
TEST (2016) 25:150–169
DOI 10.1007/s11749-015-0443-5

ORIGINAL PAPER

Stochastic comparisons of generalized mixtures
and coherent systems

Jorge Navarro1

Received: 9 January 2015 / Accepted: 25 April 2015 / Published online: 8 May 2015
© Sociedad de Estadística e Investigación Operativa 2015

Abstract A distribution function F is a generalized mixture of the distribution func-
tions F1, . . . , Fk if F = w1F1+. . .+wk Fk , wherew1, . . . , wk are some real numbers
(weights) which should satisfy w1 + . . .+wk = 1. If all the weights are positive, then
we have a classical finite mixture. If some weights are negative, then we have a nega-
tive mixture. Negative mixtures appear in different applied probability models (order
statistics, estimators, coherent systems, etc.). The conditions to obtain stochastic com-
parisons of classical (positive) mixtures are well known in the literature. However, for
negative mixtures, there are only results for the usual stochastic order. In this paper,
conditions for hazard rate and likelihood ratio comparisons of generalizedmixtures are
obtained. These theoretical results are applied in this paper to study distribution-free
comparisons of coherent systems using their representations as generalized mixtures.
They can also be applied to other probabilitymodels in which the generalizedmixtures
appear.

Keywords Generalized mixtures · Stochastic comparisons · Coherent systems ·
Hazard rate

Mathematics Subject Classification 62E10 · 62N05

1 Introduction

A distribution function F is a generalized mixture of the distribution functions
F1, . . . , Fk if F = ∑k

i=1 wi Fi , where w1, . . . , wk are some real numbers (weights).
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Obviously, the weights satisfy
∑k

i=1 wi = 1. If all the weights are positive, then we
have a classical finite mixture (called here positive mixture). However, for some distri-
bution functions, some weights (not all of them) can be negative. If some weights are
negative, then we have a negative mixture. It is well known that positive mixtures are
used to describe populations formed by the mixture of different subpopulations. How-
ever, themeaning of negativemixtures is not so clear. Generalizedmixtures can be used
tomanage both cases together. They can be traced back to Everitt andHand (1981),Wu
and Lee (1998) and Wu (2001). Recent results can be seen in Franco et al. (2014) and
in the references therein. They were used to define families of distributions in Baggs
and Nagaraja (1996) where the generalized mixtures of exponential distributions were
called generalized hyperexponential distributions. The negative mixtures also appear
(without a specific name) in other probability models such as order statistics, see
David and Nagaraja (2003, pp. 46 and 99); marginal distributions of multivariate
models, see Kotz et al. (2000, p. 356); distributions of the maximum likelihood esti-
mators of exponential parameters under step-stress models, see Balakrishnan and Xie
(2007a, b), Balakrishnan et al. (2009) or distributions of progressively censored order
statistics, see Kamps and Cramer (2001), Balakrishnan and Cramer (2008) and Bal-
akrishnan and Cramer (2014, p. 36). Finally, the generalized mixtures are also useful
to represent the distributions of coherent systems. The basic concepts in the theory
of reliability and some applications can be seen in the classic book by Barlow and
Proschan (1975). The distributions of coherent systems can be represented both as
positive mixtures (see Samaniego 1985, 2007; Kochar et al. 1999) and as negative
mixtures (see Block et al. 2003; Navarro et al. 2007, 2009; Navarro and Rubio 2010,
and Sect. 3).

The stochastic orders play a relevant role in different applied probability fields (see
Shaked and Shanthikumar 2007). The most relevant orders are the (usual) stochastic
order, the hazard rate order and the likelihood ratio order. The conditions to obtain
comparisons based on these orders of classical (positive) mixtures are well known in
the literature and can be seen in Theorems 1.A.6, 1.B.14 and 1.C.17 of Shaked and
Shanthikumar (2007), respectively. The conditions for the reversed hazard rate order
were given in Theorem 1.B.52 of Shaked and Shanthikumar (2007). These results
were used to obtain ordering properties of coherent systems in Kochar et al. (1999),
Navarro et al. (2008b) and Navarro and Rubio (2011) using the representation of their
distributions as positive mixtures of order statistics’ distributions when the component
lifetimes are independent and identically distributed (IID) or exchangeable. Other
comparison results were obtained recently in Navarro et al. (2015) and Samaniego
and Navarro (2016). However, for negative mixtures, in the literature, there are only
(in our knowledge) comparison results for the stochastic order given in Theorem 3.2
of Navarro et al. (2008a) and Proposition 2.4 of Navarro and Rubio (2012) (see next
section). There is also a result for the hazard rate order given in Navarro et al. (2009),
but only for the case k = 2.

In this paper, conditions for hazard rate, reversed hazard rate and likelihood ratio
comparisons of generalized mixtures are given (Sect. 2). To illustrate these theoretical
results, they are applied to obtain distribution-free comparisons of coherent systems
using their representations as negative mixtures. These comparisons include the cases
of systems with independent and identically distributed components (Sect. 3), with
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independent non-identically distributed components (Sect. 4) andwith dependent com-
ponents (Sect. 5). Some conclusions are given in Sect. 6.

Throughout the paper, we say that a function g : R → R is increasing (decreasing)
if g(x) ≤ g(y) (≥) for all x ≤ y. The stochastic orders mentioned above can be
defined as follows. Their basic properties and applications can be seen in Shaked and
Shanthikumar (2007).

Let X and Y be two random variables with absolutely continuous distribution
functions FX and FY , reliability functions FX = 1 − FX and FY = 1 − FY and
probability density functions fX = F ′

X and fY = F ′
Y . Then:

• X is said to be less than Y in the (usual) stochastic order (denoted by X ≤ST Y or
FX ≤ST FY ) if FX ≤ FY ,

• X is said to be less than Y in the hazard rate order (denoted by X ≤HR Y or
FX ≤HR FY ) if FY /FX is increasing,

• X is said to be less than Y in the reversed hazard rate order (denoted by X ≤RHR Y
or FX ≤RHR FY ) if FY /FX is increasing,

• X is said to be less than Y in the likelihood ratio order (denoted by X ≤LR Y or
FX ≤LR FY ) if fY / fX is increasing in the union of their support.

The relationships between these orders are the following. The reverse implications
do not hold.

X ≤LR Y ⇒ X ≤HR Y
⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y.

If X and Y are absolutely continuous, then X ≤HR Y holds if and only if hX ≥ hY ,
where hX = fX/FX and hY = fY /FY are the respective hazard rate functions.
Analogously, X ≤RHR Y holds if and only if hX ≤ hY , where hX = fX/FX and
hY = fY /FY are the respective reversed hazard rate functions. The proofs can be seen
in Shaked and Shanthikumar (2007). Finally, if the probability density functions are
differentiable, then X ≤LR Y holds if and only if ηX ≥ ηY , where ηX = − f ′

X/ fX and
ηY = − f ′

Y / fY are the respective eta (Glaser) functions (see Glaser 1980).

2 Main results for generalized mixtures

First of all, we give the formal definition of generalized mixtures.

Definition 2.1 Let F, F1, . . . , Fk be distribution functions. Then, we say that F is a
generalized mixture of F1, . . . , Fk with weights w1, . . . , wk ∈ R if

F(t) = w1F1(t) + · · · + wk Fk(t) (2.1)

for all t . We say that F is a positive mixture when w1, . . . , wk ≥ 0. We say that F is a
negative mixture when there exists at least an index i ∈ {1, . . . , k} such that wi < 0.
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As an immediate consequence of the preceding definition, we obtain

w1 + · · · + wk = 1.

Note that, in (2.1), we assume that F is a proper distribution function since the right-
hand side of (2.1) does not need to define a proper distribution function (see, e.g.,
Franco et al. 2014). Of course, it will define a proper distribution function for all
F1, . . . , Fn when wi ≥ 0 for i = 1, . . . , k and w1 + · · · + wk = 1 (classical or
positivemixtures). Finally, note that similar representations hold both for the respective
reliability functions and probability density functions. For example, if (2.1) holds and
F , F1, . . . , Fk are the respective reliability functions, then

F(t) = w1F1(t) + · · · + wk Fk(t). (2.2)

As we have already mentioned in the introduction, ordering properties of classical
(positive) mixtures can be seen in Shaked and Shanthikumar (2007). For generalized
mixtures, in the literature there are only results for the ST and HR orders. The results
for the ST order obtained in Theorem 3.2 of Navarro et al. (2008a) can be stated as
follows.

Proposition 2.1 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that

F1 ≥ST · · · ≥ST Fk . (2.3)

If
∑k

i= j pi ≥ ∑k
i= j qi for j = 2, . . . , k, then Fp ≤ST Fq.

When all the weights are nonnegative, the preceding result coincides with the result
for classical finitemixtures obtained fromTheorem1.A.6 of Shaked andShanthikumar
(2007). Another result for the ST order was obtained in Proposition 2.4 of Navarro
and Rubio (2012) without assumption (2.3).

A similar result was obtained in Navarro et al. (2009) for the HR ordering of
generalized mixtures with k = 2. It can be stated as follows.

Proposition 2.2 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
k = 2 and weights p1, p2 and q1, q2, respectively. Let us assume that

F1 ≥HR F2. (2.4)

If p1 ≤ q1, then Fp ≤HR Fq.

Now, we can give the first main result of the paper in which the preceding result is
extended to generalized mixtures with k > 2.

Proposition 2.3 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that

F1 ≥HR · · · ≥HR Fk . (2.5)

If piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ k, then Fp ≤HR Fq.

123



154 J. Navarro

Proof From the definition, Fp ≤HR Fq holds if Fq/F p is increasing, that is, if

R(t) = q1F1(t) + · · · + qk Fk(t)

p1F1(t) + · · · + pk Fk(t)

is increasing in t . By differentiating, we have

R′(t) =sign −
k∑

i=1

qi fi (t)
k∑

j=1

p j F j (t) +
k∑

i=1

pi fi (t)
k∑

j=1

q j F j (t)

=
k∑

i=1

k∑

j=1

(piq j − p jqi ) fi (t)F j (t)

=
k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )
(
fi (t)F j (t) − f j (t)Fi (t)

)

=
k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(hi (t) − h j (t))Fi (t)F j (t),

where hi = fi/Fi is the hazard rate function of Fi for i = 1, . . . , k. As Fi ≥HR Fj

for i ≤ j , we have hi ≤ h j for i ≤ j . Hence, hi (t) − h j (t) ≤ 0 for i ≤ j . Finally, as
piq j ≤ p jqi , then piq j − p jqi ≤ 0 and hence R′(t) ≥ 0 and Fp ≤HR Fq holds. 	


In particular, if k = 2, then the condition stated in the preceding proposition (pi q j ≤
p jqi , i ≤ j) reduces to p1q2 ≤ p2q1.As p1 + p2 = 1 and q1 +q2 = 1, this condition
is equivalent to

p1(1 − q1) ≤ (1 − p1)q1

or to p1 ≤ q1. So, Proposition 2.3 reduces to Proposition 2.2 when k = 2. However,
in the case of positive mixtures, the condition given in the preceding proposition
does not coincide with the condition obtained from Theorem 1.B.14 in Shaked and
Shanthikumar (2007) (the condition given here is stronger).

Next, we give the second main result of the paper with the condition for the LR
ordering of generalized mixtures.

Proposition 2.4 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that

F1 ≥LR · · · ≥LR Fk . (2.6)

If piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ k, then Fp ≤LR Fq.
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Proof From the definition, Fp ≤LR Fq holds if fq/ f p is increasing, that is, if

r(t) = q1 f1(t) + · · · + qk fk(t)

p1 f1(t) + · · · + pk fk(t)

is increasing in t . By differentiating, we have

r ′(t) =sign

k∑

i=1

qi f
′
i (t)

k∑

j=1

p j f j (t) −
k∑

i=1

pi f
′
i (t)

k∑

j=1

q j f j (t)

= −
k∑

i=1

k∑

j=1

(piq j − p jqi ) f
′
i (t) f j (t)

= −
k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )( f
′
i (t) f j (t) − f ′

j (t) fi (t))

=
k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(ηi (t) − η j (t)) fi (t) f j (t),

where ηi = − fi/ fi is the eta function of Fi for i = 1, . . . , k. As Fi ≥LR Fj for
i ≤ j , we have ηi ≤ η j for i ≤ j . Hence, ηi (t) − η j (t) ≤ 0 for i ≤ j . Finally, as
piq j ≤ p jqi , then piq j − p jqi ≤ 0 and hence r ′(t) ≥ 0 and Fp ≤LR Fq holds. 	


In the case of positive mixtures, the condition stated in the preceding proposition
(piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ k) is equivalent to the condition obtained from
Theorem 1.C.17 of Shaked and Shanthikumar (2007). In the case k = 2, this condition
is equivalent to p1 ≤ q1 (as we have seen above).

A similar result can be obtained for the RHR order.

Proposition 2.5 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that

F1 ≥RHR · · · ≥RHR Fk . (2.7)

If piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ k, then Fp ≤RHR Fq.

Proof From the definition, Fp ≤RHR Fq holds if Fq/Fp is increasing, that is, if

g(t) = q1F1(t) + · · · + qk Fk(t)

p1F1(t) + · · · + pk Fk(t)

is increasing in t . By differentiating, we have

g′(t) =sign

k∑

i=1

qi fi (t)
k∑

j=1

p j Fj (t) −
k∑

i=1

pi fi (t)
k∑

j=1

q j Fj (t)
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=
k∑

i=1

k∑

j=1

(p jqi − piq j ) fi (t)Fj (t)

=
k−1∑

i=1

k∑

j=i+1

(p jqi − piq j )( fi (t)Fj (t) − f j (t)Fi (t))

=
k−1∑

i=1

k∑

j=i+1

(p jqi − piq j )
(
hi (t) − h j (t)

)
Fi (t)Fj (t),

where hi = fi/Fi is the RHR function of Fi for i = 1, . . . , k. As Fi ≥RHR Fj for
i ≤ j , we have hi ≥ h j for i ≤ j . Hence hi (t) − h j (t) ≥ 0 for i ≤ j . Finally, as
piq j ≤ p jqi , then piq j − p jqi ≥ 0 and hence g′(t) ≥ 0 and Fp ≤RHR Fq holds. 	


The preceding results can be improved when the distributions F1, . . . , Fk satisfy
the Proportional Hazard Rate (PHR) model, that is, when Fi = G

αi for i = 1, . . . , k,
where α1, . . . , αk > 0 and G is a reliability function. The distribution-free results for
this case can be stated as follows.

Proposition 2.6 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that F1, . . . , Fk satisfy
the PHR model with Fi = G

αi and αi > 0 for i = 1, . . . , k. Then, the following
conditions are equivalent:

(i) Fp ≤HR Fq holds for all reliability functions G.
(ii) The weights satisfy

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(αi − α j )x
αi+α j−2 ≥ 0 f or all x ∈ (0, 1). (2.8)

Proof From the definition, Fp ≤HR Fq holds if and only if R(t) = Fq(t)/F p(t) is
increasing in t . Then, proceeding as in the proof of Proposition 2.3, we have

R′(t) =sign

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(hi (t) − h j (t))Fi (t)F j (t),

where hi = fi/Fi is the hazard rate function of Fi for i = 1, . . . , k. Under the PHR
model assumption, we obtain hi (t) = αi hG(t) for i = 1, . . . , k where hG = −G

′
/G

is the hazard rate associated to G = 1 − G. Therefore,

R′(t) =sign

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(αi − α j )G
αi+α j

(t)

and so T1 ≤HR T2 holds for all G if and only if (2.8) holds. 	
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Proposition 2.7 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that F1, . . . , Fk satisfy
the PHR model with Fi = G

αi and αi > 0 for i = 1, . . . , k. Then, the following
conditions are equivalent:

(i) Fp ≤LR Fq holds for all reliability functions G.
(ii) The weights satisfy

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )αiα j (αi −α j )x
αi+α j−2 ≥ 0 f or all x ∈ (0, 1). (2.9)

Proof From the definition, Fp ≤LR Fq holds if and only if r(t) = fq(t)/ f p(t) is
increasing in t . Then, proceeding as in the proof of Proposition 2.4, we have

r ′(t) =sign

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )(ηi (t) − η j (t)) fi (t) f j (t),

where ηi = − f ′
i / fi is the eta function of Fi for i = 1, . . . , k. Under the PHR model

assumption, we obtain fi (t) = αi g(t)G
αi−1

(t) and

ηi (t) = αi (αi − 1)g2(t)G
αi−2

(t) − αi g′(t)Gαi−1
(t)

αi g(t)G
αi−1

(t)
= ηG(t) + (αi − 1)hG(t),

where G = 1 − G, g = G ′, ηG = −g′/g and hG = g/G. Therefore,

r ′(t) =sign

k−1∑

i=1

k∑

j=i+1

(piq j − p jqi )αiα j (αi − α j )G
αi+α j−2

(t)

and so T1 ≤LR T2 holds for all G if and only if (2.9) holds. 	

The analogous result for the stochastic order can be stated as follows. The proof is

easy.

Proposition 2.8 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that F1, . . . , Fk satisfy
the PHR model with Fi = G

αi and αi > 0 for i = 1, . . . , k. Then, the following
conditions are equivalent:

(i) Fp ≤ST Fq holds for all reliability functions G.
(ii) The weights satisfy

k∑

i=1

(q j − p j )x
αi ≥ 0 f or all x ∈ (0, 1). (2.10)
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The preceding results can also be improved when the distributions F1, . . . , Fk
satisfy the Proportional Reversed Hazard Rate (PRHR) model, that is, when Fi = Gαi

for i = 1, . . . , k, where α1, . . . , αk > 0 and G is a distribution function. The results
can be stated as follows. The proofs are similar to that of Propositions 2.6, 2.7 and 2.8.

Proposition 2.9 Let Fp and Fq be two generalized mixtures satisfying (2.1) with
weights p1, . . . , pk and q1, . . . , qk, respectively. Let us assume that F1, . . . , Fk satisfy
the PRHR model with Fi = Gαi and αi > 0 for i = 1, . . . , k. Then:

(i) Fp ≤ST Fq holds for all distribution functions G if, and only if,

k∑

i=1

(pi − qi )x
αi ≥ 0 for all x ∈ (0, 1). (2.11)

(ii) Fp ≤RHR Fq holds for all distribution functions G if, and only if,

k−1∑

i=1

k∑

j=i+1

(p jqi − piq j )(αi − α j )x
αi+α j−2 ≥ 0 for all x ∈ (0, 1). (2.12)

(iii) Fp ≤LR Fq holds for all distribution functions G if, and only if,

k−1∑

i=1

k∑

j=i+1

(p jqi−piq j )αiα j (αi−α j )x
αi+α j−2 ≥ 0 for all x ∈ (0, 1). (2.13)

3 Comparisons of coherent systems with IID components

Let us use the theoretical results obtained above to compare coherent systems under
different assumptions. We start with the more simple case of coherent systems
with n components having independent and identically distributed (IID) lifetimes
X1, . . . , Xn . In this case, it is well known (see, e.g., Navarro et al. 2007) that the
reliability function FT of a coherent system with lifetime T can be written as

FT (t) = a1F1:1(t) + · · · + anF1:n(t) (3.1)

for all t , where a1, . . . , an are some coefficients (real numbers which can be negative)
and F1:i (t) = Pr(X1:i > t) is the reliability function of the series systemobtainedwith
the first i components whose lifetime is X1:i = min(X1, . . . , Xi ) for i = 1, . . . , n.
The vector a = (a1, . . . , an) with the coefficients in representation (3.1) was called in
Navarro et al. (2007) theminimal signatureof the system.Obviously, the representation
in (3.1) is a generalized mixture. Note that, if we want to compare T with another
system with m > n components, then we can just add zeros to representation (3.1)
obtaining the minimal signature a(m) of order m given by the m-dimensional vector
a(m) = (a1, . . . , an, 0, . . . , 0). The same representation (3.1) holds for mixed systems
which are mixtures of coherent systems (see, e.g., Navarro et al. 2008b).
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Under the IID assumption, it is well known that F1:i (t) = F
i
(t), where F is the

common components’ reliability function. Hence, the PHR model holds for represen-
tation (3.1) with αi = i for i = 1, . . . , n. Thus, from the results given in the preceding
section, we can obtain the following proposition. The proof is easy.

Proposition 3.1 Let T1 and T2 be the lifetimes of two coherent (or mixed) systems
with minimal signatures of order n, (p1, . . . , pn) and (q1, . . . , qn). Assume that both
systems are based on IID components having a common absolutely continuous distri-
bution F. Then:

(i) T1 ≤ST T2 holds for all F if and only if

n∑

i=1

(qi − pi )x
i ≥ 0 for all x ∈ (0, 1). (3.2)

(ii) T1 ≤HR T2 holds for all F if and only if

n−1∑

i=1

n∑

j=i+1

( j − i)(p jqi − piq j )x
i+ j−2 ≥ 0 for all x ∈ (0, 1). (3.3)

(iii) T1 ≤LR T2 holds for all F if and only if

n−1∑

i=1

n∑

j=i+1

i j ( j − i)(p jqi − piq j )x
i+ j−2 ≥ 0 for all x ∈ (0, 1). (3.4)

Note that, in the case of IID components, the conditions stated in the preceding
proposition are distribution-free necessary and sufficient conditions for the respective
orders, while the conditions given inKochar et al. (1999) andNavarro et al. (2008b) are
just sufficient conditions. However, these last conditions are necessary and sufficient
conditions for the respective orders in the case of exchangeable components (see
Navarro and Rubio 2011). Therefore, we can use the preceding proposition to try to
improve the ordering results obtained in these references for the IID case as can be
seen in the following example. The results for the exchangeable case given in Navarro
and Rubio (2011) cannot be improved.

Example 3.1 Let us consider the coherent systems with lifetimes T1 = min(X1,

max(X2, X3, X4)) and T2 = max(X1,min(X2, X3, X4)) by assuming that they have
components with IID lifetimes X1, X2, X3, X4 having a common absolutely continu-
ous distribution function F . The respective minimal signatures are p = (0, 3,−3, 1)
and q = (1, 0, 1,−1) (see, e.g., lines 13 and 24 in Table 1 of Navarro and Rubio
2011). These two systems cannot be HR ordered using the conditions given in Kochar
et al. (1999) as can be seen in Figure 2 of Navarro and Rubio (2011). However, we can
use the preceding proposition to know if they are HR or LR ordered for all F . Thus,
we compute the polynomial in (3.4) obtaining

v(x) = 6x − 18x2 − 6x3 + 48x4 − 24x5.
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Fig. 1 Plot of the polynomials in conditions (3.4) (left) and (3.3) (right) for the comparison of the system
T1 given in Example 3.1 and a single component X1. As the left plot takes positive and negative values in
(0, 1), then they are not LR ordered for all F . As the right plot is nonnegative in (0, 1), then T1 ≤HR X1
for all F

The roots are 0, 1/2 (double), (1+√
5)/2 ∼= 1.618034 and (1−√

5)/2 ∼= −0.618034.
Hence, as v(1) = 6, we can prove that v(x) ≥ 0 for all x ∈ (0, 1). Therefore, we have
T1 ≤LR T2 for all F . Then, we can improve the results given in Figure 3 of Navarro
and Rubio (2011). As a consequence, they are also HR ordered and we can improve
the results given in Figure 2 of Navarro and Rubio (2011).

In a similar way, if we want to compare the system T1 above with the single com-
ponent X1, whose minimal signature of order 4 is of course q = (1, 0, 0, 0), then we
compute the polynomial in (3.4) obtaining

v(x) = 6x − 18x2 + 12x3.

The roots are 0, 1/2, 1 and hence v(x) takes positive and negative values in (0, 1) (see
Fig. 1, left). Therefore, we conclude that T1 and X1 are not LR ordered for all F (they
cannot be LR ordered using other procedures). Analogously, to study if they are HR
ordered, we compute the polynomial in (3.3) obtaining

r(x) = 3x − 6x2 + 3x3.

The roots are 0 and 1 (double) and hence r(x) ≥ 0 for all x ∈ (0, 1) (see Fig. 1, right).
Therefore, T1 ≤HR X1 for all F . This coincides with the result given in Figure 2 of
Navarro and Rubio (2011).

Proceeding as in the preceding example, we have obtained all the HR and LR
ordering relationships between all the coherent systems with four or less IID compo-
nents. They are given in Figs. 2 and 3. The black arrows indicate orderings that were
obtained using signatures of order 4 in Navarro et al. (2008b). The bold (thick line)
arrows indicate new orderings obtained in the present paper that cannot be obtained
from signatures of order 4. Now, we know that the orderings given in these figures
are all the distribution-free ordering relationships in the IID case and that systems not
connected are not ordered in the IID case (for all F). Notice that, it may happen that
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Fig. 2 Hazard rate orderings for all the coherent systems with 1–4 IID components

some systems be ordered for some specific distribution functions (e.g., for a degener-
ate distribution F , all the systems are equal in law and so they are LR ordered). The
ordering properties obtained from Proposition 3.1(i), for the ST order are exactly the
same as that obtained in Figure 1 of Navarro et al. (2008b) using signatures of order
4. Now, we know that there are no more ST orderings between these systems in the
IID case (for all F).

To obtain the analogous results for the RHR order we need to use that, under the
assumption of IID component lifetimes, it is well known (see, e.g., Navarro et al. 2007)
that the distribution function FT of a coherent system with lifetime T can be written
as

FT (t) = b1F1:1(t) + · · · + bnFn:n(t) (3.5)

for all t , where b1, . . . , bn are some coefficients (which can be negative) and Fi :i (t) =
Pr(Xi :i ≤ t) is the distribution function of the parallel system obtained with the first i
components whose lifetime is Xi :i = max(X1, . . . , Xi ) for i = 1, . . . , n. The vector
b = (b1, . . . , bn) with the coefficients in representation (3.5) was called in Navarro
et al. (2007) the maximal signature of the system. Obviously, the representation in
(3.5) is a generalized mixture. Again, notice that if we want to compare T with another
system with m > n components, then we can just add zeros to representation (3.5)
obtaining the maximal signature b(m) of order m given by the m-dimensional vector
b(m) = (b1, . . . , bn, 0, . . . , 0). The same representation (3.5) holds for mixed systems
which are mixtures of coherent systems. To compute maximal signatures, we can use
that themaximal signature of a coherent systemcoincides (seeNavarro et al. 2007)with
the minimal signature of its dual system (i.e., the system obtained by changing min by

123



162 J. Navarro

9 4

2

10 11 14

12 15

16

5 6

13

1

24 7

20 22 23

25 26

27

83

28

Fig. 3 Likelihood ratio orderings for all the coherent systems with 1–4 IID components

max and vice versa in the expression for the system’s lifetime). Thus, for example, as
the systems considered in Example 3.1 are dual systems, then their respectivemaximal
signatures are (1, 0, 1,−1) and (0, 3,−3, 1).

Under the IID assumption, it is well known that Fi :i (t) = Fi (t), where F is
the common components’ distribution function. Hence, the PRHR model holds for
representation (3.5) with αi = i for i = 1, . . . , n. Thus, from the results given in the
preceding section, we can obtain the following proposition.

Proposition 3.2 Let T1 and T2 be the lifetimes of two coherent (or mixed) systems
with maximal signatures of order n, (p1, . . . , pn) and (q1, . . . , qn). Assume that both
systems are based on IID components having a common absolutely continuous distri-
bution F. Then:

(i) T1 ≤ST T2 holds for all F if, and only if,

n∑

i=1

(pi − qi )x
i ≥ 0 for all x ∈ (0, 1). (3.6)

(ii) T1 ≤RHR T2 holds for all F if and only if,

n−1∑

i=1

n∑

j=i+1

( j − i)(piq j − p jqi )x
i+ j−2 ≥ 0 for all x ∈ (0, 1). (3.7)
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(iii) T1 ≤LR T2 holds for all F if, and only if,

n−1∑

i=1

n∑

j=i+1

i j ( j − i)(piq j − p jqi )x
i+ j−2 ≥ 0 for all x ∈ (0, 1). (3.8)

As an immediate consequence, we obtain that two coherent systems with lifetimes
T1 and T2 satisfy T1 ≤RHR T2 if and only if T D

2 ≤HR T D
1 , where T D

1 and T D
2 are the

lifetimes of their dual systems (a well-known fact).
The final example shows that this technique can also be used to compare more

complex (real) systems with many components whenever we are able to obtain their
representations as negative mixtures of series or parallel systems.

Example 3.2 Let us consider two consecutive linear k-out-of-n:F systems. These sys-
tems have n linearly ordered components and they fail when (at least) k consecutive
components fail. They are used in practice to model oil/water pipeline (and other
similar) transportation systems. Let us assume that, in a specific path, we have two
options. In the first one, the transportation system can be built using n = 8 components
and the system fails when k = 4 consecutive components fails. In the second one, it
can be built using n = 10 components and the system fails when k = 6 consecutive
components fails. Which system is the best option? We assume that the component
lifetimes in both systems are IID with a common absolutely continuous distribution
F . We denote the respective system lifetimes by T1 and T2. It is well known (see, e.g.,
expression (2.2) in Navarro and Eryilmaz 2007) that the distribution function Fk|n:F
of a consecutive linear k-out-of-n:F system with IID components and k ≥ n/2 can
be written as the following negative mixture

Fk|n:F (t) = (n − k + 1)Fk:k(t) − (n − k)Fk+1:k+1(t).

Therefore, the distributions of the two systems considered above can be written as

FT1(t) = 5F4:4(t) − 4F5:5(t)

and

FT2(t) = 5F6:6(t) − 4F7:7(t).

In this case, we can study if they are LR ordered by computing the polynomial in (3.8)
which gives

v(x) = 1200x8 − 2280x9 + 1120x10.

This polynomial is nonnegative in (0, 1) (the only root is x = 0) and so T1 ≤LR T2
holds for all F .
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4 Comparisons of coherent systems with independent components

If T is the lifetime of a coherent systemwith components having independent lifetimes
X1, . . . , Xn , then from (1) in Agrawal and Barlow (1984) (see also (3.1) in Block et al.
2003), its reliability function can be written as

FT (t) =
r∑

i=1

FPi (t) −
r−1∑

i=1

r∑

j=i+1

FPi∪Pj (t) + · · · + (−1)r+1FP1∪···∪Pr (t), (4.1)

where FP (t) = Pr(XP > t) is the reliability function of the series system with
components in P with lifetime XP = min j∈P X j for P ⊆ {1, . . . , n} and where
P1, . . . , Pr are the minimal path sets of the system (see page 9 in Barlow and Proschan
1975). A path set is a set of indexes P ⊆ {1, . . . , n} such that if all the components
in P work, then the system works. A path set P is a minimal path set if it does not
contain other path sets. Obviously, representation (4.1) is a generalized mixture.

If the components are independent, then

FP (t) = Pr(XP > t) = Pr(min
j∈P

X j > t) =
∏

j∈P

F j (t), (4.2)

where F j (t) = Pr(X j > t) is the reliability function of component j , for j =
1, . . . , n. Unfortunately, this condition is not enough to assure that the distributions
used in representation (4.1) are ordered (see, e.g., Navarro andRubio 2012). Hence, we
need some additional assumptions. Thus, we can assume that the components satisfy

the PHR model, that is, F j = G
β j for j = 1, . . . , n, where G is a baseline reliability

function and β j > 0 for j = 1, . . . , n. Hence, the distributions in representation (4.1)
also satisfy the PHR model and the reliability function of the system can be written as

FT (t) =
k∑

i=1

piGi (t), (4.3)

where Gi (t) = G
αi

(t) for j = 1, . . . , n, for appropriate coefficients α1, . . . , αk > 0.
The same holds for non-coherent systems (see Borgonovo 2010). Hence, Propositions
2.6 and 2.7 can be applied jointlywith representation (4.3) to obtain comparison results
for coherent systems. As in the preceding section, we note that in representation (4.3)
we can add zeros when it is needed to assure that both systems have a generalized
mixture representation based on the same baseline distributions. Let us see an example.

Example 4.1 Let us consider the coherent system with lifetime T = min(X1,

max(X2, X3)), where we assume that X1, X2, X3 are independent with absolutely
continuous distributions F1, F2, F3. We want to compare this system with a 2-out-of-
3 system (i.e., a system which works if at least two of its three components work). Its
lifetime coincides with the second-order statistic X2:3 from X1, X2, X3. As T ≤ X2:3,
then from Theorem 1.A.1 in Shaked and Shanthikumar (2007), we have T ≤ST X2:3
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for any F1, F2, F3. So, we want to study if this ordering holds for the HR order and/or
the LR order. The minimal path sets of T are {1, 2} and {1, 3}. Therefore, from (4.1)
and (4.2), its reliability function can be written as

FT (t) = F1(t)F2(t) + F1(t)F3(t) − F1(t)F2(t)F3(t).

Analogously, the minimal path sets of X2:3 are {1, 2}, {1, 3} and {2, 3} (all the subsets
of {1, 2, 3} with cardinality 2). Therefore, from (4.1) and (4.2), its reliability function
can be written as

F2:3(t) = F1(t)F2(t) + F1(t)F3(t) + F2(t)F3(t) − 2F1(t)F2(t)F3(t).

Now, we can assume that the components satisfy the PHR model, that is, F j = G
β j

for j = 1, 2, 3, where G is a baseline reliability function and β j > 0 for j = 1, 2, 3.
Hence, the systems’ reliability functions can be represented as in (4.3) with α1 =
β1 + β2, α2 = β1 + β3, α3 = β2 + β3, and α4 = β1 + β2 + β3, with the following
coefficients: p1 = 1, p2 = 1, p3 = 0 and p4 = −1 (for T ) and q1 = 1, q2 = 1,
q3 = 1 and p4 = −2 (for X2:3). Then, from Proposition 2.6, T ≤HR X2:3 holds for
all G if and only if the weights satisfy (2.8). A straightforward calculation shows that
this condition is equivalent to

r(x) = β3x
β2(xβ1 − 1) + β2x

β3(xβ1 − 1) + β1(x
β2 + xβ3 − xβ2+β3) ≥ 0

for all x ∈ (0, 1).
For example, if βi = i for i = 1, 2, 3, then

r(x) = x2(−2 + 2x + 2x2 − x3).

This function takes positive and negative values for x ∈ (0, 1) with a root at x0 ∼=
0.68889.Hence, these systems are notHRordered for allG. Their hazard rate functions
for the case G(t) = exp(−t), t ≥ 0 (exponential baseline distribution), can be seen
in Fig. 4 (left). In this case, they are not HR ordered. However, if β1 = 3, β2 = 2 and
β3 = 1, then

r(x) = x(1 + 2x − 3x2 + 2x3 + x4).

This function is nonnegative for all x ∈ (0, 1). Hence, T ≤HR X2:3 holds for any G.
Their hazard rate functions for the case G(t) = exp(−t), t ≥ 0 (exponential baseline
distribution), can be seen in Fig. 4 (right). In this case, we can study if they are also
LR ordered using the condition in (2.9) which is equivalent to

v(x) = 30x6 + 12x5 + 30x9 + 48x8 − 54x7 ≥ 0

for all x ∈ (0, 1). By plotting this function we see that it is nonnegative in (0, 1) and
hence we have T ≤LR X2:3 for any G when β1 = 3, β2 = 2 and β3 = 1.
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Fig. 4 Plots of the hazard rate functions for the systems in Example 4.1 when β1 = 1, β2 = 2 and β3 = 3
(left) β1 = 3, β2 = 2 and β3 = 1 (right)

5 Comparisons of general coherent systems

Let T be the lifetime of a coherent systemwith possibly dependent components having
lifetimes X1, . . . , Xn with a joint reliability function

F(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn).

Then, the reliability function of T can be written as in (4.1) (see (3.4) in Navarro et al.
2008a), where, in this case, FP (t) = Pr(XP > t) can be computed as

FP (t) = F
(
t P1 , . . . , t Pn

)

where t Pi = t if i ∈ P and t Pi = 0 if i /∈ P . Obviously, again (4.1) is a generalized
mixture representation.

If the joint distribution of (X1, . . . , Xn) is exchangeable (i.e., F is permutation
invariant), then representation (4.1) can be simplified to (3.1), where

F1:i (t) = F(t, . . . , t
︸ ︷︷ ︸
i−times

, 0, . . . , 0
︸ ︷︷ ︸

(n−i)−times

).

Hence, if
F1:1 ≥HR · · · ≥HR F1:n (5.1)

holds, then condition (2.5) in Proposition 2.3 holds. Therefore, this proposition and
representation (3.1) can be used to compare two coherent systems in the HR ordering.
Analogously, if

F1:1 ≥LR · · · ≥LR F1:n (5.2)

holds then condition (2.7) in Proposition 2.4 holds. Hence, this proposition and repre-
sentation (3.1) can be used to compare two coherent systems in the LR ordering. Let
us see an example. However, (5.1) and (5.2) are not necessarily true as can be seen in
Navarro and Shaked (2006) and Navarro (2008), respectively. So, we need to assume
them to obtain ordering properties.
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Example 5.1 Let us consider again the coherent systems studied in Example 4.1.
We assume that they have components with lifetimes X1, X2, X3 having a common
exchangeable distribution. The minimal signature of T = min(X1,max(X2, X3)) is
p = (0, 2,−1) (see, e.g., line 5, in Table 1 of Navarro and Rubio 2011) and that of
X2:3 is q = (0, 3,−2) (see, e.g., line 6, in Table 1 of Navarro and Rubio 2011). To
study if the condition in Proposition 2.4 holds, we compute the following table:

pi q j q1 = 0 q2 = 3 q3 = −2

p1 = 0 0 0 0
p2 = 3 0 6 −4
p3 = −2 0 −3 2

Thus, we see that piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ k and hence, from Propo-
sition 2.4, we have T ≤LR X2:3 for any exchangeable distribution such that (5.2)
holds. Analogously, from Proposition 2.3, we have T ≤HR X2:3 for any exchangeable
distribution such that (5.1) holds. These ordering properties were already obtained in
Figures 2 and 3 of Navarro et al. (2008b) using signatures and assuming that the order
statistics are HR or LR ordered (respectively). We must note that the conditions in
Propositions 2.3 and 2.4 are not necessary conditions for the HR and LR orderings.
Thus, sometimes, we can obtain better HR or LR ordering results using the procedures
given in Navarro et al. (2008b) and Navarro and Rubio (2011) for the exchangeable
case under the assumption that the order statistics are HR or LR ordered.

The general representation obtained from (4.1) can also be used to obtain ordering
properties whenever the baseline distributions in this generalized mixture representa-
tion are HR (or LR) ordered. Let us see an example.

Example 5.2 Let us consider again the coherent system studied in Example 4.1 with
lifetime T = min(X1,max(X2, X3)). We want to compare it with the series system
with lifetime X1:3 = min(X1, X2, X3). The representation obtained from (4.1) for the
reliability of T is

FT (t) = F {1,2}(t) + F {1,3}(t) − F1:3(t).

This is a generalized mixture representation with baseline reliability functions F {1,2},
F {1,3} and F1:3 and coefficients q1 = 1, q2 = 1, and q3 = −1. Obviously, the
reliability function of the series system X1:3 is obtained with the coefficients p1 =
p2 = 0 and p3 = 1. To see if the condition in Proposition 2.4 holds, we compute the
following table:

pi q j q1 = 1 q2 = 1 q3 = −1

p1 = 0 0 0 0
p2 = 0 0 0 0
p3 = 1 1 1 −1
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As the condition holds, we obtain X1:3 ≤LR T for any joint distribution such
that F{1,2} ≥LR F{1,3} ≥LR F1:3 holds. Obviously, a similar property is obtained if
F{1,3} ≥LR F{1,2} ≥LR F1:3 holds. Analogously, from Proposition 2.3, we obtain
X1:3 ≤HR T for any joint distribution such that F{1,2} ≥HR F{1,3} ≥HR F1:3 holds.

The two examples above show that it is important to have HR and LR order-
ing properties of series systems. These properties were studied in Navarro and
Shaked (2006) and Navarro (2008), respectively. The HR ordering properties are
related with monotonicity properties of the hazard gradient of F (see Theorem 2.1
in Navarro and Shaked 2006). Thus, for example, F{1,3} ≥HR F1:3 holds if and only if
F(t, 0, t)/F(t, t, t) is increasing. Proceeding as in Proposition 2.3, it is easy to see that
this property holds when hi (t, 0, t) ≤ hi (t, t, t) for i = 1, 3, where h = (h1, h2, h3)
is the hazard gradient of F and

hi (x1, x2, x3) = −DiF(x1, x2, x3)

F(x1, x2, x3)
, i = 1, 2, 3.

6 Conclusions

In this paper, conditions for stochastic comparisons of generalized mixtures are
obtained. Specific conditions are obtained for mixtures under the proportional haz-
ard rate and the proportional reversed hazard rate models. These theoretical results
are applied to obtain new distribution-free conditions to get comparisons of coherent
systems under different assumptions. The comparisons obtained improve the results
obtained using classical (positive) mixtures. The results on generalized mixtures can
be used to compare other statistical concepts which can also be represented as gener-
alized mixtures.
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