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Abstract The generalized linear model is a very important tool for analyzing real
data in several application domains where the relationship between the response and
explanatory variables may not be linear or the distributions may not be normal in all
the cases. Quite often such real data contain a significant number of outliers in relation
to the standard parametric model used in the analysis; in such cases inference based
on the maximum likelihood estimator could be unreliable. In this paper, we develop a
robust estimation procedure for the generalized linear models that can generate robust
estimators with little loss in efficiency. We will also explore two particular special
cases in detail—Poisson regression for count data and logistic regression for binary
data. We will also illustrate the performance of the proposed estimators through some
real-life examples.
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1 Introduction

Many real-life problems require suitable techniques to describe some response data
through a set of related explanatory variables. Parametric regression helps the experi-
menter tomodel such scenarios bymeans of some pre-specified functional relationship
between response and explanatory variables described through a set of real parameters.
The most widely used regression model is linear regression for continuous responses.
In practice, though, there are lots of different types of response data like count data,
binary response data and others which arise frequently in real-life experiments. The
generalized linear model is the general tool that can be used with all such types of
response variables. It allows the experimenter to model the response variables by any
distribution within a large family of distributions, namely the exponential family, and
the expected response by any (suitably smooth) function of a linear combination of
the explanatory variables. The ordinary linear regression is a special case of the above.

The classical estimation procedure in this context is the maximum likelihood esti-
mation method which is asymptotically efficient but lacks robustness against outliers
and model misspecification. In many real-life experiments, outliers show up as a mat-
ter or routine which influence the maximum likelihood estimators (MLEs) and often
produce nonsensical results. So, there is a real need for developing robust estimation
procedures for the generalized linear regression model. Although there is a crowded
field of robust estimators in the ordinary linear regression problem, there exist only a
few robust estimators for the generalized linear model. Cantoni and Ronchetti (2001)
and Hosseinian (2009) present and discuss some such approaches that bound the Pear-
son residuals. There is another pathway in the literature which consists of bounding
the unscaled deviance components in some special cases; see, eg., Bianco and Yohai
(1996), Croux andHaesbroeck (2003) andBianco et al. (2013). Aeberhard et al. (2014)
provides a comparison between the two approaches in case of the negative binomial
responses. However, most of these approaches consider the explanatory variables to
be stochastic.

In this paper, we will develop an estimation procedure for the generalized linear
model from a design perspective, where we will assume that the explanatory variables
are fixed; each response is independent and follows the same distribution specified by
the generalized linear model, but has different distributional parameters depending on
the values of the corresponding explanatory variables. The idea is motivated by the
work of Ghosh and Basu (2013) where a robust minimum divergence estimation pro-
cedure was developed under the general setup of independent but non-homogeneous
observations using the density power divergence. This work considered the case of
simple linear regression in detail. Here, we will follow a similar approach to develop
the minimum density power divergence estimators of the parameters of the general-
ized linear model, which will be highly robust in presence of influential observations
and also have comparable high efficiency. Like Cantoni and Ronchetti (2001) and
Hosseinian (2009), our approach also bounds the Pearson residuals; hence the term
“robustness” in this paper refers to bounded-influence robustness.

The rest of the paper is organized as follows. In Sect. 2 we briefly describe the
model and develop the corresponding minimum density power divergence estimators.
We also prove the asymptotic properties and present the influence function analysis of
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the proposed estimator. We also present a short discussion on a data-driven choice of
the tuning parameter α in Sect. 2.5. We will then explore the special case of Poisson
regression for count data and logistic regression for binary data in Sects. 3 and 4,
respectively. Section 5 contains the application of the proposedmethod to two real-life
data sets. A brief comparison with some of the existing robust estimators is provided
in Sect. 6. Finally the paper ends with some concluding remarks in Sect. 7. Some
additional numerical examples are provided in the Supplementary Material.

2 The minimum density power divergence estimator in generalized
linear models

2.1 The generalized linear model (GLM)

In generalized linear models, the response variables Yi are independent and follow the
general exponential family of distributions having density

f (yi ; θi , φ) = exp

{
yiθi − b(θi )

a(φ)
+ c(yi , φ)

}
, (1)

where the canonical parameter θi is a measure of location depending on the fixed
predictor xi and φ is the nuisance scale parameter. The mean μi of Yi satisfies the
relation g(μi ) = ηi = xTi β, where g is a monotone and differentiable link function
and ηi = xTi β is the linear predictor. Our main parameter of interest is the regression
coefficient β and φ acts as the nuisance parameter which shows up only in the error
variance. Clearly the generalized linear model allows us to choose several possible
densities f from the exponential family and the link function g to form a wide variety
of regression models.

By choosing f to be the normal density and g to be the identity link function
the generalized linear model reduces to the usual normal linear regression model.
Further, choosing f as the Poisson density and g as the log link g(μ) = log(μ),
we get the Poisson regression case which is useful in modeling ordinal data and
cases of overdispersion. For binomial f , choosing the Logit link function g(μ) =
log(μ/(1 − μ)) or the Probit link function g(μ) = Φ−1(μ) generates the logistic
and the Probit regression models, respectively, which are useful in modeling binary
response variables.

2.2 The minimum density power divergence estimator (MDPDE)

We will define the minimum density power divergence estimators (MDPDEs) for the
GLMwith general density f and link function g so that we can estimate the regression
coefficients for any regression model as a special case of it by substituting the form of
f and g. In the later sections, we will consider some of these special cases in detail.
The density power divergence (DPD) measure was developed by Basu et al. (1998) in
terms of a tuning parameter α ≥ 0; the divergence between two densities h and f is
given by
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272 A. Ghosh, A. Basu

dα(h, f ) =
∫

f 1+α − 1 + α

α

∫
f αh + 1

α

∫
h1+α, if α > 0,

and d0(h, f ) = limα→0 dα(h, f ) = ∫
h log(h/ f ). In practice, h represents the data

density and f represents the model density (which depends on the unknown parame-
ter). One then minimizes this divergence over the parameter space to get the minimum
divergence estimate of the parameter. The situation is substantially simplified in case
of the DPD because in this case the data distribution may be represented by ordinary
empiricals, rather than its smoothed version.

Suppose we have a data set (yi , xi ); i = 1, . . . , n from the GLM with density f
given by Eq. (1) and a general link function g(μi ) = ηi = xTi β. Further assume that
the independent variables xi are given and fixed so that we are indeed considering
a fixed carrier generalized linear model. Then we have the setup of independent but
non-homogeneous observations, where y1, . . . , yn are independent and yi has density
fi (.; (β, φ)) = f (yi ; θi , φ) for all i = 1, . . . , n. Hence, we can use the approach of
Ghosh andBasu (2013), where theMDPDE for the independent but non-homogeneous
observations was defined. Following this approach, the MDPDE of (β, φ) has to be
obtained by minimizing

Hn(β, φ) = 1

n

n∑
i=1

Vi (Yi ; (β, φ)),

where Vi (Yi ; (β, φ)) =
∫

fi (y; (β, φ))1+αdy −
(
1 + 1

α

)
fi (Yi ; (β, φ))α.

Note that, in the usual GLM estimation, conventionally we use a robust estimate
of scale parameter φ and then estimate the regression parameter β. One can perform
simultaneous robust estimation of both the parameters, as inHuber’s Proposal 2 (Huber
1983) in the linear case; however, such exceptions to the above convention are rare.
Here, in the proposed minimum DPD estimation, we do simultaneously estimate β

and φ robustly by just minimizing Hn(β, φ) with respect to both the parameters. The
estimating equation of the parameters are then given by

∑n
i=1 ∇Vi (Yi ; (β, φ)) = 0,

or,

n∑
i=1

[∫
ui (y; (β, φ) fi (y; (β, φ))1+αdy − ui (Yi ; (β, φ) fi (Yi ; (β, φ))α

]
= 0.

where ui (y; (β, φ)) = ∇ log( fi (y; (β, φ));∇ represents the derivative with respect to
(β, φ), with ∇β and ∇φ denoting the indicated individual derivatives. Then, a simple
calculation shows that

∇β log( fi (yi ; (β, φ)) = (yi − μi )

Var(yi )g′(μi )
xi = K1i (yi ; (β, φ))xi ,

∇φ log( fi (yi ; (β, φ)) = − (yiθi − b(θi ))

a2(φ)
a′(φ) + ∂

∂φ
c(yi , φ) = K2i (yi ; (β, φ)),
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where K1i , K2i are the indicated functions. Thus, our estimating equations become

n∑
i=1

xi

[∫
K1i (y; (β, φ)) fi (y; (β, φ))1+αdy − K1i (yi ; (β, φ)) fi (yi ; (β, φ))α

]
= 0,

(2)
n∑

i=1

[∫
K2i (y; (β, φ)) fi (y; (β, φ))1+αdy − K2i (yi ; (β, φ)) fi (yi ; (β, φ))α

]
= 0.

(3)

However, if we want to ignore the nuisance parameter φ, as per the usual practice,
and estimate β taking φ fixed (or, substituted suitably), it is enough to consider only
estimating Eq. (2). Further, for α = 0, we have

∫
(yi − μi )

Var(yi )
g′(μi )xi fi (yi ; (β, φ))1+αdy = 0,

and hence the estimating equations for β (ignoring φ) simplify to

n∑
i=1

(Yi − μi )

Var(Yi )g′(μi )
xi = 0.

Note that this is just the maximum likelihood estimating equation and also is the same
as the ordinary least squares (OLS) estimating equation for β assuming φ to be fixed.
Thus, the MDPDE of β with α = 0 equals the maximum likelihood estimator as
well as the OLS estimator of β. That is the MDPDE proposed here is just a natural
generalization of the MLE.

Also it is interesting to note that if our density f is such that
∫

f (y; θi , φ)1+αdy
is independent of the location parameter θi , like the normal density, then we have∫ (yi−μi )

Var(yi )g′(μi )
xi fi (yi ; (β, φ))1+αdy = 0 and hence the estimating Eq. (2) simplifies

to
n∑

i=1

(Yi − μi )

Var(Yi )g′(μi )
xi fi (Yi ; (β, φ))α = 0. (4)

2.3 Asymptotic properties

We will now derive the joint asymptotic distribution of the minimum density power
divergence estimator (β̂, φ̂) of the parameters (β, φ) obtained by solving the esti-
mating Eqs. (2) and (3). For simplicity, we will assume that the true data-generating
distribution also belongs to the model density with parameters (βg, φg). Define, for
i = 1, . . . , n and j, k = 1, 2,
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γ j i = γ 1+α
j i (β, φ) =

∫
K ji (y; (β, φ)) fi (y; (β, φ))1+αdy,

and γ jki = γ 1+α
jki (β, φ) =

∫
K ji (y; (β, φ))Kki (y; (β, φ)) fi (y; (β, φ))1+αdy,

so that N 1+α
i (β, φ) =

∫
ui (y; (β, φ) fi (y; (β, φ))1+αdy =

(
γ1i xi
γ2i

)
,

M1+α
i (β, φ) =

∫
ui (y; (β, φ))ui (y; (β, φ))T fi (y; (β, φ))1+αdy

=
(

γ11i xi xTi γ12i xi
γ12i xTi γ22i

)
.

Now, put Γ (α)
j = Diag(γ j i )i=1,...,n and Γ

(α)
jk = Diag(γ jki )i=1,...,n for j, k = 1, 2 and

XT = [x1, . . . , xn]. Then we have

Ψn(β, φ) = 1

n

n∑
i=1

M1+α
i (β, φ) = 1

n

(
XTΓ

(α)
11 X XTΓ

(α)
12 1

1TΓ
(α)
12 X 1TΓ

(α)
22 1

)
; (5)

Ωn(β, φ) = 1

n

n∑
i=1

[
M1+2α

i (β, φ) − N 1+α
i (β, φ)(N 1+α

i (β, φ))T
]

(6)

= 1

n

(
XT [Γ (2α)

11 − Γ
(α)T
1 Γ

(α)
1 ]X XT [Γ (2α)

12 − Γ
(α)
1 Γ

(α)
2 ]1

1T [Γ (2α)
12 − Γ

(α)
1 Γ

(α)
2 ]X 1T [Γ (2α)

22 − Γ
(α)T
2 Γ

(α)
2 ]1

)
. (7)

Then, the asymptotic distribution of (β̂, φ̂) follows along the lines of Theorem 3.1 of
Ghosh and Basu (2013), provided the Assumptions (A1)–(A7) hold in case of the gen-
eralized linearmodels. These assumptions are presented in the Supplementarymaterial
to this paper. Note that, Assumptions (A1)–(A3) hold directly from the properties of
the exponential family of distributions.

Theorem 1 Under Assumptions (A1)–(A7) of Ghosh and Basu (2013), there exists
a consistent sequence (β̂n, φ̂n) of roots to the minimum DPD estimating Eqs. (2) and

(3). Also, the asymptotic distribution ofΩ
− 1

2
n Ψn[√n((β̂n, φ̂n)− (βg, φg))] is (p+1)-

dimensional normal with mean 0 and variance Ip+1, the identity matrix of dimension
p + 1, where Ψn = Ψn(β

g, φg) and Ωn = Ωn(β
g, φg).

Note that the results of Theorem1would have been a direct consequence of standard
M-estimation results provided the covariates are assumed to be stochastic. However,
in this paper we are considering fixed design cases with non-stochastic covariates
and the new Assumptions (A1)–(A7) are just the corresponding generalizations of
the original assumptions of Huber (1964). See Ghosh and Basu (2013) for a more
detailed discussion on these new assumptions. Similar generalizations in the context
of the influence function in relation to the approach of Hampel et al. (1986) will be
considered in the next subsection.

It follows from above theorem that the reciprocal of the matrixΨ −1
n ΩnΨ

−1
n gives a

estimate of the asymptotic efficiency of the MDPDEs (β̂n, φ̂n). Though this depends
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on the sample size n and the given covariates xi , it will give a reasonable estimate of
the asymptotic efficiency for large n.

Further, note that the asymptotic covariance of the estimators β̂n and φ̂n is not
in general 0 and hence these estimators are not asymptotically independent for all
GLMs. However, for some particular cases including the normal linear regression
case, they turn out to be independent. One possible set of sufficient conditions for
their independence are γ 1+2α

12i = 0 and γ 1+α
1i γ 1+α

2i = 0 for all i . These conditions hold
for the normal linear regression case.

2.4 Influence function

To illustrate the robustness properties of the proposed estimation methodology for
the generalized regression model, we will now consider the influence function of the
MDPDE of the parameter θ = (β, φ). For this we need to consider them in terms of a
statistical functional at the true data-generating distribution G = (G1, . . . ,Gn). Let
T β

α (G) and T φ
α (G) denote the minimum DPD functionals for the parameters β and φ,

respectively. Let Tα(G) = (T β
α (G)T , T φ

α (G))T , which is defined by

1

n

n∑
i=1

dα(gi (.), fi (.; Tα(G))) = min
θ∈Θ

1

n

n∑
i=1

dα(gi (.), fi (.; θ)),

where gi is the probability density function corresponding to Gi . We consider the
contaminated density gi,ε = (1−ε)gi +εδti where ti is the point of contamination and
Gi,ε denotes the corresponding distribution function for all i = 1, . . . , n. Let θ

i0
ε =

Tα(G1, ·,Gi0−1,Gi0,ε, ·,Gn) be the minimum DPD functional with contamination
only in the i0th direction. Then a fairly straightforward (albeit lengthy and tedious)
calculation shows that the influence function of Tα for contamination at the direction
i0 will be

IFi0(ti0 , Tα,G) = Ψ −1
n

1

n
[ fi0(ti0; (β, φ))αui0(ti0; (β, φ)) − N 1+α

i0
]

= Ψ −1
n

1

n

⎛
⎝ [ fi0(ti0; (β, φ))αK1i0(ti0; (β, φ)) − γ1i0 ]xi

fi0(ti0; (β, φ))αK2i0(ti0; (β, φ)) − γ2i0

⎞
⎠ .

Note that for any fixed sample size n and any given (finite) values of Xi s, if Ψn and
γ j i0s are assumed to be bounded, the influence function of the MDPDE of (β, φ) will
be bounded with respect to the contamination in any direction i0 provided the terms
fi (ti ; (β, φ))αK ji (ti ; (β, φ)) are bounded for all i and j = 1, 2. Under assumptions
(A1)–(A7) of Ghosh and Basu (2013), Ψn and γ j i0s are necessarily bounded. This can
be seen to hold for the majority of GLMswith α > 0 because of the exponential nature
of the density function and the polynomial nature of the functions K ji (ti ; (β, φ)). This
demonstrates the robust nature of theMDPDE inmostGLMswithα > 0.However, for
α = 0 the term fi (ti ; (β, φ))αK ji (ti ; (β, φ)) = K ji (ti ; (β, φ)) is clearly unbounded
implying the non-robust nature of the MLE in case of any GLM.
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276 A. Ghosh, A. Basu

As discussed before, in the particular case when γ 1+2α
12i = 0 and γ 1+α

1i γ 1+α
2i = 0 for

all i (like the normal linear regression case), the minimum density power divergence
estimator of β and φ become asymptotically independent and we can also separate out
the influence function for the minimum density power divergence estimator of β and
φ. Due to the special form of the matrix Ψn in this case, these two influence functions
simplify, respectively, to

IFi0(ti0 , T
β
α ,G) = (XTΓ

(α)
11 X)−1xi0 [ fi0(ti0; (β, φ))αK1i0(ti0; (β, φ)) − γ1i0 ],

and IFi0(ti0 , T
φ
α ,G) = (1TΓ

(α)
22 1)−1[ fi0(ti0; (β, φ))αK2i0(ti0; (β, φ)) − γ2i0 ].

As in Ghosh and Basu (2013), in this context also we can define some measures of
sensitivity based on the influence function, which is presented in the Supplementary
material to this paper.

2.5 A data-driven choice of the tuning parameter α

The minimum DPD estimators depend on the choice of the tuning parameter α ≥ 0
defining the divergence. The properties of the MDPDE in the case of independent
and identically distributed data have been extensively studied in the literature and it
is well known that there is a trade-off between efficiency and robustness for varying
α. Increasing α leads to greater robustness at the cost of efficiency. Ghosh and Basu
(2013, 2015) also observed similar trade-offs for the linear regression case with fixed
covariates. Here, we have observed the same phenomenon in the context of the pro-
posed MDPDE for the Poisson and the logistic regression models (see Sects. 3 and 4
below). Therefore, it is necessary to carefully choose the tuning parameter α while
using theMDPDE in any of the GLMs. In this section, we will try to present a possible
approach to choose the optimum value of α based on the observed data at hand.

In the context of the i.i.d. data problems, some data-driven choices for selecting
the optimum tuning parameter in the minimum DPD estimation context have been
proposed by Hong and Kim (2001) and Warwick and Jones (2005). Ghosh and Basu
(2015) extended these approaches to the case of independent but non-homogeneous
data and illustrated this approach for the case of linear regression through detailed sim-
ulation studies. In this present paper, we consider the GLM from its design perspective
so that given the values of the explanatory variables xi the response yi is independent
but not identically distributed. So, we can apply the results of Ghosh and Basu (2015)
to choose a data-driven optimum choice of the tuning parameter α. Accordingly, we
need to choose α by minimizing a consistent estimate of the mean square error (MSE)
of the MDPDE θ̂ = (β̂α, φ̂α) of the true parameter value θ g = (βg, φg), defined as
E[(θ̂α − θ g)T (θ̂α − θ g)], in the GLMs. The true parameter represents the larger com-
ponent of a possible mixture distribution in the spirit of Warwick and Jones (2005). It
follows from the asymptotic distribution of the MDPDE that, asymptotically

E[(θ̂α − θ g)T (θ̂α − θ g)] = (θα − θ g)T (θα − θ g) + 1

n
Trace[Ψ −1

n ΩnΨ
−1
n ], (8)
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where Ψn and Ωn are as defined in Sect. 2.3 and θα = (βα, φα) is the parameter value
minimizing the DPD measure between the true and model densities corresponding
to tuning parameter α. Further, from the expressions of Ψn and Ωn it is sufficient
to find some consistent estimator of the quantities γ j i and γ jki for j, k = 1, 2 and
i = 1, . . . , n, which can be done by replacing the parameter value (β, φ) in their
expressions by the corresponding MDPDEs (β̂α, φ̂α). Let us denote the resulting
matrices by Ψ̂n and Ω̂n . To estimate the bias term, we will use (β̂α, φ̂α) as a consistent
estimate of (βα, φα). For estimating θ g , we can use several “pilot” estimators which
will in turn affect the final choice of the tuning parameter. Ghosh and Basu (2015)
suggested, on the basis of an extensive simulation study, the choice of the MDPDE
with α = 0.5 as a reasonable pilot estimator. For any particular generalized model,
we can find such a “good” pilot estimator through some simulation studies, and then
use the observed data to choose the corresponding optimum tuning parameter value.
Some examples illustrating this approach of choosing tuning parameter in case of the
GLM is provided in the supplementary material.

Another perspective of the criterion (8) can be obtained by noting its similarity with
the robust version of AIC (Heritier et al. 2009, p. 73, Eq. (3.31)) and its generalized
version the GAIC (Heritier et al. 2009, p. 159). Although the trace term is different, the
formulations are clearly in similar spirit which gives another interesting interpretation
of this criterion.

Note that, the robustness of the proposed MDPDE, when the tuning parameter α

is estimated from the data, also depends directly on the robustness of the estimation
of α. Using the chain rule of derivatives, the robustness of the MDPDE with a data-
driven α can be quantified by noting that its influence function is a multiple of the
influence function of the fixed α estimator as obtained in Sect. 2.4 and the multiplier
is nothing but the influence function of the estimator of optimum α itself. For the
tuning parameter selection process described above, it can be verified empirically
that the robustness of the optimum α estimator depends directly on that of the “pilot”
estimator used; seeGhosh andBasu (2015) andSection3of the supplementarymaterial
of this paper for some numerical illustrations. Our experience in this regard indicates
that the suggested choice of the MDPDE with α = 0.5 as the “pilot” estimator is
quite robust with respect to contamination in the data leading to robust selection of α.
However, further research including more detailed empirical studies will improve our
understanding of this complex issue; we hope to take up such research in the future.

Another important issue requires consideration in connection with the data-driven
choice of the tuning parameterα. The asymptotic properties derived in Sect. 2.3 pertain
to a fixed α. What about the asymptotic results under this data-driven choice? Clearly,
in that case the final result will depend on the process of selecting the parameter α, and
how good that process is. When the assumed model holds, and the data are pure, the
classicalmethodwouldworkwell and the chosen tuning parameterα should preferably
remain close to 0. Large-scale simulation studies, not presented here, indicate that
the adaptively chosen α is equal to or close to 0 in the overwhelming majority of
the cases when the tuning parameter is adaptively selected using the Warwick and
Jones (2005) approach and the data are pure; this phenomenon is observed for several
different GLMs. While we do not have a general proof at this moment, our conjecture
is that the estimator corresponding to the adaptively chosen tuning parameter will be
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278 A. Ghosh, A. Basu

asymptotically equivalent to themaximum likelihood estimator under themodel; at the
least, the distribution of the estimator chosen through this adaptive routine will provide
a good large sample approximation to that of the maximum likelihood estimator.

The description of the previous paragraph parallels the result of Theorem 1, where
the asymptotic distribution for fixed α is provided under the model. However, when
the model is misspecified or the data are contaminated, the description becomes more
complicated. The theoretical optimal α then corresponds to the estimator which min-
imizes the sum of the square of the theoretical bias and the trace of the covariance
matrix. We feel that whenever the data-driven estimate of α is consistent for the true
(fixed) optimal value, the large sample asymptotic distribution of the fixed α estima-
tor will provide a good approximation for the distribution of the adaptively chosen
estimator. Clearly more research is needed on this topic.

3 Special Case I: Poisson regression for count data

The most useful regression tool for count data is the Poisson regression model where,
given the values of explanatory variables, the response variables independently follow
the Poisson distribution but with different mean parameters depending on the corre-
sponding values of the explanatory variable. More precisely, let (y1, x1), . . . , (yn, xn)
be the sample observations from the Poisson regression model. Assume that the values
xi of the explanatory variable are fixed. Then, in the Poisson regression model, the
count variables yi are assumed to be independent and have Poisson distributions with

E(yi |xi ) = e(xTi β)

and we want to estimate the parameter β efficiently and robustly.

3.1 The MDPDE for Poisson regression

Poisson regression is indeed a special case of GLM with known shape parameter
φ = 1 and θi = ηi = xTi β, b(θi ) = eθi and c(yi ) = − log(yi !). Since here the mean

is μi = e(xTi β) = eηi , the link function g is the natural logarithm function and the
variance of yi is also e(xTi β). Thus, we can estimate the unknown parameter β using
our minimum density power divergence estimation procedure as described earlier.
Using the above notation and the form of the Poisson distribution, the minimum DPD
estimating equation for α ≥ 0 becomes

n∑
i=1

[γ1i (β) − (yi − e(xTi β)) fi (y;β)α]xi = 0. (9)

where fi (y;β) is the probability mass function of the Poisson distribution with mean
e(xTi β). In particular, for α = 0, the above estimating equation simplifies to the maxi-
mum likelihood estimating equation given by
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n∑
i=1

(yi − e(xTi β))xi = 0. (10)

However, for α > 0, there is no simplified form for γ1i and γ11i so that we need to
compute this quantities numerically and then numerically solve the estimating Eq. (9)
with respect to β.

3.2 Properties of the MDPDE

The asymptotic properties of theMDPDEofβ under Poisson regressionmodel follows
directly from Theorem 1 (see Section 2 of the supplementary material for derivation).

Corollary 1 Under Assumptions (A1)–(A7) of Ghosh and Basu (2013), there exists
a consistent sequence β̂n = β̂

(α)
n of roots to the minimum DPD estimating Eqs. (9) for

the tuning parameter α. Also, asymptotically,

(XT [Γ (2α)
11 (βg) − Γ

(α)2
1 (βg)]X)−

1
2 (XTΓ

(α)
11 (βg)X)(β̂n − βg) ∼ Np(0, Ip).

Thus, the asymptotic efficiency of the different MDPDE β̂n = β̂
(α)
n of β can be

measured based on the asymptotic variance

AVα(βg) = (XTΓ
(α)
11 (βg)X)−1(XT [Γ (2α)

11 (βg) − Γ
(α)2
1 (βg)]X)(XTΓ

(α)
11 (βg)X)−1,

which can be consistently estimated by replacing βg with β̂n in its expression, i.e.,
ÂVα = AVα(β̂n). Thus, an estimate of the relative efficiency of the differentMDPDEs
of the i th component of the parameter vector β with respect to its MLE (or the OLS
estimator) is given by

R̂Ei,α = i th diagonal entry of ÂV0

i th diagonal entry of ÂVα

× 100.

Clearly, the above estimate of the relative efficiency depends on the sample size
n and the choice of the given explanatory variables xi . But it can be shown that the
consistency of the estimator β̂n implies that the above measure gives us a consistent
estimator of the asymptotic relative efficiency if the xi s are chosen suitably. For exam-
ple, XT X must be bounded. We have presented the empirical value of this measure
of relative efficiency for different sample sizes n = 50, respectively, under several
different cases in Table 1; the same for n = 100 is provided in the supplementary
material. We have reported six cases which are defined based on the true values of the
regression coefficients β = (β0, β1, . . . , βp) and the given values of the explanatory
variables xi (i = 1, . . . , n) as follows: the parameter p = 2 in the first four cases;
Cases I and II have xi = (1,

√
i) while Cases III and IV have xi = (

1, 1
i

)
; β = (1, 1)

for Cases I and III and β = (1, 0.5) for Cases II and IV. The parameter p = 3 in

Cases V and VI with common xi =
(
1,

√
i, 1

i2

)
and β = (1, 1, 1), β = (2, 1, 0.5),
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respectively. All the simulations are done based on 1000 replications. It is clear from
the tables that the loss of efficiency is quite negligible for the MDPDE with small
positive α under each of the cases considered here. Even for large positive α near 0.5
we can get quite high efficiency if xi s are relatively small.

Next, to see the robustness of the MDPDE under the Poisson regression model, we
will use the results from the Sect. 2.4. The influence function of the MDPDE in the
direction i0 simplifies to

IFi0(ti0 , T
β
α ,G) = (XTΓ

(α)
11 X)−1xi0

⎡
⎣ (ti0 − e(xTi0

β)
)

(ti0 !)α
eα[ti0 (xTi0

β)+e
(xTi0

β)] − γ1i0

⎤
⎦ .

Clearly, whenever the inverse of the first matrix exists, this influence function is
bounded in ti0 for anyα > 0 implying the robustness of theMDPDEwithα > 0. How-
ever, at α = 0, γ1i0 = 0 and hence the influence function above further simplifies to

IFi0(ti0 , T
β
0 ,G) = (XTΓ

(0)
11 X)−1xi0(ti0 − e(xTi0

β)
),

which is linear and hence unbounded in ti0 . This indicates the non-robustness of the
MLE and equivalently OLS of the regression parameter in case of the Poisson regres-
sion model. Figure 1 shows the influence function of theMDPDE for different α under
several specific Poisson regression models and for sample size n = 50; the same for
n = 100 is presented in the Supplementary material. The redescending nature of the
influence function with increasing α is quite clear in all the figures.

Although these implications are visible inTable 1 andFig. 1, itmay be of importance
to highlight them clearly in the text. There is a clear trade-off between robustness and
efficiency over increasing α in this context. Small values of α provide a high degree of
asymptotic efficiency; large values of α provide greater bounded-influence robustness
as is evidenced by their highly stable influence functions.

4 Special Case II: logistic regression for binary data

Another important special case of the GLM is the logistic regression model which is
used to model any categorical or binary dependent variable in terms of some explana-
tory variable. Given the value of the explanatory variable xi , the binary outcome
variable yi (or the binary transform of the categorical variable) is assumed to follow a
Bernoulli distribution with success probability πi depending on the explanatory vari-
able xi (for each i = 1, . . . , n). To ensure that the predicted values of πi are in the
interval (0, 1), in the logistic model it is assumed that

πi = π(xi ) = ex
T
i β

1 + ex
T
i β

.

We will now assume that the xi s are fixed and consider the logistic regression model
from its design perspective to estimate β efficiently and robustly.
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Fig. 1 Plot of the influence function ofMDPDEs of the slope parameter β1 for different α (solid line α = 0,
dotted line α = 0.1, dashed line α = 0.5 and dashed-dotted line α = 1) and direction i0 of contamination

with n = 50. Here, Model (I)–(III) have xi = (1,
√
i)T , xi =

(
1, 1

i

)T
and xi =

(
1, 1

i , 1
i

)T
, respectively,

with β j = 1 for all j . a Model I, i0 = 1. b Model I, i0 = 20. c Model II, i0 = 1. d Model II, i0 = 20.
eModel III, i0 = 1. fModel III, i0 = 20

4.1 The MDPDE for logistic regression

We can treat the logistic regression model as a particular case of the GLMwith known
shape parameter φ = 1 and θi = ηi = xTi β, c(yi ) = 0. The distribution of yi is
Bernoulli with mean μi = πi = eηi

1+eηi , and var(yi ) = πi (1 − πi ) = eηi

(1+eηi )2
. Thus,

the link function g is the logit function and sowe can use theminimumDPDestimation
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procedure discussed in Sect. 2 to estimateβ robustly. Using the above notations and the
form of the Bernoulli distribution, the minimum DPD estimating equation for α ≥ 0
is given by,

n∑
i=1

[
ex

T
i β(eα(xTi β) − 1)

(1 + ex
T
i β)2+α

−
(
yi − ex

T
i β

1 + ex
T
i β

)
eα(xTi β)yi

(1 + ex
T
i β)α

]
xi = 0, (11)

which can be further simplified to

n∑
i=1

(1 − 2yi )e
(xTi β)(1−yi ) (eα(xTi β) + ex

T
i β)

(1 + ex
T
i β)2+α

xi = 0. (12)

We can easily solve the above with respect to β to compute theMDPDE for any α ≥ 0.
In particular, for α = 0, Eq. (11) simplifies to

n∑
i=1

(
yi − ex

T
i β

1 + ex
T
i β

)
xi = 0, (13)

which is the maximum likelihood estimating equation. Once again the minimumDPD
estimating equation is just a generalization of the maximum likelihood estimating
equation.

4.2 Properties of the MDPDE

We will now present the asymptotic distribution of the MDPDE of β in the logistic
regression case as it follows fromTheorem1. In this special case,we have the following
result.

Corollary 2 Under Assumptions (A1)–(A7) of Ghosh and Basu (2013), there exists
a consistent sequence β̂n = β̂

(α)
n of roots to the minimum DPD estimating Eq. (12) at

the tuning parameter α. Also, the asymptotic distribution of

(
n∑

i=1

ex
T
i βg (eα(xTi βg) + ex

T
i βg

)2

(1 + ex
T
i βg

)4+2α
(xi x

T
i )

)− 1
2

×
(

n∑
i=1

ex
T
i βg (eα(xTi βg) + ex

T
i βg

)

(1 + ex
T
i βg

)3+α
(xi x

T
i )

)
(β̂n − βg)

is p-dimensional normal with mean 0 and variance Ip.

As argued in Sect. 3.2 for the Poisson regression, the asymptotic efficiency of the
different MDPDE β̂n = β̂

(α)
n of β for the logistic regression can also be measured in

terms of its asymptotic variance AVα(βg), which can be again estimated consistently
by ÂVα = AVα(β̂n).
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As in the Poisson regression case, here also we can compute the values of relative
efficiencies of the MDPDEs of the coefficients of the logistic regression model based
on ÂVα . This measure of relative efficiency clearly depends on the value of β and
Xi s. We present the empirical estimate of the relative efficiencies of the MDPDE in
case of the logistic regression model in Table 2 for sample size n = 50 and the same
for n = 100 is presented in the Supplementary material. These are calculated based
on a simulation study with 1000 replications under several different cases of logistic
regressions. These cases are defined based on the given values of the explanatory
variables xi (i = 1, . . . , n) as in the case of Poisson regression, but now with the true
regression coefficients β = (β0, β1, . . . , βp) being (0.1, 0.1), (0.001, 0.0001), (1, 1),
(0.1, 0.1), (0.1, 0.1, 0.1) and (0.01, 0.001, 0.0001), respectively, for Cases I–VI. It is
clearly seen from the tables that for any value of the parameter and the explanatory
variables, the loss of efficiency is negligible for small α > 0. Further, if the values of
xTi β is small, then we can get quite high efficiency even for large positive α near 0.5.

5 Real data examples

In this section, we will explore the performance of the proposed MDPDEs in Pois-
son and logistic regression models by applying it on two interesting real data sets.
Application to several other real data sets are presented in the supplementary material.
For all the applications, the estimators are computed by minimizing the correspond-
ing objective function through the software “R”; the minimization is performed using
the “optim” function of R under suitable convergence criteria. The “R” code used is
available from the authors.

5.1 Epilepsy data

First we consider an interesting data set consisting of 59 epilepsy patients from Thall
and Vail (1990). The data were obtained from a clinical trial carried out by Leppik
et al. (1985) where the patients were treated by the anti-epileptic drug “progabide”
or a placebo with randomized assignment. Then the total number of epilepsy attacks
was noted which we model by an appropriate set of explanatory variables through a
Poisson regression model (Hosseinian 2009). The variables considered in this regard
are “Base”, the eight-week baseline seizure rate prior to randomization in multiples of
4, “Age”, the patient’s age in multiple of 10 years, and “Trt”, a binary indicator for the
treatment–control group. Also, the interaction between treatment and baseline seizure
rate is important in this case, because it represents either higher or lower seizure rate
for the treatment group compared to the placebo group depending on the baseline
count. In fact, the drug decreases the epilepsy only if the baseline count becomes
sufficiently large in number with respect to some critical threshold.

The data were also analyzed by Hosseinian (2009) who compared the maximum
likelihood estimator with the robust methodologies proposed by herself in the same
paper and those by Cantoni and Ronchetti (2001). There it was observed that the data
contain some outlying observations due to which the interaction effect between treat-
ment and baseline seizure rate turns out to be insignificant based on the maximum

123



Robust estimation in generalized linear models... 285

Ta
bl
e
2

T
he

es
tim

at
ed

re
la
tiv

e
ef
fic
ie
nc
ie
s
of

th
e
M
D
PD

E
fo
r
va
ri
ou
s
va
lu
es

of
th
e
tu
ni
ng

pa
ra
m
et
er

α
un
de
r
di
ff
er
en
t
ca
se
s
of

lo
gi
st
ic

re
gr
es
si
on

w
ith

sa
m
pl
e
si
ze

n
=

50

C
as
e

C
oe
ffi
ci
en
ts

α
=

0
α

=
0.
01

α
=

0.
1

α
=

0.
25

α
=

0.
4

α
=

0.
5

α
=

0.
7

α
=

1

I
β
0

10
0.
0

99
.0

90
.7

74
.6

67
.6

61
.3

50
.4

37
.5

β
1

10
0.
0

99
.2

92
.7

79
.6

73
.8

68
.4

58
.7

46
.7

II
β
0

10
0.
0

99
.3

93
.3

81
.2

75
.8

70
.7

61
.5

50
.0

β
1

10
0.
0

99
.3

93
.3

81
.2

75
.8

70
.7

61
.5

50
.0

II
I

β
0

10
0.
0

98
.6

86
.7

65
.2

56
.5

49
.0

36
.8

23
.9

β
1

10
0.
0

98
.1

82
.8

56
.9

47
.2

39
.2

27
.1

15
.6

IV
β
0

10
0.
0

99
.3

92
.8

79
.8

74
.0

68
.7

59
.1

47
.2

β
1

10
0.
0

99
.2

92
.4

79
.0

73
.0

67
.5

57
.7

45
.6

V
β
0

10
0.
0

99
.3

92
.7

79
.8

74
.0

68
.6

59
.0

47
.1

β
1

10
0.
0

99
.2

92
.6

79
.4

73
.5

68
.1

58
.4

46
.3

β
2

10
0.
0

99
.2

92
.4

78
.9

72
.9

67
.4

57
.5

45
.4

V
I

β
0

10
0.
0

99
.3

93
.3

81
.1

75
.6

70
.5

61
.3

49
.7

β
1

10
0.
0

99
.3

93
.3

81
.1

75
.6

70
.5

61
.3

49
.7

β
2

10
0.
0

99
.3

93
.3

81
.1

75
.6

70
.5

61
.3

49
.7

123



286 A. Ghosh, A. Basu

Table 3 The minimum density power divergence estimates, their standard errors and p values for the
epilepsy data

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 1

Intercept

Estimate 1.9888 2.1089 1.9106 1.9691 2.0060 1.9653

SE (×100) 13.6518 15.2509 12.6869 13.7081 14.9185 17.0043

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Trt

Estimate −0.2375 −0.3169 −0.3871 −0.3893 −0.3516 −0.3186

SE (×100) 7.6816 8.6812 7.9139 8.4566 9.1111 10.1787

p value 0.0030 0.0006 0.0000 0.0000 0.0003 0.0027

Base

Estimate 0.0858 0.0866 0.1689 0.1631 0.1622 0.1562

SE (×100) 0.3698 0.4101 0.2778 0.3055 0.3359 0.3959

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Age

Estimate 0.2308 0.1153 0.0408 0.0362 0.0242 0.0559

SE (×100) 4.1498 4.7242 3.9374 4.2416 4.6138 5.2119

p value 0.0000 0.0177 0.3045 0.3972 0.6017 0.2878

Trt × Base

Estimate 0.0069 0.0107 0.0156 0.0165 0.0131 0.0098

SE (×100) 0.4443 0.4893 0.3230 0.3537 0.3888 0.4600

p value 0.1283 0.0323 0.0000 0.0000 0.0013 0.0373

likelihood estimator whereas the robust estimators show this interaction to be signif-
icant. Here, we will apply our proposed robust minimum density power divergence
estimators for this epilepsy data set and try to see if our proposed estimators are also
robust enough to differentiate with maximum likelihood estimator for the interaction
effect.

Table 3 presents the parameter estimates, their asymptotic standard errors and cor-
responding p values based on the minimum density power divergence estimator with
different α. Clearly the estimators corresponding to α ≥ 0.3 are quite different from
themaximum likelihood estimator and for these estimators the interaction effect is also
significant under the Poisson regression model. Indeed, these estimators are quite sim-
ilar to the robust estimators considered in Hosseinian (2009) but, as we have described
earlier, have superior asymptotic properties.

5.2 Damaged carrots data

As an interesting data example leading to the logistic regression model, we consider
the damaged carrots dataset of Phelps (1982). The data set was obtained from a soil
experiment trial containing the proportion of insect-damaged carrots with three blocks
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Table 4 The minimum density power divergence estimates, their standard errors and p values for the
damaged carrots data

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 1

Intercept

Estimate 1.4805 1.4880 1.4974 1.5157 1.5310 1.5569

SE 0.6562 0.6648 0.6859 0.7118 0.7406 0.7868

p value 0.0339 0.0352 0.0395 0.0441 0.0501 0.0599

Logdose

Estimate −1.8175 −1.8163 −1.8102 −1.8102 −1.8102 −1.8152

SE 0.3439 0.3484 0.3601 0.3749 0.3917 0.4183

p value 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002

Block1

Estimate 0.5421 0.5330 0.5149 0.4969 0.4824 0.4654

SE 0.2318 0.2338 0.2392 0.2462 0.2542 0.2668

p value 0.0284 0.0322 0.0421 0.0554 0.0704 0.0945

Block2

Estimate 0.8430 0.8284 0.7973 0.7710 0.7483 0.7240

SE 0.2260 0.2283 0.2344 0.2422 0.2510 0.2649

p value 0.0011 0.0014 0.0025 0.0041 0.0067 0.0119

and eight dose levels of insecticide in the experiments and was discussed by Williams
(1987). McCullagh and Nelder (1989) used these data to illustrate the identification
methods for isolated departures from the model through an outlier in the y-space
present in the data (14th observation; dose level 6 and block 2). Later Cantoni and
Ronchetti (2001) modeled these data by a binomial logistic model to illustrate the
performance of their proposed robust estimators. However, it can be checked easily
that the observation 14 is only an outlier in the y-space and not a leverage point.

We now apply the minimum density power divergence estimation method for sev-
eral different α to explore the performance of the proposed method in case of the
presence of outlier only in the y-space. Table 4 presents the parameter estimates, their
asymptotic standard errors and corresponding p values for different tuning parameters
α. The estimates corresponding to α ≥ 0.3 again turn out to be highly robust and also
similar to the robust estimator obtained by Cantoni and Ronchetti (2001). Also, for
these estimators the indicator of Block 1 turns out to be insignificant which became
significant in case of the maximum likelihood estimator (corresponding to α = 0) due
to the presence of the outlying observation.

6 Comparison with existing robust estimators in GLM

Here, we briefly consider a comparison of our proposed estimators with some existing
robust estimators. As noted previously, there are few robust inference procedures in the
literature of GLM; only the Poisson, logistic and negative binomial regression models
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with stochastic covariates have got some attention. On the contrary, our proposal
considers non-stochastic covariates and, therefore, is not theoretically comparable to
the existing methods. However, from a practical point of view they can be adapted to
solve real-life problems with fixed covariates and hence numerical comparisons can
be of some interest.

Two existingmethods appear to be close to our proposal in the sense of bounding the
Pearson residual.One is the approachofHosseinian (2009)whohas proposedweighted
likelihood-type robust estimators by following the Lq quasi-likelihood approach of
Morgenthaler (1992); the other is by Cantoni and Ronchetti (2001) who have con-
sidered a class of Mallows-type M-estimators as a special case of the generalized
estimating equation of Preisser and Qaqish (1999). The second work is itself a special
case of Cantoni (2004).

Hosseinian (2009) only proposed robust estimators for the Poisson and logistic
regression cases and provided no general form for all GLMs. Further, the proposed
estimating equations in Hosseinian (2009) are not asymptotically unbiased implying
an inconsistent estimator. Our proposal does not have this theoretical flaw and, in
addition, is completely general. Accordingly, further comparison with the Hosseinian
(2009) work does not appear to be useful.

On the contrary, the goal of the Cantoni and Ronchetti (2001) work was not to just
introduce a new robust estimator for GLM; rather it aims to develop a comprehen-
sive robust analysis (estimation, testing and model selection through the analysis of
deviance) that would complement the classical analysis. Their estimators (and those
proposed in the current paper) have unbiased estimating equations at the model; hence
it is easy to establish the theoretical consistency results of these estimators unlike the
case of Hosseinian (2009).

On the robustness issue, the estimators proposed in Cantoni and Ronchetti (2001)
have bounded-influence functions which is also the case with our proposed MDPDEs.
Our estimators appear to have competitive or better robustness properties compared
to Cantoni and Ronchetti (2001). For illustration, let us consider the Epilepsy Data
example modeled by Poisson regression. The analysis based on the proposedMDPDE
has been presented in Table 3, which shows that the MDPDE with α ∈ [0.3, 0.7]
can successfully ignore the outliers in the data and generate robust insights. In this
example, the effect of the outliers is actually on the significance of coefficients of the
variables “Age” and “Trt × Base”. Our analysis shows that while the “Age” variable
is significant for α = 0, this false significance is quickly turned around by moderate
values of α. Similarly the true significance of the coefficient of “Trt×Base” is masked
at α = 0, but clearly observed at larger values of α. The MDPDE for the coefficient
of “Age” for α ∈ [0.3, 0.7] vary from 0.04 to 0.02 with p values of the order of 0.3,
and those for “Trt × Base” ranges from 0.016 to 0.013 with p values less than 10−4.
The coefficients of “Age” and “Trt × Base” obtained by the techniques of Cantoni
and Ronchetti (2001) are 0.16 and 0.012 with p value of 0.0008 and 0.02, respectively
(Hosseinian 2009, Table 12, p. 125). Therefore, the proposedMDPDEs with moderate
α seem to produce more robust/competitive estimators compared to the Cantoni and
Ronchetti (2001) estimators. Similar results can be observed for the other real data
examples.
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We hope to conduct an extensive simulation study in the future to get a more
comprehensive idea about the comparisons of the proposed estimators with all the
estimators mentioned in the Sect. 1 over the twin goals of efficiency and robustness.

7 Conclusions

In this paper, we have proposed a new general methodology for robust estima-
tion in case of generalized linear models and considered two prominent special
cases—Poisson regression and logistic regression. We have established the robust-
ness properties of the proposed method in terms of the influence function analysis
and applied it to several real data sets having different types of outliers. Our method
appears to perform competitively in comparisonwith existing techniques in terms of its
robustness properties and capability of generalization to all GLMs. Our method is also
a bona fide optimization procedure; selecting the correct solution is, therefore, easier
than the estimating equation-based competitors. On the whole, we expect that the pro-
posed estimators will help the researchers in several application domains to estimate
the model parameters in any generalized linear model efficiently and robustly.
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