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Abstract In spite of widespread use of generalized additive models (GAMs) to rem-
edy the “curse of dimensionality”, there is no well-grounded methodology developed
for simultaneous inference and variable selection for GAM in existing literature.
However, both are essential in enhancing the capability of statistical models. To this
end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian
information criterion (BIC) through the spline-backfitted kernel smoothing techniques
proposed in recent articles. To characterize the global features of each non-parametric
components, SCCs are constructed for testing their overall trends and entire shapes.
By extending the BIC in additive models with identity/trivial link, an asymptotically
consistent BIC approach for variable selection is built up in GAM to improve the par-
simony of model without loss of prediction accuracy. Simulations and a real example
corroborate the above findings.

Electronic supplementary material The online version of this article (doi:10.1007/s11749-016-0480-8)
contains supplementary material, which is available to authorized users.

B Lijian Yang
yanglijian@tsinghua.edu.cn

1 Center for Advanced Statistics and Econometrics Research, Soochow University,
Suzhou 215006, China

2 Department of Economics, Columbia University, New York, NY 10027, USA

3 Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606, USA

4 Center for Statistical Science and Department of Industrial Engineering, Tsinghua University,
Beijing 100084, China

5 C.A.S.E.-Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Unter
den Linden 6, 10099 Berlin, Germany

6 Lee Kong Chian School of Business, Sim Kee Boon Institute for Financial Economics, Singapore
Management University, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11749-016-0480-8&domain=pdf
http://dx.doi.org/10.1007/s11749-016-0480-8


608 S. Zheng et al.

Keywords BIC · Confidence corridor · Extreme value · Generalized additive mode ·
Spline-backfitted kernel

Mathematics Subject Classification 62G08 · 62G15 · 62G32

1 Introduction

Generalized additive model (GAM) has gained popularity on addressing the curse
of dimensionality in multivariate nonparametric regressions with non-Gaussian
responses. GAM was developed by Hastie and Tibshirani (1990) for blending gen-
eralized linear model with nonparametric additive regression, which stipulates that a
data set

{
Yi ,XT

i

}n
i=1 consists of iid copies of

{
Y,XT

}
that satisfies

E(Y |X) = b′ {m (X)} , var(Y |X) = a (φ) b′′ {m (X)} ,

m (X) = c +
d∑

l=1

ml(Xl), (1)

Y = b′ {m (X)} + σ (X) ε, σ (X) = {var(Y |X)}1/2

where the response Y is one of certain types, such as Bernoulli, Poisson and so forth,
the vector X = (X1, X2, . . . , Xd)T consists of the predictors, ml(·), 1 ≤ l ≤ d
are unknown smooth functions, the white noise ε satisfies that E (ε|X) = 0 and
E

(
ε2|X) = 1, while c is an unknown constant, a (φ) is a nuisance parameter that

quantifies overdispersion, and the known inverse link function b′ satisfies that b′ ∈
C2 (R) , b′′ (θ) > 0, θ ∈ R, see Assumption (A2) in the Appendix. In particular, if
one takes the identity/trivial link, model (1) becomes a common additive model, see
Huang and Yang (2004).

The joint density f (x) of (X1, . . . , Xd) is assumed to be continuous and

0 < c f ≤ infx∈[0,1]d f (x) ≤ supx∈[0,1]d f (x) ≤ C f < ∞,

see Assumption (A4) in the Appendix. Furthermore, for each 1 ≤ l ≤ d, the marginal
density function fl (xl) of Xl has continuous derivatives on [0, 1] and the same uniform
bounds C f and c f . There exists a σ -finite measure λ on R such that the distribution
of Yi conditional on Xi has a probability density function fY |X

(
y; b′ {m (x)}) relative

to λ whose support for y is a common Ω , and is continuous in both y ∈ Ω and
x ∈ [0, 1]d .

It is often the case that inmodel (1) the probability density function ofYi conditional
on Xi with respect to a fixed σ -finite measure forms an exponential family:

f (Yi |Xi , φ) = exp [{Yi m (Xi ) − b {m (Xi )}} /a (φ) + h (Yi , φ)] . (2)
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Statistical inference for generalized additive models... 609

Nonetheless, such an assumption is not necessary in this paper. Instead, we only
stipulate that the conditional variance and conditional mean are linked by

var (Y |X = x) = a (φ) b′′ [(b′)−1 {E (Y |X = x)}
]
.

For identifiability, one needs

E {ml (Xl)} = 0, 1 ≤ l ≤ d

that leads to unique additive representations of m (x) = c + ∑d
l=1 ml (xl). Without

loss of generality, x take values in χ = [0, 1]d .
Model (1) has numerous applications. In corporate credit rating, for instance, one

is interested in modelling how the default or non-default of a given corporate or
company depends on the additive effects of the covariates in financial statements,
i.e., the response Y = 0, 1 with 1 indicating default, 0 indicating non-default, and
the predictors are selected from financial statements with a logit-link

(
b′)−1

(x) =
log {x/ (1 − x)}. Our method has been applied to 3472 companies in Japan within
a 5-year default horizon (2005–2010), and it has been discovered that the current
liabilities and stock market returns of current, 3 months and 6 months prior to default
are very significant as rating factors, and the default impact of the selected factors are
examined via the simultaneous confidence corridors (SCCs) in Fig. 1a–c. More details
of this example are contained in Sect. 6.

The smooth functions {ml(xl)}d
l=1 in (1) can be estimated by, for instance, ker-

nel methods in Linton and Härdle (1996), Linton (1997) and Yang et al. (2003),
B-spline methods in Stone (1986) and Xue and Liang (2010), and two-stage methods
in Horowitz and Mammen (2004). To make statistical inference on these functions
individually and collectively, however, the proper tools are nonparametric simulta-
neous confidence corridors (SCCs) and consistent variable selection criteria, both of
which are absent in the literature.

Nonparametric SCCsmethodology has become increasingly important in statistical
literature, see Xia (1998), Fan and Zhang (2000), Wu and Zhao (2007), Zhao and Wu
(2008), Ma et al. (2012), Wang et al. (2014), Zheng et al. (2014), Gu et al. (2014), Cai
and Yang (2015) and Gu and Yang (2015) for recent theoretical works on nonpara-
metric SCCs. Capturing global shape properties by SCCs of the functions {ml(xl)}d

l=1
in GAM (1) is of prime importance. A nonparametric component can be replaced by
a parametric one covered entirely within the SCCs, significantly decreasing the esti-
mation variance, see He et al. (2002, 2005) for discussions. As far as we know, SCCs
has not been established for functions {ml(xl)}d

l=1 in GAM (1) due to the lack of esti-
mators that fit in Gaussian process extreme value theory. Using the spline-backfitted
kernel (SBK) smoothing of Liu et al. (2013), we extend the SCCs works of univariate
nonparametric regression in Bickel and Rosenblatt (1973) and Härdle (1989) to those
of GAM. The SBK smoothing has been well developed in Wang and Yang (2007),
Wang and Yang (2009), Liu and Yang (2010) and Ma and Yang (2011) for the much
simpler additive model (i.e., GAM with b′ (x) ≡ x) including the construction of
SCCs, but ours is the first work on SCCs on GAM with nonlinear link.
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(a) (b)

(c) (d)

Fig. 1 Plots of the rating factors in a–c SBK estimators (thin), 95 % CIs (dashed) and 95 % SCCs (thick).
Plot of theCAPs defined as (24) indPerfect (dashed),GAM(thick solid),GLM(thin solid), non-informative
(dotted). a Current liability. b 3 months earlier return. c 6 months earlier return. d The CAP curves

While variable selection for nonparametric additive model has been investigated
under different settings, see Wang et al. (2008), there is lack of theoretically reliable
variable selection approach for GAM. To the best of our knowledge, only Zhang and
Lin (2006) proposed a sounding method named “COSSO” , which stands for com-
ponents (CO) LASSO using penalized likelihood method, for selecting components
in nonparametric regression with exponential families, but it leaves the asymptotic
distributions and variable selection consistency to be desired. Instead, we tackle this
issue by building a BIC type criterion based on spline pre-smoothing (first stage in
the SBK), which is asymptotically consistent and easy to compute. Our work extends
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the BIC criterion for additive models (trivial link) in Huang and Yang (2004). Such
an extension is challenging since a much more complicated quasi-likelihood is used
in GAM with possibly nonlinear link instead of the log mean squared error for trivial
link, see the Appendix for details.

The rest of paper is organized as follows. The SBK estimator and its oracle property
are briefly described in Sect. 2. Asymptotic extreme value distribution of the SBK
estimator is investigated in Sect. 3, which is used to construct the SCCs of component
functions. Section 4 introduces a BIC criterion in the GAM setting and provides
results on consistent component selection as well as the implementation, followed by
the Monte Carlo simulations in Sect. 5. Section 6 illustrates the application of our
SCCs and BIC methods to predict default of nearly 3, 500 listed companies in Japan.
Technical assumptions and proofs are presented in the Appendix.

2 Spline-backfitted kernel smoothing in GAM

In this section, we briefly describe the spline-backfitted kernel (SBK) estimator for
GAM (1) and its oracle properties obtained in Liu et al. (2013). Let {Xi , Yi }n

i=1 be
i.i.d. observations following model (1). Without loss of generality, one denotes x_1 =
(x2, . . . , xd) and m_1

(
x_1

) = c + ∑d
l=2 ml (xl) and estimates m1 (x1).

As a benchmark of efficiency, we introduce the “oracle smoother” by treating
the constant c and the last d − 1 components {ml (xl)}d

l=2 as known, then the only
unknown component m1 (x1)may be estimated by the following procedure. Although
the exponential family Eq. (2) does not necessarily hold, one still defines, as in Sev-
erini and Staniswalis (1994), for each x1 ∈ [h, 1 − h] a local log-likelihood function
l̃ (a) = l̃ (a, x1) as

l̃ (a, x1) = n−1
n∑

i=1

[
Yi

{
a + m_1

(
Xi,_1

)} − b
{
a + m_1

(
Xi,_1

)}]
Kh (Xi1 − x1) ,

(3)

where a ∈ A, a set whose interior containsm1 ([0, 1]). The oracle smoother ofm1 (x1)
is

m̃K,1 (x1) = argmaxa∈A l̃ (a, x1) .

Although m̃K,1 (x1) is not a statistic since c and {ml (xl)}d
l=2 are actually unknown,

its asymptotic properties serve as a benchmark for estimators of m1 (x1) to achieve.
To define the SBK, we introduce the linear B spline basis for smoothing: bJ (x) =

(1 − |x − ξJ |/H)+ , 0 ≤ J ≤ N +1where 0 = ξ0 < ξ1 < · · · < ξN < ξN+1 = 1 are
a sequence of equally spaced points, called interior knots, on interval [0, 1]. Denote
by H = (N + 1)−1 the width of each subinterval

[
ξJ , ξJ+1

]
, 0 ≤ J ≤ N and the

degenerate knots by ξ−1 = 0, ξN+2 = 1. The space of l-empirically centered linear
spline functions on [0, 1] is
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G0
n,l =

{

gl : gl (xl) ≡
N+1∑

J=0

λJ bJ (xl) ,En {gl (Xl)} = 0

}

, 1 ≤ l ≤ d, (4)

with empirical expectation En {gl (Xl)} = n−1 ∑n
i=1 gl (Xli ). The space of additive

spline functions on χ = [0, 1]d is

G0
n =

{

g (x) = c +
d∑

l=1

gl (xl) ; c ∈ R, gl ∈ G0
n,l

}

.

The SBK method is defined in two steps. One first pre-estimates the unknown
functions {ml (xl)}d

l=2 and constants c by linear spline smoothing. We define the log-

likelihood function L̂ (g) as

L̂ (g) = n−1
n∑

i=1

[Yi g (Xi ) − b {g (Xi )}] , g ∈ G0
n . (5)

According to Lemma 14 of Stone (1986), (5) has a unique maximizer with proba-
bility approaching 1. Therefore, the multivariate function m (x) can be estimated by
an additive spline function:

m̂ (x) = argmaxg∈G0
n

L̂ (g) . (6)

The spline estimator is asymptotically consistent, and can be solved efficiently via
generalized linear models. However, as stated in Wang and Yang (2007) and Liu et al.
(2013), spline methods only provide convergence rates but no asymptotic distribu-
tions, so no measures of confidence can be assigned to the estimators. To overcome
this problem, we adapt the SBK estimator, which combines the strength of kernel
smoothing with regression spline. One then rewrites m̂ (x) = ĉ + ∑d

l=1 m̂l (xl) for
ĉ ∈ R and m̂l (xl) ∈ G0

n,l and defines a univariate quasi-likelihood function similar to

l̃ (a, x1) in (3) as

l̂ (a, x1) = n−1
n∑

i=1

[
Yi

{
a + m̂_1

(
Xi,_1

)} − b
{
a + m̂_1

(
Xi,_1

)}]
Kh (Xi1 − x1)

with m̂_1
(
x_1

) = ĉ + ∑d
l=2 m̂l (xl) being the pilot spline estimator of m_1

(
x_1

)
.

Consequently, the spline-backfitted kernel (SBK) estimator of m1 (x1) is

m̂SBK,1 (x1) = argmaxa∈A l̂ (a, x1) . (7)
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We now introduce some useful results and definitions from Liu et al. (2013), under
Assumptions (A1)–(A7) in appendix, as n → ∞,

sup
x1∈[0,1]

∣
∣m̂SBK,1 (x1) − m̃K,1 (x1)

∣
∣ = Oa.s.

(
n−1/2 log n

)
, (8)

m̃K,1 (x1) − m1 (x1) = bias1 (x1) h2/D1 (x1)

+ n−1
n∑

i=1

Kh (Xi1 − x1) σ (Xi ) εi/D1 (x1) + rK,1 (x1) (9)

in which the higher order remainder rK,1 (x1) satisfies

sup
x1∈[h,1−h]

∣
∣rK,1 (x1)

∣
∣ = Oa.s.

(
n−1/2h1/2 log n

)
. (10)

The scale function D1 (x1) and bias function bias1 (x1) are defined in Liu et al.
(2013) as:

σ 2
b (x1) = E

[
b′′ {m (X)} |X1 = x1

]
, σ 2 (x1) = E

{
σ 2 (X) |X1 = x1

}

D1 (x1) = f1 (x1) σ 2
b (x1) , v21 (x1) = ‖K‖22 f1 (x1) σ 2 (x1) . (11)

bias1 (x1) = μ2 (K ) ×
{

m′′
1 (x1) D1 (x1) + m′

1 (x1) f (x1) σ 2
b (x1)

′

− {
m′

1 (x1)
}2

f (x1)E
[
b′′′ {m (X)} |X1 = x1

]}

where ‖K‖22 = ∫
K 2 (u) du,μ2 (K ) = ∫

K (u) u2du. The aboveEqs. (8), (9) and (10)
lead one to a simplifying decomposition of the estimation error m̂SBK,1 (x1)−m1 (x1)

sup
x1∈[h,1−h]

∣
∣
∣m̂SBK,1 (x1) − m1 (x1) − n−1

n∑

i=1

Kh (Xi1 − x1) σ (Xi ) εi/D1 (x1)
∣
∣
∣

= Oa.s.

(
n−1/2h1/2 log n + n−1/2 log n + h2

)
. (12)

The decomposition in (12) is fundamental for constructing SCCs in Sect. 3, and it
follows from Theorems 1 and 4 of Liu et al. (2013), which were proved under weak
dependence. A similar Theorem 2 in Horowitz and Mammen (2004) for the two-stage
estimator was established only for a fixed x1, not uniformly for x1 in the growing inter-
val [h, 1 − h], and exclusively for iid data, not dependent data, see detailed discussion
on page 621 of Liu et al. (2013).

3 GAM inference via simultaneous confidence corridor

In this section, we propose SCCs for GAM components based on the SBK smoothing,
extending the works for univariate nonparametric function estimation in Bickel and
Rosenblatt (1973) and Härdle (1989).

123



614 S. Zheng et al.

3.1 Main results

Denote ah = √−2 log h, C (K ) = ∥
∥K ′∥∥2

2 ‖K‖−2
2 and for any α ∈ (0, 1), the quantile

Qh(α) = ah + a−1
h

[
log

{√
C (K )/ (2π)

}
− log

{
− log

√
1 − α

}]
. (13)

Also with D1 (x1) and v21 (x1) given in (11), we define

σn (x1) = n−1/2h−1/2v1 (x1) D−1
1 (x1) . (14)

Theorem 1 Under Assumptions (A1)–(A7), as n → ∞

lim
n→∞P

{
supx1∈[h,1−h]

∣
∣m̂SBK,1 (x1) − m1 (x1)

∣
∣/σn (x1) ≤ Qh (α)

} = 1 − α.

A 100 (1 − α)% simultaneous confidence corridor for m1 (x1) is

m̂SBK,1 (x1) ± σn (x1) Qh (α) . (15)

The above SCC for component function m1 (x1) resembles the SCCs in Bickel and
Rosenblatt (1973) andHärdle (1989) for estimating unknownunivariate nonparametric
function, although it is for multivariate nonparametric regression.

3.2 Implementation

To satisfy Assumption (A4), one could use the transformed Uil = Fnl (Xil) instead of
Xil as predictors for each l = 1, . . . , d and i = 1, . . . , n, where Fnl is the empirical
distribution of (X1l , . . . , Xnl). We still use symbol X instead of U to avoid involv-
ing new symbols, but the X variates have been transformed in simulation study and
applications.

To construct the SCC for m1 (x1) in (15), one needs to select the bandwidth h and
the number of knots N to evaluate mSBK,1 (x1) , Qh (α) and σn (x1) given in (7), (13)
and (14).

Assumption (A6) requires that the bandwidth for SCCs be different from the mean
square optimal bandwidth hopt ∼ n−1/5 (minimizingAMISE) in Liu et al. (2013). This
is due to the two conflicting goals in SCCs construction: coverage of the true curve
and narrowness of the corridor, are not quantifiable in a single measure to minimize,
such as the mean integrated squared error. We, therefore, take h = hopt(log n)−1/4, as
a data-driven undersmoothing bandwidth for SCCs construction to fulfill Assumption
(A6), where hopt is computed as in Liu et al. (2013), page 623–624. Recent articles on
SCCs for time series, such as Wu and Zhao (2007), Zhao and Wu (2008), have used
similar undersmoothing bandwidths.

For a given l and a chosen bandwidth h, one can easily estimate mSBK,1 (x1) and
Qh (α) as in (7), (13). To evaluate σn (x1), one needs to estimate v1 (x1) and D−1

1 (x1)
given in (11), i.e., estimating f (x1) , σ 2

b (x1) and σ 2 (x1). The density function f (x1)
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is estimated by f̂ (x1) = n−1 ∑n
i=1 KhROT (Xi1 − x1), where hROT is the rule-of-

thumb bandwidth in equation (5.8), page 200 of Fan and Yao (2003), namely hROT =(
8
√

π/3
)1/5

μ2 (K ) ‖K‖2/52 n−1/5σ̂ , in which σ̂ is the sample standard deviation of
{Xi1}n

i=1. We further illustrate the spline estimates of σ 2
b (x1) and σ 2 (x1) below:

One partitions mini Xi1 = t1,0 < · · · < t1,N+1 = maxi Xi1 where N is the number
of spline interior knots, i.e.,

max
(
1,min

(⌊
n1/4 log n + 1

⌋
, �n/4d − 1/d� − 1

))
, (16)

which satisfies Assumption (A7) in the Appendix. Then σ 2
b (x1) can be estimated as

∑3
k=0 â1,k xk

1 + ∑N+3
k=4 â1,k

(
x1 − tl,k−3

)3
+ where

{
â1,k

}N+3
k=0 minimize

n∑

i=1

[

b′′ {m̂ (Xi )} −
{

3∑

k=0

a1,k Xk
i1 +

∑N+3

k=4
a1,k (Xi1 − tk−3)

3+

}]2

, (17)

and σ 2 (x1) can be estimated as
∑3

k=0 â1,k xk
1 + ∑N+3

k=4 â1,k
(
x1 − tl,k−3

)3
+ where

{
â1,k

}N+3
k=0 minimize

n∑

i=1

[
[
Yi − b′ {m̂ (Xi )}

]2 −
{

3∑

k=0

al,k Xk
i1 +

N+3∑

k=4

al,k (Xi1 − tk−3)
3+

}]2

. (18)

The resulted estimate σ̂n (x1) of σn (x1), using (17) and (18) satisfies supx1∈[h,1−h]

∣
∣

σ̂n (x1)−σn (x1)
∣
∣ = Op

(
n−γ

)
for some γ > 0, see Liu et al. (2013) Sect. 5 for details.

This consistency and Slutsky’s theorem ensure that

P
{
supx1∈[h,1−h]

∣
∣m̂SBK,1 (x1) − m1 (x1)

∣
∣/σ̂n (x1) ≤ Qh (α)

} → 1 − α

as n → ∞, and therefore m̂SBK,1 (x1) ± σ̂n (x1) Qh (α) is a 100 (1 − α)% simulta-
neous confidence corridor for m1 (x1). The SCCs constructions of other components
m2 (x2) , . . . , md (xd) are similar. It is worth while to emphasize that, based on exten-
sive simulation experiments, the estimators m̂SBK,1 (x1) , Q̂h (α) , f̂ (x1) and σ̂n (x1)
remain stable if h and N slightly vary.

4 Variable selection in GAM

In this section, we propose a Bayesian Information Criterion (BIC) for component
function selection based on spline smoothing in step one of the SBK estimation for
GAM and an efficient implementation follows.
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4.1 Main results

According to Stone (1985), p. 693, the space of l-centered square integrable functions
on [0, 1] is defined as

H0
l =

{
g : E {g (Xl)} = 0,E

{
g2 {Xl}

}
< ∞, 1 ≤ l ≤ d

}
, (19)

and the model space M is

M =
{

g (x) = c +
d∑

l=1

gl (xl) ; c ∈ R, gl ∈ H0
l , 1 ≤ l ≤ d

}

. (20)

To introduce the proposedBIC, let {1, . . . , d} denote the complete set of indices of d
tuning variables (X1, . . . , Xd). For each subset S ⊂ {1, . . . , d}, define a corresponding
model space MS for S as

MS =
{

g (x) = c +
∑

l∈S

gl (xl) ; c ∈ R, gl ∈ H0
l , l ∈ S

}

,

withH0
l given in (19), and the space of the additive spline functions as

G0
n,S =

{

g (x) = c +
∑

l∈S

gl (xl) ; c ∈ R, gl ∈ G0
n,l , l ∈ S

}

,

with G0
n,l given in (4). Following Definition 1 of Huang and Yang (2004), the set S0 of

significant variables is defined as the minimal set S ⊂ {1, . . . , d} such that m ∈ MS .
According to Lemma 1 of Huang and Yang (2004), the set S0 is uniquely defined.
Standard theory of Hilbert space and subspace projection implies that the set S0 is
also the minimal set S ⊂ {1, . . . , d} such that E{m (X) − mS (X)}2 = 0 in which the
least squares projection of function m inMS is

mS = argmin
g∈MS

E {m (X) − g (X)}2 . (21)

To identify S0, one computes for an index set S the BIC as

BICS = −2L̂ (m̂S) + NS

n
(log n)3 (22)

where L̂ (·) is given in (5), m̂S (x) ∈ G0
n,S is the pilot spline estimator as in (6),

NS = 1+ (N + 1) # (S) with N the number of interior knots as defined in (16), # (S)

the cardinality of S.
Our variable selection rule takes the subset Ŝ ⊂ {1, . . . , d} that minimizes BICS .
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Theorem 2 Under Assumptions (A1)–(A5), (A7), limn→∞ P
(
Ŝ = S0

) = 1.

According to Theorem 2, the variable selection rule based on the BIC in (22) is
consistent. The nonparametric version BIC was firstly established in Huang and Yang
(2004) for additive autoregression model, and adapted to additive coefficient model by
Xue and Yang (2006), to single index model byWang and Yang (2009). Our proposed
BIC differs from all of the above as it is based on quasi-likelihood rather than mean
squared error, whichmakes the technical proof of consistencymuchmore challenging.
To the best of our knowledge, it is the first theoretically reliable information criterion
in this setting.

4.2 Implementation

We have not implemented the BIC variable selection by a greedy search through
all possible subsets. Instead, a forward stepwise procedure is used with minimizing
BIC as the criterion since it is more common that only a few variables are significant
amongmany variables.We have also experimented with backward as well as forward–
backward stepwise procedures which have yielded similar outcomes in simulation
examples.

5 Simulation

This section studies under simulated setting the performance of the proposed pro-
cedures including the computational cost of the SBK, the consistency of selecting
variables via BIC and the coverage frequency of the SCCs. The data are generated
from

P(Y = 1|X = x) = b′
{

c +
d∑

l=1

ml (Xl)

}

, b′ (x) = ex

1 + ex
(23)

with d = 10, c = 0, m3 (x) = sin (4πx) , m4 (x) = m5 (x) = sin (πx) , m6 (x) =
x, m7 (x) = ex − (e − e−1) and ml (x) = 0 for l = 1, 2, 8, 9, 10. The predictors are
generated by

Xil = 2Φ (Zil) − 1, Zi = (Zi1, . . . , Zid) ∼ N (0,Σ) , 1 ≤ i ≤ n, 1 ≤ l ≤ d,

where Φ is the standard normal c.d.f. and Σ = (1 − r) Id×d + r1d1T
d . The parameter

r (0 ≤ r < 1) controls the correlation between Zil,1 ≤ l ≤ d. To examine the
computing advantage of BIC for large d, we have also included results for d = 50
with m3, . . . , m7 as above and all the other component functions are 0.

COSSO is a penalized likelihood method proposed in Zhang and Lin (2006) for
LASSO type component selection and nonparametric regression in exponential fami-
lies. Inwhat follows, the performance ofBIC andCOSSO is firstly compared, followed
by a computational comparison between the SBK and a kernel method in GAM, and
it ends with a report on the SCCs coverage frequency for components function (the
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Table 1 Simulation comparison of the proposed BIC method and COSSO with d = 10, 50

d r n Computing time Accuracy

BIC COSSO Ratio BIC COSSO

10 0 250 0.17 1.85 10.9 25 441 34 98 327 75

500 0.41 4.33 10.6 6 476 28 42 414 44

1000 0.66 20.14 30.5 2 491 7 26 455 19

0.5 250 0.18 1.91 10.6 165 298 37 204 221 75

500 0.42 4.43 10.5 11 452 37 89 359 52

1000 0.67 20.64 30.8 1 493 6 67 401 32

50 0 250 1.00 − − 312 78 110 − − −
500 1.43 59.77 41.8 106 327 67 124 207 169

1000 3.32 268.24 80.8 2 465 33 20 426 54

0.5 250 1.04 − − 319 65 116 − − −
500 1.55 60.87 39.2 297 174 29 203 145 152

1000 3.48 274.25 78.8 47 428 25 52 356 92

Computing time is in seconds and the ratio is the computing time of COSSO over that of BIC. For d = 50
and n = 250, COSSO becomes unstable to the point of crashing. Accuracy (the last 6 columns) gives for
BIC and COSSO the numbers of underfitting, correct fitting, and overfitting out of 500 replications

frequency that SCCs covering the entire curve on the domain). We have tried numbers
of knots different from the one in (16) with similar results, so our conclusion is that
the performance of BIC is rather insensitive to the number of knots.

Table 1 shows the simulation results from 500 replications, where the outcome is
defined in accuracy as correct fitting, if Ŝ = S0; overfitting, if S0 ⊂ Ŝ; and underfitting,
if S0 � Ŝ. It is clear that the performance of BIC on selecting 5 significant variables
ml (Xl) , l = 3, . . . , 7, is quite satisfactory. The selection accuracy becomes higher
as the sample size increases and/or the correlation decreases; it is poorer with higher
dimension d (= 50) but still high when sample size n = 1000. The accuracy and
computing time of COSSO are also listed for comparison (Platform: R; PC: Intel 3.1
GHz processor and 8 GB RAM). It is shown in Table 1 that the BIC significantly
outperforms the COSSO in terms of accuracy and computing time, and the advantage
in computing time widens significantly for d = 50.

In addition to the above comparison for model selection, we have also conducted
numerical comparison between COSSO and our proposed SBK estimation method
in terms of probability prediction. The proposed SBK method has higher prediction
accuracy in almost all cases, see Table 4 in the Supplement. Comparison regarding
SCC has not been made against COSSO because it does not produce one.

The SCCs coverage frequency for ml (xl) , l = 1, . . . , 7 is reported in Table 2.
Among the zero functions, we have omitted the results for m8, m9 and m10 because
the results are very similar tom1 andm2. The empirical coverage approaches the nomi-
nal confidence levels as n increases, and better coverage occurs when the correlation is
lower. The coverage frequencies vary slightly when d increases, the numerical results
of which have not been included for brevity. We have also compared the coverage
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Table 2 The 95 % SCCs coverage frequency for ml (x) , l = 1, 2, . . . , 7 from 2000 replications

r n l

1 2 3 4 5 6 7

0.0 250 0.9305 0.9250 0.9235 0.9250 0.9235 0.9240 0.9230

500 0.9455 0.9475 0.9430 0.9405 0.9425 0.9440 0.9530

1000 0.9515 0.9520 0.9475 0.9455 0.9480 0.9510 0.9485

0.5 250 0.9215 0.9185 0.9120 0.9145 0.9205 0.9210 0.9185

500 0.9420 0.9405 0.9330 0.9325 0.9375 0.9385 0.9415

1000 0.9485 0.9505 0.9420 0.9475 0.9455 0.9430 0.9445

frequency of SCC and method VOT (Volume of Tube) in the same setup of the sim-
ulation 1 in Wiesenfarth et al. (2012), which considered only the case of trivial link
function. The performance of our proposed SCC is quite similar to the VOT method
Wiesenfarth et al. (2012), see Table 3 in the Supplement.

The above studies evidently indicate the reliability of our methodology, such as
high selection accuracy of the BIC and desired coverage frequency of the SCCs. It
ensures their applications for credit rating modelling in the following section.

6 Application

We now return to forecast default probabilities of the listed companies in Japan. The
data taken from the Risk Management Institute, National University of Singapore
include the comprehensive financial statements and the credit events (default or bank-
ruptcy) from 2005 to 2010 of 3583 Japanese firms.

Berg (2007) found that the liability status was important to indicate the credit-
worthiness of a company, while Bernhardsen (2001) and Ryser and Denzler (2009)
proposed to consider the “leverage effect” expressed by the financial statement ratios.
Therefore, we have pooled two situations by considering X1: Current liability, X2:
Current stock return, X3: Long-term borrow, X4: Short-term borrow, X5: Total asset,
X6: Non-current liability, X7: 3 months earlier (stock) return, X8: 6 months earlier
(stock) return, X9: Current ratio, X10: Net liability to shareholder equity, X11: Share-
holder equity to total liability and equity, X12: TCE ratio, X13: Total debt to total asset,
X14: Quick ratio.

Selecting the rating factors via theBICgiven in (22), we have found that X1: Current
liabilities, X7: 3 months earlier return, X8: 6 months earlier return are significant.
Similar rating covariates were also discovered in Shina andMoore (2003), Berg (2007)
and Ryser and Denzler (2009). However, Berg (2007) selected 23 variables which led
to a non-parsimonious GAM. In contrast, Ryser and Denzler (2009) had found that
3 financial ratios (capital turnover, long-term debt ratio, return on total capital) were
significant based on the blockwise cross-validation (CV) method which is nonetheless
extremely time consuming in comparison to the proposed BIC.
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Figure 1a–c depicts the SBK estimator of the factor’s default impact curve on
domain, while a shoal of 95 % CIs and the 95 % SCCs present, respectively, the
pointwise and global uncertainty of the whole curve. The SBK estimators indicate
overall monotonicities of each rating factors, and the SCCs turn out to be fairly narrow
to warrant the global nonlinearities of the factors’ curves which reveal the underlying
nonlinear features in different segments of domain.

As for the model evaluations, the cumulative accuracy profile (CAP) is plotted in
Fig. 1d. For any score function S, one defines its alarm rate F (s) = P (S ≤ s) and the
hit rate FD (s) = P (S ≤ s|D)where D represents the conditioning event of “default”.
One then defines the CAP curve as

CAP (u) = FD

(
F−1 (u)

)
, u ∈ (0, 1) , (24)

which is the percentage of default-infected obligators that are found among the
first (according to their scores) 100u % of all obligators. A satisfactory model’s
CAP would be expected to approach to that of the perfect model (i.e., CAPP (u) =
min (u/p, 1) , u ∈ (0, 1) where p is the unconditional default probability) and always
better than the noinformative. In contrast, a noninformative rating method with zero
discriminatory power displays a diagonal line CAPN (u) ≡ u, u ∈ (0, 1). See details
of the CAP in Engelmann et al. (2003).

The AR is the ratio of two areas aR and aP . The area between the given CAP curve
and the noninformative diagonal CAPN (u) ≡ u is aR , whereas aP is the area between
the perfect CAP curve CAPP (u) and the noninformative diagonal CAPN (u). Thus,

AR = aR

aP
= 2

∫ 1
0 CAP (u) du − 1

1 − p
, (25)

where CAP (u) is given in (24). The AR takes value in [0, 1], with value 0 corre-
sponding to the noninformative scoring, and 1 the perfect scoring method, a higher
AR indicates an overall higher discriminatory power of a method.

Using both GAM and GLM obtained from first 2000 companies to predict the
default rate of the rest 1583 companies, the accuracy ratio is 97.56 % for GAM, much
higher than the 89.76 % for GLM. We have also applied the COSSO method to the
same data, and the following error message has appeared “Error in solve.QP(GH$H,
GH$H %*% old.theta - GH$G, t(Amat), bvec): matrix D in quadratic function is not
positive definite!”, which once again has illustrated the advantage of the proposed BIC
procedure over the existing method.
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7 Appendix

In what follows, we take ‖·‖ and ‖·‖∞ as the Euclidean and supremum norms,

respectively, i.e., for any x = (x1, x2, . . . , xd) T ∈ R
d , ‖x‖ =

(∑d
l=1 x2l

)1/2
and

‖x‖∞ = max
1≤l≤d

∣
∣xl

∣
∣. For any interval [a, b], denote the space of pth order smooth

function by C (p)[a, b] = {
g
∣
∣g(p) ∈ C [a, b]

}
, and the class of Lipschitz continuous

functions by

Lip ([a, b] , C) = {
g
∣
∣
∣
∣g (x) − g

(
x ′) ∣

∣ ≤ C
∣
∣x − x ′∣∣, ∀x, x ′ ∈ [a, b]

}

for constant C > 0. Lastly, define the following latent regression errors

ξi = Yi − b′ {m (Xi )} = σ (Xi ) εi , 1 ≤ i ≤ n. (26)

7.1 Technical assumptions

We need the following technical assumptions:

(A1) The additive component functions ml ∈ C (1) [0, 1] , 1 ≤ l ≤ d: m1 ∈
C (2) [0, 1], m′

l ∈ Lip ([0, 1] , Cm) , 2 ≤ l ≤ d for some constant Cm > 0.
(A2) The inverse link function b′ satisfies that b′ ∈ C2 (R) , b′′ (θ) > 0, θ ∈

R. For a compact interval � whose interior contains m
(
[0, 1]d

)
, Cb >

maxθ∈� b′′ (θ) ≥ minθ∈� b′′ (θ) > cb for constants 0 < cb < Cb < ∞.
(A3) The conditional variance function σ 2 (x) is continuous and positive for x ∈

[0, 1]d . The errors {εi }n
i=1 satisfy that E (εi |Xi ) = 0, E

(|εi |2+η
) ≤ Cη for

some η ∈ (1/2, 1].
(A4) The joint density f (x) of (X1, . . . , Xd) is continuous and

0 < c f ≤ infx∈[0,1]d f (x) ≤ supx∈[0,1]d f (x) ≤ C f < ∞.

For each 1 ≤ l ≤ d, the marginal density function fl (xl) of Xl has continuous
derivatives on [0, 1] and the same uniform bounds C f and c f . There exists a
σ -finite measure λ on R such that the distribution of Yi conditional on Xi has
a probability density function fY |X

(
y; b′ {m (x)}) relative to λ whose support

for y is a common Ω , and is continuous in both y ∈ Ω and x ∈ [0, 1]d .
(A5)

{
Zi = (

XT
i , εi

)}n
i=1 are independent and identically distributed.

(A6) The kernel function K (x) is a symmetric probability density function sup-
ported on [−1, 1] and ∈ C1[−1, 1]. The bandwidth h = hn satisfies that h =
o

(
n−1/5(log n)−1/5

)
, h−1 = O (

n1/5 (log n)δ
)

for some constant δ > 1/5.
(A7) The number of interior knots N satisfies cN n1/4 log n ≤ N ≤ CN n1/4 log n for

some constantscN , CN > 0.

Assumptions (A1)–(A7) are standard in GAM, see Stone (1986), Xue and Yang
(2006). The i.i.d. feature is technically acceptable if the data are collected across a
large number of sections, for instance, our real example in Sect. 6. Assumptions (A5),
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(A6) aremore restrictive than in Liu et al. (2013) for the purpose of constructing simul-
taneous confidence corridor, but are unnecessary for Theorem 2 on the consistency of
BIC. All these assumptions are satisfied by the simulation example in Sect. 5.

7.2 Preliminaries

Throughout this section, C denotes some generic positive constant unless stated oth-
erwise. Define

Mh (t) = h−1/2
∫ 1

0
K {(x − t) /h} dW (x) (27)

where W (x) is a Wiener process defined on (0,∞) and denote

dh = (−2 log h)1/2 + (−2 log h)−1/2
{√

C (K )/ (2π)
}

with C (K ) given in (13).

Lemma 1 Under Assumption (A6), for any x ∈ R

lim
n→∞P

[
(−2 log h)1/2

{
supt∈[h,1−h] |Mh (t) |/‖K‖22 − dh

}
< x

]
= e−2e−x

.

Proof One simply applies the same steps in proving Lemma 2.2 of Härdle (1989).
Denote by Ti the random variable b′ {m (Xi )}, and the Lebesgue measure on R

d as
μ(d). By Assumption (A4),Xi has pdf w.r.t. the Lebesgue measureμ(d), and Assump-
tions (A1) and (A2) ensure that functions b′ and m are at least C1, thus the random
vector (Ti , Xi1) has a joint pdf w.r.t. the Lebesgue measure μ(2), which one denotes
as fT,X1 (t, x1). ��
Lemma 2 Under Assumptions (A1)–(A5), for ξi in (26), the distribution of (ξi , Xi1)

has joint pdf w.r.t. μ(2) as

fξ,X1 (z, x1) =
∫

Ω

fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y) .

Proof The joint pdf of (Yi , Ti , Xi1) wrt λ × μ(2) is fY |X (y; t) fT,X1 (t, x1). For any
(z, x1) ∈ R × [0, 1], and �z,�x1 > 0, one has

P
[
(ξi , Xi1) ∈ (z − �z, z + �z) × (x1 − �x1, x1 + �x1)

]

= P
[
(Yi − Ti , Xi1) ∈ (z − �z, z + �z) × (x1 − �x1, x1 + �x1)

]

=
∫

Ω
dλ (y)

∫

y−τ∈(z−�z,z+�z)
dτ

∫

χ1∈(x1−�x1,x1+�x1)
fY |X (y; τ) fT,X1 (τ, χ1) dχ1.
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Applying dominated convergence theorem, one has as max (�z,�x1) → 0,

P [(ξi , Xi1) ∈ (z − �z, z + �z) × (x1 − �x1, x1 + �x1)]

=
{∫

Ω

fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y)

}

×μ(2) [(z − �z, z + �z) × {(x1 − �x1, x1 + �x1) ∩ [0, 1]}] + o (�z�x1)

hence the joint pdf of (ξi , Xi1)wrtμ(2) is
∫
Ω

fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y).
For theoretical analysis, we write cJ,l = E bJ (Xl) = ∫

bJ (xl) fl (xl) dxl and
define the centered B spline basis bJ,l (xl) and the standardized B spline basis BJ,l (xl)

respectively as

bJ,l (xl) = bJ (xl) − cJ,l

cJ−1,l
bJ−1 (xl) ,

BJ,l (xl) = bJ,l (xl)
{∫

b2J,l (xl) fl (xl) dxl

}1/2 , 1 ≤ J ≤ N + 1, (28)

so that E BJ,l (Xl) ≡ 0, E B2
J,l (Xl) ≡ 1.

With slight abuse of notations the log-likelihood L̂ (g) in (5) is

L̂ (g) = L̂ (λ) = n−1
n∑

i=1

[
Yiλ

TB (Xi ) − b
{
λTB (Xi )

}]
,

with g (Xi ) = λTB (Xi ) ∈ G0
n , λ = (

λ0, λJ,l
)T
1≤J≤N+1,1≤l≤d ∈ R

Nd with Nd =
(N + 1) d + 1, B (x) = {

1, B1,1 (x1) , . . . , BN+1,d (xd)
}T and BJ,l (xl) as given in

(28). It is straightforward to verify that the gradient and Hessian of L̂ (λ) are

∇ L̂ (λ) = n−1
n∑

i=1

[
YiB (Xi ) − b′ {λTB (Xi )

}
B (Xi )

]
,

∇2 L̂ (λ) = −n−1
n∑

i=1

b′′ {λTB (Xi )
}
B (Xi )B (Xi )

T . (29)

��
Proposition 1 Under Assumptions (A1)–(A5) and (A7), for m ∈ M with M given in
(20) and m̂ as in (6), as n → ∞, ‖m − m̂‖2,n +‖m − m̂‖2 = Oa.s.

(
N 1/2n−1/2 log n

)

and ‖m − m̂‖∞ = Oa.s.
(
Nn−1/2 log n

)
. With probability approaching 1, the Hessian

matrix ∇2 L̂ (λ) satisfies that ∇2 L̂ (λ) < 0,∀λ and ∇2 L̂ (λ) ≤ −cbcV I if λTB (Xi ) ∈
�, 1 ≤ i ≤ n.

Proof See Lemma A.13 of Liu et al. (2013), Assumption (A2), Eq. (29) and Lemma
A.11 of Liu et al. (2013). ��
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7.3 Proof of Theorem 1

Define a stochastic process ε̂n (x1) = n−1 ∑n
i=1 Kh (Xi1 − x1) ξi , x1 ∈ [0, 1] with ξi

given in (26), then (9) and (10) show that

sup
x1∈[h,1−h]

∣
∣
∣m̃K,1 (x1) − m1 (x1) − D−1

1 (x1) ε̂n (x1)
∣
∣
∣ = Oa.s.

(
h2 + n−1/2h1/2 log n

)
,

which, together with (8), lead to

supx1∈[h,1−h]

∣
∣
∣m̂SBK,1 (x1) − m1 (x1) − D−1

1 (x1) ε̂n (x1)
∣
∣
∣

= Oa.s.

(
h2 + n−1/2h1/2 log n + n−1/2 log n

)
= Oa.s.

(
h2 + n−1/2 log n

)
.

(30)

Using v1 (x1) given in (11), one can standardize ε̂n (x1) to obtain

ζ̂n (x1) = (nh)1/2 v−1
1 (x1) ε̂n (x1)

= (nh)1/2 v−1
1 (x1)

{

n−1
n∑

i=1

Kh (Xi1 − x1) ξi

}

. (31)

Assumptions (A5), (A8) imply that the following Rosenblatt transformation to
the two-dimensional sequence {Xi1, ξi }n

i=1 produces
{

X ′
i1, ξ

′
i

}n
i=1 with

(
X ′

i1, ξ
′
i

)
uni-

formly distributed on [0, 1]2:

(
X ′

i1, ξ
′
i

) = T (Xi1, ξi ) = {
FX1 (Xi1) , Fξ |X1 (ξi |Xi1)

}
.

Denote Zn (x1, ξ) = √
n {Fn (x1, ξ) − F (x1, ξ)}where Fn (x1, ξ) is the empirical

distribution of {Xi1, ξi }n
i=1, one can rewrite ζ̂n (x1) as

ζ̂n (x1) = h−1/2v−1
1 (x1)

∫ ∫
K {(u − x1) /h} ξd Zn (u, ξ) .

By the strong approximation theorem in Tusnady (1977), there exists a version of
the two-dimensional Brownian Bridge Bn

(
x ′
1, ξ

′) such that

sup
x1,ξ

|Zn (x1, ξ) − Bn {T (x1, ξ)} | = Oa.s.

(
n−1/2 log2 n

)
.

Applying standard techniques used in Bickel and Rosenblatt (1973), Härdle (1989),
one can show that

sup
t∈[h,1−h]

∣
∣
∣̂ζn (t) − Mh (t) /‖K‖22

∣
∣
∣ = op

{
(log n)−1/2

}
, (32)
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for a version of the Mh (t) given in (27). Similar result can be found in Xia (1998).
Furthermore, (30) and (31) imply that

supx1∈[h,1−h]

∣
∣
∣σ−1

n (x1)
{
m̂SBK,1 (x1) − m1 (x1)

} − ζ̂n (x1)
∣
∣
∣

= Oa.s.

(
n1/2h5/2 + h1/2 log n

)
, (33)

with σn (x) given in (14). Under Assumption (A6), which entails that (−2 log h)1/2 is
of the same order as (log n)1/2, (32) and (33) can show that

supx1∈[h,1−h] (−2 log h)1/2
∣
∣
∣σ−1

n (x1)
∣
∣m̂SBK,1 (x1) − m1 (x1)

∣
∣ − |Mh (x1) |/‖K‖22

∣
∣
∣

= Oa.s

{
(log n)1/2 ×

(
n1/2h5/2 + h1/2 log n

)}
+ op (1) = op (1) .

Finally, Theorem 1 follows from Lemma 1 and Slutsky’s Theorem.

7.4 Proof of Theorem 2

See the Supplement.
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