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Abstract In this paper, we investigate the least squares (LS) estimator of the non-
linear regression model based on the extended negatively dependent errors which are
widely dependent structures. Under the general conditions, we establish some large
deviation results for the LS estimator of the nonlinear regression parameter, which
can be applied to obtain a weak uniform consistency and a complete convergence
rate for this estimator. In addition, some examples and simulations are presented for
illustration.
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1 Introduction

1.1 The nonlinear regression model

First, we consider the nonlinear regression model for the observations Xn :=
(X1, X2, . . . , Xn):

Xt = ft (θ) + εt , t = 1, 2, . . . , n, (1)

where the ft are known continuous functions on a parameter set Θ ⊂ Rk , the εt are
random errors and the θ ∈ Θ is the true value of the parameter. Denote

Qn (θ) =
n∑

t=1

(Xt − ft (θ))2 .

Let θ̂n(X1, X2, . . . , Xn) denote the least squares (LS) estimator of the parameter θ ∈
Θ such as

Qn

(
θ̂n

)
= inf

θ∈Θ

n∑

t=1

(Xt − ft (θ))2 .

The LS method plays a central role in the inference of parameters in nonlinear
regression models. The study of asymptotic properties of the LS estimator for para-
meters in nonlinear regressionmodels has been themain subject of investigation, since
it is, in general, difficult to obtain the exact distribution of the LS estimator for any fixed
sample. For the LS estimator of the nonlinear model based on the independent iden-
tically distributed (i.i.d.) errors, Jennrich (1969) presented the asymptotic normality,
Malinvaud (1970) obtained the consistency, and Wu (1981) established the neces-
sary and sufficient condition for the strong consistency, etc. In addition, for the the
nonlinear model based on the independent but not necessarily identically distributed
errors, Bunke and Schmidt (1980) established the strong consistency and asymptotic
normality for the weighted LS estimator, Ibragimov and Has’minskii (1981) obtained
some large deviation results of the maximum likelihood (ML) estimator, Sieders and
Dzhaparidze (1987) extended the results of Ibragimov and Has’minskii (1981) to the
M-estimator and gave its application to the main results of large deviation for the LS
estimator. For the LS estimator of the nonlinear model, Prakasa Rao (1984a) extended
the result of Ibragimov and Has’minskii (1981) to the case of i.i.d. Gaussian errors,
Hu (1993) extended the results of Prakasa Rao (1984a) and Sieders and Dzhaparidze
(1987) to the cases of locally generalized Gaussian errors, martingale differences, etc.

As far as we know, there is no large deviation result of the LS estimator of model
(1) based on the extended negatively dependent (END, Liu 2009) errors. The END
sequences are widely dependent structures which cover several negative dependent
sequences such as negatively orthant dependent (NOD, Lehmann 1966), negatively
superadditive dependent (NSD, Hu 2000) and negatively associated (NA, Joag-Dev
and Proschan 1983). Based on the M estimator of Sieders and Dzhaparidze (1987),
we obtain the main result of large deviation such as Theorems 2.1–2.4 and Corollary
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2.1 for the LS estimator θ̂n of θ ∈ Rk in model (1), which can be applied to establish
a weak uniform consistency and a complete convergence rate.

Now, we recall the M-estimator. Let E (n) = {X (n),U (n), P(n)
θ , θ ∈ Θ} be a

family of probability spaces, where the P(n)
θ does not necessarily have known form.

The parameter set Θ is a Borel subset of k-dimensional Euclidean space. We shall
consider the M-estimator maximizing an M-functional Cn : X (n) × Θ → [0,∞),
which is assumed to be, for all Xn ∈ X (n), a positive continuous function of θ and,
for all θ ∈ Θ , a measurable functional of Xn .

Throughout the paper, we assume that, for all θ ∈ Θ and P(n)
θ -almost all Xn , a

solution θ̂n to the equation

Cn

(
Xn, θ̂n

)
= sup

θ∈Θ

Cn
(
Xn, θ

)
(2)

exists (this is certainly true if Θ is compact). So θ̂n is called the M-estimator of θ .
Especially, the LS estimator θ̂n maximizes the M-functional

Cn
(
Xn, θ

) := exp

(
− 1

2

n∑

t=1

(Xt − ft (θ))2
)

.

For all n ∈ N and θ ∈ Θ ⊂ Rk , let u ∈ Rk, φn(θ) be a nonsingular k × k matrix
and define the normalized M-ratio

Zn,θ (u) := Zn,θ

(
Xn, u

) = Cn (Xn, θ + φn(θ)u)

Cn (Xn, θ)
, (3)

which, for fixed observation Xn , is a continuous, nonnegative finite function on the
set

Un,θ = φ−1
n (θ) (Θ − θ) .

Throughout the paper, for a matrix Am×n, |Am×n| denotes its norm. Define

Γn,θ,R := Ūn,θ ∩ {u : R ≤ |u| ≤ R + 1} ,

where Ūn,θ is a closure of Un,θ .
Similar to Theorem 1.5.1 of Ibragimov and Has’minskii (1981) and Theorem 2.1

of Sieders and Dzhaparidze (1987), we define the following sets of functions.
G is the set of all functions gn(·) possessing the following properties:
(i) for fixed n, gn(·) is a function on [0,∞) monotonically increasing to infinity;
(ii) for all N > 0,

lim
R→∞
n→∞

RN exp(−gn(R)) = 0. (4)

Remark 1.1 If gn(R) = Rα and α > 0, then gn ∈ G.
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264 W. Yang et al.

Let K be a measurable subset of Θ and HK be the set of all functions ηn,θ (·)
possessing the following properties:

(iii) for fixed n and θ ∈ Θ , ηn,θ (·) is a function Un,θ → (0,∞);
(vi) there exists a polynomial polK (R) in R such that for R and n sufficiently large,

sup
θ∈K ; u∈Γn,θ,R

(
ηn,θ (u)

)−1 ≤ polK (R). (5)

For each n and θ , let ζn,θ : [0,∞) → R be a monotonically nondecreasing
continuous function and define the random function

ζn,θ (u) := ζn,θ

(
Zn,θ (u)

)
. (6)

As a generalization of Theorem 1.5.1 of Ibragimov andHas’minskii (1981), Sieders
and Dzhaparidze (1987, Theorem 2.1) obtained a large deviation result for the M-
estimator as follows.

Theorem 1.1 Let the functionals ζn,θ (u) process the following properties: given a
measurable subset K ⊂ Θ ⊂ Rk , there correspond to it numbers m and α, where
m ≥ α > k, functions gn ∈ G and ηn,θ ∈ HK , and a polynomial polK (R) in R such
that, for all R and n large enough,

E (n)
θ |ζn,θ (u) − ζn,θ (v)|m ≤ |u − v|αpolK (R),

for all θ ∈ K and u, v ∈ Γn,θ,R, (7)

P(n)
θ (ζn,θ (u) − ζn,θ (0) ≥ −ηn,θ (u)) ≤ exp(−gn(R))

for all θ ∈ K and u ∈ Γn,θ,R . (8)

Then there exist positive constants B0 and b0 such that, for all n and H large enough,

sup
θ∈K

P(n)
θ

{
|φ−1

n (θ)
(
θ̂n − θ

)
| ≥ H

}
≤ B0 exp (−b0gn(H)) . (9)

The constant b0 can be made arbitrarily close to (α − k)/(α − k + mk) by choosing
B0 large enough.

Remark 1.2 In view of Sieders and Dzhaparidze (1987), the condition (8) can be
replaced by the following condition

P(n)
θ

(
ζn,θ (u) − ζn,θ (0) ≥ −ηn,θ (u)

) ≤ C exp (−gn(R)) (10)

for all θ ∈ K and u ∈ Γn,θ,R , where C is a positive constant independent of n and θ .

Ibragimov and Has’minskii (1981, Theorem 1.5.1) obtained the large deviation (9)
for the ML estimator. Under the i.i.d. Gaussian errors, Prakasa Rao (1984a) obtained
the result of LS estimator θ̂n such that for all ρ > 0 and n ≥ 1

sup
θ∈K

Pθ

(
n1/2|θ̂n − θ | > ρ

)
≤ Be−bρ2

,
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where K is a compact in Θ ⊂ R, B and b are some positive constants. Hu (1993)
extended (9) to the locally generalized Gaussian and martingale differences cases. In
addition, Ivanov (1976) investigated the LS estimator θ̂n of model (1) based on the
i.i.d. errors. Assume that there exist positive constants D1 and D2 such that, for all
θ, θ ′ ∈ Θ ⊂ R,

D1n
(
θ − θ ′)2 ≤

n∑

t=1

(
ft (θ) − ft (θ

′)
)2 ≤ D2n

(
θ − θ ′)2 . (11)

By (11) and some other conditions, Ivanov (1976) presented that for all ρ > 0 and all
n ≥ 1,

Pθ

(
n1/2|θ̂n − θ | > ρ

)
≤ Cρ−p, (12)

where p is a positive constant such as p ≥ 2, and C is a positive constant independent
of n and ρ. Prakasa Rao (1984b) extended (12) to the dependent cases of ϕ-mixing and
α-mixing errors. Under some general conditions and supn≥1 E |εn|p < ∞ for some
p > 2, Hu (2002) also obtained (12) and gave some applications to the dependent
cases ofmartingale differences,ϕ-mixing sequence andNAsequence.By the condition
supn≥1 E |εn|p < ∞ for some 1 < p ≤ 2, Hu (2004) established that

Pθ

(
n1/2|θ̂n − θ | > ρ

)
≤ Cn1−p/2ρ−p, (13)

for all ρ > 0, n ≥ 1 and some C > 0, which was also applied to some dependent
errors. In view of (12) and (13), by some moment information of errors, Yang and Hu
(2014) obtained some similar results of (12) and (13), which can be used in some case
satisfying supn≥1 E |ξn|p = ∞ for some p > 1.

For more works on the nonlinear regression models, one can refer to Ivanov and
Leonenko (1989) and Ivanov (1997) for some basic asymptotic theories, Midi (1999)
for the robustness of weighted LS estimator under i.i.d. errors with mean zero and
unknown varianceσ 2, Ivanov andLeonenko (2008) for the consistency and asymptotic
distribution theory of LS estimator under long-range-dependent noise, etc.

Due to the importance of END random variables and the LS estimator of a nonlinear
regression parameter, we investigate the LS estimator θ̂n for the model (1) based on the
END errors which are not necessarily identically distributed. With the techniques of
some exponential inequalities of END random variables giving by Sect. 5, we obtain
the large deviation results for the LS estimator θ̂n , which can be applied to get a weak
uniform consistency and a complete convergence rate θ̂n − θ = O(n−1/2 log1/2 n),
completely (see our results in Sect. 2). Some examples and simulations for the non-
linear models are illustrated in Sect. 3, and the conclusions are presented in Sect. 4.
Last, we give the proofs in Sect. 5.

1.2 The concept of END random variables

In this subsection, let us recall the concept of END random variables which was
introduced by Liu (2009).
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Definition 1.1 We call random variables {Zn, n ≥ 1} to be END if there exists a
constant M > 0 such that both

P (Zi > zi , i = 1, 2, . . . , n) ≤ M
∏n

i=1
P (Zi > zi )

and

P (Zi ≤ zi , i = 1, 2, . . . , n) ≤ M
∏n

i=1
P (Zi ≤ zi )

hold for each n ≥ 1 and all real numbers z1, z2, . . . , zn.

If {Zn, n ≥ 1} is a sequence of END random variables, then for any fixed m ≥
1, {Zn+m, n ≥ 1} is also a sequence of END random variables with the same domi-
nating coefficient M . In fact, by Definition 1.1 and the continuity of probability, one
can get this property.

Let {Zn, n ≥ 1} be a sequence of random variables. For some 1 ≤ i ≤ n, if
P (Zi ≤ zi ) = 0, then P (Z1 ≤ z1, Z2 ≤ z2, . . . , Zn ≤ zn) = 0. Similarly, if for
some 1 ≤ i ≤ n, P (Zi > zi ) = 0, then P (Z1 > z1, Z2 > z2, . . . , Zn > zn) = 0.
Define 0

0 = 1. If

M1 = sup
n≥1

sup
zi∈(−∞,∞),1≤i≤n

P (Zi > zi , i = 1, 2, . . . , n)∏n
i=1 P(Zi > zi )

< ∞

and

M2 = sup
n≥1

sup
zi∈(−∞,∞),1≤i≤n

P (Zi ≤ zi , i = 1, 2, . . . , n)∏n
i=1 P(Zi ≤ zi )

< ∞

then we take M = max{M1, M2} in Definition 1.1 and obtain that {Zn, n ≥ 1} are
END random variables. Obviously, for all 1 ≤ i ≤ n, let zi = −∞ or zi = +∞ in
Definition 1.1, it is easy to see that the dominating coefficient M ≥ 1.

Moreover, for any n ≥ 1, let Z1, Z2, . . . , Zn be dependent according to amultivari-
ate copula function C(u1, . . . , un) with absolutely continuous distribution functions
F1, . . . , Fn . Assume that the joint copula density

C1,...,n(u1, . . . , un) = ∂n

∂u1 . . . ∂un
C(u1, . . . , un)

exists and is uniformly bounded in thewhole domain. Then random variables {Zn, n ≥
1} are END (see Example 4.2 of Liu 2009). By Remark 3.1 of Ko and Tang (2008),
the copulas in the Frank family of the form

C(u1, . . . , un; θ) = −1

θ
ln
(
1 + (e−θu1 − 1) . . . (e−θun − 1)

(e−θ − 1)n−1

)
, θ < 0
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belong to this category. Meanwhile, Chen et al. (2010) showed that every n-
dimensional Farlie–Gumbel–Morgenstern (FGM) distribution described a specific
END structure.

If M = 1, then END random variables reduce to NOD random variables (see
Lehmann 1966), which contain NA random variables and NSD random variables (see
Joag-Dev and Proschan 1983; Hu 2000; Wang et al. 2015a). Joag-Dev and Proschan
(1983) established that a permutation distribution is NA. Recall that a family of real-
valued random variables Z = {Zt , t ∈ T } is called normal (or Gaussian) system if all
its finite-dimensional distributions are Gaussian. Let Z = (Z1, . . . , Zn) be a normal
random vector, n ≥ 2. Then Joag-Dev and Proschan (1983) proved that it is NA if
and only if its components are non-positively correlated. They also pointed out that
NA random variables are NOD random variables but the converse statement cannot
always be true. For various examples of NA random variables and the related fields,
we can refer to the studies by Bulinski and Shaskin (2007), Prakasa Rao (2012),
Oliveira (2012) and so on. Since END random variables are widely dependent random
variables, many researchers pay attention to the study of the properties of END. For
example, Liu (2009, 2010) studied the precise large deviations and moderate devia-
tions of END sequence with heavy tails; Chen et al. (2010) obtained strong law of
large numbers of END sequence. They also established some large deviation inequal-
ities and applications to risk theory and renewal theory; Shen (2011) obtained some
moment inequalities of END sequence;Wang et al. (2013) andHu et al. (2015) investi-
gated the complete convergence for END sequences; Wang et al. (2015b) investigated
the application of the nonparametric regression model under END errors, etc.

2 The large deviation results of the LS estimator

Let Θ be a Borel subset of Rk, ft (θ) be a continuous deterministic function from Θ

toR for each t ∈ N . Assume that Xn := (X1, X2, . . . , Xn) are the observed random
variables of the nonlinear regression model (1).

The LS estimator θ̂n , which we assume to exist (see (2)), maximizes the M-
functional

Cn(X
n, θ) := exp

(
− 1

2

n∑

t=1

(Xt − ft (θ))2
)
. (14)

Given a sequence of nonsingular k × k matrix norming factors φn(θ), we define the
ratio

Zn,θ (u) := Cn (Xn, θ + φn(θ)u)

Cn (Xn, θ)

= exp

( n∑

t=1

dtnθ (u)εt − 1

2

n∑

t=1

d2tnθ (u)

)
, (15)

where

dtnθ (u) = ft (θ + φn(θ)u) − ft (θ).
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268 W. Yang et al.

Similar to Theorem 3.1 of Sieders and Dzhaparidze (1987), we assume that, for
some Borel subset K of Θ , there exist functions gn(R) ∈ G, positive constant r >

0,Λ1 ∈ (0,∞], δ ∈ (0, 1/2), k1 > 0, ρ ∈ (0, 1] and a polynomial pol(R) in R such
that for all n and R large enough, the following inequalities hold:

(N.1) for all t ∈ N and |λ| ≤ Λ1,

E exp (λεt ) ≤ exp

(
1

2
rλ2
)

; (16)

(N.2) for all θ ∈ K and u, v ∈ Γn,θ,R , where |u − v| ≤ k1, one has

n∑

t=1

[ ft (θ + φn(θ)u) − ft (θ + φn(θ)v)]2 ≤ |u − v|2ρpol(R) (17)

and
n∑

t=1

d2tnθ (u) ≤ pol(R); (18)

(N.3) for all θ ∈ K and u ∈ Γn,θ,R , one has

n∑

t=1

d2tnθ (u) ≥ max
(8r

δ2
,

4

Λ1δ
max
1≤t≤n

|dtnθ (u)|
)
gn(R). (19)

By (N.1)–(N.3), we have the following large deviation result.

Theorem 2.1 Assume that the errors {εt } in the nonlinear regression model (1) are
END random variables with Eεt = 0 for all t ∈ N . For some K ⊂ Θ ⊂ Rk and
suitably chosen nonsingular φn(θ), let the assumptions (N.1)–(N.3) be fulfilled. Then
there exist positive constants B0 and b0 such that, for all n and H large enough,

sup
θ∈K

P(n)
θ

{
|φ−1

n (θ)(θ̂n − θ)| ≥ H
}

≤ B0 exp (−b0gn(H)) . (20)

Moreover, for any β > 0, we can choose B0 large enough such that b0 ≥ ρ
ρ+k − β.

We list two assumptions (N.1)′ and (N.4) as follows:

(N.1)′ for some r > 0, condition (N.1) holds with Λ1 = ∞;
(N.4) there exist positive constants D1 and D2 such that, for all θ, θ ′ ∈ Θ ⊂ Rk

and n large enough,

D1|φ−1
n

(
θ − θ ′) |2 ≤

n∑

t=1

(
ft (θ) − ft (θ

′)
)2 ≤ D2|φ−1

n

(
θ − θ ′) |2. (21)

Replacing (N.1)–(N.3) by (N.1)′ and (N.4), we have a result as follows.
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Theorem 2.2 Assume that the errors {εt } in the nonlinear regression model (1) are
END random variables with Eεt = 0 for all t ∈ N . For a suitably chosen nonsingular
φn(θ), let the assumptions (N.1)′ and (N.4) be fulfilled. Then there exist positive
constants B0 and b such that, for all n and H large enough,

sup
θ∈Θ

P(n)
θ

{
|φ−1

n (θ)(θ̂n − θ)| ≥ H
}

≤ B0 exp(−bH2). (22)

For any β > 0, it can be chosen B0 large enough such that b ≥ D1
32r(1+k) − β.

Similar to (N.1) and (N.3), we give the following assumptions:
(N.1)∗ for all t ∈ N , suppose that there exists a positive number L such that

|Eεmt | ≤ m!
2

σ 2Lm−2,

for all positive integers m ≥ 2, where σ 2 = Var(εt );
(N.3)′ for all θ ∈ K and u ∈ Γn,θ,R , it has

n∑

t=1

d2tnθ (u) ≥ max
(16σ 2

δ2
,
8L

δ
max
1≤t≤n

|dtnθ (u)|
)
gn(R), (23)

where 0 < δ < 1/2.
Therefore, similar to Theorems 2.1 and 2.2, we also establish the following results:

Theorem 2.3 Assume that the errors {εt } in the nonlinear regression model (1) are
END random variables with Eεt = 0 and Var(εt ) = σ 2 for all t ∈ N . For some
K ⊂ Θ ⊂ Rk and suitably chosen nonsingular φn(θ), let the assumptions (N.1)∗,
(N.2) and (N.3)′ be fulfilled. Then there exist positive constants B0 and b0 such that,
for all n and H large enough, (20) holds. For any β > 0, it can be chosen B0 large
enough such that b0 ≥ ρ

ρ+k − β.

Theorem 2.4 Assume that the errors {εt } in the nonlinear regression model (1) are
END random variables with Eεt = 0 and Var(εt ) = σ 2 for all t ∈ N . For a suitably
chosen nonsingular φn(θ), let the conditions (N.1)∗ and (N.4) be fulfilled. Then there
exist positive constants B0 and C0 such that, for all n and H large enough,

sup
θ∈Θ

P(n)
θ

{
|φ−1

n (θ)
(
θ̂n − θ

)
| ≥ H

}
≤ B0 exp(−C0H). (24)

For all θ ∈ Θ ⊂ Rk , all ρ > 0 and n large enough, by taking φn(θ) = n−1/2 Ik
and H = n1/2ρ in Theorem 2.2, we obtain the following corollary, where Ik is a k× k
unit matrix.

Corollary 2.1 Assume that the errors {εt } in the nonlinear regression model (1) are
mean zero END random variables satisfying (N.1)′. Assume that there exist positive
constants D1 and D2 such that, for all θ, θ ′ ∈ Θ ⊂ Rk and n large enough,
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D1n|θ − θ ′|2 ≤
n∑

t=1

(
ft (θ) − ft (θ

′)
)2 ≤ D2n|θ − θ ′|2. (25)

Then for all ρ > 0 and n large enough,

sup
θ∈Θ

P(n)
θ

{
|θ̂n − θ | ≥ ρ

}
≤ B0 exp(−bρ2n), (26)

where B0 and b are defined by (22). So it follows

θ̂n − θ = O
(
n−1/2 log1/2 n

)
, completely, as n → ∞. (27)

Remark 2.1 The (N.1), (N.1)′ and (N.1)∗ control the tails of errors εt for all t ∈ N .
Similar to Condition (III) of Ivanov (1976) (see (11)), Assumption A(ii) ofWu (1981),
(2.5) of Prakasa Rao (1984a) and (N.2) of Sieders and Dzhaparidze (1987), the (N.2)
is a Hölder-type continuity condition on the parametrization θ → f (θ). Similar
to (N.3) of Sieders and Dzhaparidze (1987), the (N.3) and (N.3)′ prescribe the rate
of asymptotic separation. The asymptotic separation is a necessary condition for the
consistent estimation (seeTheorem1ofWu1981). The similar conditions can be found
by Condition III of Ivanov (1976), (2.6) of Prakasa Rao (1984a), etc. In addition, by
the proof of Theorem 2.2 in Sect. 5, (N.2) and (N.3) are fulfilled from the condition
(N.4) and Λ1 = ∞. Similarly, by the proof of Theorem 2.4, (N.2) and (N.3)′ are
fulfilled from (N.4).

Assume that {an, n ≥ 1} is a positive constant sequence satisfying that an → 0.
For all θ ∈ Θ ⊂ Rk , let φn(θ) = an Ik and the conditions of Theorem 2.1 be fulfilled,
where Ik is a k× k unit matrix. Then for all ρ > 0, taking H = 1

an
ρ in (20), we obtain

that

sup
θ∈Θ

P(n)
θ

(
|θ̂n − θ | > ρ

)
= sup

θ∈Θ

P(n)
θ

(
1

an
|Ik
(
θ̂n − θ

)
| >

ρ

an

)

≤ B0 exp (−b0gn(ρ/an)) → 0,

in view of (i) of G. So the LS estimator θ̂n is a weak uniform consistency estimator
of θ .

3 Some examples and simulations

In this section, some examples and simulations for the LS estimator of nonlinear
regression models are illustrated.

Example 3.1 In the nonlinear model (1), let

ft (θ) = 1

θ−1 + t1/4
, t = 1, 2, . . . , n,
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where θ ∈ Θ = {θ : 0 < δ1 ≤ θ ≤ δ2 < ∞}. Obviously, there exist some positive
constants D1 and D2 such that, for all θ, θ ′ ∈ Θ and n large enough,

D1
(
θ − θ ′)2 log n ≤

n∑

t=1

(
ft (θ) − ft (θ

′)
)2 ≤ D2

(
θ − θ ′)2 log n,

where D1 < 1
δ42

and D1 can be chosen arbitrarily close to 1
δ42
. Let the conditions of

Theorem 2.2 hold. Then there exist some constants B0 and b such that, for all n and
H large enough,

sup
θ∈Θ

P(n)
θ

{
(log n)1/2|θ̂n − θ | ≥ H

}
≤ B0 exp(−bH2), (28)

where b can be chosen arbitrarily close (from below) to 1
64rδ42

.

If the errors {εt } are i.i.d. random variables and ε1 ∼ N (0, σ 2), then by Theorem
5 of Wu (1981), it holds that

(log n)1/2(θ̂n − θ)
L−→ N (0, σ 2θ4), (29)

which yields

lim
H→∞
n→∞

(
−H−2 log P(n)

θ

{
(log n)1/2|θ̂n − θ | ≥ H

})
= 1

2σ 2θ4
, (30)

(see Example 1 of Sieders and Dzhaparidze 1987).
Moreover, by (28), we can get that

lim inf
H→∞
n→∞

(
−H−2 log P(n)

θ

{
(log n)1/2|θ̂n − θ | ≥ H

})
≥ 1

64rθ4
. (31)

By comparing (31) with (30), we obtain the large deviation result of (28) under
END errors, which has the same order of optimal bound as that of independent case.

Example 3.2 Consider the linear model

Xt = θ + εt , t = 1, 2, . . . , n, θ ∈ Θ ⊂ R,

where the errors {εt } are mean zero END random variables satisfying (N.1)′. Applying
Theorem 2.2 with D1 = D2 = 1 and φn(θ) = n−1/2, we have that for all n and H
large enough,

sup
θ∈Θ

P(n)
θ

{
n1/2|θ̂n − θ | ≥ H

}
≤ B0 exp(−bH2), (32)

where B0 and b are positive constants and b can be chosen arbitrarily close (from

below) to 1
64r . For all θ ∈ Θ , we take H =

√
2
b log

1
2 n in (32) and obtain
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∞∑

n=1

P(n)
θ

{
n1/2|θ̂n − θ | ≥

√
2

b
log

1
2 n
}

≤ B0

∞∑

n=1

exp(−2 log n) < ∞,

i.e.,
θ̂n − θ = O(n− 1

2 log
1
2 n), completely, as n → ∞.

Example 3.3 Consider a power cure model

Xt = (t + θ)d + εt , t = 1, 2, . . . , n, (33)

where d > 1/2 and θ ∈ Θ = {θ : 0 < δ1 ≤ θ ≤ δ2 < ∞}. Let ft (θ) = (t + θ)d .
Then there exist some positive constants D1 and D2 such that, for all θ, θ ′ ∈ Θ ,

D1n
2d−1 (θ − θ ′)2 ≤

n∑

t=1

(
ft (θ) − ft (θ

′)
)2 ≤ D2n

2d−1 (θ − θ ′)2 .

Let the errors {εt } be mean zero END random variables satisfying (N.1)′. Applying
Theorem 2.2 with φn(θ) = n1/2−d , we establish that for all n and H large enough,

sup
θ∈Θ

P(n)
θ

{
nd−1/2|θ̂n − θ | ≥ H

}
≤ B0 exp(−bH2), (34)

where B0 and b are positive constants and b can be chosen arbitrarily close (from

below) to D1
64r . For all θ ∈ Θ , taking H =

√
2
b log

1
2 n in (34), we obtain that

∞∑

n=1

P(n)
θ

{
nd− 1

2 |θ̂n − θ | ≥
√
2

b
log

1
2 n
}

≤ B0

∞∑

n=1

exp(−2 log n) < ∞,

i.e.,
θ̂n − θ = O(n−(d− 1

2 ) log
1
2 n), completely, as n → ∞,

where d > 1/2. Under the independent errors, Wu (1981) investigated the power cure
model and obtained the strong consistency of the LS estimator θ̂n for θ . We extend
the result of Wu (1981) to the END case and establish the complete convergence rate
for the LS estimator θ̂n of θ .

Simulation 3.1 For simplicity, we do the simulation for the power cure model (33)
with the case d = 2, i.e.,

Xt = (t + θ)2 + εt , t = 1, 2, . . . , n,

where θ ∈ Θ = {θ : 0 < δ1 ≤ θ ≤ δ2 < ∞}. Let (ε1, ε2, . . . , εn) be a normal random
vector such as (ε1, ε2, . . . , εn) ∼ Nn(0, �), where 0 is zero vector, � is
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� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + ρ −ρ −ρ2 0 · · · 0 0 0 0
−ρ 1 + ρ −ρ −ρ2 · · · 0 0 0 0
−ρ2 −ρ 1 + ρ −ρ · · · 0 0 0 0
0 −ρ2 −ρ 1 + ρ · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 1 + ρ −ρ −ρ2 0
0 0 0 0 · · · −ρ 1 + ρ −ρ −ρ2

0 0 0 0 · · · −ρ2 −ρ 1 + ρ −ρ

0 0 0 0 · · · 0 −ρ2 −ρ 1 + ρ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

,

for 0 < ρ < 1. By Joag-Dev and Proschan (1983), it can be seen that (ε1, ε2, . . . , εn)
is an NA vector. So it is also an END vector. By (14), the LS estimator θ̂n is that

θ̂n = argmin
θ∈Θ

∑n
t=1(Xt − (t + θ)2)2. Let d(

∑n
t=1(Xt−(t+θ)2)2)

dθ = 0, then

nθ3 +
(
3

n∑

t=1

t

)
θ2 +

(
3

n∑

t=1

t2 −
n∑

t=1

Xt

)
θ +

n∑

t=1

t3 −
n∑

t=1

t Xt = 0. (35)

It is a cubic equation of θ . By choosing the solutions of cubic equation, one can
get θ̂n . For θ = 1, ρ = 0.1, 0.2, 0.3, 0.4, 0.5 and sample size n = 10, 50, 100, 200,
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Fig. 1 Power cure model with d = 2, θ = 1 and n = 10, 50, 100, 200, by 10000 times
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Fig. 2 Power cure model with d = 2, θ = 2 and n = 10, 50, 100, 200, by 10000 times

we use MATLAB software to obtain the roots of cubic equation (35) by repeating the
experiments 10000 times, and find that for each experiment, there are one real root
and two complex roots. So we choose the real root as the LS estimator θ̂n and plot the
Box plots as Fig. 1.

Similarly, for θ = 2, ρ = 0.1, 0.2, 0.3, 0.4, 0.5 and sample size n = 10, 50, 100,
200, we do the simulation by repeating the experiments 10,000 times and plot the Box
plots for LS estimator θ̂n as Fig. 2.

In Fig. 1a–d, with the same θ = 1 but different ρ = 0.1, . . . , 0.5, the median of
LS estimator θ̂n is close to 1 and the variation range becomes smaller as the sample
n increasing by 10, 50, 100 and 200. Likewise, in Fig. 2e–h, with the same θ = 2
but different ρ = 0.1, . . . , 0.5, the median of θ̂n is close to 2 and the variation range
becomes smaller as the sample n increases.

We also give the Q–Q plot with θ = 1, 2, ρ = 0.1, 0.2 and n = 100 by repeating
the experiments 10,000 times, to test the normality of LS estimator θ̂n and obtain the
Fig. 3. In Fig. 3, it can be found that the LS estimator θ̂n has a asymptotic normality
based on this multivariate normal experiment.

4 Conclusion

In this paper, we investigate the LS estimator θ̂n of θ for the nonlinear model based
on END errors which are not necessarily identically distributed. Under the general
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Fig. 3 Normal Q–Q plot with θ = 1, 2, ρ = 0.1, 0.2 and n = 100, by 10000 times

conditions, we establish some large deviation results such as Theorems 2.1–2.4 for
the LS estimator θ̂n . As applications, by some simple conditions, a weak uniform
consistency of θ̂n is established (see Remark 2.1), and a complete convergence rate
of θ̂n is presented as θ̂n − θ = O(n−1/2 log1/2 n), completely, in Corollary 2.1. Some
examples of nonlinear regression models and simulations are given to illustrate in
Sect. 3.We extend the results of Sieders and Dzhaparidze (1987), Prakasa Rao (1984a)
and Hu (1993) for the independence, Gaussian, locally generalized Gaussian and
martingale differences to the case of END random variables. Since END random
variables can be NOD random variables, NSD random variables and NA random
variables, the results obtained in this paper also hold true for these dependent structures.

5 Proofs

Before proving our results, we give some technical preliminaries as follows.

Lemma 5.1 (cf. Liu 2010, Lemma 3.1) Let random variables {Yn, n ≥ 1} be a
sequence of END random variables. We have that

(1) if { fn, n ≥ 1} is a sequence of all nondecreasing (or nonincreasing) functions,
then { fn(Yn), n ≥ 1} is also a sequence of END random variables;

(2) for each n ≥ 1, there exists a positive constant M such that

E

( n∏

i=1

Y+
i

)
≤ M

n∏

i=1

EY+
i .

Lemma 5.2 Let {Yn, n ≥ 1} be a sequence of END random variables and {rn, n ≥ 1}
be a sequence of positive numbers. For fixed n ≥ 1, suppose that there exists a positive
number Λ1 such that

E exp (λYi ) ≤ exp

(
1

2
riλ

2
)

, 0 ≤ |λ| ≤ Λ1, i = 1, 2, . . . , n. (36)
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Denote Sn =∑n
i=1 Yi and Gn =∑n

i=1 ri , n ≥ 1. Then there exists a positive constant
M such that

P(Sn ≥ x) ≤
⎧
⎨

⎩
M exp

(
− x2

2Gn

)
, 0 ≤ x ≤ GnΛ1,

M exp
(
−Λ1x

2

)
, x ≥ GnΛ1,

(37)

and

P(Sn ≤ −x) ≤
⎧
⎨

⎩
M exp

(
− x2

2Gn

)
, 0 ≤ x ≤ GnΛ1,

M exp
(
−Λ1x

2

)
, x ≥ GnΛ1.

(38)

Consequently,

P(|Sn| ≥ x) ≤
⎧
⎨

⎩
2M exp

(
− x2

2Gn

)
, 0 ≤ x ≤ GnΛ1,

2M exp
(
−Λ1x

2

)
, x ≥ GnΛ1.

(39)

Proof For all x , by Markov’s inequality, Lemma 5.1 and (36), we obtain that

P (Sn ≥ x) ≤ exp(−λx)E exp(λSn) = exp(−λx)E
(∏n

i=1
exp(λYi )

)

≤ M exp(−λx)
∏n

i=1
E exp(λYi )

≤ M exp

(
Gnλ

2

2
− λx

)
, for 0 < λ ≤ Λ1.

So it has

P(Sn ≥ x) ≤ M inf
0<λ≤Λ1

exp

(
Gnλ

2

2
− λx

)
= M exp

(
inf

0<λ≤Λ1

(
Gnλ

2

2
− λx

))
.

(40)
For the fixed x ≥ 0, if Λ1 ≥ x

Gn
≥ 0, then

exp

(
inf

0<λ≤Λ1

(
Gnλ

2

2
− λx

))
= exp

(
− x2

2Gn

)
. (41)

Meanwhile, for the fixed x ≥ 0, if Λ1 ≤ x
Gn

, x ≥ 0, then

exp

(
inf

0<λ≤Λ1

(
Gnλ

2

2
− λx

))
= exp

(
GnΛ

2
1

2
− Λ1x

)
≤ exp

(
−Λ1x

2

)
. (42)

Consequently, (37) follows from (40) to (42) immediately.
According to Lemma 5.1 (1), {−Yn} are also END random variables. Therefore, by

(37), it yields

P(Sn ≤ −x) = P(−Sn ≥ x) ≤
⎧
⎨

⎩
M exp

(
− x2

2Gn

)
, 0 ≤ x ≤ GnΛ1,

M exp
(
−Λ1x

2

)
, x ≥ GnΛ1,
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which implies (38). Combining (37) with (38), we obtain (39) finally. �
Remark 5.1 Lemma 5.2 is an extension of exponential inequalities for the independent
case (see Theorem 2.6 of Petrov 1995) and NOD case (see Theorem 2.1 of Wang et al.
2010) to the END structure case.

Corollary 5.1 Let {Yn, n ≥ 1} be a sequence of END random variables, {dn, n ≥ 1}
be a sequence of real numbers and {rn, n ≥ 1} be a sequence of positive numbers. Sup-
pose there exists a positive constantΛ1 (Λ1 possibly∞) such that for all |λ| ≤ Λ1, (36)
holds true. Denote S̃n = ∑n

i=1 diYi , G̃n = ∑n
i=1 ri d

2
i and Λ = Λ1/max1≤i≤n |di |.

Then for all x ≥ 0, there exists a positive constant M such that

P(S̃n ≥ x) ≤ 2M exp

{
−min

(
x2

8G̃n
,
Λx

4

)}
, (43)

P(S̃n ≤ −x) ≤ 2M exp

{
−min

(
x2

8G̃n
,
Λx

4

)}
, (44)

P(|S̃n| ≥ x) ≤ 4M exp

{
−min

(
x2

8G̃n
,
Λx

4

)}
. (45)

Proof Obviously, for |λ| ≤ Λ = Λ1/max1≤i≤n |di |, we have |λd+
i | ≤ Λ|di | ≤ Λ1.

So by (36), it can be argued that

E exp
(
λd+

i Yi
) ≤ exp

(
1

2
ri
(
d+
i

)2
λ2
)

≤ exp

(
1

2
ri d

2
i λ2
)

, for |λ| ≤ Λ.

According to Lemma 5.1 (1), d+
1 Y1, . . . , d+

n Yn are still END randomvariables. Denote
S̃n(1) =∑n

i=1 d
+
i Yi and G̃n =∑n

i=1 ri d
2
i . Then, we apply Lemma 5.2 and establish

that

P(S̃n(1) ≥ x) ≤ M exp

{
−min

(
x2

2G̃n
,
Λx

2

)}
. (46)

Meanwhile, d−
1 Y1, . . . , d

−
n Yn are still END random variables. Denote S̃n(2) =∑n

i=1 d
−
i Yi . Similar to the proof of (46), one has

P(S̃n(2) ≥ x) ≤ M exp

{
−min

(
x2

2G̃n
,
Λx

2

)}
. (47)

Since
P(S̃n ≥ x) ≤ P

(
S̃n(1) ≥ x/2

)
+ P

(
S̃n(2) ≥ x/2

)
, (48)

by (46) to (48), we obtain the result (43). Combining with the proofs of (38), (39) and
(43), we have the results of (44) and (45) immediately. �
Corollary 5.2 Let {Yn, n ≥ 1} be a sequence of END random variables satisfying
EYi = 0 and EY 2

i = σ 2
i < ∞, i = 1, 2, . . . , {dn, n ≥ 1} be a sequence of real
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numbers. Denote S̃n = ∑n
i=1 diYi and B̃2

n = ∑n
i=1 σ 2

i d
2
i . For the fixed n ≥ 1,

suppose that there exists a positive number L such that

|EYm
i | ≤ m!

2
σ 2
i L

m−2, i = 1, 2, . . . , n (49)

for all positive integers m ≥ 2. Then there exists a positive constant M such that for
all x ≥ 0,

P(S̃n ≥ x) ≤ 2M exp

⎧
⎨

⎩−min

⎛

⎝ x2

16B̃2
n

,
x

8L max
1≤i≤n

|di |

⎞

⎠

⎫
⎬

⎭ , (50)

P(S̃n ≤ −x) ≤ 2M exp

⎧
⎨

⎩−min

⎛

⎝ x2

16B̃2
n

,
x

8L max
1≤i≤n

|di |

⎞

⎠

⎫
⎬

⎭ , (51)

P(|S̃n| ≥ x) ≤ 4M exp

⎧
⎨

⎩−min

⎛

⎝ x2

16B̃2
n

,
x

8L max
1≤i≤n

|di |

⎞

⎠

⎫
⎬

⎭ . (52)

Proof It can be argued by EYi = 0, EY 2
i = σ 2

i and (49) that

E exp(λYi ) = 1 + λ2

2
σ 2
i + λ3

6
EY 3

i + · · · + λk

k! EY
k
i + · · ·

≤ 1 + λ2

2
σ 2
i

(
1 + L|λ| + L2λ2+· · · + Lk−2|λ|k−2 + · · ·

)
, i = 1, 2, . . . , n.

If |λ| ≤ 1
2L , then

E exp(λYi ) ≤ 1 + λ2σ 2
i

2

1

1 − L|λ| ≤ 1 + λ2σ 2
i ≤ exp

(
λ2σ 2

i

)
:= exp

(
1

2
riλ

2
)

,

(53)
where ri = 2σ 2

i and i = 1, 2, . . . , n. Taking Λ1 = 1
2L and G̃n = ∑n

i=1 ri d
2
i =

2
∑n

i=1 σ 2
i d

2
i = 2B̃2

n in Corollary 5.1, we have the results (50)–(52) immediately. �
Lemma 5.3 For somem ≥ 2, let {Yn, n ≥ 1} be a sequence of END random variables
with EYn = 0 and E |Yn|m < ∞, n = 1, 2, . . .. Assume that {ani , 1 ≤ i ≤ n, n ≥ 1}
is a triangular array of real numbers. Denote Sn = ∑n

i=1 aniYi . Then there exists a
positive constant C not dependent on n such that

E |Sn|m ≤ C max
1≤i≤n

E |Yi |m
( n∑

i=1

a2ni

)m/2

. (54)

Proof Denote Sn(1) = ∑n
i=1 a

+
niYi and Sn(2) = ∑n

i=1 a
−
niYi . For m ≥ 1, by Cr

inequality, one has

E |Sn|m = E |Sn(1) − Sn(2)|m ≤ 2m−1(E |Sn(1)|m + E |Sn(2)|m). (55)
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Obviously, by Lemma 5.1 (1), {a+
niYi , 1 ≤ i ≤ n} and {a−

niYi , 1 ≤ i ≤ n} are also
END random variables. Then, for m ≥ 2, by Corollary 3.2 of Shen (2011), it yields
that

E |Sn(1)|m ≤ C1

( n∑

i=1

(a+
ni )

mE |Yi |m +
( n∑

i=1

(a+
ni )

2EY 2
i

)m/2)

≤ C1 max
1≤i≤n

E |Yi |m
( n∑

i=1

|ani |m +
( n∑

i=1

a2ni

)m/2)

≤ C2 max
1≤i≤n

E |Yi |m
( n∑

i=1

a2ni

)m/2

. (56)

Similarly, it has

E |Sn(2)|m ≤ C3 max
1≤i≤n

E |Yi |m
( n∑

i=1

a2ni

)m/2

. (57)

Thus, (54) follows from (55) to (57) immediately. �
Proof of Theorem 2.1 Let θ ∈ K and u, v ∈ Γn,θ,R . If |u − v| ≥ k1, then we obtain
by (18) that

n∑

t=1

(dtnθ (u) − dtnθ (v))2 ≤ 2pol(R) ≤ 2|u − v|2ρk−2ρ
1 pol(R).

By (17), it can be found that

n∑

t=1

(dtnθ (u) − dtnθ (v))2 ≤ |u − v|2ρpol(R), for all u, v ∈ Γn,θ,R . (58)

Taking ζn,θ (u) := log Zn,θ (u) in (15), we establish that

ζn,θ (u) − ζn,θ (v) =
n∑

t=1

(Atεt − Bt ), (59)

where

At = dtnθ (u) − dtnθ (v), Bt = 1

2
(d2tnθ (u) − d2tnθ (v)). (60)

For all m ≥ 1, by Cr inequality, it yields

E (n)
θ |ζn,θ (u) − ζn,θ (v)|m ≤ 2m−1

(
E (n)

θ

∣∣∣
n∑

t=1

Atεt

∣∣∣
m +

∣∣∣
n∑

t=1

Bt

∣∣∣
m
)

. (61)
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Obviously, the condition (N.1) implies that {E |εt |m, t ∈ N } is uniformly bounded.
So, by (58) and Lemma 5.3 with (N.1) and Eεt = 0, we obtain that for all m ≥ 2

E (n)
θ

∣∣∣
n∑

t=1

Atεt

∣∣∣
m ≤ C

(
n∑

t=1

A2
t

)m/2

≤ |u − v|ρmpol(R). (62)

Meanwhile, by Cauchy–Schwarz inequality, (18) and (58), one has that

∣∣∣∣
n∑

t=1

Bt

∣∣∣∣ ≤ 1

2

n∑

t=1

|dtnθ (u) − dtnθ (v)| · |dtnθ (u) + dtnθ (v)|

≤ 1

2

{ n∑

t=1

A2
t ·

n∑

t=1

(dtnθ (u) + dtnθ (v))2
}1/2

≤ |u − v|ρpol(R). (63)

So it follows from (61)–(63) that for all θ ∈ K and u, v ∈ Γn,θ,R

E (n)
θ |ζn,θ (u) − ζn,θ (v)|m ≤ |u − v|ρmpol(R). (64)

Taking m > max(2, k/ρ) in (64), we find that (7) is fulfilled with α = ρm.
Next, we verify that (10) holds true. For 0 < δ < 1

2 , let

ηn,θ (u) =
(
1

2
− δ

) n∑

t=1

d2tnθ (u). (65)

By (19), it can be argued that

n∑

t=1

d2tnθ (u) ≥ 32rgn(R), (66)

which shows that ηn,θ (u) ∈ HK , because from (5), g−1
n (R) ≤ 1 for all n and R large

enough. Denote dtnθ (u) = dt and max
1≤t≤n

|dtnθ (u)| = max |dt |. Then, by (19), (59),

(60), (65), (66) and Corollary 5.1, we get

P(n)
θ

(
ζn,θ (u) − ζn,θ (0) ≥ −ηn,θ (u)

)
= P(n)

θ

( n∑

t=1

dtεt ≥ δ

n∑

t=1

d2t

)

≤ 2M exp

{
−

n∑

t=1

d2t min
( δ2

8r
,

δΛ1

4max |dt |
)}

= 2M exp

{
−

n∑

t=1

d2t /max
(8r

δ2
,
4max |dt |

δΛ1

)}

≤ 2M exp(−gn(R)),
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which implies that (10) is fulfilled. Combining Theorem 1.1 with Remark 1.2, we
obtain (20). Meanwhile, by choosing α = ρm in Theorem 1.1, for all β > 0 and m
large enough, there exists a positive B0 such that (20) holds, where b0 ≥ ρ

ρ+k −β. �
Proof of Theorem 2.2 By (21), (17) is fulfilled with ρ = 1 and pol(R) = D2. Obvi-
ously, for all u ∈ Γn,θ,R , θ ∈ Θ , it has

n∑

t=1

d2tnθ ≤ D2|u|2 ≤ D2(R + 1)2, (67)

which implies that (18) is satisfied. Meanwhile, for all 0 < δ < 1/2 and u ∈ Γn,θ,R ,
it can be argued that

n∑

t=1

d2tnθ ≥ D1|u|2 ≥ D1R
2. (68)

Then, by (68) and Λ1 = ∞, (19) is fulfilled with gn(R) = D1δ
2

8r R2. Letting δ → 1
2 ,

we apply Theorem 2.1 and obtain the result (22) finally. �
Proof of Theorem 2.3 Combining Corollary 5.2 with the proof of Theorem 2.1, where
r is replaced by 2σ 2 and Λ1 is replaced by 1

2L , we have (20) immediately. �
Proof of Theorem 2.4 Together (21) with (67), for all u ∈ Γn,θ,R , θ ∈ Θ , it can be
checked that

d2tnθ ≤
n∑

t=1

d2tnθ ≤ D2|u|2 ≤ D2(R + 1)2, 1 ≤ t ≤ n,

which implies
max
1≤t≤n

|dtnθ | ≤ √D2(R + 1). (69)

Let gn(R) = C1R, where C1 is a positive constant and is defined later. Next, we prove
that (23) in (N.3)′ is fulfilled for all R large enough. By (21), (68) and (69), for all
u ∈ Γn,θ,R , θ ∈ Θ , we take a positive constant C1 such that for all R large enough,

n∑

t=1

d2tnθ ≥ D1R
2 ≥ 16σ 2

δ2
C1R = 16σ 2

δ2
gn(R) (70)

and

n∑

t=1

d2tnθ ≥ D1R
2 ≥ 8L

δ

√
D2(R + 1)C1R ≥ 8L

δ
max
1≤t≤n

|dtnθ |gn(R). (71)

Thus, by (70) and (71), (23) is fulfilled. Consequently, by the proofs of Theorems 2.1
and 2.3, we apply Theorem 2.3 and establish that for all n and H large enough,

sup
θ∈Θ

P(n)
θ

{
|φ−1

n (θ)(θ̂n − θ)| ≥ H
}

≤ B0 exp(−C0H), (72)
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where C0 = b0C1, B0 and b0 are defined in Theorem 2.3. �
Proof of Corollary 2.1 For all θ ∈ Θ ⊂ Rk and all ρ > 0, taking φn(θ) = n−1/2 Ik
and H = n1/2ρ in (22), one establishes the result (26) immediately, where Ik is a k×k
unit matrix. Taking C1 large enough, we apply (26) and establish that

∞∑

n=1

P(n)
θ

{
|θ̂n − θ | ≥ C1n

− 1
2 log

1
2 n
}

≤ B0

∞∑

n=1

exp(−bC2
1 log n) < ∞.

This completes the proof of (27). �
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