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Abstract In this paper, the authors study the problem of testing the hypothesis of
a block compound symmetry covariance matrix with two-level multivariate observa-
tions, taken for m variables over u sites or time points. Through the use of a suitable
block-diagonalization of the hypothesis matrix, it is possible to obtain a decomposi-
tion of the main hypothesis into two sub-hypotheses. Using this decomposition, it is
then possible to obtain the likelihood ratio test statistic as well as its exact moments in
a much simpler way. The exact distribution of the likelihood ratio test statistic is then
analyzed. Because this distribution is quite elaborate, yielding a non-manageable dis-
tribution function, a manageable but very precise near-exact distribution is developed.
Numerical studies conducted to evaluate the closeness between this near-exact distrib-
ution and the exact distribution show the very good performance of this approximation
even for very small sample sizes and the approach followed allows us to extend its
validity to situations where the population distributions are elliptically contoured. A
real-data example is presented and a simulation study is also conducted.
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1 Introduction

The u×u covariance matrix Θ has a compound symmetric structure, with diagonal
elements σ0 and off-diagonal elements σ1, if it is a positive-definite matrix that can be
written as

Θ =

⎡
⎢⎢⎢⎢⎢⎣

σ0 σ1 σ1 . . . σ1
σ1 σ0 σ1 . . . σ1
σ1 σ1 σ0 . . . σ1
...

...
...

. . .
...

σ1 σ1 σ1 . . . σ0

⎤
⎥⎥⎥⎥⎥⎦

= σ0Iu + σ1 (Ju − Iu) = (σ0 − σ1)Iu + σ1Ju (1)

where −σ0/(u − 1) < σ1 < σ0 and σ0 > 0, and where Iu denotes the identity matrix
of order u and Ju denotes a u × u matrix of 1’s.

Compound symmetry (CS) is a widely used or assumed covariance structure (Timm
2002, Sect. 3.8). As a result of its wide application in many different statistical models,
it is also known under a few other designations. Right from (1), the CS structure is
also called equivariance-equicovarianceor equivariance-equicorrelation (Vonesh and
Chinchilli 1997, Sect. 3.2) and sometimes just referred to as equicorrelation structure,
which may be a somewhat misleading designation since equicorrelation may occur
without CS occurring, since we may have equicorrelation without having equal vari-
ances. Morrison (1976) addresses, mainly in Chapter 8, a number of examples based
on real data for which equicorrelation may be or may seem to be a plausible model
for covariances, or at least one that one might be interested in testing. However, for
some of these examples, CS may be not a plausible model given that the variances
are not equal. As such, the alternative designation of exchangeable covariance or
exchangeable correlation for the CS structure is indeed more adequate (Demidenko
2004, Sect. 2.4, 7.10).

Verbeke and Molenberghs (2000) do a quite thorough assessment of the applica-
tion and usefulness of the CS as a covariance structure in linear mixed models and
repeated measures or longitudinal data models. In Chapter 1 they stress the fact that
“the marginal model corresponding to a random-intercept model” is a model with
CS covariance structure [see also Demidenko (2004, Sects. 2.4, 7.2)], and in Sect. 3.3
they show how the general linear mixed-effects model is indeed a model with a CS
covariance structure, where

ρ = σ1

σ0
(2)

is commonly called the intraclass correlation—see also Timm (2002, Sect. 3.9.d) and
Kutner et al. (2005, Sect. 25.5). The CS covariance structure is thus also sometimes
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310 C. A. Coelho, A. Roy

called the intraclass correlation structure, since Θ in (1) may be written as

Θ = σ0 {(1 − ρ)Iu + ρJu} = σ0 {Iu + ρ(Ju − Iu)} .

Other names given to ρ in (2) are familial, intrablock or intracluster correlation (Rao
1945, 1953; King and Evans 1986).

Vonesh and Chinchilli (1997, Sect. 3.2) establish the equivalence between the uni-
variate random effects model and a multivariate (manova) model with a CS covariance
matrix and state in Section 7.3 that CS “arises naturally from split-plot type designs”.

Timm (2002, Sect. 3.9.d) also brings to our attention that the CS structure for the
covariance matrix in a univariate mixed anova model is also a sufficient condition
for the existence of an exact F test for testing the null hypothesis of equality of the
treatment effects in this model. This is so because the CS structure is indeed a particular
case of the type H matrices introduced by Huynh and Feldt (1970) who proved that
this type H structure is the necessary covariance structure for the existence of such
exact F tests in univariate repeated measures designs.

Two other interesting models where the CS covariance structure is used are brought
to us by Matos et al. (2016) and Zimmerman and Núñez-Antón (2001). Matos et al.
(2016) use a CS covariance structure to model censored data collected irregularly over
time with mixed-effects models. These authors also bring to our attention that the CS
structure is a particular case of the damping exponential correlation structure proposed
by Muñoz et al. (1992). Zimmerman and Núñez-Antón (2001) use CS as a plausible
covariance structure in “models for unbalanced data having some kind of dependence
structure, all within the context of having a real continuous response variable and real
explanatory variables”.

Qu and Li (2006) also use the CS structure as a model for the so-called “working
correlation”, introduced by Liang and Zeger (1986) for longitudinal data models and
the importance of testing this structure is also brought to us by these authors (Qu and
Li 2006, pg. 381), when they state that “If the working correlation R is misspecified,
the estimator of the regression parameter is still consistent, but is not efficient within
the same class of estimating functions”. Li and Wong (2010) also refer, in the realm
of longitudinal data models, that CS is one of the most commonly used covariance
structures “to model the correlations among the repeated observations from the same
subject”, given its simple form and good interpretability, and they suggest that the
likelihood ratio testing procedure would be an adequate testing procedure for this
covariance structure, even in the domain of semi-parametric models.

CS is a very parsimonious covariance structure which, as seen from (1), describes
the whole covariance structure with only two parameters. The assumption of this
structure may improve estimation and the power of tests as stated by Vonesh and
Chinchilli (1997, Sect. 3.2, 7.3), besides allowing for the estimation to be adequately
done with smaller sample sizes, given the fact that the covariance matrix is being
modeled by a smaller number of parameters. Even in nonlinear models, as Malott
(1990) states, “by incorporating the compound symmetric structure into the model,
substantial improvements in the estimation of the covariance matrix for the parameter
estimates are obtained”.
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King and Evans (1986) bring up the importance of testing for CS covariance struc-
tures when they cite Scott and Holt (1982) as having proved that ignoring such
correlation structures may lead “to seriously misleading confidence intervals and
hypothesis tests based on inefficient ordinary least squares estimates”. A similar issue
is also brought up by Vonesh and Chinchilli (1997, Sect. 7.3) who use the CS structure
for linear and also nonlinear models, when these authors say that “ignoring compound
symmetry in favor of a general covariance structure leads to significantly inflated
Type I errors while correctly assuming compound symmetry leads to improved Type
I errors”.

While all these strengthen the need for adequate testing procedures for the CS
covariance structure, also in all these cases, the assumption of the CS structure always
goes along with the assumption of normality—see also Jones (1993, Sect. 1.5). The
likelihood ratio test (LRT) for the CS structure in (1), under the normality assumption,
was developed by Wilks (1946).

In the present paper, the authors will address the multivariate or block CS (BCS)
structure, where a set of m variables is measured at u time points, and where Θ may
be written as

Θ =

⎡
⎢⎢⎢⎣

Σ0 Σ1 . . . Σ1
Σ1 Σ0 . . . Σ1
...

. . .
...

Σ1 Σ1 . . . Σ0

⎤
⎥⎥⎥⎦ = Iu ⊗ (Σ0 − Σ1) + Ju ⊗ Σ1, (3)

where Σ0 is a positive-definite symmetricm×m matrix, and Σ1 is a symmetricm×m
matrix, subject to the constraints − 1

u−1Σ0 < Σ1 and Σ1 < Σ0, which mean that
Σ0−Σ1 and Σ0+(u−1)Σ1 are positive-definite matrices, so that themu×mu matrix
Θ is also positive-definite (for a proof, see Lemma 2.1 by Roy and Leiva (2011)). A
BCS structure as the one in (3) arises whenever m response variables are measured
and modeled at any given site or time point and we would use for each single response
variable a CS covariance matrix.

The m × m diagonal blocks Σ0 in Θ represent the variance–covariance matrix
of the m response variables at any given site or time point, whereas the m × m off
diagonal blocks Σ1 in Θ represent the covariance matrix of the m response variables
between any two different sites or time points. Σ0 is assumed to be constant for all
sites or time points, and Σ1 is also assumed to be the same for any two different sites
or time points.

If Yt j (t = 1, . . . , u; j = 1, . . . ,m) denotes the j-th variable measured on site or
time t , once the BCS structure is assumed, we will have

Var(Yt j ) = Var(Ysj ) and Cov(Yt j ,Ytk) = Cov(Ysj ,Ysk)

for all t, s ∈ {1, . . . , u} and j, k ∈ {1, . . . ,m}, that is,

Var(Y t ) = Var(Y s) = Σ0 for all t, s ∈ {1, . . . , u}
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312 C. A. Coelho, A. Roy

where Var(Y t ) denotes the covariance matrix for the subvector Y t = [Yt1, . . . ,Ytm]′
(t = 1, . . . , u), and also

Cov(Yt j ,Ysk) = Cov(Ytk,Ysj ) for any t, s ∈ {1, . . . , u} and j, k ∈ {1, . . . ,m},

or, equivalently,

Cov(Y t ,Y s) = Σ1, for any t, s ∈ {1, . . . , u}, with t �= s,

where Σ1 is a symmetric matrix.
Examples of multivariate models with this covariance structure are the multivariate

repeated measurement or growth curve models used by Reinsel (1982) and the models
used by Arnold (1979), Timm (1980) and Timm (2002, Sect. 6.5), Roy (2006) and
Roy and Fonseca (2012).

As such, the need to test for BCS structure arises in many situations, namely those
in which it is assumed as a structure for the covariance matrices involved in further
analyses such as in many biomedical and medical researches. Indeed, one has to be
very careful when assuming this structure for two-level multivariate data, since an
incorrect assumption may result in wrong conclusions. Thus, testing the validity of
this BCS structure is of vital importance before assuming it, for any statistical analysis
and a few authors have marginally addressed this topic. Timm (2002, Sect. 6.5; 6.6),
following Krishnaiah and Lee (1974, 1980), takes BCS as a particular case of the
so-called linear structure, where Θ can be written as

Θ =
k∑

i=1

Gi ⊗ Σi

where G1, . . . , Gk are known u × u matrices which commute, and Σ1, . . . ,Σk are
unknown m×m matrices. Then, he follows the testing procedure outlined by Krishna-
iah and Lee (1974, 1980) and ends up recommending a chi-square approximation for
the distribution of the LRT statistic. However, although this is a valid result in terms
of convergence in distribution, it is indeed of no practical use, mainly when the sam-
ple sizes are not huge. As shown for example by Coelho et al. (2016) the chi-square
approximation only works for quite large sample sizes when the overall number of
variables involved is rather small. Since in the present situation, although the BCS
covariance structure is a quite parsimonious one in terms of the number of parameters
used to model the whole covariance matrix, we will anyway be dealing with quite large
numbers of variables, the chi-square approximation would only work for extremely
large sample sizes, and even in these cases would give a much worse approximation
than the one that is obtained in the present paper. Krishnaiah and Lee (1974, 1980)
address the test for BCS structure in general terms, encompassed in a general testing
scheme for the linear structure and recommend the use of Box (1949) approximation
for the distribution of the LRT statistic, anyway without addressing specifically the
test for BCS structure. But also Coelho and Marques (2012) show how in situations

123



Testing for block compound symmetry 313

where the number of variables is moderately large to large, the asymptotic distribu-
tions obtained using Box’s approximation may give quantiles and p-values which may
fall quite far from the exact ones, since in these situations such asymptotic distribu-
tions commonly are not even real distributions, since both the p.d.f.’s and c.d.f.’s may
assume values below zero.

Thus, our goal is to develop an approach which is not only able to allow for an
easy way to obtain the LRT statistic to test BCS and the full characterization of its
exact distribution, but which is furthermore able to allow for an easy way to obtain
very sharp, but very manageable, near-exact approximations for the distribution of the
LRT statistic. All this in order to make this test easy to implement in practice, since
its practical application has been hindered by the complexity of the exact distribution
of its LRT statistic. Moreover, the approach followed, allowing to express the overall
LRT statistic as the product of the LRT statistic to test independence of groups of
variables by the LRT statistic to test equality of covariance matrices, also allows
for the immediate extension of the results obtained to populations with elliptically
contoured distributions. In Chapters 8–10 of Anderson (2003), it is shown that, under
the corresponding null hypotheses, the distributions of these two LRT statistics remain
the same either for normally distributed or elliptically contoured distributions. As
such, although the distribution obtained for the BCS LRT statistic is derived under the
multivariate normality assumption, based on these results, both the exact as well as the
near-exact distributions obtained remain valid for elliptically contoured distributions,
thus widening much the scope of the results obtained.

Further sections in this paper are: Sect. 2, where the null hypothesis is formulated in
two equivalent ways, the second of which will open the way for an easy means to obtain
the LRT statistic to test BCS and also for two equivalent ways to characterize its exact
distribution, the second of which will then lead the way to Sect. 3 where sharp near-
exact distributions are obtained for this statistic; then in Sect. 4, some numerical studies
are carried out to show how sharp the near-exact distributions developed are, even for
very small sample sizes and also for large numbers of variables involved, situations in
which the chi-square approximation is shown to not perform well. In Sect. 5, a simple
real-data example is used to illustrate how the near-exact approximations developed
may be used and a simulation study is carried out to show that if one thinks that by
simulating the Beta random variables involved in the exact distribution of the LRT
statistic quite sharp p-values and quantiles may be obtained, this will not be the case,
even for quite long simulations, given the quite large number and variety of parameters
of those Beta random variables. Finally in Sect. 6, some final conclusions are drawn.

2 Formulation of the hypothesis and the likelihood ratio test

Let us assume that Y = [Y ′
1, . . . ,Y

′
u]′ ∼ N (μ,Σ) and that we are interested in testing

the hypothesis
H0 : Σ = Θ, (4)

where Θ is defined in (3), versus the alternative hypothesis that Σ is only positive-
definite.
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In Lemma 3.1 by Roy and Fonseca (2012), it is shown that we may write

Γ ΘΓ ′ =
[

�2 0
0 Iu−1 ⊗ �1

]
,

where

�1 = Σ0 − Σ1,

�2 = Σ0 + (u − 1) Σ1,

and Γ = C∗′
u×u

⊗ Im , with C∗ an orthogonal Helmert matrix whose first column is

proportional to a vector of 1’s.
Since Γ is not a function of either Σ0, or Σ1, to test H0 in (4) is equivalent to test

H0 : Σ∗ = Ω (5)

where

Σ∗ = Γ ΣΓ ′ and Ω = Γ ΘΓ ′.

The null hypothesis in (5) may be split as

H0 ≡ H0b|a o H0a,

where ‘o’ means ‘after’, and where

H0a : Σ∗ = block-diag(Σ∗
i , i = 1, . . . , u), (6)

is the hypothesis of independence of the u diagonal blocks of size m × m of Σ∗, and

H0b|a : Σ∗
2 = · · · = Σ∗

u,

assuming H0a (7)

is the null hypothesis corresponding to the test of equality of the u − 1 covariance
matrices Σ∗

2, . . . ,Σ
∗
u , assuming H0a .

The LRT statistic to test H0a in (6) is, for a sample of size n, given by Anderson
(2003, Sect. 9.2) as

Λa =
(

|A|∏u
j=1 |A j |

)n/2

,

where A = Γ Σ̂Γ ′ is the maximum likelihood estimator of Σ∗, and A j its m×m j-th
diagonal block (Σ̂ being the maximum likelihood estimator of Σ).
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The LRT statistic to test H0b|a in (7) is (Anderson 2003, Section 10.2)

Λb =
(

(u − 1)m(u−1)

∏u
j=2 |A j |

|A∗|u−1

)n/2

, (8)

where

A∗ =
u∑
j=2

A j .

Then, the LRT statistic to test H0 in (5) will be

Λ = ΛaΛb =
(

(u − 1)m(u−1) |A|
|A1||A∗|u−1

)n/2

, (9)

with the h-th moment of Λ, under H0 in (4) or (5), given by

E
(
Λh

)
= E

(
Λh

a

)
E
(
Λh

b

)
, (10)

since, under H0a , Λa is independent of A1, . . . , Au (Marques and Coelho 2012;
Coelho and Marques 2013), which makes Λa independent of Λb, given that this
latter one is only function of A2, . . . , Au . Since the range of Λ is delimited, from
this expression for the h-th moment of Λ under H0 in (4) or (5), we will then be able
to obtain the characterization of the distribution of Λ under this null hypothesis, the
second version of which, obtained at the end of this section, will then enable us to
obtain in the next section very sharp near-exact distributions for Λ.

In (10) we have, under H0a in (6), (Marques et al. 2011)

E
(
Λh

a

)
=

u−1∏
k=1

m∏
j=1

Γ
(
n− j

2

)
Γ
(
n−(uv−k)m− j

2 + n
2h
)

Γ
(
n−(uv−k)m− j

2

)
Γ
(
n− j

2 + n
2h
)

=
⎧⎨
⎩

mu∏
j=3

(
n − j

n

)r j (n − j

n
+ h

)−r j
⎫⎬
⎭

︸ ︷︷ ︸
Φa,1(h)

(
Γ
( n−1

2

)
Γ
( n−2

2 + n
2h
)

Γ
( n−1

2 + n
2h
)
Γ
( n−2

2

)
)k∗

︸ ︷︷ ︸
Φa,2(h)

(11)
where

k∗ =
{ 	u/2
 , m odd

0, m even,

and

r j =
{
h j−2 + (−1) j k∗, j = 3, 4
r j−2 + h j−2, j = 5, . . . ,mu

(12)
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with

h j =
{
uv − 1, j = 1, . . . ,m

−1, j = m + 1, . . . ,mu − 2,
(13)

while for Λb we have, under H0b|a in (7),

E
(
Λh

b

)
=

m∏
j=1

u−1∏
k=1

Γ
(
n−1

2 − j−1
2(u−1)

+ k−1
u−1

)
Γ
(
n− j

2 + n
2h
)

Γ
(
n−1

2 − j−1
2(u−1)

+ k−1
u−1 + n

2h
)

Γ
(
n− j

2

)

=
⎧⎨
⎩

m∏
j=2

(
n − j

n

)s j (n − j

n
+ h

)−s j
⎫⎬
⎭

︸ ︷︷ ︸
Φb,1(h)

×
⎧⎨
⎩

	m/2
∏
j=1

u−1∏
k=1

Γ
(
n − 1 + k−2 j

u−1

)
Γ
(
n +

⌊
k−2 j
u−1 − 1

⌋
+ nh

)

Γ
(
n − 1 + k−2 j

u−1 + nh
)

Γ
(
n +

⌊
k−2 j
u−1 − 1

⌋)
⎫⎬
⎭

×
⎧⎨
⎩

u−1∏
k=1

Γ
(
n−m

2 + m(u−1)−u−m+2k
2(u−1)

)

Γ
(
n−m

2 +
⌊
m(u−1)−u−m+2k

2(u−1)

⌋)

×
Γ
(
n−m

2 +
⌊
m(u−1)−u−m+2k

2(u−1)

⌋
+ n

2h
)

Γ
(
n−m

2 + m(u−1)−u−m+2k
2(u−1)

+ n
2h
)

⎫⎬
⎭

m⊥⊥2

︸ ︷︷ ︸
Φb,2(h)

(14)

where s j ( j = 2, . . . ,m) are given in Appendix 1 and where m ⊥⊥ 2 is the remainder
of the integer division of m by 2.

Since the supports of Λa and Λb are delimited, their distributions are defined by
their moments and, as such, from the first expression in (11) we may write, under H0a ,

Λa ∼
u−1∏
k=1

m∏
j=1

(X jk)
n
2 , with X jk ∼ Beta

(
n − (u − k)m − j

2
,
(u − k)m

2

)
,

(15)
where X jk ( j = 1, . . . ,m; k = 1, . . . , u − 1) are independent, while from the first
expression in (14), under H0b|a ,

Λb ∼
m∏
j=1

u−1∏
k=1

(X∗
jk)

n
2 , with X∗

jk ∼ Beta

(
n − j

2
,

2k + (u − 2) j − u

2

)
, (16)
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where X∗
jk ( j = 1, . . . ,m; k = 1, . . . , u − 1) are independent, so that, under H0 in

(4) or (5),

Λ ∼
m∏
j=1

{(
u−1∏
k=1

X jk

)(
u−1∏
k=1

X∗
jk

)}
, (17)

where all random variables are independent.
On the other hand, based on the results in Appendix 2 and from the second expres-

sions in (11) and (14) we may write, for Λa ,

Λa ∼
⎛
⎝

mu∏
j=3

e−Z j

⎞
⎠
⎛
⎝

k∗∏
j=1

(Wj )
n
2

⎞
⎠ (18)

where

Z j ∼ Γ

(
r j ,

n − j

n

)
and Wj ∼ Beta

(
n − 2

2
,

1

2

)

are all independent r.v.’s (random variables), while for Λb it is possible to write

Λb ∼
⎛
⎝

m∏
j=2

e−Z∗
j

⎞
⎠
⎛
⎝

	m/2
∏
j=1

u−1∏
k=1

(W ∗
1 jk)

n

⎞
⎠
(
u−1∏
k=1

(W ∗
2k)

n
2

)m⊥⊥2

(19)

where

Z∗
j ∼ Γ

(
s j ,

n − j

n

)
, W ∗

1 jk ∼ Beta

(
n +

⌊
k − 2 j

u − 1
− 1

⌋
,
k − 2 j

u − 1
−
⌊
k − 2 j

u − 1

⌋)
,

and

W ∗
2k ∼ Beta

(
n − m

2
+
⌊
m(u − 1) − u − m + 2k

2(u − 1)

⌋
,
m(u − 1) − u − m + 2k

2(u − 1)

−
⌊
m(u − 1) − u − m + 2k

2(u − 1)

⌋)

are all independent r.v.’s.
From (18) and (19), one may thus write, under H0 in (4) or (5),

Λ ∼
⎛
⎝

mu∏
j=2

e−Tj

⎞
⎠
⎛
⎝

k∗∏
j=1

(Wj )
n
2

⎞
⎠
⎛
⎝

	m/2
∏
j=1

u−1∏
k=1

(W ∗
1 jk)

n

⎞
⎠
(
u−1∏
k=1

(W ∗
2k)

n
2

)m⊥⊥2

(20)

where

Tj ∼ Γ

(
γ j ,

n − j

n

)
, ( j = 2, . . . ,mu)
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with

γ j =
mu∑
j=2

(
r+
j + s+

j

)
(21)

where

r+
j =

{
0 j = 2
r j j = 3, . . . ,mu

and s+
j =

{
s j j = 2, . . . ,m
0 j = m + 1, . . . ,mu

(22)

where r j are given by (12) and (13), s j are given by (28)–(32) in Appendix 1, and all
the other variables are defined as above.

The form of the distribution of Λ in (20), although it may look more complicated
than the one in (17), is more useful for the development of the near-exact distributions,
as it will be shown in the next section.

It should also be brought to the attention of the reader that, given the results stated
at the end of Chapters 8–10 of Anderson (2003), the form of the distribution of Λ in
(20) remains valid in case we consider for Y any elliptically contoured distribution.

3 The characteristic function of W = − log Λ and the near-exact
approximation

From the developments in the previous section and the expression for E(Λh), the
characteristic function (c.f.) of W = − log Λ may be written as

ΦW (t) = E
(
eitW

)
= E

(
Λ−it

)

=
⎧⎨
⎩

mu∏
j=2

(
n − j

n

)γ j
(
n − j

n
− it

)−γ j

⎫⎬
⎭

︸ ︷︷ ︸
ΦW,1(t)

Φa,2(−it)Φb,2(−it)

︸ ︷︷ ︸
ΦW,2(t)

(23)

where γ j is given by (21) and Φa,2( · ) and Φb,2( · ) are defined in (11) and (14),
and ΦW,1(t) is actually equal to Φa,1(−it)Φb,1(−it), being these two functions also
defined in (11) and (14).

Then, in building the near-exact distributions, ΦW,1(t) will be kept untouched while
ΦW,2(t) will be asymptotically approximated by the c.f. of a finite mixture of Gamma
distributions.

While ΦW,1(t) is the c.f. of a GIG (Generalized Integer Gamma) distribution
(Coelho 1998) of depthmu−1, which is the distribution of the sum ofmu independent
Gamma distributed random variables, all with integer shape parameters, ΦW,2(t) is
the c.f. of the sum of k∗ + 	m/2
(u − 1)+ (m ⊥⊥ 2) independent Logbeta distributed
random variables. For u = 2 and even m, ΦW,1(t) yields indeed the exact c.f. for W ,
which means that in this case we have the exact p.d.f. and c.d.f. of W and Λ in a
simple closed form. This is, in the form of the p.d.f. and c.d.f. of a GIG distribution
of depth 2m, with shape parameters γ j given by (21) and rate parameters (n − j)/n
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( j = 1, . . . , 2m) for W , or the form of the p.d.f. and c.d.f. of an EGIG (Exponentiated
Generalized Integer Gamma) distribution (Arnold et al. 2013) for Λ.

It is based on the results in Sects. 5 and 6 of Tricomi and Erdélyi (1951), which
show that the c.f. of a Logbeta(a, b) distribution may be asymptotically approximated
by the c.f. of an infinite mixture of Γ (b + j, a) ( j = 0, 1, . . .) distributions that we
will replace ΦW,2(t) by

Φ2(t) =
m∗∑
k=0

πk λr+k(λ − it)−(r+k), (24)

which is the c.f. of a finite mixture of Gamma distributions, all with the same rate
parameter λ. See Appendix 3 for further details on the approximation of ΦW,2(t) by
Φ2(t). In (24), λ will be taken to be the rate parameter in

Φ∗(t) = θλτ1(λ − it)−τ1 + (1 − θ)λτ2(λ − it)−τ2

where θ , λ, τ1 and τ2 are determined in such a way that

∂h

∂th
Φ∗(t)

∣∣∣∣
t=0

= ∂h

∂th
ΦW,2(t)

∣∣∣∣
t=0

, h = 1, . . . , 4,

and

r = k∗

2
+

	m/2
∑
j=1

u−1∑
k=1

k − 2 j

u − 1
−
⌊
k − 2 j

u − 1

⌋

+
u−1∑
k=1

m(u − 1) − u − m + 2k

2(u − 1)
−
⌊
m(u − 1) − u − m + 2k

2(u − 1)

⌋

=
{

m
4 (u − 2), m even⌊ u

2

⌋+ m+1
4 (u − 2), m odd

(u ≥ 2), (25)

which is the sum of the second parameters of all the Beta r.v.’s in (20). Then, the
weights π0, . . . , πm∗−1 in (24) will be determined in such a way that

∂h

∂th
Φ2(t)

∣∣∣∣
t=0

= ∂h

∂th
ΦW,2(t)

∣∣∣∣
t=0

, h = 1, . . . ,m∗,

with πm∗ = 1 −∑m∗−1
k=0 πk .

The near-exact distributions built in this way will match the first m∗ exact moments
of W and will have c.f.

Φ∗
W (t) = ΦW,1(t)Φ2(t), (26)

which, for non-integer r , is the c.f. of a finite mixture, with weightsπk (k = 0, . . . ,m∗),
of Generalized Near-Integer Gamma (GNIG) distributions of depth mu, with integer
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shape parameters γ j , given by (21) and (22) and non-integer shape parameter r given
by (25) and corresponding rate parameters (n − j)/n ( j = 2, . . . ,mu) and λ. See
Coelho (2004) and Coelho and Marques (2012, Appendix 1) for the expressions for
the p.d.f. and c.d.f. of the GNIG distribution. Using the notation from Appendix 1 in
Coelho and Marques (2012), these near-exact distributions will yield forW = − log Λ

p.d.f.’s and c.d.f.’s of the form

fW (w) =
m∗∑
k=0

πk f GNIG

(
w

∣∣∣ γ2, . . . , γmu, r + k; n − 2

n
, . . . ,

n − mu

n
, λ;mu

)
,

(w > 0)

and

FW (w) =
m∗∑
k=0

πk F
GNIG

(
w

∣∣∣ γ2, . . . , γmu, r + k; n − 2

n
, . . . ,

n − mu

n
, λ;mu

)
,

(w > 0),

while the near-exact p.d.f. and c.d.f. for Λ are, respectively, given by

fΛ(z) =
m∗∑
k=0

πk f
GNIG

(
− log z

∣∣∣ r∗
2 , . . . , r∗

p, r + k; n − 2

n
, . . . ,

n − mu

n
, λ;mu

)
1

z

(0 < z < 1)

and

FΛ(z) =
m∗∑
k=0

πk

(
1 − FGNIG

(
− log z

∣∣∣r∗
2 , . . . , r∗

p, r + k; n − 2

n
, . . . ,

n − mu

n
, λ;mu

))
,

(0 < z < 1).

For integer r , the above GNIG distributions of depth mu become GIG distributions
of depth mu (Coelho 1998; Arnold et al. 2013, App. B), which have even simpler and
more manageable expressions, and in this case the near-exact distributions for Λ will
be mixtures of what Arnold et al. (2013) call EGIG distributions.

From these near-exact distributions, one can easily compute near-exact p-values and
quantiles, as it is illustrated in Sect. 5, which from the results in Sect. 4 are assured to
lie extremely close to the exact ones, even for very small sample sizes and very large
numbers of variables involved. As such, even in cases where one may want to compute
the power of the LRT for a specific covariance matrix Σ that somehow violates the
null hypothesis of BCS, one will preferably (i) use the near-exact quantile for the null
distribution of the LRT statistic for the given values of n, m and u, and then simulate
something like at least 105 or 106 pseudo-random samples from a multivariate normal
distribution with that covariance matrix Σ , compute the value of the LRT statistic Λ,
using (9), and take as the simulated value of power the proportion of cases where the
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null hypothesis of BCS is rejected, rather than (ii) use the non-null distribution of Λ,
which, given the already rather complicated facies of the null distribution of Λ, would
be way too complicated to be computed.

It may be noted that for m = 1, this test yields the equivariance–equicorrelation or
compound symmetry test in Wilks (1946), while, given the fact that, as stated at the
end of Sect. 2, the form in (20) for the exact distribution of Λ remains valid when
we assume for the underlying variables an elliptically contoured distribution; also the
near-exact distributions developed in this section remain valid in this situation.

4 Numerical studies

To assess the performance of the near-exact distributions developed, that is, their
closeness to the corresponding exact distribution, we use the measure

Δ = 1

2π

∫ +∞

−∞

∣∣∣∣
ΦW (t) − Φ∗

W (t)

t

∣∣∣∣ dt, (27)

with

max
w>0

∣∣FW (w) − F∗
W (w)

∣∣ = max
0<z<1

∣∣FΛ(z) − F∗
Λ(z)

∣∣ ≤ Δ,

where ΦW (t) is the exact c.f. of W in (23) and Φ∗
W (t) is the near-exact c.f. of W in (26)

and FW ( · ) and F∗
W ( · ) are the corresponding c.d.f.’s, that is, the exact and near-exact

c.d.f. of W , being FΛ( · ) and F∗
Λ( · ) the corresponding c.d.f.’s for Λ. That Δ in (27)

always yields a finite value is shown in Appendix 4.
Table 1 shows values of the measure Δ for the common chi-square approximation to

the distribution of the logarithm of the LRT statistic, which says that −2 log Λ
a∼ χ2

ν ,
with ν = mu(mu + 1)/2 − m(m + 1), and for the near-exact distributions developed
in the previous section. In this table, different values of u (number of locations or time
points),m (number of variables) and n (sample size) are used, and also different values
of m∗, the number of exact moments of W matched by the near-exact distributions.

Values for Δ in Table 1 were computed using the numerical integration module
NIntegrate from Mathematica®, version 9, and using ΦW (t) in (23) and Φ∗

W (t) in (26)
for the near-exact distributions, and

Φ∗
W (t) =

(
1

2

) f/2 (1

2
− i

t

2

)− f/2

= (1 − it)− f/2

with f = mu(mu + 1)/2 − m(m + 1) for the chi-square approximation for W .
Because of numerical stability issues, usually Δ in (27) is computed by integrat-
ing between zero and plus infinity and then multiplying it by 1/π . If in some cases the
upper limit of plus infinity for the integral may still give some problems, a numerical
limit like 3×104 or 5×104 is used, after checking for stability of the numerical value
obtained for the integral.
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As expected, as m∗ increases the values of Δ for the near-exact distributions
decrease clearly, showing an increasing closeness to the exact distribution. We may
also see from Table 1 that the near-exact distributions developed exhibit a very good
performance for very small sample sizes and also a very good asymptotic behavior not
only for increasing sample sizes, but also for increasing values of both u and m, which
is a much desirable feature. For all values of u and m, the values of Δ, upper bounds
on the difference between the exact and the near-exact c.d.f., exhibit extremely low
values. One may also note that, for larger values of u and m, the asymptotic behavior
for increasing n becomes visible only for larger values of n.

From Table 1, it also becomes clear that indeed the chi-square asymptotic distrib-
ution may only yield somewhat sensible approximations for very large sample sizes
and small numbers of variables involved, and that the performance of this approxi-
mation worsens much as the number of variables increases, that is, as either u or m
increases. Indeed, the measure Δ in (27) gives very sharp upper-bounds on the dif-
ference between the exact and the approximate c.d.f.’s in case the approximation is
rather good, while it may give too large values in the opposite case.

This is the reason why we get some values of Δ above one for the chi-square
approximation for the smaller sample sizes for a number of the combinations of larger
values of u and m, although indeed the values of Δ should always be between zero
and one. This indicates that in these cases the classical chi-square approximation has
a really very poor performance.

5 A real-data example and a simulation study

In this section, the authors show how to implement the new hypothesis testing proce-
dure, using the block-diagonalization of the BCS structure, as a result of the application
of Lemma 3.1 by Roy and Fonseca (2012), with a real data set taken from Johnson and
Wichern (2007, p. 43). A researcher measured the mineral content of bones (radius,
humerus and ulna) by photon absorptiometry to examine whether dietary supplements
would slow bone loss in 25 older women. Measurements were recorded for the three
bones on the dominant and non-dominant sides. As such, data have a two-level mul-
tivariate structure, with u = 2 and m = 3 and if we rearrange the variables in the data
set by grouping together the mineral content of the dominant sides of radius, humerus
and ulna as a first set of three variables, that is, the variables in the first location (t = 1
for the dominant side) and then the mineral contents for the non-dominant side of the
same bones as the second set of three variables (t = 2 for the non-dominant side), the
resulting maximum likelihood estimate of Σ is (rounded to five decimal places)

Σ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.01248 0.02146 0.00876
0.02146 0.07714 0.01616
0.00876 0.01616 0.01111

0.00996 0.01928 0.00764
0.01779 0.06411 0.01233
0.00819 0.01703 0.00775

0.00996 0.01779 0.00819
0.01928 0.06411 0.01703
0.00764 0.01233 0.00775

0.01096 0.02026 0.00855
0.02026 0.06671 0.01612
0.00855 0.01612 0.01018

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Not only the sample variance–covariance matrices of the three mineral contents
for the dominant and non-dominant sides appear very similar, but also the covariance
matrix of the mineral content for the three bones between the dominant and non-
dominant sides suggests the possibility of an underlying symmetric population matrix.
We may thus hypothesize that the population covariance matrix may have a BCS
structure.

To carry out the test, according to the procedure outlined in Section 2, one needs
to compute the matrix

A = Σ̂
∗ = Γ Σ̂Γ ′,

where

Γ =
⎡
⎣

1√
2

1√
2

1√
2

− 1√
2

⎤
⎦⊗ I3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 0

0 1√
2

0 0 1√
2

0

0 0 1√
2

0 0 1√
2

1√
2

0 0 − 1√
2

0 0

0 1√
2

0 0 − 1√
2

0

0 0 1√
2

0 0 − 1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, from (9), the computed value for Λ is obtained as 0.0227794, for which, using
the near-exact distributions developed in Sect. 3, we obtain the p-values in Table 2.

Table 2 gives the p-values for different values of m∗ up to the decimal places which
exactly match the decimal places of the p-value corresponding to the next m∗. If we
just compare the p-values for m∗ = 1 and m∗ = 2, we see that the p-value for m∗ = 1
is exact up to four decimal places. According to the way the near-exact distributions are
built, thep-values have better precision for increasing values ofm∗, the number of exact
moments of W matched by the corresponding near-exact distribution. Thus, the null
hypothesis that the covariance structure is of the BCS type should not be rejected, with
a p-value = 0.2792, which is much lower than the p-value = 0.5786 obtained when the
asymptotic χ2

ν approximation for −2 log Λ with ν = mu(mu + 1)/2−m(m+1) = 9
degrees of freedom is used.

Table 2 p-values from the
near-exact approximations for
different values of m∗ (the
number of exact moments
matched) for the hypothesis test
on bone mineral data

m∗ p-value

1 0.2792

2 0.2792168

4 0.2792168718

6 0.279216871862

10 0.279216871862222
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The non-rejection of the BCS structure shows that the population covariance matri-
ces for the mineral content of the three bones (radius, humerus and ulna) for the
dominant and the non-dominant sides may be considered to be equal and that also the
population covariance matrix for the mineral content between the dominant and the
non-dominant sides should be considered to be a symmetric matrix, with

Cov(Y1 j ,Y2k) = Cov(Y2 j ,Y1k), j, k ∈ {1, 2, 3}.

This means that, for example, the population covariance between the mineral content
of the dominant side of the radius and the mineral content of the non-dominant side
of humerus is the same as that of the mineral content of the non-dominant side of
the radius and the mineral content of the dominant side of the humerus, and that this
happens for any pair of two different bones.

In Fig. 1, we have, for W = − log Λ, the plots of the p.d.f.’s and c.d.f.’s for the near-
exact distribution for m∗ = 1 and for the asymptotic Gamma distribution with shape
parameter 9/2 and rate parameter 1, which corresponds to the chi-square asymptotic
distribution with nine degrees of freedom for −2 log Λ.

That even p-values obtained from simulation may be not sharp enough was shown
by a simulation study, where 100,000 pseudo-random samples with BCS structure for
u = 2, m = 3 and n = 25 were generated. The p-value obtained from this simulation
study for the computed value of Λ = 0.0227794 was 0.28163, which compared with
the near-exact p-values in Table 2 shows that p-values obtained from simulation, even
when using quite large simulations, may be not that precise.

6 Conclusions

As described in the Introduction of the paper, the Block-Compound Symmetric (BCS)
covariance structure may be used as or may arise as the underlying covariance structure
for many multivariate models, making the test for a BCS covariance structure a much
necessary and desirable one. However, testing for a BCS structure of the covariance
matrix may seem at first sight to be a not so easy task, given the facts that not only the
likelihood ratio statistic is expected to have a rather complicated derivation but also and
mainly because its exact distribution is expected to have an extremely complicated
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Fig. 1 Plots of the p.d.f.’s and c.d.f.’s of the near-exact distribution (for m∗ = 1) and the asymptotic
Γ (9/2, 1) distribution, for W = − log Λ (this later one corresponding to the χ2

9 asymptotic distribution
for −2 log Λ)
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structure and expression. In this paper, the authors show how to use an adequate
decomposition of the BCS null hypothesis; based on Lemma 3.1 by Roy and Fonseca
(2012), it is possible to easily derive the expression for the likelihood ratio statistic
and also to obtain the expression for its moments, under the BCS hypothesis. The
approach followed also enabled the derivation of simple expressions for the p.d.f.
and c.d.f. of the likelihood ratio statistic for some simpler particular cases, as well
as, and most important, the development of very sharp but highly manageable near-
exact distributions for the test statistic, which in turn enable an easy computation of
quantiles and p-values. These near-exact distributions exhibit a sharp closeness to the
exact distribution for very small samples and also very good asymptotic behaviors
not only in terms of increasing sample sizes, but also in terms of increasing values
of the number of variables, and number of locations or time points. This asymptotic
behavior for increasing number of variables is a much desirable feature which common
asymptotic distributions do not have. The authors also show that the common chi-
square asymptotic approximation for −2 log Λ may only work in practice for very
large sample sizes and when the number of variables involved is quite small, and that
it may indeed not even work at all when the number of variables involved is rather
large.

The approach followed in this paper may be extended to address more complicated
covariance structures arising for multi-level multivariate data, and it also allows for
an immediate extension of the results obtained, in terms of both exact and near-exact
distributions, to underlying elliptically contoured distributions.
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Appendix 1: Shape parameters in the moment expressions for Λb

According to Coelho and Marques (2012) and Marques et al. (2011), the shape para-
meters s j in (14) are given by

s j =

⎧⎪⎨
⎪⎩

s∗j−1, for j = 2, . . . ,m,

except j = m − 2α1

s∗j−1 + (m ⊥⊥ 2)(α2 − α1)
(
(u − 1) − m−1

2 + (u − 1)
⌊

m
2(u−1)

⌋)
, for j = m − 2α1

(28)
with

s∗j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ j for j = 1, . . . , α + 1

(u − 1)
(⌊m

2

⌋−
⌊
j
2

⌋)
for j = α + 2, ... , min(m − 2α1,m − 1)

and j = 2 + m − 2α1, ... , 2
⌊m

2
⌋− 1, by steps of 2

(u − 1)
(⌊

m+1
2

⌋
−
⌊
j
2

⌋)
for j = 1 + m − 2α1, ... ,m − 1, by steps of 2,

(29)

and

α =
⌊
m − 1

u − 1

⌋
, α1 =

⌊
u − 2

u − 1

m − 1

2

⌋
, α2 =

⌊
u − 2

u − 1

m + 1

2

⌋
, (30)
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where, for j = 1, . . . , α,

γ j =
⌊
u − 1

2

⌋(
( j − 1)(u − 1) − 2 (u ⊥⊥ 2)

⌊
j

2

⌋)
+
⌊
u − 1

2

⌋⌊
u − 1 + j ⊥⊥ 2

2

⌋

(31)
and

γα+1 = −
(⌊m

2

⌋
− α

⌊
u − 1

2

⌋)2

+ (u − 1)

(⌊m
2

⌋
−
⌊

α + 1

2

⌋)

+((u − 1) ⊥⊥ 2)

(
α
⌊m

2

⌋
+ α ⊥⊥ 2

4
− α2

4
− α2

⌊
u − 1

2

⌋)
. (32)

Appendix 2: Gamma distribution and related results

We say that the r.v. X follows a Gamma distribution with shape parameter r > 0 and
rate parameter λ > 0, if the p.d.f. of X is

fX (x) = λr

Γ (r)
e−λx xr−1, (x > 0)

and this fact is denoted by X ∼ Γ (r, λ). Then, the moment generating function of X
is

MX (t) = λr (λ − t)−r (t < λ),

so that if we define Z = e−X we have

E(Zh) = E
(
e−hX

)
= MX (−h) = λr (λ + h)−r (h > −λ).

Appendix 3: The reasoning behind the use of Φ2(t) in (24) to
approximate ΦW,2(t)

From the two first expressions in Sect. 5 on Tricomi and Erdélyi (1951) and also
expressions (11) and (14), this last one already in Sect. 6 of this same reference, we
may write

Γ (a − it)

Γ (a + b − it)
≈

∞∑
k=0

pk(b) (a − it)−(b+k) (33)

where

pk(b)= 1

k

k−1∑
�=0

(
Γ (1 − b − �)

Γ (−b − k)(k − � + 1)! + (−1)k+� bk−�+1
)
p�(b), k = 1, 2, . . . ,

(34)
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with p0(b) = 1, and where the approximation in (33) gets sharper for larger values of
a.

Then, since the c.f. of Y = − log X , where X ∼ Beta(a, b), is given by

ΦY (t) = Γ (a + b)

Γ (a)

Γ (a − it)

Γ (a + b − it)
,

using (33), one may write

ΦY (t) ≈
∞∑
k=0

Γ (a + b)

Γ (a)

pk(b)

ab+k︸ ︷︷ ︸
p∗
k (a,b)

ab+k (a − it)−(b+k)

whose right hand side is the c.f. of an infinite mixture of Γ (b + k, a) distributions,
with weights p∗

k (a, b), with pk(b) given by (34).
Then, since ΦW,2(t) is th c.f. of a sum of independent Logbeta r.v.’s with different

parameters, namely different first parameters, it would be approximated by a c.f. of an
infinite mixture of sums of independent Gamma r.v.’s, with different rate parameters,
which themselves are mixtures of Gamma r.v.’s. Thus, using a somewhat heuristic
approach, one would use as a first simplification of this approximating c.f. a c.f. of
an infinite mixture of Gamma distributions, all with the same rate parameter and with
shape parameters r + k for k = 0, 1, . . ., where r is equal to the sum of all the second
parameters of the Logbeta r.v.’s in ΦW,2(t), which will then be further simplified to
the c.f. Φ2(t), which is the c.f. of a finite mixture of Gamma distributions with shape
parameters r + k (k = 0, 1, . . .) and rate parameter λ, and with weights πk which will
be determined as it is explained in the body of the paper, after the call to this Appendix.
The rate parameter λ will be defined in a somewhat heuristic way which has proven in
practice to work very well, while the first m∗ weights, π0, . . . , πm∗−1, are determined
by equating the firstm∗ derivatives of ΦW,2(t) and Φ2(t), which will lead to near-exact
distributions that match the first m∗ exact moments of W = − log Λ. Then, by taking
πm∗ = 1 − ∑m∗−1

k=0 πk , we will assure, in practice, that Φ2(t) corresponds to a true
c.f., and that the corresponding c.d.f. reaches the value of 1 as the running value of W
goes to infinity. We may note that some of the weights πk may be non-positive, indeed
as already some of the weights pk(b) in (34) are also non-positive.

Appendix 4: Rational that shows that Δ in (27) always yields a finite
value

The tails of
∣∣∣ΦW (t)−Φ∗

W (t)
t

∣∣∣ for any two c.f.’s ΦW (t) and Φ∗
W (t) are always dominated

by the tails of e−b|t |, for some b > 0, that is, there exists always some δ > 0 such that
for |t | > δ,

∣∣∣∣
ΦW (t) − Φ∗

W (t)

t

∣∣∣∣ < e−b|t |
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while
∣∣∣ΦW (t)−Φ∗

W (t)
t

∣∣∣ is a continuous function for which the limit when t tends towards

zero always exists and is finite, being equal to the difference of the expected values cor-
responding to ΦW (t) and Φ∗

W (t), in case both of these exist, so that since
∫ +∞
−∞ e−b|t | dt

is finite, also Δ in (27) is.
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