not too big, for rather large values of
max j π j/min j π j greater samples seems to be required.

To study the power, the above experiment was repeated with one of the samples
from Y and the other from some deformation of Y , say Z . Table 2 displays the results
for Z1 = 0.5Y if Y < −1.7, Z1 = 1.5Y if Y > 1.7, otherwise Z1 = Y and
Z2 = Y + 0.5. In the light of the results in Table 1, for the Rao-Sampford sampling,
we only considered a = 0.1, 0.5. Looking at Table 2, we see that all tests are able to
detect the studied alternatives, D1 and D2 behave quite closely, no test outperforms
the others in all cases: in case (b) K S is a bit more powerful than D1 and D2; in case
(a) D1 and D2 beat K S. The power increases with the sample size. It is also observed
that as max j π j/min j π j becomes larger, the power decreases.

Remark 7 To keep the notation as simple as possible, we have only considered the case
of a univariate study variable. Nevertheless, the proposed test can be applied to testing
the equality of distributions of d-variate variables, for arbitrary d ≥ 1. Although the
Kolmogorov–Smirnov test can be also applied to data with arbitrary dimension, its
practical implementation is computationally difficult (see, for example, Xiao 2017 and
the references therein).

5 Application 2: independence

Now,we deal with the problem of constructing a test for the independence of two study
variables, say X and Y , defined on the same finite population. This hypothesis is of
particular interest because auxiliary information is often used to improve the precision
of estimators. With this aim, it is assumed that the study variable and the auxiliary
information are related, which makes sense if the null hypothesis of independence is
rejected.

Consider a finite population, U , with size N . Let (x1, y1), . . . , (xN , yN ) be the
values of the study variable (X,Y ) in the population. Let CN (t1, t2) denote the joint
cf associated to (X,Y ),

CN (t1, t2) = 1

N

∑

j∈U
exp{i(t1x j + t2y j )}.

Themarginal cfs of X and Y areCN (t1, 0) andCN (0, t2), respectively. The hypothesis
of absence of relationships between X and Y can be written as

H0I : CN (t1, t2) = CN (t1, 0)CN (0, t2), ∀t1, t2 ∈ R.

The problem of testing for independence in the context of sfarv using the familiar
equation linking the joint cf and the product of component cfs has been exploited in
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several papers (see, for example, Csörgő 1985; Székely et al. 2007; Meintanis and
Iliopoulos 2008 and the references therein). Here, we follow the approach in Székely
et al. (2007) and Meintanis and Iliopoulos (2008), that proposed to reject the null
hypothesis for large values of ‖Ĉn(t1, t2)− Ĉn(t1, 0)Ĉn(0, t2)‖2w, where, Ĉn is the ecf
of (X1,Y1), . . . , (Xn,Yn), which are iid from a random variable with cfC(t1, t2). The
main difference between the methods in these papers is that while the weight function
in the second paper satisfies (1), the one in the first paper does not. The payment one
must do for considering a non-integrable weight function is that the application of the
resulting test requires the population to have finite first order moment.

Let us first assume that w is any nonnegative function so that
∫
R2 w(t)dt <

∞. Under the null hypothesis, from the results in Csörgő (1985) it follows that
n‖Ĉn(t1, t2) − Ĉn(t1, 0)Ĉn(0, t2)‖2w converges in law to ‖D0I‖2w, where {D0I (t),
t ∈ R

2} is a zero-mean complex valued Gaussian process described in that paper.
Next, we study a finite population version of such test statistic, specifically,

T = ‖ĈN ,H (t1, t2) − ĈN ,H (t1, 0)ĈN ,H (0, t2)‖2w.

Proposition 7 Suppose that P satisfies the assumptions in Proposition 2, then T =
‖CN (t1, t2) − CN (t1, 0)CN (0, t2)‖2w + oP (1).

Therefore, reasoning as in the previous subsection, a reasonable test should reject
H0I for large values of T . To try to approximate the null distribution of T , the next
result derives its asymptotic null distribution. Observe also that fromAssumption A.9,
CN (t1, t2) → C(t1, t2), ∀(t1, t2) ∈ R

2, C being a cf on R
2. Therefore, under H0I we

have that C(t1, t2) = C(t1, 0)C(0, t2), ∀(t1, t2) ∈ R
2.

Proposition 8 Suppose that P satisfies the assumptions in Proposition 2 and that H0I

is true, then nT
L−→ f (A − 1)‖D0I ‖2w.

Thedistributionof‖D0I ‖2w is unknownbecause it depends on theunknowncommon
cf C(t1, t2) (see Csörgő 1985). In the context of sfarv, to apply their test, Meintanis
and Iliopoulos (2008) assume that the underlying distribution of the data is continuous
in order to derive an asymptotically distribution free test statistic (see Kankainen and
Ushakov 1998 for a theoretical justification). In our setting, the continuity assumption
may not be adequate. Nevertheless, it can be easily shown that the following bootstrap
estimator provides a consistent approximation to the null distribution of their test
statistic (for any sort of data, continuous or not): given (X1,Y1), . . . , (Xn,Yn), iid
from a random variable with cf C(t1, t2), let X∗

1, . . . , X
∗
n and Y ∗

1 , . . . ,Y ∗
n be two

independent random samples from the edf of X1, . . . , Xn andY1, . . . ,Yn , respectively;
let Ĉ∗

n (t1, t2) be the ecf of (X∗
1,Y

∗
1 ), . . . , (X∗

n,Y
∗
n ); then estimate the null distribution

of n‖Ĉn(t1, t2)− Ĉn(t1, 0)Ĉn(0, t2)‖2w by means of the conditional distribution, given
the data, of n‖Ĉ∗

n (t1, t2) − Ĉ∗
n (t1, 0)Ĉ

∗
n (0, t2)‖2w. Now, proceeding as in the previous

subsection, to approximate the null distribution of T we treat the elements in s as if
they were a random sample from a bivariate random variable and estimate the p-value,
p, of the observed value of the test statistic T , Tobs, as follows: calculate B bootstrap
replications of TRV = ‖Ĉn(t1, t2) − Ĉn(t1, 0)Ĉn(0, t2)‖2w, say T ∗1

RV , . . . , T ∗B
RV , and

123



112 M. D. Jiménez-Gamero et al.

then approximate p by

p̂ = 1

B
card

{
b : Tobs ≤ n

N
(AN − 1)T ∗b

RV

}
,

for some large B.

Remark 8 Anexpression, useful fromacomputational point of view, of the test statistic
T is

T = 1

N̂ 2
π

∑

j,k∈s

u(x j − xk, y j − yk)

π jπk
+ 1

N̂ 4
π

∑

j,k,v,m∈s

u(x j − xk, yv − ym)

π jπkπvπm

−2
1

N̂ 3
π

∑

j,k,v∈s

u(x j − xv, yk − yv)

π jπkπv

,

where u(t1, t2) = ∫
R2 cos(t1x + t2y)w(x, y)dxdy.

Next, we deal with a finite population version of the test in Székely et al. (2007)
that considered as weight function w = m with

m(t1, t2) = m(t1)m(t2), m(t) = 1

π t2
, t ∈ R,

which clearly is non-integrable (note that we have used the same letter m for the
univariate and the bivariate case with the aim of not using heavier notation—such
as m2 and m1; the dimension will become evident from the arguments employed).
However, if (X,Y ) satisfies E |X | < ∞, E |Y | < ∞, then the associated test statistic
satisfies similar properties to those given for integrable w. Specifically, nVn(X,Y ),
with Vn(X,Y ) = ‖Ĉn(t1, t2) − Ĉn(t1, 0)Ĉn(0, t2)‖2m , converges in law to ‖D0I‖2m ,
where {D0I (t), t ∈ R

2} is as before. Let Tm denote the finite population version of
such test statistic, defined as T with w = m. The properties of Tm cannot be directly
derived from the theory in Sect. 3, since (1) was assumed in the results there. To derive
similar properties for Tm as those given in Propositions 7 and 8 for T , we will have to
assume stronger conditions.

Proposition 9 Suppose that P satisfies the assumptions in Proposition 2 and that

1

N

∑

j∈U
|x j |1+α ≤ M,

1

N

∑

j∈U
|y j |1+α ≤ M, ∀N , (6)

for some α > 0. Then,

(a) Tm = ‖CN (t1, t2) − CN (t1, 0)CN (0, t2)‖2m + oP (1).

(b) If in addition H0I is true, then nTm
L−→ f (A − 1)‖D0I‖2m .
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To be precise, the test statistic proposed in Székely et al. (2007) is not exactly
Vn(X,Y ), but Rn(X,Y ) = Vn(X,Y )/

√
Vn(X, X)Vn(Y,Y ) which, in a sense, imi-

tates the definition of the usual linear correlation coefficient. Rn(X,Y ) is called the
empirical distance correlation. A similar correlation version can be considered when
a general weight function w is used. Analogous results to those stated in Propositions
7–9 can be given for the finite population version of such correlation type statistics.
In addition, parallel comments to those given after Propositions 7 and 8 for T can be
given for Tm as well as for their correlation versions.

Remark 9 Anexpression, useful fromacomputational point of view, of the test statistic
Tm is that given in Remark 8 for T with u(t1, t2) = |t1||t2|.
Remark 10 To derive the results in Proposition 9, it was assumed that (6) holds for
some α > 0. If the finite population can be considered as a random sample from a
random vector (X,Y ), then it suffices to assume that E |X | < ∞, E |Y | < ∞.

To numerically study the performance of the proposed approximation to the null
distribution, aswell as the power of the tests,we conducted a simulation study.With this
aim, we generated a finite population {(y j , w j , x j ), 1 ≤ j ≤ N } of size N = 10, 000
as follows: y1, . . . , yN , w1, . . . , wN are iid from a law N (0, 1) and x1, . . . , xN are iid
from a law U (0, 1); (y1, w1 + r y1), . . . , (yN , wN + r yN ) are the values of the study
variable, for r = 0 (null hypothesis), 0.1, 0.2, 0.3 (alternatives) and x1, . . . , xN will be
used to define the first order inclusion probabilities. The Pearson correlation coefficient
between of the study variables is ρ = r/

√
1 + r2 (taking values 0, 0.0995, 0.1961 and

0.2873, respectively). To study the level of the proposed tests, we generated a sample of
the population for ρ = 0with size n = 200. As in the previous subsection, two designs
were considered to draw the sample: simple random sampling without replacement
(srs) and the Rao-Sampford sampling (sam) with inclusion probabilities proportional
to (1−a)x+a, a = 0.1, 0.5. Theweight functions considered are products of the same
ones used in the previous section:w1(t, s) = w1(t)w1(s) andw2(t, s) = w2(t)w2(s).
The associated statistics are denoted as T1 and T2, respectively. We also calculated Tm
as well as their correlations versions, denoted as R1, R2 and Rm , respectively. 2000
samples were generated from the population in each case. For each sample, B = 1000
bootstrap samples were generated as described above to estimate the p-value. The
whole experiment was repeated for n = 250 and r = 0.1, 0.2, 0.3. Table 3 reports
the percentage of rejections in all experimental situations. Looking at this table, we
see that, in terms of level (r = 0), the approximation is reasonably good for all test
statistics. As for the power (r = 0.1, 0.2, 0.3), all tests are able to detect the studied
alternatives. The tests based on the correlated versions of the test statistics have, in all
cases, powers quite close to the ones based on the original statistics. The test based
on T2 is a bit more powerful than the one based on T1; nevertheless, the one based
on Tm has the highest power against all considered alternatives. The power increases
with the sample size. It is again observed that as max j π j/min j π j becomes larger,
the power decreases.

Remark 11 To keep the notation as simple as possible, we have only considered the
case of a bivariate study variable. Nevertheless, the proposed tests can be applied
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to test the independence of any collection of subvectors from vectors with arbitrary
dimensions.

6 Application 3: symmetry

Another hypothesis which may be of interest in sample survey is that of symmetry
around a point. In his book, Kish (1965, pp 410–411) underlines that sampling from
highly skewed population strains the assumptions about the normality of the distribu-
tions of estimates and affects the coverage of the confidence intervals. More recently,
Conti and Marella (2015) assert that in last years there is an increasing demand from
official and private institutions of statistical data regarding poverty and inequality.
Poverty and inequality measures are functions of quantile estimates. Clearly, the esti-
mation of quantiles can be simplified for symmetric populations; specifically, the
poverty index depends on the median, which could be estimated by the mean for
symmetric populations. This subsection is devoted to the problem of testing such
hypothesis based on the results in Sect. 3.

Consider a finite population, U , with size N . Let y1, . . . , yN be the values of
the study variable Y in the population. The objective is to construct tests for the
hypothesis that Y − μN and μN − Y both have the same distribution function, where
μN is a constant that maybe known or unknown. Let X = Y − μN and let CN (t) =
RN (t) + iIN (t) denote de cf of X . The hypothesis of symmetry can be written as
follows

H0S : IN (t) = 0, ∀t.

In the context of sfarv, several authors have suggested tests for the hypothesis of
symmetry about a possibly unknown value μ, whose test statistics are functions of the
ecf process. Specifically, here we consider the tests in Feuerverger andMureika (1977)
(for knownμ),Neuhaus andZhu (1998) (μknownor unknown) andHenze et al. (2003)
(μ unknown). These authors proposed to reject the null hypothesis for large values of
‖ În‖2w, where În(t) is the imaginary part of the ecf of Y1−μ, . . . ,Yn−μ, ifμ is known
andwithμ replaced by a consistent estimator, say μ̂, when unknown,whereY1, . . . ,Yn
are iid. The limit law of this test statistic depends on whether μ is known or not. Let
X = Y −μ and let C(t) = R(t)+ iI (t) denote the cf of X . If μ is known and the null
hypothesis is true, then n‖ În‖2w converges in law to ‖S01‖2w, where {S01(t), t ∈ R} is a
zero-mean Gaussian process with covariance kernel K1(t, s) = 0.5{R(t − s)− R(t +
s)}; if μ is unknown and it is estimated by means of the sample mean of the observed
data, μ̂ = n−1 ∑n

j=1 Y j , then under the null hypothesis n‖ În‖2w converges in law

to ‖S02‖2w, where {S02(t), t ∈ R} is a zero-mean Gaussian process with covariance
kernel K2(t, s) = 0.5{R(t − s)− R(t + s)}+ t R(t)R′(s)+ sR(s)R′(t)+ st R(t)R(s),
and R′(t) = ∂

∂t R(t).
Next, we study finite population versions of these tests. Let us first assume that μN

is known and consider the test statistic

S1 = ‖ ÎN ,H‖2w,
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for some nonnegative function w satisfying (1). The test statistic S1 satisfies the fol-
lowing.

Proposition 10 Suppose that P satisfies the assumptions in Proposition 2, then S1 =
‖IN‖2w + oP (1).

Therefore, reasoning as in the previous subsections, a reasonable test should reject
H0S for large values of S1. To try to approximate the null distribution of S1, the next
result gives its asymptotic null distribution. Observe also that from Assumption A.9,
CN (t) → C(t), ∀t , C(t) = R(t) + iI (t) being a cf. Therefore, under H0S , I (t) = 0,
∀t .
Proposition 11 Suppose that P satisfies the assumptions in Proposition 2 and that

H0S is true, then nS1
L−→ f (A − 1)‖S01‖2w.

The distribution of ‖S01‖2w is unknown, because it depends on the unknown real
part of C(t). In the context of sfarv, Neuhaus and Zhu (1998) have proposed to
approximate the null distribution of n‖ În‖2w by means of the conditional distribu-
tion, given Y1, . . . ,Yn , of n‖ Î ∗

n ‖2w, where Î ∗
n (t) is the imaginary part of the ecf of

e1(Y1 − μ), . . . , en(Yn − μ), with e1, . . . , en iid, independent of the data and such
that P(e1 = −1) = P(e1 = 1) = 0.5. They showed that this approximation provides
a consistent estimator of the null distribution of the test statistic. Now, proceeding as
in the previous subsections, to approximate the null distribution of S1, we treat the
elements in s as if they were a random sample from a random variable and estimate
the p-value, p, of the observed value of the test statistic S1, S1,obs, as follows: generate
B replications of n‖ Î ∗

n ‖2w, say S∗1
1 , . . . , S∗B

1 , and then approximate p by

p̂ = 1

B
card

{
b : S1,obs ≤ n

N
(AN − 1)S∗b

1

}
,

for some large B.

Remark 12 An expression, useful from a computational point of view, of the test
statistic S1 is

S1 = 0.5

N̂ 2
π

∑

j,k∈s

u(x j − xk) − u(x j + xk)

π jπk
,

where u(t) = ∫
cos(t x)w(x)dx .

Now, assume thatμ is unknown and that it is estimated bymeans of theHTestimator
of the population mean ȳN = 1

N

∑
j∈U y j , ˆ̄yN ,π = 1

N

∑
j∈s

y j
π j
. From now on x j =

y j − ȳN , j ∈ U . Let us consider the test statistic S2 defined as S1 with μ replaced by
ˆ̄yN ,π . The next result states that S2 satisfies a result similar to that in Proposition 10
for S1.
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Proposition 12 Suppose that P satisfies the assumptions in Proposition 2, that S2Y =
1
N

∑
j∈U (y j − ȳN )2 → σ 2

Y < ∞ and that
∫
t2w(t)dt < ∞, then S2 = ‖IN‖2w +

oP (1).

Reasoning as before, if μN is unknown, a sensible test should reject H0S for large
values of S2. To try to approximate the null distribution of S2, the next proposition
gives its asymptotic null distribution.With this purpose, we need a further assumption.

Assumption A.10 1
N

∑
j∈U π j x j → 0, 1

N

∑
j∈U

x2j
π j

− AN
1
N

∑
j∈U x2j → 0,

1
N

∑
j∈U

x j sin(t x j )
π j

− AN R′
N (t) → 0, ∀t , R′

N (t) → R′(t), ∀t , where R′
N (t) =

∂
∂t RN (t), R′(t) = ∂

∂t R(t).

Proposition 13 Suppose that P satisfies the assumptions in Proposition 12 andA.10.

If H0S is true and w is such that
∫
t4w(t)dt < ∞, then nS2

L−→ f (A − 1)‖S02‖2w.

The distribution of ‖S02‖2w is again unknown. In the context of sfarv, Henze et al.
(2003) (see also Neuhaus and Zhu 1998) have proposed to approximate the null dis-
tribution of n‖ În‖2w by means of the conditional distribution, given Y1, . . . ,Yn , of
V ∗ = ‖V̂ ∗

n ‖2w, where

V̂ ∗
n (t) = 1√

n

n∑

j=1

e j

{
sin(t X j ) −

(
1

n

n∑

k=1

cos(t Xk)

)
t X j

}
,

e1, . . . , en are as before, X j = Y j − Ȳ , 1 ≤ j ≤ n, and Ȳ = 1
n

∑n
j=1 Y j . They

showed that this approximation provides a consistent estimator of the null distribution
of the test statistic. Now, proceeding as in the previous subsections, to approximate
the null distribution of S2, we treat the elements in s as if they were a random sample
from a random variable and estimate the p value, p, of the observed value of the test
statistic S2, S2,obs, as follows: generate B replications of V ∗, say V ∗1, . . . , V ∗B , and
then approximate p by

p̂ = 1

B
card

{
b : S2,obs ≤ n

N
(AN − 1)V ∗b} ,

for some large B.

Remark 13 Clearly, the expression in Remark 12 for S1 is also true for S2 with μN

replaced by μ̂N . As for V ∗, we have that

V ∗ = 1

n

n∑

j,k=1

e j ekqn(x j , xk),
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Table 4 Empirical percentages of rejections for testing symmetry when μN = ȳN is: (a) known, (b)
unknown

γ a n = 200 n = 250

S1,1 S1,2 S1,1 S1,2

5% 10% 5% 10% 5% 10% 5% 10%

(a)

1 srs 5.0 8.5 4.9 9.1 5.1 9.6 5.2 9.3

sam 0.5 5.1 10.4 5.0 10.5 4.6 9.9 4.7 9.6

sam 0.1 5.6 10.8 5.5 10.9 5.5 10.3 5.7 10.4

1.1 srs 13.4 21.2 10.2 17.5 15.8 26.0 12.3 20.60

sam 0.5 11.8 21.2 9.3 18.0 14.0 24.6 11.4 18.75

sam 0.1 10.6 18.0 8.9 15.1 11.4 19.9 9.4 16.45

1.2 srs 39.6 55.1 29.4 43.8 49.3 64.7 37.1 52.4

sam 0.5 39.4 53.0 29.6 42.3 47.3 62.4 35.1 50.0

sam 0.1 27.6 42.6 21.1 32.6 35.2 50.3 26.0 38.6

(b)

1 srs 4.2 9.4 4.6 9.7 4.8 10.3 6.0 10.8

sam 0.5 5.8 10.1 6.0 10.3 5.0 9.4 5.6 9.6

sam 0.1 5.4 10.5 5.2 10.9 5.0 10.8 5.3 10.9

1.1 srs 25.9 37.8 25.1 37.5 31.8 44.0 31.2 43.5

sam 0.5 23.6 35.0 24.1 34.7 31.5 43.9 31.1 42.9

sam 0.1 19.2 28.9 20.0 29.8 23.8 34.8 23.4 34.9

1.2 srs 71.2 81.2 72.7 82.7 83.3 89.7 84.3 90.0

sam 0.5 71.0 81.2 71.6 82.0 79.4 88.2 81.1 89.1

sam 0.1 56.2 68.3 57.4 69.2 67.9 79.1 69.0 80.0

with

2qn(a, b) = u(a − b) − u(a − b) + a
1

n

n∑

j=1

{
u′(b + x j ) + u′(b − x j )

}

+ b
1

n

n∑

j=1

{
u′(a + x j ) + u′(a − x j )

}

− ab
1

n2

n∑

j=1

{
u′′(x j + xk) + u′′(x j − xk)

}
,

u(x) = ∫
cos(t x)w(t)dt , u′(x) = ∂

∂x u(x), u′′(x) = ∂2

∂x2
u(x).

To numerically study the performance of the proposed approximation to the null
distribution, as well as the power of the test, we conducted a simulation study. With
this aim, we considered the population in Sect. 4. To study the level of the proposed
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tests, we generated a sample with size n = 200 and observed the study variable. As
in the previous sections, two designs were considered to draw the sample: simple
random sampling without replacement (srs) and the Rao-Sampford sampling (sam)
with inclusion probabilities proportional to (1 − a)x + a, a = 0.1, 0.5. The weight
functions considered were the same as in Sect. 4: w1 and w2. The associated statistics
are denoted as S1,1 and S1,2, whenμN is assumed to be known, and S2,1 and S2,2, when
μN is unknown, respectively. 2000 sampleswere generated from the population in each
case. For each sample, B = 1000 bootstrap sampleswere generated as described above
to estimate the p-value. The whole experiment was repeated for n = 250. To study the
power, we modified the original population as follows: if y j < ȳN then yγ, j = γ y j ,
otherwise yγ, j = y j/γ , for several values of γ . Note that γ = 1 corresponds to the
null hypothesis. Table 4 displays the percentages of rejections. Looking at this table,
we see that, in terms of level (γ = 1), the approximation is reasonably good for all test
statistics. As for the power (γ = 1.1, 1.2), S1,1 and S1,2 (S2,1 and S2,2) behave very
closely, the tests with μN = ȳN unknown are more powerful than when μN = ȳN
is unknown. The power increases with the sample size. It is again observed that as
max j π j/min j π j becomes larger, the power decreases.

Remark 14 To keep the notation as simple as possible, we have only considered the
case of a univariate study variable. Nevertheless, the test can be applied to test the
symmetry about a point for d-variate variables, for arbitrary d ≥ 1.

7 Conclusions

The weak convergence of the finite population empirical characteristic process has
been studied. Under suitable assumptions, it has the same limit as the empirical
characteristic process for independent, identically distributed data from a random
variable, up to a multiplicative constant depending on the sampling design. Applica-
tions of the obtained results for the two-sample problem, testing for independence and
testing for symmetry have been given.

Assumptions A.7 and A.8 (also A.10) play a key role in deriving the results. They
say that {cos(t y j ), j ∈ U } (also {sin(t y j ), j ∈ U }) and {π j , j ∈ U } (also {1/π j , j ∈
U }) are asymptotically uncorrelated ∀t . It is a matter of future research to derive the
weak convergence of the finite population empirical characteristic process when these
assumptions fail to be true.
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