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Abstract Circular data arise in many areas of application. Recently, there has been
interest in looking at circular data collected separately over time and over space. Here,
we extend some of this work to the spatio-temporal setting, introducing space–time
dependence. We accommodate covariates, implement full kriging and forecasting,
and also allow for a nugget which can be time dependent. We work within a Bayesian
framework, introducing suitable latent variables to facilitate Markov chain Monte
Carlo model fitting. The Bayesian framework enables us to implement full inference,
obtaining predictive distributions for kriging and forecasting. We offer comparison
between the less flexible but more interpretable wrapped Gaussian process and the
moreflexible but less interpretable projectedGaussian process.Wedo this illustratively
using both simulated data and data from computer model output for wave directions
in the Adriatic Sea off the coast of Italy.
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1 Introduction

Circular data, i.e., observations with support on the unit circle, arise in many contexts.
Examples include natural directions, such as wind directions (meteorology), animal
movement directions (biology) and rock fracture orientations (geology). Another type
of circular data arises by wrapping periodic time data with period L (say, day or week)
onto a circle with circumference L and then rescaling the circumference to 2π , that of
the unit circle. Two-dimensional directional data may be observed in space and time,
along with linear variables, as in marine studies where, for example wave heights
and directions are jointly observed, or in atmospheric modeling where wind fields
are represented by wind intensity as well as direction. Due to the restriction of the
domain to the circle, analysis of circular data must be treated differently from linear
data. Customary statistical summaries are replaced with their circular counterparts.
For a discussion of inference with circular variables see, e.g., Fisher (1996), Mardia
and Jupp (1999), Jammalamadaka and SenGupta (2001) or the recent paper by Lee
(2010).

The contribution of this paper is to extend recent spatial and spatio-temporal cir-
cular data models. In particular, Jona Lasinio et al. (2012) consider the use of the
wrapped normal approach by developing the wrapped Gaussian process while Wang
and Gelfand (2014) consider the use of the projected normal approach by developing
the projected Gaussian process. Here we: (i) extend both processes to the spatio-
temporal setting, introducing space–time dependence; (ii) introduce space and time
varying covariate information; (iii) show how to implement fully model-based kriging
and forecasting; (iv) allow a nugget which can be time dependent, and (v) provide
an extensive comparison between the more sparsely parametrized wrapped Gaussian
process with the more flexible projected Gaussian process. We do this illustratively
using simulation, as a proof of concept, as well as with data in the form of computer
model output for wave directions in the Adriatic Sea off the coast of Italy. The models
are fitted under a Bayesian framework, introducing suitable latent variables, enabling
full inference.

Modeling of circular data has progressed well beyond the i.i.d. case. Examples
include linear models (Harrison and Kanji 1988; Fisher 1996; Kato and Shimizu
2008), linear models in a Bayesian context (Guttorp and Lockhart 1988; Damien and
Walker 1999), models for circular time series (Breckling 1989; Fisher and Lee 1992;
Coles 1998; Holtzman et al. 2006; Ravindran and Ghosh 2011), and hidden Markov
models to address classification issues (Lagona and Picone 2011; Bulla et al. 2012;
Mastrantonio et al. 2015). In Kato (2010) a Markov process for circular variables is
presented. Jona Lasinio et al. (2012) consider a spatial wrapped Gaussian process.
Wang and Gelfand (2013) explore the general projected normal model while in Wang
and Gelfand (2014) Bayesian analysis of space–time circular data is developed using
projected Gaussian processes. In Wang et al. (2015), directional wave data is modeled
jointly with linear wave height data.

The format of the remainder of the paper is as follows. In Sect. 2, we review the
wrapping approach and offer a non-separable space–time model for circular data. In
Sect. 3, an analogous model is presented using the projected normal process. Section 4
presents several simulation examples giving insight into the inferential performance
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of the models, while Sect. 5 analyzes the behavior of the models for wave directions.
Section 6 extends the modeling approach to enable space–time varying covariates
reflecting sea state at a location and time. Some concluding remarks are provided in
Sect. 7. Implementation details, further simulated examples and more details on the
real data application are available in the Supplementary Online Material, Sections S1,
S2 and S3.

2 A brief review of the wrapped modeling approach

Let Y ∈ R be a random variable on the real line and let g(y) andG(y) be, respectively,
its probability density function and cumulative distribution function. The random
variable

X = Ymod 2π, 0 ≤ X < 2π

is the wrapped version of Y having period 2π . The probability density function of X ,
f (x), is obtained by wrapping the probability density function of Y , g(y), around
a circle of unit radius via the transformation Y = X + 2πK , with K ∈ Z ≡
{0,±1,±2, . . .}, and takes the form

f (x) =
∞∑

k=−∞
g(x + 2πk), (1)

that is, a doubly infinite sum.
Equation (1) shows that g(x + 2πk) is the joint distribution of (X, K ). Hence, the

marginal distribution of K is P(K = k) = ∫ 2π
0 g(x + 2πk)dx , the conditional distri-

butions P(K = k|X = x) = g(x+2πk)/
∑∞

j=−∞ g(x+2π j) and the distribution of

X |K = k is g(x +2πk)/
∫ 2π
0 g(x +2πk)dx . The introduction of K as latent variable

facilitates model fitting (Jona Lasinio et al. 2012).
Following Coles (1998), we can extend the wrapping approach to multivariate

distributions. Let Y = (Y1,Y2, . . . ,Yp) ∼ g(·), with g(·) a p-variate distribution on
R

p indexed by say θ and let K = (K1, K2, . . . , Kp) be such that Y = X + 2πK.
Then the distribution of X is

f (X) =
+∞∑

k1=−∞

+∞∑

k2=−∞
. . .

+∞∑

kp=−∞
g(X + 2πK). (2)

From (2) we see, as in the univariate case, that the joint density of (X, K) is g(X +
2πK). If g(·; θ) is a p-variate normal density, with θ = (μ,Σ), then X has a p-
variate wrapped normal distribution with parameters (μ,Σ). Here, we introduce the
latent random vector of winding numbers K to facilitate model fitting. Mardia and
Jupp (1999) point out that only a few values of K are needed to obtain a reasonable
approximation of the wrapped distribution and Jona Lasinio et al. (2012) show, when
g(·; θ) is Gaussian, how to choose the set of values of K based on the variance of the
associated conditional distribution.
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Let Y (s) be a Gaussian process (GP) with s ∈ R
2, mean function μ(s) and

covariance function say σ 2ρ(||si − s j ||;ψ), where ψ is a set of parameters. For a
set of locations s1, s2, . . . , sn , Y = (Y (s1),Y (s2), . . . ,Y (sn)) ∼ N (μ, σ 2C(ψ)),
where μ = (μ(s1), . . . , μ(sn)) and C(ψ)i j = ρ(si − s j ;ψ). As a consequence
X = (X (s1), X (s2), . . . , X (sn)) ∼ WrapN (μ, σ 2C(ψ)) (Jona Lasinio et al. 2012),
where WrapN (·, ·) indicates the wrapped normal distribution.

2.1 Space–time model specification and model fitting

Turning to space and time, suppose we seek {X (s, t) ∈ [0, 2π), s ∈ S ⊆ R
2, t ∈

T ⊆ Z
+}, a spatio-temporal process of angular variables. We can model X (s, t) as

a spatio-temporal wrapped Gaussian process through its linear counterpart Y (s, t),
extending the above approach. We assume that the linear process is a spatio-temporal
Gaussian process having non-separable covariance structure with variance σ 2 and the
stationary correlation function due to Gneiting [see equation (14) in Gneiting 2002]:

Cor(Y (s, t),Y (s′, t ′)) ≡ ρ(h, u) = 1

(a|u|2α + 1)τ
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (3)

where (h, u) ∈ R
d × R, h = s − s′ and u = t − t ′. Here d = 2, a and c are

non-negative scaling parameters for time and space, respectively. The smoothness
parameters α and γ take values in (0, 1], the space–time interaction parameter β is in
[0, 1], and τ ≥ d/2 = 1 is, in fact, fixed at 1 following Gneiting (2002). Attractively,
as β decreases toward zero, we tend to separability in space and time.

We write the linear GP Y (s, t) as Y (s, t) = μY + ωY (s, t) + ε̃Y (s, t) where μY

is a constant mean function, ωY (s, t) is a zero mean space–time GP with covariance

function σ 2ρ(h, u), and ε̃(s, t)
i id∼ N (0, φ2

Y ), i.e., is pure error. It is convenient to work
with the marginalized model where we integrate over all of the ωY (s, t), see Banerjee
et al. (2014). That is,

Y (s, t) = μY + εY (s, t). (4)

Then, ε(s, t) is a zero mean Gaussian process with covariance function

Cov(εY (si , t j ), εY (si ′ , t j ′)) = σ 2
YCor(hi,i ′ , u j, j ′) + φ2

Y 1(i=i ′)1( j= j ′).

To complete the model specification, we need to specify prior distributions. We
suggest the following choices. Since a and c are positive, a and c ∼ G(·, ·) where
G(·, ·) denotes a gamma distribution. Since α, β, and γ are bounded between 0 and 1,
we adopt a beta distribution (B(·, ·)). Priors for the variances and themean direction are
given the usual normal-inverse gamma form, i.e., σ 2

Y , φ2
Y ∼ IG(·, ·), where IG(·, ·)

denotes the inverse gamma, and μy ∼ WrapN (·, ·). In the sequel, this model will be
denoted by WN.
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2.2 Kriging and forecasting

We clarify prediction of the process at a new location and time, say (s0, t0), given
what we have observed. We provide a full predictive distribution, extending Jona
Lasinio et al. (2012) who only provide a posterior mean. Let D ⊂ R

2 × Z
+ be the

set of n observed points. Let X = {X (s, t), (s, t) ∈ D} be the vector of observed
circular variables. Let Y = {Y (s, t), (s, t) ∈ D} be the associated linear ones and
let K = {K (s, t), (s, t) ∈ D} be the associated vector of winding numbers. The
predictive distribution we seek is g(X (s0, t0)|X). We use usual composition sampling
within Markov chain Monte Carlo (MCMC) to obtain samples from it. Here, again we
move from the circular process to the linear one, i.e., a sample from the distribution of
Y (s0, t0)|X can be considered as a sample from X (s0, t0), K (s0, t0)|X. If we let Ψ Y

be the vector of all parameters, we can write

g(X (s0, t0), K (s0, t0)|X)

=
∑

K∈Zn

∫

Ψ Y

g(X (s0, t0), K (s0, t0)|Ψ Y , K , X)g(Ψ Y , K |X)dΨ Y .

So, suppose, for each posterior sample of K and Ψ Y in {K∗
l ,Ψ

∗
Y,l , l = 1, 2, . . . , L}

we generate a value from the distribution of X (s0, t0), K (s0, t0)| Ψ Y , K , X. Then, we
will obtain the set of posterior samples {X∗

l (s0, t0), K
∗
l (s0, t0), l = 1, 2, . . . , L} from

X (s0, t0), K (s0, t0)|X. If, we retain the set {X∗
l (s0, t0), l = 1, 2, . . . , L}, we will have

samples from the desired predictive distribution.
Therefore, we need to sample from the distribution of X (s0, t0), K (s0, t0)|

Ψ Y , K , X or equivalently Y (s0, t0)|Y,Ψ Y . Let 1m be the m × 1 vector of 1s, let
CY be the correlation matrix of Y , and letCY,Y (s0,t0) be the correlation vector between
Y and Y (s0, t0). Then, the joint distribution of Y (s0, t0), Y|Ψ Y is

(
Y (s0, t0)

Y

)
|Ψ Y ∼ N

((
μY

μY 1n

)
, σ 2

Y

(
1 C′

Y,Y (s0,t0)
CY,Y (s0,t0) CY

)
+ φ2

Y In+1

)
.

As a result, the conditional distribution of Y (s0, t0)|Y,Ψ Y is Gaussian with mean

MY (s0,t0) = μY + σ 2
YC

′
Y,Y (s0,t0)

(
σ 2
YCY + φ2

Y In
)−1

(Y − μY 1n)

and variance

VY (s0,t0) = σ 2
Y + φ2

Y − σ 2
YC

′
Y,Y (s0,t0)

(
σ 2
YCY + φ2

Y In
)−1

σ 2
YCY,Y (s0,t0).

Finally, suppose, for each posterior sample, we simulate Y ∗
l (s0, t0) from

N (M∗
Y (s0,t0),l

,V∗
Y (s0,t0),l

), where M∗
Y (s0,t0),l

and V∗
Y (s0,t0),l

are MY (s0,t0) and VY (s0,t0)
computed with the lth sample. then, X∗

l (s0, t0) = Y ∗
l (s0, t0) mod 2π is a posterior

sample from the predictive distribution.
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3 The spatio-temporal projected normal process

Let (Z1, Z2) be a bivariate vector normally distributed with mean μZ = (μZ1 , μZ2)

and covariance matrix

Ṽ =
(

σ 2
Z1

σZ1σZ2ρz

σZ1σZ2ρz σ 2
Z2

)
.

The vector Z is mapped into an angular variable Θ by the transformation Θ =
atan∗(Z2/Z1), where the function atan∗(S/C) is defined as atan(S/C) if C > 0
and S ≥ 0, π/2 if C = 0 and S > 0, atan(S/C) + π if C < 0, atan(S/C) + 2π if
C ≥ 0 and S < 0, undefined if C = S = 0. Θ is referred to as a projected normal
random variable (Mardia 1972, p. 52) with parameters μZ and Ṽ. Wang and Gelfand
(2013) note that the distribution of Θ does not change if we multiply (Z1, Z2) by a
positive constant, so, following their lead, to identify the distribution we set σ 2

Z2
= 1

and the covariance matrix becomes

V =
(

σ 2
Z1

σZ1ρz

σZ1ρz 1

)
.

Again, it is convenient to introduce a latent variable. Here, it is R = ||Z||, obtaining
the joint density of (Θ, R):

(2π)−1|V|1/2 exp
(

− (r(cos θ, sin θ)′ − μZ )′V−1(r(cos θ, sin θ)′ − μZ )

2

)
r.

We canmove back and forth between the linear variables and the pair (Θ, R) using the
transformation Z1 = R cosΘ , Z2 = R sinΘ and the equation Θ = atan∗(Z2/Z1).

Consider a bivariate spatio-temporal process Z(s, t) = (Z1(s, t), Z2(s, t)) with
constant mean μZ and cross covariance function C

(
Z(si , t j ), Z(si ′ , t j ′)

) = Cor(si −
si ′ , t j − t j ′)V where Cor(·, ·) is a given space–time correlation function and V is as
above. Then the circular processΘ(s, t) induced by Z(s, t)with the atan∗ transforma-
tion is a projected Gaussian process with mean μZ and covariance function induced
by C

(
Z(si , t j ), Z(si ′ , t j ′)

)
. More details on the properties of the process can be found

in Wang and Gelfand (2014). Now, latent R(s, t)s are introduced to facilitate model
fitting.

3.1 Model specification and model fitting

We define the bivariate linear process as

Z�(s, t) = μZ�
+ ωZ�

(s, t) + ε̃Z�
(s, t), � = 1, 2, (5)

where μZ = (μZ1 , μZ2)
′ is the mean level, ωZ (s, t) = (ωZ1(s, t), ωZ2(s, t))

′
is a bivariate Gaussian process with zero mean and covariance Cov(ωZ (si , t j ),
ωZ (si ′ , t j ′)) = Cor(hi,i ′ , u j, j ′)V where Cor(hi,i ′ , u j, j ′) is defined in (3). Finally,
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ε̃Z (s, t) = (ε̃Z1(s, t), ε̃Z2(s, t)) is bivariate pure error with zero mean, independent
components, and variance φ2

Z . Marginalizing over the ω process in (5) yields

Z�(s, t) = μZ�
+ εZ�

(s, t), � = 1, 2,

where εZ (s, t) is a mean zero bivariate Gaussian process with covariance function
Cov(εZ (si , t j ), εZ (si ′ , t j ′) = Cor(hi,i ′ , u j, j ′)V + φ2

Z I21(i=i ′)1( j= j ′).
Θ(s, t) = atan∗(Z2(s, t)/Z1(s, t)) is a circular process and, as in the WN setting,

correlation between the circular variables is induced by the Gneiting spatio-temporal
correlation function. To specify the prior distributions for μZ1 , μZ2 , σ

2
Z1

and φ2
Z , we

adopt the customary normal-inverse gamma specification. That is,μZ1 , μZ2 ∼ N (·, ·),
σ 2
Z1

, φ2
Z ∼ IG(·, ·) while, since ρZ is a correlation parameter, we adopt a truncated

normal: ρZ ∼ N (·, ·)I (−1, 1). In the sequel, this model will be denoted by PN.
We seek the predictive distribution at an unobserved location and time, (s0, t0).

Let Θ be the vector of observed circular values and Z = {Z(s, t), (s, t) ∈ D} be the
associated linear ones. Let Z(s0, t0) = (Z1(s0, t0), Z2(s0, t0))′, R = {R(s, t), (s, t) ∈
D} and let Ψ Z be all the parameters of the projected model.

Specifically, the predictive distribution we seek is Θ(s0, t0)|Θ . If we sample from
the distribution of Z(s0, t0)|Θ then Θ(s0, t0) = atan∗(Z2(s0, t0)/Z1(s0, t0)) is a sam-
ple from the desired predictive distribution. We have that

g(Z(s0, t0)|Θ) =
∫

R

∫

Ψ Z

g(Z(s0, t0)|Ψ Z , R,Θ)g(Ψ Z , R|Θ)dΨ ZdR.

So, we need to obtain g(Z(s0, t0)|Ψ Z , R,Θ) and be able to sample from it. We start
from the joint distribution of Z(s0, t0), Z|Ψ Z :

(
Z(s0, t0)

Z

)
|Ψ Z

∼ N

((
μZ

1n ⊗ μZ

)
,

(
1 C′

Z,Z(s0,t0)
CZ,Z(s0,t0) CZ

)
⊗ V + φ2

Z I2n+2

)
,

whereCZ andCZ,Z(s0,t0) are the analogous ofCY andCY,Y (s0,t0) for the processZ(s, t).
The conditional distribution of Z(s0, t0)|Z,Ψ Z (equivalently Z(s0, t0)|Θ, R,Ψ Z ) is
bivariate normal with mean

MZ(s0,t0) = μZ + C′
Z,Z(s0,t0) ⊗ V

(
CZ ⊗ V + φ2

Z I2n
)−1

(Z − 1n ⊗ μZ )

and variance

VZ(s0,t0) = V − C′
Z,Z(s0,t0) ⊗ V

(
CZ ⊗ V + φ2

Z I2n
)−1

CZ,Z(s0,t0) ⊗ V.

Using the posterior samples {R∗
l ,Ψ

∗
Z ,l , l = 1, 2, . . . , L} we can collect samples of

Θ∗
l (s0, t0) from its posterior predictive distribution.
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4 Simulated examples

The Gneiting correlation function (3) has not been widely investigated within a
Bayesian framework. The aim of this simulation study is essentially to provide a
proof of concept. If space–time dependence, captured through the Gneiting correla-
tion function, is driving an observed spatio-temporal circular dataset, can we learn
about this dependence and can we demonstrate improved predictive performance by
incorporating it in our modeling? We explore several different choices of parameters
in (3).

For each proposed model, we simulated 48 datasets with n = 240 (20 locations
and 12 time points) with spatial coordinates uniformly generated in [0, 10] × [0, 10].
24 datasets for the WN model were simulated from all possible combinations of
(a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α = {0.5, 0.8}, γ = {0.5, 0.8} and
(μY , σ 2

Y , φ2
y) = (π, 0.1, 0.01). In the other 24 datasets we used the same combina-

tions of correlation parameters but with (μY , σ 2
Y , φ2

y) = (π, 1, 0.1). The datasets cover
a wide range of situations in terms of spatio-temporal correlation: strong spatial cor-
relation with weak temporal correlation ((a, c) = (1, 0.2)), weak spatial correlation
with strong temporal correlation ((a, c) = (0.2, 1)), fully separable spatio-temporal
correlation (β = 0), non-separable (β = {0.5, 0.9}) and two levels for the smoothing
parameters. The difference between the two collections of 24 datasets is that the first
24 have smaller circular variance than the remaining ones, where the circular variance
was computed as one minus the mean resultant length divided by the sample size
(Jammalamadaka and SenGupta 2001, p. 15).

The projected normal datasets were built according to the same rationale adopted
for the wrapped normal, i.e., we built 24 datasets with small circular variance and 24
datasets with large circular variance. We simulated from unimodal projected distrib-
utions adopting the following sets of parameters:

– all possible combinations of (a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α =
{0.5, 0.8}, γ = {0.5, 0.8} with (μZ1 , μZ2 , σ

2
Z1

, ρZ , φ2
Z ) = (2.5, 2.5, 1, 0, 0.01)

which yields a circular variance close to the WN examples with σ 2
Y = 0.1.

– all possible combinations of (a, c) = {(1, 0.2), (0.2, 1)}, β = {0, 0.5, 1}, α =
{0.5, 0.8}, γ = {0.5, 0.8} with (μZ1 , μZ2 , σ

2
Z1

, ρZ , φ2
Z ) = (0.85, 0.85, 1, 0, 0.1)

which, again, yields a circular variance close to the WN examples with σ 2
Y = 1.

The parameters for the prior distributions were chosen so that the priors were centered
on the “true” values used to simulate each dataset:

– correlation parameters: a = 0.2 ⇒ a ∼ G(2, 5), a = 1 ⇒ a ∼ G(5, 4),
c = 0.2 ⇒ c ∼ G(2, 5), c = 1 ⇒ c ∼ G(5, 4), α = 0.5 ⇒ α ∼ B(5, 5),
α = 0.8 ⇒ α ∼ B(6, 1.5), β = 0 ⇒ β ∼ B(1, 4), β = 0.5 ⇒ β ∼ B(5, 5),
β = 0.9 ⇒ β ∼ B(6, 1.5), γ = 0.5 ⇒ γ ∼ B(5, 5), γ = 0.8 ⇒ γ ∼ B(6, 1.5);

– parameters of the WN model: μY = 5 ⇒ μY ∼ WN (π, 5), σ 2
Y = 0.1 ⇒

σ 2
Y ∼ IG(4.5, 0.55), σ 2

Y = 1 ⇒ σ 2
Y ∼ IG(2.01, 4.01), φ2

Y = 0.01 ⇒ φ2
Y ∼

IG(2.001, 0.03), φ2
Y = 0.1 ⇒ φ2

Y ∼ IG(4.5, 0.55);
– parameters of the PN model: μZ1 = 2.5 ⇒ μZ1 ∼ N (2.5, 5), μZ1 =
0.85 ⇒ μZ1 ∼ N (0.85, 5) μZ2 = 2.5 ⇒ μZ2 ∼ N (2.5, 5), μZ2 = 0.85 ⇒
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μZ2 ∼ N (0.85, 5), σ 2
Z1

= 1 ⇒ σ 2
Z1

∼ IG(2.01, 4.01), ρZ = 0 ⇒ ρZ ∼
N (0, 1)I (−1, 1), φ2

Z = 0.01 ⇒ φ2
Z ∼ IG(2.001, 0.03), φ2

Z = 0.1 ⇒ φ2
Z ∼

IG(4.5, 0.55).

Among the 240 simulated observations in each dataset, 170 points, chosen between
the first and tenth time points, were used for estimation and the remaining 70 points
were set aside for validation purposes. The predictive performancewas evaluated using
two criteria. We computed an average prediction error (APE), defined as the average
circular distance between a validation dataset and model predicted values, where we
adopted as circular distance d(α, β) = 1−cos(α−β) (Jammalamadaka and SenGupta
2001, p. 15). In particular, suppose the validation set has n∗ observations, the APE for
the models based on the wrapped normal is 1

n∗
∑

(s0,t0) d(μ(s0, t0|X), x(s0, t0)) and
1
n∗

∑
(s0,t0) d(μ(s0, t0|Θ), θ(s0, t0)) for the projected normal ones. Here, x(s0, t0) and

θ(s0, t0) are the realizations of the processes at (s0, t0) andμ(s0, t0|X) andμ(s0, t0|Θ)

are the posterior mean directions.
We also computed the continuous ranked probability score (CRPS) for circular

variables as defined in Grimit et al. (2006):

CRPS(F, δ) = E(d(�, δ)) − 1

2
E(d(�,�∗)), (6)

where F is a predictive distribution, δ is a holdout value, and� and�∗ are independent
copies of a circular variable with distribution F . In this form, small values of CRPS
are preferred.

For both models we do not know F in closed form, but we can compute a Monte
Carlo approximation of (6). For the wrapped model, the CRPS for a held-out space–
time point (s0, t0) is

1

L

L∑

l=1

d(x∗
l (s0, t0), x(s0, t0)) − 1

2L2

L∑

l=1

L∑

j=1

d(x∗
l (s0, t0), x∗

j (s0, t0))

and for the projected model it is

1

L

L∑

l=1

d(θ∗
l (s0, t0), θ(s0, t0)) − 1

2L2

L∑

l=1

L∑

j=1

d(θ∗
l (s0, t0), θ∗

j (s0, t0)).

For each of the 48 simulated datasets, the values of the mean CRPS under the two
models, computed over the set of points used for model validation, are shown in Fig. 1.
For both models we see that the CRPS depends heavily on the variance of the process,
but seems unaffected by changes in the other parameters.

A potentially important difference between the two models is the computational
time required to fit them. The WN model is computationally more efficient than the
PN model; the main issue is computational complexity (see Supplementary Online
Material, Section S1). The PN requires, at each MCMC iteration, roughly 8 times as
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Fig. 1 Simulation study: CRPS comparing performances of the two proposed models. a WN. b PN

many operations as the WN to be fitted. If computational time is a relevant issue, then
the WN may be more attractive.

5 Real data

We model wave directions obtained as outputs from a deterministic computer model
implemented by Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA).
The computer model starts from a wind forecast model predicting the surface wind
over the entire Mediterranean. The hourly evolution of sea wave spectra is obtained
by solving energy transport equations using the wind forecast as input. Wave spectra
are locally modified using a source function describing the wind energy, the energy
redistribution due to nonlinear wave interactions, and energy dissipation due to wave
fracture. The model produces estimates every hour on a grid with 10 × 10km cells
(Speranza et al. 2004, 2007). The ISPRA dataset has forecasts for a total of 4941
grid points over the Italian Mediterranean. Over the Adriatic Sea area, there are 1494
points.

Our aim is to compare the performance of the WN and PN models. From a phe-
nomenological perspective, the PN model is arguably the more natural choice since
we are not wrapping a linear scale to obtain the directions. However, the WN model
does provide a suitable model and, as suggested above, it may be attractive in terms
of computational efficiency and interpretability of parameters. In the selected dataset,
the three sea states, calm, transition and storm are present. The sea state is defined
through the wave height (which is also supplied by the computer model output): when
this height is below 1m, we have calm, when it is between 1 and 2m we have tran-
sition (between calm and storm) and when it is greater than 2m we have a storm.
Wave directions vary more in calm than in storm. Here, we seek to learn about the
spatio-temporal structure of the data relying only on the specification of the correla-
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Fig. 2 Time windows for different sea states used for validation. The four panels represent the observed
wave direction over the entire area at: a 12:00 on 5/5/2010 (storm); b 00:00 on 6/5/2010 (transition between
storm and calm); c 00:00 on 7/5/2010 (calm); d 12:00 on 7/5/2010 (one-step prediction, calm)

tion function. We will use the information given by the wave heights in the models
proposed in Sect. 6.1.

We fitted the model using 100 spatial points× 10 time points 6 h apart (1000 obser-
vations in total) in order to have a dataset including all sea states. Notice that spatial
distances are evaluated in kilometers. Then, we developed four validation datasets,
each with 350 spatial points and 1 time point. Specifically, we have one dataset for
each sea state plus one for a one-step forward prediction. Finally, we used the model
fitted over the 1000 points to predict each validation dataset. Three of the datasets are
inside the time window used for model estimation, one in calm sea, one in transition
and one during a storm. The fourth validation set is at 12:00 on May 7, 2010, 6h after
the last time used for model fitting. The observed circular process in each of these four
time windows can be seen in Fig. 2. For each time window and model we computed
the mean CRPS and APE, see Table 1. Furthermore, we computed the mean CRPS
and APE over the four time windows.
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Table 1 Real data example:
CRPS and APE for the WN and
PN models computed on each
validation dataset

WN PN

Average

CRPS 0.655 0.629

APE 0.437 0.421

Calm

CRPS 1.450 1.398

APE 0.995 0.973

Transition

CRPS 0.082 0.074

APE 0.033 0.028

Storm

CRPS 0.063 0.042

APE 0.026 0.009

One-step prediction

CRPS 1.024 1.001

APE 0.693 0.674

Following our discussion in Sects. 2.1 and 3, we used the following priors:
a ∼ G(1.5, 1), c ∼ G(1.5, 1), α ∼ B(2, 2.5), β ∼ B(1.1, 2), γ ∼ B(2, 2.5),
σ 2
Y ∼ IG(2, 2), φ2

Y ∼ IG(1, 0.25), μY ∼ WrapN (π, 10), μZ1 ∼ N (0, 10),
μZ2 ∼ N (0, 10), ρZ ∼ N (0, 5)I (−1, 1), σ 2

Z ∼ IG(2, 2) and φ2
Z ∼ IG(1, 0.25).

Notice that all distributions are weakly informative. Also, the prior for β is centered
near 0.1, i.e., close to the separable model. Decay parameters in space and time are
related to the minimum and maximum distances in space and time, chosen to ensure
that they concentrate the probability mass over such intervals.

As we expected, the predictive capability of the two models, in terms of both CRPS
and APE, is poorest in a calm state, the variance being larger than in other states. On
the other hand, it is very accurate during a storm or a transition for both models as we
can see in Table 1. The PN always performs better that the WN. The largest difference
between the APE values of the two models (0.022) is observed during the calm sea
time window.

In Table 2 we give credible intervals and posterior mean estimates for the value of
the parameters of the correlation function. For both models non-separable correlation
structure is strongly supported. The point estimates of the spatial (c) and temporal (a)

decay are smaller in the PN model. Notice that data are bimodal whenever the wave
directions look like those in Fig. 2c, d, i.e., when over a large region at a given time a
storm is rotating or two different weather systems are meeting. Then, scalar statistics,
such as the overall mean direction or the overall concentration, may not be informative
regarding this behaviour.

In the Supplementary Online Material, we provide the parameter estimates for the
wrapped and projected distributionswith associated 95%credible intervals (Table S1).
Since μY is defined on a circular domain (recall that the prior on μY isWrapN (·, ·)),
following Jona Lasinio et al. (2012), we can compute a 95% credible interval as the
arc that contains the central 95% of the posterior samples.

123



Spatio-temporal circular models with non-separable… 343

Table 2 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the correlation
parameters for the WN and PN models

WN PN

a

PE 0.076 0.009

(CI) (0.019, 0.200) (0.005, 0.019)

c

PE 3.2 × 10−4 1.4 × 10−4

(CI) (1.3 × 10−4, 7.1 × 10−4) (7.0 × 10−4, 2.9 × 10−4)

α

PE 0.495 0.693

(CI) (0.288, 0.744) (0.562, 0.819)

β

PE 0.592 0.430

(CI) (0.158, 0.915) (0.101, 0.774)

γ

(PE) 0.797 0.872

(CI) (0.697, 0.897) (0.779, 0.939)

6 Extending the models

In the framework of the wrapped and projected normal models, introducing covari-
ate information to explain the angular response is straightforward. For the wrapped
approach we revise the linear version (4) to Y (s, t) = μY (s, t) + εY (s, t).

The external variables can be introduced by modeling the mean of the circular
process. Linear specification induces a circular likelihood for the regression coeffi-
cients that has infinitely many maxima of comparable size since this model wraps the
line infinitelymany times around the circle, (see for example Johnson andWehrly 1978;
Fisher and Lee 1992). To address this problem it is customary to limit the domain of
μY (s, t) using a link function, i.e., μY (s, t) = L(H (s, t) η), where L(·) : R → I
is the link function and I is some interval of R of length equal to the circular
variable period, in our case 2π . We employ the inverse tan link (Fisher and Lee,
1992).

If only categorical covariates are available we do not need a link function; we can
adopt an ANOVA representation for the relation between circular response and dis-
crete covariates. This is computationally more efficient (see Supplementary Online
Material, Section S1). Illustratively, suppose we have two predictors, with m1 and
m2 levels, respectively, say H1 = (H1,1, . . . , H1,m1) and H2 = (H2,1, . . . , H2,m2).
Then, to simplify the condition ensuring μY (s, t) ∈ I , we use the following
parametrization:

μY (s, t) =
m1∑

i=1

m2∑

j=1

μY,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j).
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Table 3 Real data example:
CRPS and APE for WNR,
WNA, PNR and PNA models
computed on each validation
dataset

WNR WNA PNR PNA

Average

CRPS 0.668 0.644 0.507 0.588

APE 0.502 0.431 0.496 0.450

Calm

CRPS 1.548 1.409 1.129 1.342

APE 1.158 0.997 0.985 0.984

Transition

CRPS 0.095 0.094 0.092 0.093

APE 0.033 0.030 0.046 0.038

Storm

CRPS 0.057 0.054 0.118 0.053

APE 0.016 0.013 0.110 0.012

One-step prediction

CRPS 0.971 1.018 0.689 0.866

APE 0.802 0.685 0.841 0.765

We can also introduce the covariates into the specifications for the variances,
creating σ 2

Y (s, t) and φ2
Y (s, t). Again, we consider ANOVA-type models, e.g.,

σ 2
Y (s, t) = ∑m1

i=1

∑m2
j=1 σ 2

Y,im2+ j1(H1(s,t)=H1,i) 1(H2(s,t)=H2, j) and φ2
Y (s, t) =

∑m1
i=1

∑m2
j=1 φ2

Y,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j).

We investigate two models, both with an ANOVA parametrization for σ 2
Y (s, t) and

φ2
Y (s, t)while for the mean, one has an ANOVA parametrization (WNA) and the other

has a regression form (WNR). Below, we obtain an ANOVA form if we work with
sea state and a regression form if we work with wave height. As prior distributions
we propose: N (·, ·) for ηY,i , i = 1, 2, . . ., that is, a customary prior for a regression
coefficient; WrapN (·, ·) for μY,i , i = 1, 2, . . ., the circular equivalent of a normal
prior overmean level; and IG(·, ·) forσ 2

Y,i andφ2
Y,i , i = 1, 2, . . ., that is, the customary

prior for a variance. To sample from the predictive distribution, we adopt the same
procedure used above for the WN model.

To introduce dependence on covariates in the projected normal model, following
Wang and Gelfand (2013), we revise Eq. (5) to Z�(s, t) = μZ�

(s, t) + ωZ�
(s, t) +

ε̃Z�
(s, t), � = 1, 2 where the mean of the linear bivariate process is a function of space

and/or time and ε̃Z�
(s, t)

i id∼ N (0, φ2
Z (s, t)). Then we marginalize over ωZ (s, t) to

obtain Z�(s, t) =μZ�
(s, t)+εZ�

(s, t), � = 1, 2.WewriteμZ�
(s, t) = H(s, t)ηZ�

, � =
1, 2 and φ2

Z (s, t) = ∑m1
i=1

∑m2
j=1 φ2

Z ,im2+ j1(H1(s,t)=H1,i)1(H2(s,t)=H2, j), where ηZ�
=

(ηZ�,1, ηZ�,2, . . .)
′. Note that, depending on the types of variables in H(s, t), continu-

ous or categorical, we can specify a (projected normal) regression (PNR) or (projected
normal) ANOVA (PNA). As noted in Wang and Gelfand (2014), there is complex
interaction among the parameters in the general projected normal, complicating inter-
pretation of the behavior of the resulting projected normal distributions as we vary
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Fig. 3 Real data example: CRPS surfaces for the WN (first column) and PN (second column) models,
under calm (first row), transition (second row) and storm (third row) states. Scales differ across states

them. With the same rationale used for the priors of the WNA and WNR models, we
propose ηZ�,i ∼ N (·, ·), l = 1, 2, i = 1, 2, . . . and φZ ,i ∼ IG(·, ·), i = 1, 2, . . ..
Here, again, we can sample from the predictive distribution adopting the same proce-
dure as illustrated in Sect. 3.1.
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Table 4 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the correlation
parameters of the WNA, WNR, PNA and PNR models

WNR WNA

a

PE 0.015 0.008

(CI) (0.005, 0.035) (0.003, 0.020)

c

PE 6.1 × 10−5 4.0 × 10−5

(CI) (2.0 × 10−5, 1.4 × 10−4) (2.0 × 10−5, 7.0 × 10−5)

α

PE 0.620 0.611

(CI) (0.445, 0.786) (0.434, 0.765)

β

PE 0.396 0.539

(CI) (0.070, 0.830) (0.181, 0.868)

γ

(PE) 0.705 0.936

(CI) (0.620, 0.794) (0.880, 0.976)

PNR PNA

a

PE 0.119 0.108

(CI) (0.042, 0.267) (0.042, 0.225)

c

PE 3.0 × 10−3 1.0 × 10−3

(CI) (1.01 × 10−3, 1.35 × 10−3) (4.60 × 10−4, 3.46 × 10−3)

α

PE 0.575 0.506

(CI) (0.345, 0.763 (0.340, 0.706)

β

PE 0.082 0.063

(CI) (0.000, 0.402) (0.000, 0.300)

γ

(PE) 0.561 0.541

(CI) (0.435, 0.677) (0.441, 0.645)

6.1 Application to the wave data

We fitted the new models using the same dataset as in Sect. 5. For the ANOVA
representation we used, as a categorical variable, the state of the sea while for the
regression setting we used the significant wave height. Adopting the same ratio-
nale as in Sect. 5, the prior distributions for the regression coefficients (ηY, j,i and
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Table 5 Real data example: mean point estimate (PE) and 95% credible interval (CI) of the parameters of
the WNA and WNR models

WNA

μY,calm σ 2
Y,calm φ2

Y,calm

PE 0.095 1.524 0.051

(CI) (5.232, 1.328) (0.959, 2.387) (0.039, 0.068)

μY,tran σ 2
Y,tran φ2

Y,tran

PE 5.998 0.541 0.018

(CI) (5.278, 0.490) (0.332, 0.876) (0.013, 0.026)

μY,storm σ 2
Y,storm φ2

Y,storm

PE 5.860 0.385 0.009

(CI) (5.254, 0.281) (0.246, 0.582) (0.007, 0.012)

WNR

ηY,0,calm ηY,1,calm σ 2
Y,calm φ2

Y,calm

PE 0.997 4.918 5.000 0.041

(CI) (0.360, 1.901) (2.433, 7.619) (2.313, 9.494) (0.027, 0.058)

ηY,0,tran ηY,1,tran σ 2
Y,tran φ2

Y,tran

PE 3.166 2.526 1.825 0.018

(CI) (0.763, 5.894) (0.174, 6.844) (1.013, 3.046) (0.012, 0.025)

ηY,0,storm ηY,1,storm σ 2
Y,storm φ2

Y,storm

PE 3.470 1.933 1.322 0.010

(CI) (0.666, 6.445) (0.064, 5.870) (0.660, 2.167) (0.007, 0.013)

ηZ�, j,i , j = 0, 1, i = calm, trans, storm) were all N (0, 10). For the ANOVA coef-
ficients, μY,i and μZ�,i , they were all WrapN (π, 10). For the σ 2

Y,i , they were all
IG(2, 2) and for the φY,i and φZ ,i they were all IG(1, 0.25). The prior distributions
for the other parameters were the same as those used in Sect. 5.

From Table 3 we see that the WNA model is generally preferred to the WNR.
For the projected models, APE and CRPS are almost indistinguishable between PNA
and PNR during transition. With one-step ahead predictions, the two criteria return
contradicting choices; PNR is preferred with CRPS, PNAwith the APE.With the calm
sea state, the CRPS chooses PNR while APE does not yield a clear decision. With the
storm state, both criteria are lower with the PNA model. Overall, our selection would
be the PNA model but, more importantly, we value the informative comparison our
approach enables. In fact, the remarkable improvement of PNA over PNR in storm
is likely due to the very high predictability of direction during a storm period. In this
regard, the PNmodels are generally preferred to theWNmodels except in stormwhere
WNR, WNA, and PNA are essentially equivalent.

To analyze the local behavior of model fitting, in Fig. 3 we report CRPS surfaces,
evaluated in calm, transition and storm for the two “best average APE” models, the
WNA (see Table 3) and PN (see Table 1). We see that the local behavior of the
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Table 6 Real data example: mean point estimate (PE) and 95% credible interval (CI) for the parameters
of the PNA and PNR models

PNA

μZ1,calm μZ2,calm φ2
Z ,calm

PE 0.841 −0.404 0.027

(CI) (−1.112, 2.706) (−2.408, 1.427) (0.014, 0.051)

μZ1,tran μZ2,tran φ2
Z ,tran

PE 0.697 −0.724 0.047

(CI) (−1.281, 2.640) (−2.600, 1.173) (0.018, 0.099)

μZ1,storm μZ2,storm φ2
Z ,storm

PE 0.615 −0.615 0.037

(CI) (−1.376, 2.615) (−2.543, 1.289) (0.016, 0.076)

σ 2
Z ,1 ρZ

(PE) 2.072 −0.161

(CI) (1.425, 2.938) (−0.320, 0.003)

PNR

ηZ1,0,calm ηZ1,1,calm ηZ2,0,calm ηZ2,1,calm φ2
Z ,calm

PE 0.997 0.875 −0.925 0.840 0.110

(CI) (−0.989, 3.026) (−1.160, 2.927) (−2.878, 1.091) (−1.162, 2.798) (0.033, 0.250)

ηZ1,0,tran ηZ1,1,tran ηZ2,0,tran ηZ2,1,tran φ2
Z ,tran

PE 0.916 0.976 −1.117 −0.554 0.127

(CI) (−1.195, 3.015) (−1.258, 3.117) (−3.322, 0.893) (−2.601, 1.649) (0.037, 0.322)

ηZ1,0,storm ηZ1,1,storm ηZ2,0,storm ηZ2,1,storm φ2
Z ,storm

PE 0.768 1.088 −0.974 −1.190 0.091

(CI) (−1.424, 2.899) (−1.083, 3.235) (−3.146, 1.177) (−3.281, 0.955) (0.031, 0.201)

σ 2
Z ,1 ρZ

PE 2.293 −0.191

(CI) (1.602, 3.212) (−0.358, −0.013)

models is very similar. The worst predictions are found around the Gargano peninsula
during calm. This is consistent with the physics of wave movement since, around the
peninsula, local winds play amore relevant role, inducing very high variability in wave
directions. The same behavior is shown with the other models. In terms of parameter
estimation theWNA and PNmodels suggest a non-separable model (Tables 2, 4) with
very strong spatial (c) and temporal (a) dependence. WNA suggests that a different
nugget is necessary for each sea state. In fact analyzing the credible intervals of these
parameters we observe that, for each sea state, nuggets are significantly different
among them as their credible intervals do not overlap (Table 5). For the projected
normal models (Table 6), all nugget credible intervals are substantially overlapping,
suggesting that one nugget should be enough to model all sea states.
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7 Conclusions

We have presented a range of models for spatio-temporal circular data based on the
wrapped and projected normal distributions, incorporating space–time dependence,
allowing explanatory variables, introducing a nugget, implementing kriging and fore-
casting. The models based on the projected normal are more flexible since they allow
bimodal and asymmetric distributions while the wrapped normal is unimodal and
symmetric. On the other hand, the wrapped normal models are easy to interpret and
are computationally better behaved and more efficient. Predictions obtained under the
two models are very close and almost indistinguishable when data are roughly uni-
modal and symmetric (see Supplementary Online Material, Section S2). Then, if fast
computation is sought, WN models become attractive.

The projected normal process can be straightforwardly extended to general direc-
tional fields on the sphere since the projected normal distribution is well defined in
this case, see Mardia and Jupp (1999). The wrapped Gaussian process is not easily
extended to a sphere. In fact, we are unaware of any approach to wrap multivariate
linear data onto spheres. Conceptually, such wrapping would not appear to be well
defined.

Future work will find us enriching wrapped modeling to allow asymmetry through
the use of skewed distributions. Skewness is easy to introduce by wrapping skew
normal distributions. In a completely different direction, we are also extending the
modeling to explore spatio-temporal data consisting of geo-coded locations with peri-
odic (in time) behaviour that can be represented as a circular variable. There, we work
with trivariate GPs in space and time, incorporating temporal projection.
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