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Abstract In this paper, we provide a new concept of relative skewness among mul-
tivariate distributions, extending to the multivariate case a similar concept in the
univariate case. In this case, a random variable Y is said to be more right skewed
than a random variable X if there exists an increasing convex transformation which
maps X onto Y . Given two random vectors X and Y and an appropriate transformation
which maps X onto Y, we define a new concept of relative skewness assuming the
convexity of this transformation. Properties and applications of this concept are given.
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1 Introduction

In probability theory, the concept of skewness means asymmetry or departure from
symmetry. The curve of the density function appears distorted or skewed either to
the left or to the right and this fact is interpreted as the tail on the curve’s right-hand
side (left-hand side) being longer than the tail on the left-hand side (right-hand side).
The study of skewness is of great interest in diverse areas of statistics, economics and
related fields. For example, it is well known in statistics that tails have a direct effect
on the efficiency of the estimators of location parameters. In finance, for example, the
departure from symmetry of financial returns is crucial for the assessment of financial
risk. However, all these situations in a real context are affected by more than one ran-
dom variable and require the analysis of the whole problem from a multivariate point
of view (see, e.g., Serfling 2004, 2006). The study and comparison of skewness in the
multivariate case is an important topic not only in finance or risk theory, but also in envi-
ronmental sciences and other research fields. In hydrology, for instance, extreme events
are of great interest and usually involve multivariate skewed distributions. Unfortu-
nately, the study of skewness becomes even more critical in the multivariate case,
where the need to provide skewed multivariate distributions to fit multivariate data
sets has been the origin of several proposals of multivariate skewed distributions. The
papers by Arellano-Valle and Azzalini (2006), Azzalini (1985, 2005), Azzalini and
Capitanio (1999) and Azzalini and Dalla-Valle (1996) are examples of multivariate
skew-normal distributions and related distributions. Most proposals in the multivari-
ate case consider multivariate extensions of “skewing mechanisms” developed in the
univariate case. We describe two different approaches.

First, Ferreira and Steel (2006) developed a skewing mechanism in which a sym-
metric distribution F is skewed through a distortion.More precisely, given a symmetric
distribution F and a distribution P with support on the interval [0, 1], the distorted
version of F through P , that is, P ◦ F , is the skewed version of F . Recently, Abtahi
and Towhidi (2013) gave an unified representation of multivariate skewed distribu-
tions extending to the multivariate case the proposal of Ferreira and Steel (2006) for
the representation of univariate skewed distributions. They used the Rossenblatt con-
struction (see, e.g., Rosenblatt 1952) to provide such representation of multivariate
skewed distributions.

Another approach is the one developed by Ley and Paindaveine (2010). Given a
randomvariable X with symmetric distribution F , they considered an increasing trans-
formation Φ(X) of X which provides a skewed version of X . When Φ is increasing,
it can be easily seen that Φ = G−1 ◦ F (see Marshall and Olkin 2007, Proposition
C. 6.), where G is the distribution function of Φ(X) and G−1 is the quantile function
associated with G, that is, G−1(p) = inf{x : G(x) ≥ p}. This skewing mechanism
is then extended to the multivariate case considering an appropriate transformation
which maps an n-dimensional random vector with a symmetric multivariate distribu-
tion onto a skewed version. This particular transformation is a diffeomorphism, i.e., a
one-to-one mapping H : S ⊂ Rn �−→ T ⊂ R

n such that both H and its inverse H−1

are continuously differentiable functions. It is worthmentioning that authors restrict to
the case when H has a lower triangular Jacobian matrix with strictly positive diagonal
elements.
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On relative skewness for multivariate distributions 815

In both cases, the point of departure is a symmetric distribution, but Ferreira and
Steel (2006) considered a transformation (a distortion) of the quantile space, while
Ley and Paindaveine (2010) considered a transformation of the sample space.

Traditionally, skewness has been studied through different measures that intends to
represent the amount and direction of departure from horizontal symmetry. However,
in the univariate case, when dealing with asymmetry or skewness, van Zwet (1964)
introduced the concept of relative skewness. Let X be a random variable with interval
support and distribution function F . Let us consider another random variable Y with
distribution function G; van Zwet (1964) said that the distribution function G (or
the random variable Y ) is more right-skewed than the distribution F (or the random
variable X ) if G−1 ◦ F is a convex function on the support of X .

The approaches by van Zwet (1964) and Ley and Paindaveine (2010) have in com-
mon the transformation of the sample space, but van Zwet (1964) did not consider the
symmetry of the random variable X or general increasing transformations of X . In
fact, they considered increasing convex transformations of X . That is the reason why
the random variable Y is more right-skewed than the random variable X .

This idea arises in a reasonable way when trying to find a formal definition of
what it means that one distribution G is more skewed to the right than a distribution
F . (Marshall and Olkin 2007, p. 70) provide an explanation of this fact. This idea
provides a partial ordering among the set of distributions. In particular, a random
variable X with distribution F is said to be less in the convex transform order than a
random variable Y with distribution function G, denoted by X ≤c Y , if G−1 ◦ F is
a convex function (see Shaked and Shanthikumar 2007). Equivalently, it can be seen
that X ≤c Y if, and only if, there exists an increasing and convex transformation Φ,
which maps X onto Y , that is, Y =st Φ(X). It is clear also that, in this case, there
exists an increasing and concave transformation �, which maps Y onto X , that is,
X =st �(Y ).

Next, we describe some situations where this comparison of skewness arises in a
natural way.

The first example is the case of increasing convex transformations of some para-
metric models of random variables. For instance, if we consider a random variable X
with normal distribution, with mean equal to 0 and standard deviation equal to 1, then
the random variable Y = exp(σ X + μ), where σ is a positive real number and μ is a
real number, is an increasing convex transformation of X and, therefore, more skewed
to the right than X , or following the previous notation X ≤c Y . In this case the random
variable Y follows a lognormal distribution and, therefore, lognormal distributions are
more skewed to the right than normal distributions.

Another example is when we consider a random variable exp(λ) exponentially
distributed. In this case, increasing concave (convex) transformations of exp(λ) lead
to randomvariableswith an increasing [decreasing] failure rate, denoted by IFR [DFR].
Given a random variable X with absolutely continuous distribution function F and
density function f , the hazard or failure rate is defined as r(x) = f (x)/(1 − F(x))
for all x , such that F(x) < 1. This function is one of the basic functions in the context
of reliability and survival analysis, where a random variable X represents the random
lifetime of a unit or a mechanism. The hazard rate describes the process of aging
and can be considered as the rate at which a unit fails to survive up to a fixed time
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816 F. Belzunce et al.

x (see Barlow and Proschan 1975; Lai and Xie 2006). Namely, if we denote by E
an exponential distribution with parameter 1, i.e., E ∼ exp(1), the IFR [DFR] aging
class can be characterized via the univariate convex transform order, that is, given a
random variable X (or its distribution), then

X is IFR [DFR] ⇔ X ≤c [≥c]E,

⇔ X ≤c [≥c]aE + b, ∀ a > 0, b ∈ R. (1)

As we have mentioned before in the univariate case, when Φ is increasing, then
Φ = G−1◦F . In themultivariate case, it is possible to find such function�whichmaps
a random vector X onto a random vector �(X) with the same distribution of Y. Next,
we describe the construction of such function. Throughout this paper, “increasing”
means “nondecreasing” and “decreasing” means “nonincreasing”. We will denote by
=st the equality in law, and by≤a.s. the almost sure inequality. For any random vector
X, or random variable, we will denote by (X|A) a random vector, or random variable,
whose distribution is the conditional distribution of X given A.

Now, let us consider two n-dimensional random vectors X = (X1, . . . , Xn) and
Y = (Y1, . . . ,Yn) with absolutely continuous distribution.

First, we consider the multivariate quantile transform introduced by Arjas and
Lehtonen (1978), O’Brien (1975), Rosenblatt (1952) and Rüschendorf (1981). Essen-
tially, this transformation is also discussed in Ley and Paindaveine (2010). Let us
consider the random vector Y, the multivariate quantile transform, also called the
standard construction, associated with Y, which is defined recursively as

QY,1(u1) = G−1
Y1

(u1),

QY,2(u1, u2) = G−1
(Y2|Y1=QY,1(u1))

(u2),
...

QY,n(u1, . . . , un) = G−1(
Yn | ⋂n−1

j=1 Y j=QY, j (u1,...,u j )
)(un),

(2)

for every (u1, u2, . . . , un) ∈ (0, 1)n , where G−1
Y1

(·) is the quantile function of Y1
and for i = 2, . . . , n, G−1(

Yi | ⋂i−1
j=1 Y j=QY, j (u1,...,u j )

)(·) is the quantile function of the

univariate conditional random variable given by

⎛
⎝Yi

∣∣∣∣∣∣
i−1⋂
j=1

Y j = QY, j (u1, . . . , u j )

⎞
⎠ .

This known transform is widely used in simulation theory and plays the role of the
quantile in the multivariate case. It can be seen that givenU1, . . . ,Un independent and
identically distributed random variables uniformly distributed on the interval (0, 1),
then, denoting

QY(u1, . . . , un) = (QY,1(u1), QY,2(u1, u2), . . . , QY,n(u1, . . . , un)),
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On relative skewness for multivariate distributions 817

we have that
(Y1, . . . ,Yn) =st QY(U1, . . . ,Un). (3)

Next, we recall themultivariate distributional transform. Let us consider the random
vector X; the multivariate distributional transform is defined recursively as

DX,1(x1) = FX1(x1),
DX,2(x1, x2) = F(X2|X1=x1)(x2),

...

DX,n(x1, . . . , xn) = F(
Xn | ⋂n−1

j=1 X j=x j
)(xn),

(4)

for every (x1, . . . , xn) in the support of X, where FX1(·) is the distribution function
of X1 and for i = 2, . . . , n, F(

Xi | ⋂i−1
j=1 X j=x j

)(·) is the distribution function of the

conditional distribution
(
Xi | ⋂i−1

j=1 X j = x j
)
.

Denoting

DX(x1, . . . , xn) = (DX,1(x1), DX,2(x1, x2), . . . , DX,n(x1, . . . , xn)),

it can be seen that
(U1, . . . ,Un) =st DX(X1, . . . , Xn). (5)

Therefore, if we consider the transform

� ≡ QY ◦ DX, (6)

defined for every (x1, . . . , xn) in the support of X, we have, from (3) and (5) that

Y =st QY(DX(X)),

and, hence, the function � maps the random vector X onto Y.

Remark 1 From (2) and (4), the i-th component of � depends only on (x1, . . . , xi )
and is given by

�1(x1) = G−1
Y1

(FX1(x1)), (7)

�i (x1, . . . , xi ) = G−1{
Yi

∣∣∣∣∣
i−1⋂
j=1

Y j=� j (x1,...,x j )

}

⎛
⎜⎝F{

Xi

∣∣∣∣∣
i−1⋂
j=1

X j=x j

}(xi )

⎞
⎟⎠ . (8)

From the increasingness of both the distribution function and its inverse, it is apparent
that

�i (x1, . . . , xi ),
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is increasing in xi , for all i = 1, . . . , n. Hence, the Jacobian matrix of � is always a
lower triangular matrix with strictly positive diagonal elements.

Remark 2 In addition, as a clear extension of the univariate case, Fernández-Ponce
and Suárez-Llorens (2003) proved in their Theorem 3.1 that if we take a function
k : R

n → R
n such that Y =st k(X) and k has a lower triangular Jacobian matrix with

strictly positive diagonal elements, then k has necessarily the form of the function �

given in (6).

The purpose of this paper is to provide a new concept of relative skewness for
multivariate distributions assuming some convexity properties for the function�. The
organization of the paper is the following. In Sect. 3, we define and study a criteria of
relative skewness based on convexity properties for the function �. We provide some
properties and examples. In Sect. 4, we study the case of random vectors with the
same copula and provide several examples for this case. Along the paper, we assume
absolute continuity of the multivariate distributions and convex supports for random
vectors and random variables.

2 Relative skewness of multivariate distributions

In this section, we consider a new multivariate convex order based on the generaliza-
tion of the convexity ofG−1◦F to themultivariate case for the function� = QY ◦DX.
This generalization is clearly inspired on the multivariate dispersive order proposed
by Fernández-Ponce and Suárez-Llorens (2003) and also in the skewing mechanism
by Ley and Paindaveine (2010). Along this section, we will assume that the random
variables or vectors, upon which we consider convex transformations, have a convex
support and, analogously to the previous section, also absolutely continuous distrib-
ution functions. Finally, we will restrict our study to the case when the function �,
defined in (6), is differentiable.

We start by recalling the definition of a multivariate convex function (see Marshall
et al. 2011, for more details).

Let f : S → R be a real-valued function defined on a convex set S ⊆ R
k , k ≥ 1.

Then, f is convex on the set S if for all x1, x2 ∈ S and for all λ ∈ (0, 1) we have

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

In literature, there exist many interesting characterizations of convex functions.
Next, we recall some of these characterizations. Note that when we use them, we will
assume the regularity conditions that make them possible. From now on, given a vector
(or a matrix) v, we denote as vt the transposition of v.

Characterization 1 If the function f : S → R,S ⊆ R
k , is differentiable in the interior

of its support, the convexity is equivalent to check

(f(x2) − f(x1))t ≥ ∇f(x1)(x2 − x1)t ,
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On relative skewness for multivariate distributions 819

for all x1, x2 in the support of f , where

∇f(x1)(x2 − x1)t =
k∑

i=1

∂f
∂xi

(x1)(x2i − x1i ),

represents the classical tangent hyperplane to the hypersurface given by f at x1.

Characterization 2 If the function f : S → R, S ⊆ R
k , is twice differentiable in the

interior of its support, the convexity is equivalent to check if the Hessian, denoted by
∇2f(x), is a semidefinite positive matrix, for every x in the support of f .

We recall that by Young’s theorem, the Hessian of any function, for which all second
partial derivatives are continuous, is symmetric for all values of the argument of the
function. Finally, attending to the Sylvester’s criterion,∇2f(x) is semidefinite positive
if, and only if, all its principal minors are non-negative.

Definition 1 LetX andY be two n-dimensional randomvectors. Let� be the function
defined in (6) which maps X onto Y. Then, X is said to be smaller than Y in the
multivariate convex transform order, for short mct order and denoted by X ≤mct Y,
if, and only if, the i-th component of�,�i , is convex in its support for all i = 1, . . . , n.

Roughly speaking, X ≤mct Y means that the transformation � that maps X onto
Y is a multivariate convex function. Hence, Definition 1 is a clear generalization of
the concept of relative skewness proposed by van Zwet (1964). It is worth mentioning
that the transformation � depends on the ordering of the marginal distributions. Note
that we first obtain �1 from the marginal distributions X1 and Y1, and conditioned
on every possible realization �1(x1) we next construct �2(x1, x2). Continuing this
procedure, we finally arrive at �. Far from being a disadvantage, this dependency
provides a formal way of explaining that one random vector X is more “directionally
skewed‘” than a random vector Y, where directionally skewed is a clear extension of
the right-skewed univariate concept.Wewill see later that Proposition 1 reinforces this
remark. For such a reason, given two random vectors ordered in the mct-order sense,
we cannot expect the mct order to hold for any arbitrary permutation of the marginal
distributions.

From (6) and Remark 1, we point out that the function � is the kind of transforma-
tions that Ley and Paindaveine (2010) use to define a skewing mechanism. Namely,
the authors only require that transformations that map a multivariate symmetric dis-
tribution onto a skewed version cannot be odd functions. This is due to the fact that if
we map a symmetric distribution, assuming symmetry around the null vector, using
an odd mapping, we will obtain another symmetric distribution. We recall that, except
affine transformations, convex functions cannot be odd functions. We will analyze in
Proposition 2 the case when � is an affine transformation.

From Remark 2 and although it is not our main purpose, we can consider any
multivariate convex transformation having a lower triangular Jacobian matrix with
strictly positive diagonal elements to provide a skewing mechanism. For example, the
following transformation �(x1, . . . , xn) = (ex1 , . . . , exn ) will map any symmetric
multivariate distribution, X, onto a skewed version, Y = �(X), in the mct-order
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820 F. Belzunce et al.

sense. In the latter case, X and Y share a common dependence structure, copula, as
we will see in Sect. 4.

Next, we provide a particular interpretation. Denoting by J�(x) the Jacobianmatrix
of � at x and using Characterization 1 for each �i , i = 1, . . . , n, it is apparent that
Definition 1, in case of differentiability, is equivalent to check the following inequality:

(�(x2) − �(x1))t ≥ J�(x1)(x2 − x1)t , (9)

which contains all the information of the tangent hyperplanes given by ∇�i , i =
1, . . . , n. Note that from Remark 1, the Jacobian matrix of � is a lower triangular
matrix with strictly positive diagonal elements having the following form:

J�(x) =

⎛
⎜⎜⎜⎜⎝

∂�1
∂x1

(x1) 0 . . . 0
∂�2
∂x1

(x1, x2)
∂�2
∂x2

(x1, x2) . . . 0
...

...
. . .

...
∂�n
∂x1

(x1, . . . , xn)
∂�n
∂x2

(x1, . . . , xn) . . . ∂�n
∂xn

(x1, . . . , xn)

⎞
⎟⎟⎟⎟⎠

.

Due to the fact that�maps the multivariate quantile transform of X to the correspond-
ing of Y, i.e., �(QX(u)) = QY(u), for all u = (u1, . . . , un), ui ∈ (0, 1), condition
(9) can be interpreted as a particular distance between multivariate quantiles:

(QY(v) − QY(u))t ≥ J�(QX(u))(QX(v) − QX(u))t ,

for all v = (v1, . . . , vn) and u = (u1, . . . , un).
Another interesting interpretation of the mct order is given by the following result.

Proposition 1 Let X and Y be two n-dimensional random vectors. If X ≤mct Y, then

X1 ≤c Y1, (10)
⎛
⎝Xi

∣∣∣∣∣∣
i−1⋂
j=1

{X j = QX, j (u1, . . . , u j )}
⎞
⎠ ≤c

⎛
⎝Yi

∣∣∣∣∣∣
i−1⋂
j=1

{Y j = QY, j (u1, . . . , u j )}
⎞
⎠ ,

(11)

for i = 2, . . . , n and for all ui , such that 0 < ui < 1, i = 1, . . . , n.

Proof Under hypothesis assumption, �i (x1, . . . , xi ) is convex for all i = 1, . . . , n.
Therefore, it is also convex in xi , when x1, . . . , xi−1 remains fixed. If we take into
account that � maps the multivariate quantile transform of X to the corresponding Y,
the proof follows directly by just observing the expressions (7) and (8) and recalling
the definition of the univariate convex order. ��

Therefore, the univariate conditional distributions are ordered in the sense of van
Zwet (1964), i.e., the conditional distributions of X can be interpreted to be more
right-skewed than those of Y.

Next, we consider an example to show that (10) and (11) in Proposition 1 are not
sufficient conditions for the mct order.
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On relative skewness for multivariate distributions 821

Example 1 Let X = (X1, X2) be a non-negative bivariate distribution and let m1 ≥ 1
and m2 ≥ 1 be two fixed constants. Let us consider the random vector Y = (Y1,Y2)
given by

(Y1,Y2) = k(X1, X2),

= (k1(X1), k2(X1, X2)),

= (Xm1
1 , Xm1

1 Xm2
2 ).

Since Remark 2, it is apparent that the function �, given in (6), which maps X onto Y
has the form

�(x1, x2) = QY(DX(x1, x2)) = (xm1
1 , xm1

1 xm2
2 ).

If we compute the Hessian matrix of �2, we obtain

∇2�2(x1, x2) =
(
m1(m1 − 1)xm1−2

1 xm2
2 m1m2x

m1−1
1 xm2−1

2

m1m2x
m1−1
1 xm2−1

2 m2(m2 − 1)xm2−2
2 xm1

1

)
,

where

det(∇2�2(x1, x2)) = −(m1 + m2 − 1)m1m2x
2m1−2
1 x2m2−2

2 ≤ 0,

which obviously does not achieve positive values. Therefore, ∇2�2(x1, x2) is not
semidefinite positive and X �mct Y. However, it is apparent that �1(x1) is convex in
x1, and �2(x1, x2) is convex in x2 when x1 remains fixed.

Recalling the univariate convex order, given two univariate random variables X and
Y , X =c Y if, and only if, Y =st aX + b for all a > 0 and real b (see Marshall and
Olkin 2007, Proposition C.9). Therefore, it is natural to wonder if a similar property
holds for the mct order: the answer is yes, as we will see in Proposition 2. To prove it,
we recall first the inverse function theorem (see, e.g., Burkill and Burkill 2002).

Lemma 1 Let A ⊆ R
n be an open set and � : A → R

n a differentiable and
continuous function with differentiable and continuous inverse �−1. Then,

J�−1(y)|y=�(x) = (J�(x))−1,

for all x ∈ A.

Proposition 2 Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be two random vectors.
Then,

X =mct Y,

if, and only if,

Yt =st AXt + b,
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822 F. Belzunce et al.

for a lower triangular matrix A = (ai j ) with diagonal elements, aii > 0, i = 1 . . . , n,
and a column matrix b.

Proof First, we will prove the sufficient condition. If Yt =st AXt + b, as specified
previously, using Remark 2 we obtain that �(x) = QY(DX(x)) = Axt + b. Hence,
it is apparent that X ≤mct Y. Just observing that Xt =st A−1(Yt − b) and taking
into account that A−1 is also a lower triangular matrix with strictly positive diagonal
elements, using again Remark 2, Y ≤mct X holds with a similar argument.

We will show now the necessary condition. Let us suppose that X =mct Y. Note
that the function �, defined in (6), which maps X to Y has a lower triangular Jacobian
matrix with diagonal elements strictly positive. If we denote by �� the function that
follows from (6), exchanging X by Y, then it is not difficult to see that �� = �−1.
Hence, by hypothesis assumption, the components of� and�−1 are convex functions.
Hence,

J�(x1)(x2 − x1)t ≤ (�(x2) − �(x1))t , (12)

and, from Lemma 1, we have

(J�(x1))−1(�(x2) − �(x1))t ≤ (x2 − x1)t , (13)

where x2, x1 are in the support of X.
Let us see that these inequalities imply that �(x) = Axt + b. Let us proceed by

induction on i = 1, . . . n.
For the case i = 1, the result is trivial, because we have that �1(x1) and �−1

1 (x1)
are increasing and convex and, therefore, �1(x1) = a11x1 + b1 where a11 > 0.

Let us assume that this is true for j = 1, . . . , i − 1, that is,

� j (x1, . . . , x j ) = a1 j x1 + . . . + a j j x j + b j ,

and let us see that it is true for j = i . Then, we can write

J(�1,...,�i )(x1, . . . , xi )

=

⎛
⎜⎜⎜⎜⎝

Ai−1

0
...

0
∂�i
∂x1

(x1, . . . , xi ) . . .
∂�i

∂xi−1
(x1, . . . , xi )

∂�i
∂xi

(x1, . . . , xi )

⎞
⎟⎟⎟⎟⎠

,

and

(J(�1,...,�i )(x1, . . . , xi ))
−1 =

⎛
⎜⎜⎜⎜⎜⎝

A−1
i−1

0
...

0

B(x1, . . . , xi )
(

∂�i
∂xi

(x1, . . . , xi )
)−1

⎞
⎟⎟⎟⎟⎟⎠

,
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On relative skewness for multivariate distributions 823

where Ai−1 is a lower triangular matrix with dimension (i − 1) × (i − 1) and

B(x1, . . . , xi )

= − 1
∂�i
∂xi

(x1, . . . , xi )

(
∂�i

∂x1
(x1, . . . , xi ), . . . ,

∂�i

∂xi−1
(x1, . . . , xi )

)
A−1
i−1.

From (12), taking x2 = (x21, . . . , x2n) and x1 = (x11, . . . , x1n) in the support of
X, we obtain that

i∑
j=1

∂�i

∂x j
(x11, . . . , x1i )(x2 j − x1 j ) ≤ �i (x21, . . . , x2i ) − �i (x11, . . . , x1i ). (14)

From (13), we also have that

x2i − x1i ≥ B(x11, . . . , x1i )

⎛
⎜⎝

�1(x21) − �1(x11)
...

�i−1(x21, . . . , x2(i−1)) − �i−1(x11, . . . , x1(i−1))

⎞
⎟⎠

+ 1
∂�i
∂xi

(x11, . . . , x1i )
(�i (x21, . . . , x2i ) − �i (x11, . . . , x1i )).

Now, taking into account the expression of B(·) and the induction hypothesis, the
previous inequality is equivalent to

x2i − x1i ≥ − 1
∂�i
∂xi

(x11, . . . , x1i )

i−1∑
j=1

∂�i

∂x j
(x11, . . . , x1i )(x2 j − x1 j )

+ 1
∂�i
∂xi

(x11, . . . , x1i )
(�i (x21, . . . , x2i ) − �i (x11, . . . , x1i )).

From this inequality, we get

i∑
j=1

∂�i

∂x j
(x11, . . . , x1i )(x2 j − x1 j ) ≥ (�i (x21, . . . , x2i ) − �i (x11, . . . , x1i )).

Therefore, from previous inequality and (14) we get

i∑
j=1

∂�i

∂x j
(x11, . . . , x1i )(x2 j − x1 j ) ≤ �i (x21, . . . , x2i ) − �i (x11, . . . , x1i )

≤
i∑

j=1

∂�i

∂x j
(x11, . . . , x1i )(x2 j − x1 j ).

Hence, �i is an affine transformation. ��
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Proposition 2 is consistent with the skewing mechanism proposed by Ley and Pain-
daveine (2010). This is due to the fact that an affine transformation with a column
matrix b = 0 is an odd function. Therefore, an affine transformation cannot be con-
sidered as a skewing mechanism.

Now, we present an example where we show that all elliptically contoured distrib-
utions sharing a common generator are equal in the mct-order sense. First, we recall
that X has an elliptically contoured distribution, denoted by En(μ,	, g), if its density
function can be expressed as

f (x) = k · g((x − μ)t	−1(x − μ)),

where k is the scale factor, μ is the median vector (which is also the mean vector
if the latter exists), 	 is a symmetric positive definite matrix which is proportional
to the covariance matrix if the latter exists, and g is a function mapping from the
non-negative reals to the non-negative reals giving a finite area under the curve.

Example 2 Let X ∼ En(μ1, 	1, g) and Y ∼ En(μ2, 	2, g) be two nondegenerate
multivariate elliptically contoured distributions sharing a common generator, where
	i , i = 1, 2, are two non-singular symmetric positive definite matrices. According to
Theorem 14.5.11 in Harville (1997), we can find two lower triangular matrices A and
B such that AAt = 	2 and Bt B = 	−1

1 . Furthermore, we have that

At = D1/2
A U and B = D−1/2

B (V−1)t ,

with U and V being the unique unit upper triangular matrices and DA = {dAi } and
DB = {dBi } being the unique diagonal matrices with positive elements such that

	1 = VtDBV and 	2 = UtDAU,

where D1/2
A = {√dAi } and similarly for D1/2

B . The U and V matrices are computed
using the Cholesky decomposition (Harville 1997).

According to Remark 2 and from the well-known fact that elliptically contoured
distributions are preserved by affine transformations, the function �, given in (6),
which maps X onto Y has the form

�(x) = QY(DX(x)) = AB(x − μ1) + μ2.

Consequently, the Jacobian matrix of � satisfies J� = AB. Due to the fact that the
Jacobian matrix is constant, it follows directly that the Hessian matrix of �i is the
null matrix for all i = 1, . . . , n, and analogously for the function that maps Y to X.
Hence, X =mct Y.

We would like to emphasize that the elliptical family contains the multivariate nor-
mal family that corresponds to the functional parameter g(t) = exp(−t/2),which is a
particular case of the power exponential family, g(z) = exp(−zβ)/2) . It also contains
a number ofwidely used subfamilies, which can be useful for robustness purpose as the
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multivariate t-distribution family, the multivariate symmetric generalized hyperbolic
family, etc.

It is easy to see that the mct order is closed under conjunctions and verifies a sort
of marginalization closure property. We state these properties without proof.

Proposition 3 The following properties hold:

(i) Let X1, . . . , Xn be a set of independent random vectors where the dimension of
Xi is ki , i = 1, . . . , n. Let Y1, . . . , Yn be a set of independent random vectors
where the dimension of Yi is ki , i = 1, . . . , n. If Xi ≤mct Yi for i = 1, . . . , n,
then

(X1, . . . , Xn) ≤mct (Y1, . . . , Yn).

(ii) Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be two n-dimensional random
vectors. Let 1 ≤ i ≤ n, XI = (X1, . . . , Xi ) and YI = (Y1, . . . ,Yi ). If X ≤mct Y,
then XI ≤mct YI .

Due to the fact that the composition of multivariate convex functions is not always
convex, themultivariate transform convex order does not satisfy the transitive property.
Let us see the following example:

Example 3 Let X = (X1, X2), Y = (X2
1, X

2
2) and Z = (2X2

1,−3X2
1 + X2

2) be three
bivariate random vectors on (0,∞)2. From Remark 2, a straightforward computation
shows that

�(1)(x1, x2) = QY(DX(x1, x2)) = (x21 , x
2
2 ),

�(2)(y1, y2) = QZ(DY(y1, y2)) = (2y1,−3y1 + y2),

�(x1, x2) = QZ(DX(x1, x2)) = (2x21 ,−3x21 + x22 ).

Just computing the Hessian matrices of all component functions, it is easily obtained
that X ≤mct Y =mct Z, but X �mct Z.

However, transitive property holds for some particular transformations, as we can
see in the following proposition. The proof is a direct consequence of the composition
of convex functions (seeMarshall et al. 2011, PropositionB.7.) and it has been omitted.

Proposition 4 Let X, Y and Z be three n-dimensional random vectors such that
X ≤mct Y ≤mct Z, and let �(1) ≡ QY ◦ DX and �(2) ≡ QZ ◦ DY as described in (6).
If �(2)(y) is increasing for all y ∈ R

n, then X ≤mct Z.

3 On relative skewness for random vectors with the same copula

In this section, we discuss the case of random vectors with the same copula. A copula
C is a cumulative distribution function with uniform margins on [0, 1]. The notion of
copula was introduced by Sklar (1959). The main purpose of copulas is to describe
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the interrelation of several random variables. Given a random vector X with margins
F1, . . . , Fn , there exists a copula C such that

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Moreover, if F1, . . . , Fn are continuous, then C is unique (see Nelsen 1999, for a
complete review about copulas). On the other hand, any copula evaluated with some
margins in the right way leads to a multivariate distribution function. Next, we show
that for random vectors with the same copula, the mct order is equivalent to compare
in the convex order the marginal distributions.

Theorem 1 Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be two random vectors
sharing a common copula. Then, X ≤mct Y if, and only if, Xi ≤c Yi for all i =
1, . . . , n.

Proof Arias-Nicolás et al. (2005) showed that, for two random vectors with the same
copula, the function �, defined in (6), which maps X to Y satisfies that

�i (x1, . . . , xi ) = G−1
Yi

(FXi (xi )), (15)

for all i = 1, . . . , n. The result follows directly from expression (15) and recalling the
definition of the univariate convex order. ��

As an immediate consequence of Theorem 1, for two random vectors having inde-
pendent components, independence copula, the mct order is reduced to the univariate
convex order between the marginal distributions.

From Proposition 4 and Theorem 1, we obtain the following corollary.

Corollary 1 Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be two random vectors
such that X ≤mct Y. Then, X ≤mct W for all random vector W = (W1, . . . ,Wn)

having the same copula than Y such that Yi ≤c Wi , for all i = 1, . . . , n.

Proof Using Theorem 1, Y ≤mct W holds and the transformation � ≡ QY ◦ DW,
defined in (6), only depends on the marginal distributions, i.e., it can be expressed as

�i (x1, . . . , xn) = G−1
Yi

(FWi (xi )),

where it is apparent that � is trivially increasing. The proof concludes just using
Proposition 4. ��

Theorem 1 can be used to provide many examples of random vectors ordered in the
mct order. Just fixing a copula, manymultivariate random vectors can be ordered in the
mct order via the univariate comparison of the marginal distributions. We would like
to mention that the fact of using copulas for providing a flexible skewing mechanism
is mentioned in Ley and Paindaveine (2010). Due to the well-known fact that the
copula is preserved by strictly increasing transformations of themarginal distributions,
given a random vector X = (X1, . . . , Xn) with a symmetric distribution and copula
C , any multivariate increasing convex transformation of the type �(x1, . . . , xn) =
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(Φ1(x1), . . . , Φn(xn)) will provide a skewed version of X, say Y = �(X), in the
mct-order sense having the same copula C .

Next, we describe some situations where Theorem 1 can be applied.

3.1 Multivariate normal and lognormal distributions

Given a random vector X = (X1, . . . , Xn) with multivariate normal distribution
(see Example 2), the random vector Y = (Y1, . . . ,Yn), where Yi = exp Xi for
i = 1, . . . , n, follows a multivariate lognormal distribution (see Aitchisonm and
Brown 1957). Clearly, X and Y share the same copula and the function that maps
Xi onto Yi is convex, for all i = 1, . . . , n. Therefore, using Theorem 1, we obtain
that X ≤mct Y. Hence, the multivariate lognormal distribution is a right skewed trans-
formation of a multivariate normal distribution. We also observe that given any other
multivariate normal distribution X′, from Example 2, X′ =mct X holds. Then, using
Proposition 4, X′ ≤mct Y also holds.

3.2 Multivariate distributions with IFR [DFR] margins

The next corollary provides a situation where we can apply previous ideas.

Corollary 2 Let X = (X1, . . . , Xn) be a random vector having a copula C such that
all marginal distributions, Xi , i = 1, . . . , n, satisfy the IFR [DFR] aging property. If
we consider a random vector Y = (Y1, . . . ,Yn) with the same copula C but having
shifted exponential marginal distributions, that is Yi ∼ ai E+bi , where ai > 0, b ∈ R

and E ∼ exp(1), then X ≤mct [≥mct ]Y.

Proof The proof follows easily from Theorem 1 and the univariate characterization
of the IFR [DFR] aging property given in (1). ��

Taking into account previous results, we can construct a great bunch of examples
of multivariate distributions ordered in the mct order. Let us see some examples.

Example 4 Let X and Y be two random vectors with the same Gumbel copula given
by:

C(u1, u2) = exp

{
−

[
(− log u)1/θ + (− log v)1/θ

]θ
}

for u1, u2 ∈ (0, 1).

Let X be a random vector with Weibull distributed margins with scale parameter
equal to one, i.e., with distribution function given by:

Fi (x) = 1 − exp{−xβi } for i = 1, 2.

This bivariate distribution X can be found in Lu and Bhattacharyya (1990).
Let Y be a random vector with exponential distributed margins, i.e.,

Gi (x) = 1 − exp{−αi x} for i = 1, 2.
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Fig. 1 Joint density function of a, c Weibull and b, d Gumbel bivariate distributions

Then, we have again that X ≤mct Y [≥mct ] if βi > 1 [ < 1] for i = 1, 2,
respectively.

In fact, in Fig. 1, we plot the joint density functions of the bivariate Weibull and
Gumbel distributions for θ = 0.3, β1 = β2 = 3 and α1 = α2 = 1. Clearly, the
bivariate Gumbel distribution is more skewed than the bivariate Weibull distribution.

Example 5 Let us consider a random vector X with a Clayton copula which is given
by

C(u1, u2) =
[
u−1/θ
1 + u−1/θ

2 + 1
]−θ

for u1, u2 ∈ (0, 1),

where θ > 0 and exponentially distributed margins. Let Y be a bivariate Pareto
distribution as defined in Lindley and Singpurwalla (1986). Y has a Clayton copula
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Fig. 2 Joint density function a, c of the Clayton copula with exponential margins and b, d Pareto bivariate
distributions

and Pareto distributed margins (see Balakrishnan and Lai 2009). It is known that the
Pareto distribution is DFR. Hence, again from Corollary 2, we have X ≤mct Y.

In Fig. 2, we can see the plots of the joint density functions of a distribution with a
Clayton copula and exponential margins and a Pareto bivariate distribution for θ = 0.3
in both cases.

3.3 Relative skewness for ordered data

The model of a random vector with ordered components arises in a natural way when
we arrange in increasing order a set of observations from a random variable. Another
example is the case of epoch times of a counting process, like the case of a nonhomo-
geneous Poisson process. Epoch times of nonhomogeneous Poisson processes can be
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introduced as record values of a proper sequence of random variables, which is another
typical example of ordered data. Finally, it is worth mentioning that order statistics
is also an interesting way of skewing symmetric distributions (see, e.g., Jones 2004).
Given the similarity of several results for order statistics and record values, Kamps
(1995a) introduced the model of generalized order statistics. This model provides a
unified approach to study order statistics and record values, and several other models
of ordered data. First, we recall the definition of generalized order statistics following
(Kamps 1995a, b).

Definition 2 Let n ∈ N, k ≥ 1, m1, . . . ,mn−1 ∈ R, Mr = ∑n−1
j=r m j , 1 ≤ r ≤ n − 1

be parameters such that γr = k + n − r + Mr ≥ 1 for all r ∈ 1, . . . , n − 1, and
let m̃ = (m1, . . . ,mn−1), if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1). We call uniform
generalized order statistics the random vector (U(1,n,m̃,k), . . . ,U(n,n,m̃,k)) with joint
density function

h(u1, . . . , un) = k

⎛
⎝

n−1∏
j=1

γ j

⎞
⎠

⎛
⎝

n−1∏
j=1

(1 − u j )
m j

⎞
⎠ (1 − un)

k−1,

on the cone 0 ≤ u1 ≤ · · · ≤ un ≤ 1. Now, given a distribution function F , we call
generalized order statistics based on F the random vector

(X(1,n,m̃,k), . . . , X(n,n,m̃,k)) ≡
(
F−1(U(1,n,m̃,k)), . . . , F

−1(U(n,n,m̃,k))
)

.

If F is an absolutely continuous distribution with density f , the joint density func-
tion of (X(1,n,m̃,k), . . . , X(n,n,m̃,k)) is given by

f (x1, . . . , xn) = k

⎛
⎝

n−1∏
j=1

γ j

⎞
⎠

⎛
⎝

n−1∏
j=1

F̄(x j )
m j f (x j )

⎞
⎠ F̄(xn)

k−1 f (xn),

on the cone F−1(0) ≤ x1 ≤ · · · ≤ xn ≤ F−1(1).
Let us see now several other models that are included in this model. As we have

mentioned previously, order statistics and record values are a particular case of this
model (see Belzunce 2013, for a detailed review).

Taking mi = 0 for all i = 1, . . . , n − 1 and k = 1, we get the random vector
of order statistics (X1:n, X2:n, . . . , Xn:n) from a set of n independent and identically
distributed (i.i.d) observations X1, X2, . . . , Xn with common absolutely continuous
distribution F ; in particular, we get that Xi :n =st X(i,n,0,1).

Taking mi = −1 for all i = 1, . . . , n − 1 and k = 1, we get the random vector of
the first n record values (see Chandler 1952).

Some additional particular cases of GOSs are the following. Taking mi = −1 for
all i = 1, . . . , n − 1 and k ∈ N, we get k-records. Taking n = m, mi = Ri and
k = Rm + 1, we get order statistics from Type-II censored data. Another particular
case is the that of order statistics under multivariate imperfect repair (see Shaked and
Shanthikumar 1986).
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Fig. 3 Joint density function of bivariate random vectors based on theWeibull disribution for β = 2, 1, 0.5,
respectively

Next, we show a property dealing with the comparison of relative skewness for
generalized order statistics. Note that the dependency of the ordering of the marginal
distribution for the mct order appears in a natural way for random vectors with ordered
components.

Theorem 2 Let X and Y be two random vectors of generalized order statistics based
on distributions F and G from random variables X and Y , respectively. Then, X ≤mct

Y if, and only if, X ≤c Y .

Proof Since the vectors of generalized order statistics have the same copula (see
Belzunce et al. 2008), the result follows easily if X(r,n,m̃,k) ≤c Y(r,n,m̃,k), for all
r = 1, . . . , n, if, and only if, X ≤c Y . This follows observing that

G−1
Y(r,n,m̃,k)

(FX(r,n,m̃,k) (x)) = G−1(F(x)),

where GY(r,n,m̃,k) and FX(r,n,m̃,k) denote the distribution functions of Y(r,n,m̃,k) and
X(r,n,m̃,k), respectively (Cramer and Kamps 2003, see also). ��

In Fig. 3, we can see the plots of the joint density functions of three random vectors
of order statistics,X, Y andZ, based on theWeibull distributionwith parameters λ = 1
and β = 2, 1, 0.5, respectively. As previously mentioned, the aging of the Weibull
distribution depends on the value of β. In particular, we have that if β > [<]1, then
the Weibull distribution is IFR [DFR] and it is smaller [bigger] than the exponential
distribution, which is obtained with β = 1, in the convex order. From Corollary 4 and
Theorem 2, we have X ≤mct Y ≤mct Z.

3.4 Relative skewness with real data

In environmental sciences, there are situations where we can be interested in the
analysis of skewness or concentration of our data. In this context, the study of skewness
or concentration of hydrological data, such as droughts or precipitations, has attracted
the attention for economic or wealth reasons. They can be described through some
fundamental characteristics such as for example duration, denoted by D, and severity,
denoted by S, which are usually fitted to the gamma and exponential distributions (see
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Table 1 Parameters of the
margins of X and Y

Station Abadan Anazli

Severity (gamma)

θ̂ 1.527 1.497

α̂ (shape) 0.737 0.917

Duration (exponential)

β̂ (scale) 2.796 3.277

λ̂ 2.125 3.129

Shiau 2006). Moreover, the Clayton copula, as introduced in Example 5, is widely
used to model the relationship between drought severity and drought duration. In
Shiau and Modarres (2009), a copula-based drought severity duration study is given.
They analyzed rainfall data for the period 1954–2003 from two gauge stations in
Iran, Abadan and Anazli. Let us consider two random vectors X = (S1, D1) and
Y = (S2, D2) with severity duration of Abadan and Anazli, respectively. Shiau and
Modarres (2009) showed that both bivariate distributions have a Clayton copula with
estimated parameters θ̂X = 1.527 and θ̂Y = 1.497, respectively. We provide in Table
1 the marginal distributions.

Just taking into account the estimation error of the dependency parameter, θ , we can
assume that X and Y share the same copula. On the other hand, van Zwet (1964) also
studied the convex transformorder betweengammadistributions. In particular, if X and
Y are univariate gamma distributions with shape parameters α1 and α2, respectively,
such that α1 ≥ α2, then X ≤c Y . In our case, we have that the estimation of the shape
parameter of S1 (̂α1 = 0.737) is smaller than that corresponding to S2 (̂α2 = 0.917);
therefore, there is reasonable empirical evidence to affirm that S1 ≥c S2. On the other
hand, it is apparent that all exponential distributions are equal in the univariate convex
transform order. Thus, we have that S1 =c S2. Hence, using jointly these results and
Proposition 1, X ≥mct Y holds and we expect that X is more right-skewed than Y.

This type of comparison implies, from Proposition 1, that both margins and con-
ditioned random variables are ordered in the convex order. It is well known that the
convex transform order preserves the comparison between the main skewness coef-
ficients, such as the Fisher’s and Bowley’s coefficients (see MacGillivray 1986) and
the coefficient of variation and Gini indexes (see Shaked and Shanthikumar 2007) for
concentration. Therefore, data in Anazli are relatively more dispersed than those of
Abadan, and therefore they are more unpredictable.

4 Conclusions

The study of skewness is of interest in many areas of research such as risk theory,
finance, hydrology, etc. Skewness can be studied through comparisons of many single
measures, but stochastic orders and, in particular when we deal with random variables,
the univariate convex transform order proposed by van Zwet (1964) provides a more
complete comparison between the skewness of two random variables. Unfortunately,
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in real phenomena, more than one random variable is involved and its analysis is more
complicated.

In this work, we provide a new multivariate stochastic order, the so-called mct
order, as a tool based on the standard construction for comparing the skewness of two
random vectors. This transformation was firstly proposed by Rosenblatt (1952), and
rediscovered periodically, and captures the essence of how a random vector is mapped
onto another. The convexity of the standard construction is the key of the cct order
which generalizes the univariate version of the convex transform order given by van
Zwet (1964).

On the other hand, when one compares two random vectors in the mct order, we
also show that it is important to take into account their dependence structures, because
in case that they share the same copula, the comparison can be reduced to compare
the margins in the univariate convex transform order.

Finally, we illustrate the results with different applications to some probabilistic
models such as normal and lognormal distributions and generalized ordered statistics,
as well as an example dealing with real data related to environmental sciences.
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