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Abstract This paper addresses the issue of model selection in the beta regression
model focused on small samples. The Akaike information criterion (AIC) is a model
selection criterion widely used in practical applications. The AIC is an estimator
of the expected log-likelihood value, and measures the discrepancy between the true
model and the estimated model. In small samples, the AIC is biased and tends to select
overparameterizedmodels. To circumvent that problem,we propose two new selection
criteria, namely: the bootstrapped likelihood quasi-CV and its 632QCV variant. We
use Monte Carlo simulation to compare the finite sample performances of the two
proposed criteria to those of the AIC and its variations that use the bootstrapped log-
likelihood in the class of varying dispersion beta regressions. The numerical evidence
shows that the proposed model selection criteria perform well in small samples. We
also present and discuss and empirical application.
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1 Introduction

In regression analysis, practitioners are usually interested in selecting the model that
yields the best fit from a broad class of candidate models. Thus, model selection is
of paramount importance in regression analysis. Model selection is usually based
on model selection criteria or information criteria. The Akaike information criterion
(AIC) (Akaike 1973) is the most well-known and commonly used model selection
criterion. Several alternative criteria have been developed in the literature, such as
the SIC (Schwarz 1978), HQ (Hannan and Quinn 1979) and AICc (Hurvich and Tsai
1989).

The AIC was proposed for estimating (minus two times) the expected log-
likelihood. Using Taylor series expansion and the asymptotic normality of the
maximum likelihood estimator Akaike showed that the maximized log-likelihood
function is a positively biased estimator for the expected log-likelihood. After comput-
ing such bias, the author derived theAIC as an asymptotically approximated correction
for the expected log-likelihood. In small samples, however, the AIC is biased and tends
to select models that are overparameterized (Hurvich and Tsai 1989).

Several variants of the AIC have been proposed in the literature. The first correction
of the AIC, the AICc, was proposed in Sugiura (1978) for linear regression models.
Later, Hurvich and Tsai (1989) expanded the applicability of the AICc to cover nonlin-
ear regression and autoregressivemodels. They showed that theAICc is asymptotically
equivalent to the AIC, but usually delivers more accurate model selection in finite sam-
ples. Analytical corrections to the AIC, such as AICc, can be nonetheless difficult to
obtain in some classes of models (Shibata 1997). The analytical difficulties stem from
distributional and asymptotic results, as well as from certain restrictive assumptions.
To circumvent analytical difficulties and to obtain more accurate corrections in small
samples, bootstrap (Efron 1979) variants of the AIC were considered in the litera-
ture. They have been introduced and explored in different classes of models. See, for
instance, Cavanaugh and Shumway (1997), Ishiguro and Sakamoto (1991), Ishiguro
et al. (1997), Seghouane (2010), Shang and Cavanaugh (2008) and Shibata (1997),
who introduced the criteria known as WIC, AICb, EIC, among other denominations.
Such bootstrap extensions typically outperform the AIC in finite samples. In addition,
as noted by Shibata (1997), they can be easily computed.

Both theAICand its bootstrap variants aimat estimating the expected log-likelihood
using a bias correction for the maximized log-likelihood. In this paper, we follow the
approach introduced by Pan (1999) and propose an estimator for the expected log-
likelihood that does not require a bias adjustment term. In particular, nonparametric
bootstrap and cross-validation (CV) are jointly used in a criterion called bootstrapped
likelihood CV (BCV). Using the parametric bootstrap and a quasi-CV method, we
define a new AIC variant. It uses the bootstrapped likelihood quasi-CV (BQCV). We
also propose a slight modification known as 632QCV.

Model selection criteria based on the bootstrapped log-likelihood have been
explored and successfully applied to autoregressive models (Ishiguro et al. 1997),
state-spacemodels (Bengtsson andCavanaugh 2006; Cavanaugh and Shumway 1997),
mixed models (Shang and Cavanaugh 2008), linear regression models (Pan 1999;
Seghouane 2010) and logistic and Cox regression models (Pan 1999). In this paper,
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778 F. M. Bayer, F. Cribari-Neto

we investigate model selection via bootstrap log-likelihood in the class of beta regres-
sion models. Such models were introduced by Ferrari and Cribari-Neto (2004) and are
tailored for modeling responses that assume values in the standard unit interval, (0, 1),
such as rates and proportions. We consider the class of varying dispersion beta regres-
sions, as described in Simas et al. (2010), Ferrari and Pinheiro (2011) and Cribari-Neto
and Souza (2012). It generalizes the fixed dispersion beta regression model proposed
by Ferrari and Cribari-Neto (2004). The model has two submodels, one for the mean
and another one for the dispersion.

The chief goal of our paper is twofold. First, we propose new model selection
criteria for beta regressions and then we numerically investigate their finite sample
performances in small samples. We also provide simulation results on alternative
model selection strategies. The numerical evidence shows that the criteria we propose
typically yield reliable model selection in the class of beta regression models. Even
though our focus lies in beta regression modeling, the two model selection criteria we
propose can be used in other classes of regression models.

This paper is organized as follows. In the next section, we introduce the AIC and
its bootstrap extensions. We also propose two new model selection criteria. Section 3
introduces the class of beta regression models. In Sect. 4, we present Monte Carlo
simulation results on model selection in fixed and varying beta regression models. An
empirical application is presented and discussed in Sect. 5. Finally, some concluding
remarks are offered in Sect. 6.

2 Akaike information criterion and bootstrap variations

The distance measure between two densities can be measured using the Kullback–
Leibler (KL) information (Kullback 1968), also known as entropy or discrepancy
(Cavanaugh1997). TheKL information can be used to select an estimatedmodelwhich
is closest to the true model. The AIC was derived by Akaike (1973) by minimizing the
KL information. In what follows, we shall follow Bengtsson and Cavanaugh (2006)
to formalize the notion of selecting a model from a class of candidate models.

Suppose the n-dimensional vectorY is sampled from an unknown density f (Y |θk0),
where θk0 is a k0-vector of parameters. The respective parametric family of densities
is denoted by F(ki ) = {

f (Y |θki )|θki ∈ �ki

}
, where �ki is the ki -dimensional para-

metric space. Let θ̂ki be the maximum likelihood estimate of θki . It is obtained by
maximizing f (Y |θki ) in �ki , i.e., f (Y |θ̂ki ) is the maximized likelihood function.

Using the AIC, it is possible to select the model that best approximates f (Y |θk0)
from the class of familiesF = {F(k1),F(k2), . . .,F(kL)}. For notation simplicity, we
will not consider different families in the classF which have the same dimension. We
say that f (Y |θ̂k) is correctly specified if f (Y |θk0) ∈ F(k), whereF(k) is the smallest
dimensional family that contains f (Y |θk0). We say that f (Y |θ̂k) is overspecified if
f (Y |θk0) ∈ F(k), but families of smaller dimension also contain f (Y |θk0). On the
other hand, f (Y |θ̂k) is underspecified if f (Y |θk0) /∈ F(k).

The KL measure can be used to determine which fitted model (i.e., which model
in the collection f (Y |θ̂k1), f (Y |θ̂k2), . . . , f (Y |θ̂kL )) is closest to f (Y |θk0). The KL
distance between the truemodel f (Y |θk0) and the candidatemodel f (Y |θk) is given by
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Bootstrap-based model selection criteria for beta regressions 779

d(θk0 , θk) = E0

[
log

{
f (Y |θk0)
f (Y |θk)

}]
,

where E0(·) denotes expectation under f (Y |θk0). Let

δ(θk0 , θk) = E0{−2 log f (Y |θk)} . (1)

It is possible to show that 2d(θk0 , θk) = δ(θk0 , θk)−δ(θk0 , θk0). Since δ(θk0 , θk0) does
not depend on θk minimizing 2d(θk0 , θk) or d(θk0 , θk) is equivalent to minimizing
the discrepancy δ(θk0 , θk). Therefore, the model f (Y |θk) that minimizes minus two
times the expected log-likelihood, δ(θk0 , θk), is the closest model to the true model
according to the Kullback–Leibler information.

Notice that,
δ(θk0 , θ̂k) = E0{−2 log f (Y |θk)} |

θk=θ̂k

measures the distance between the true model and the estimated candidate model.
However, it is not possible to evaluate δ(θk0 , θ̂k), since it requires knowledge of density
f (Y |θk0). Akaike (1973) used −2 log f (Y |θ̂k) as an estimator for δ(θk0 , θ̂k). Its bias

B = E0

{
−2 log f (Y |θ̂k) − δ(θk0 , θ̂k)

}
(2)

can be asymptotically approximated by −2k, where k is the dimension of θk .
Thus, the expected value of Akaike’s criterion,

AIC = −2 log f (Y |θ̂k) + 2k,

is asymptotically equal to the expected value of δ(θk0 , θ̂k), which is given by

�(θk0 , k) = E0

{
δ(θk0 , θ̂k)

}
.

Notice that, −2 log f (Y |θ̂k) is a biased estimator of minus two times the expected
log-likelihood and the penalizing term of the AIC, 2k, is an adjustment term for the
bias given in (2).

Since the AIC is based on a large sample approximation, it may perform poorly
in small samples (Bengtsson and Cavanaugh 2006). Several variants of the AIC were
developed aiming at delivering more accurate model selection in small samples. Sug-
iura (1978) developed the AICc, which in class of linear regression models is an
unbiased estimator of �(θk0 , k), that is, E0 {AICc} = �(θk0 , k). Based on the results
obtained by Sugiura (1978), Hurvich and Tsai (1989) extended the use of the AICc
to cover nonlinear regression and for autoregressive models. The authors showed that
the AICc is asymptotically equivalent to the AIC, i.e., E0 (AICc) + o(1) = �(θk0 , k),
and typically outperforms the AIC in small samples.

According to Cavanaugh (1997), the advantage of AICc over the AIC is that the
former estimates the expected discrepancy more accurately than the latter. On the
other hand, a clear advantage of the AIC over the AICc is that the AIC is universally
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780 F. M. Bayer, F. Cribari-Neto

applicable, regardless of the class of models, whereas the AICc derivation is model
dependent.

2.1 Bootstrap extensions of AIC

Bootstrap extensions of AIC (EIC) are criteria that use bootstrap estimators for the bias
term B given in (2). They typically include a bias estimate which is more accurate
than −2k in small samples, thus leading to more reliable model selection. In what
follows, we shall use five different bootstrap estimators, Bi (i = 1, . . . , 5) for B. The
bias estimator Bi defines five bootstrap extensions of AIC which we denote by EICi ,
i = 1, . . . , 5. The bootstrap variants of the AIC that we shall use for model selection
in the class of beta regressions have the following form:

EICi = −2 log f (Y |θ̂k) + Bi , i = 1, . . . , 5.

LetY ∗ be a bootstrap sample (generated either parametrically or nonparametrically)
and let E∗ denote the expected value with respect to distribution of Y ∗. Consider
W bootstrap samples Y ∗(i) and the corresponding estimates of θ̂k :

{
θ̂∗
k (i)

}
, i =

1, 2, . . . , W . Here, each estimate θ̂∗
k (i) is the value of θk thatmaximizes the likelihood

function f (Y ∗(i)|θk).
Ishiguro et al. (1997) proposed a bootstrap extension of the AIC known as the EIC.

It is a particular case of the WIC Ishiguro and Sakamoto (1991) obtained considering
independent and identically distributed (i.i.d.) observations. We shall refer to such a
criterion as EIC1. It estimates the bias in (2) as

B1 = E∗
{
2 log f (Y ∗|θ̂∗

k ) − 2 log f (Y |θ̂∗
k )

}
.

A different bootstrap-based criterion was proposed in Cavanaugh and Shumway
(1997) for the selection of state-spacemodels; we shall refer to it as EIC2. The criterion
estimates the bias in (2) as

B2 = 2E∗
{
2 log f (Y |θ̂k) − 2 log f (Y |θ̂∗

k )
}

.

Wenote that EIC1 andEIC2 are calledAICb1 andAICb2, respectively, in Shang and
Cavanaugh (2008) in the context of mixed models selection based on the parametric
bootstrap.

Shibata (1997) showed that B1 and B2 are asymptotically equivalent and proposed
the following three bootstrap estimators of (2):

B3 = 2E∗
{
2 log f (Y ∗|θ̂∗

k ) − 2 log f (Y ∗|θ̂k)
}

,

B4 = 2E∗
{
2 log f (Y ∗|θ̂k) − 2 log f (Y |θ̂∗

k )
}

,

B5 = 2E∗
{
2 log f (Y ∗|θ̂∗

k ) − 2 log f (Y |θ̂k)
}

.

We shall refer to the corresponding criteria as EIC3, EIC4 and EIC5.
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Bootstrap-based model selection criteria for beta regressions 781

Seghouane (2010) proposed corrected versions of the AIC for the linear regression
model as asymptotic approximations to EIC1, EIC2, EIC3, EIC4 and EIC5 obtained
using the parametric bootstrap.

2.2 Bootstrapped likelihood and cross-validation

The model selection criteria described so far aim at estimating the expected log-
likelihood using a bias correction for the maximized log-likelihood function. Pan
(1999), however, tried to obtain an estimator for the expected log-likelihood that does
not require a bias adjustment. It uses cross-validation (CV) and bootstrap.

CV is widely used for estimating the error rate of prediction models (Efron 1983;
Efron and Tibshirani 1997). In the context of model selection, according to Davies
et al. (2005), the first CV-based criterion was the PRESS (Allen 1974). Bootstrap-
based model selection was introduced by Efron (1986). Breiman and Spector (1992)
and Hjorth (1994) discuss the use of CV and bootstrap in model selection.

According to Efron (1983) and Efron and Tibshirani (1997), CV typically reduces
bias, but leads to variance inflation. Such variability can be reduced using the boot-
strap method. In the context of model selection of models, Pan (1999) introduced a
method that combines nonparametric bootstrap and CV: the bootstrapped likelihood
CV (BCV). BCV yields an estimator of (1) that does not entail bias correction. For a
sample Y of size n, the BCV is defined by

BCV = E∗
{
−2 log f (Y−|θ̂∗

k )
n

m∗
}

,

where Y ∗ is the bootstrap sample generated nonparametrically, Y− = Y−Y ∗, that is,
Y = Y−∪ Y ∗ and Y−∩ Y ∗ = ∅, and m∗ > 0 is the number of elements of Y−. Thus,
no observation of Y is used twice: each observation either belongs to Y ∗ or to Y−.

Following Efron (1983), Pan (1999) argues that the BCV can overestimate (1) and,
on the other hand, −2 log f (Y |θ̂k) may underestimate it. Thus, following the 632+
rule Efron and Tibshirani (1997), Pan (1999) introduces the 632CV criterion as

632CV = 0.368
{
−2 log f (Y |θ̂k)

}
+ 0.632BCV.

2.3 Proposed bootstrapped likelihood quasi-CV

We shall now introduce two new model selection criteria of models that incorporate
corrections for small samples. Like the BCV, these criteria provide direct estimators
for the expected log-likelihood.

Let F be the distribution function of the observed sample Y = (y1, . . . , yn) and let
F̂ be the estimated distribution function, i.e., F̂ is the distribution function F evaluated
at the estimative θ̂ . We define
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782 F. M. Bayer, F. Cribari-Neto

Y ∗
p = (y∗

1 , y
∗
2 , . . . , y

∗
n ) ∼ F̂ estimation sample (or training sample),

Y = (y1, y2, . . . , yn) ∼ F validation sample.

Suppose, we have W pseudo-samples Y ∗
p obtained from F̂ and let {θ̂ p∗

k (i), i =
1, 2, . . . ,W } denote the set of W bootstrap replications of θ̂k . We define the boot-
strapped likelihood quasi-CV (BQCV) criterion as follows:

BQCV = Ep∗
{
−2 log f (Y |θ̂ p∗

k )
}

,

where Ep∗ is the expected value with respect to the distribution of Y ∗
p .

It follows from the strong law of large numbers that

1

W

W∑

i=1

{
−2 log f (Y |θ̂ p∗

k (i))
}

a.s.−−−−→
W→∞ Ep∗

{
−2 log f (Y |θ̂ p∗

k )
}

,

where
a.s.−−→ denotes almost sure convergence.

The computation of BQCV can be performed as follows:

1. Estimate θ using the sample Y = (y1, . . . , yn);
2. Generate W pseudo-samples Y ∗

p from F̂ ;

3. For each Y ∗
p (i), i = 1, . . . ,W , compute θ̂

p∗
k (i) and −2 log f (Y |θ̂ p∗

k (i));

4. Using the W replications of −2 log f (Y |θ̂ p∗
k ) compute

BQCV = 1

W

W∑

i=1

{
−2 log f (Y |θ̂ p∗

k (i))
}

.

Based on pilot simulations, we recommend using W = 200.
The algorithm outlined above is not a genuine cross-validation scheme, hence the

namequasi-CV. It is not a genuine cross-validation schemebecause it does not partition
the sample Y , but instead it treats the samples Y ∗

p and Y as partitions of the same data
set. In each bootstrap replication, we use a procedure which is similar to the twofold
CV.Here, the training sample is the pseudo-sample of the parametric bootstrap scheme,
Y ∗
p , and the validation sample is the observed sample, Y .
Following the approach used by Pan (1999) for obtaining the 632CV, we propose

another model selection criterion, which we call 632QCV. It is a variant of the BQCV
and is given by

632QCV = 0.368
{
−2 log f (Y |θ̂k)

}
+ 0.632BQCV.

3 The beta regression model

Many studies in different fields examine how a set of covariates is related to a response
variable that assumes values in continuous interval, (0, 1), such as rates and pro-
portions; see, e.g., Brehm and Gates (1993); Hancox et al. (2010); Kieschnick and
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Bootstrap-based model selection criteria for beta regressions 783

McCullough (2003); Ferrari and Cribari-Neto (2004); Smithson andVerkuilen (2006);
Zucco (2008); Verhaelen et al. (2013), andWhiteman et al. (2014). Suchmodeling can
be done using the class of beta regression models, which was introduced by Ferrari
and Cribari-Neto (2004). It assumes that the response variable (y) follows the beta
law. The beta distribution is quite flexible since its density can assume a number of
different shapes depending on the parameter values. The beta density can be indexed
by mean (μ) and dispersion (σ ) parameters when written as

f (y|μ, σ)=
�

(
1−σ 2

σ 2

)

�
(
μ

(
1−σ 2

σ 2

))
�

(
(1 − μ)

(
1−σ 2

σ 2

)) y
μ

(
1−σ2

σ2

)
−1

(1−y)
(1−μ)

(
1−σ2

σ2

)
−1

,

(3)
where 0 < y < 1, 0 < μ < 1, 0 < σ < 1, �(·) is the gamma function and
V (μ) = μ(1 − μ) is the variance function. The mean and the variance of y are,
respectively, by E(y) = μ and var(y) = V (μ)σ 2.

Let Y = (y1, . . . , yn) be a vector of independent random variables, where yt ,
t = 1, . . . , n, has density (3) with mean μt and unknown dispersion σt . The varying
dispersion beta regression model can be written as

g(μt ) =
r∑

i=1

xtiβi = ηt , (4)

h(σt ) =
s∑

i=1

ztiγi = νt , (5)

where β = (β1, . . . , βr )

 and γ = (γ1, . . . , γs)


 are vectors of unknown parame-
ters and xt = (xt1, . . . , xtr )
 and zt = (zt1, . . . , zts)
 are observations on r and s
independent variables, r + s = k < n. In what follows, we denote the matrix of
regressors used in the mean submodel by X , i.e., X is the n × r matrix whose t th
line is xt . Likewise, Z is the matrix of regressors used in the dispersion submodel.
When intercepts are included in the mean and dispersion submodels, xt1 = zt1 = 1,
for t = 1, . . . , n. In addition, g(·) and h(·) are strictly monotonic and twice differen-
tiable link functions with domain in (0, 1) and image in IR. In the parameterization
we use, the same link functions can be used in the mean and dispersion submodels.
Commonly used link functions are logit, probit, log–log, complementary log–log and
Cauchy. A detailed discussion of link functions can be found inMcCullagh andNelder
(1989) and Koenker and Yoon (2009). Finally, we note that the constant dispersion
beta regression model is obtained by setting s = 1, zt1 = 1 and h(·) is the identity
function.

Joint estimation of β and γ can be performed by maximum likelihood. Let
θk = (β1, . . . , βr , γ1, . . . , γs)


 and let be Y an n-vector of independent beta ran-
dom variables. The log-likelihood function is

log f (Y |θk) =
n∑

t=1

log f (yt |μt , σt ),
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784 F. M. Bayer, F. Cribari-Neto

where

log f (yt |μt , σt )= log�

(
1−σ 2

t

σ 2
t

)
−log�

(
μt

(
1 − σ 2

t

σ 2
t

))
− log�

(
(1− μt )

(
1−σ 2

t

σ 2
t

))

+
[
μt

(
1 − σ 2

t

σ 2
t

)
− 1

]
log yt +

[
(1 − μt )

(
1 − σ 2

t

σ 2
t

)
− 1

]
log(1 − yt ).

The score function is obtained by differentiating the log-likelihood function with
respect to the unknown parameters. Closed-form expressions for the score function
and Fisher’s information matrix are given in Appendix A.

Let Uβ(β, γ ) and Uγ (β, γ ) be the score functions for β and γ , respectively. The
maximum likelihood estimators are obtained by solving

{
Uβ(β, γ ) = 0,
Uγ (β, γ ) =0.

The solution to such a system of equations does not have a closed form. Hence,
maximum likelihood estimates are usually obtained by numerically maximizing the
log-likelihood function.

A global goodness-of-fit measure can be obtained by transforming the likelihood
ratio as Nagelkerke (1991)

R2
LR = 1 −

(
Lnull

Lfit

)2/n

,

where Lnull is the maximized likelihood function of the model without regressors and
Lfit is the maximized likelihood function of the fitted regression model. An alternative
measure is the square of the correlation coefficient between g(y) and η̂ = X β̂, where
β̂ denotes the maximum likelihood estimator of β. Such a measure, which we denote
by R2

FC , was proposed by Ferrari and Cribari-Neto (2004) for constant dispersion beta
regressions.

4 Numerical evaluation

In this section, we investigate the performances of the AIC and its bootstrap variations
in small samples when used in the selection of beta regression models. All simulations
were performed using the Ox matrix programming language (Doornik 2007). All
log-likelihood maximizations were numerically carried out using the quasi-Newton
nonlinear optimization algorithm known as BFGS with analytic first derivatives.1

We consider beta regressionmodels with mean submodel as given in (4) and disper-
sion submodel as given in (5). We used 1000 Monte Carlo replications and, for each
sample, W = 200 bootstrapped log-likelihoods were computed. We experimented
with larger values of W but noticed that they only yielded negligible improvements

1 For details on the BFGS algorithm, see Press et al. (1992).
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in the model selection criteria performances. For the bootstrap extensions of AIC,
we investigated the use of the parametric bootstrap, EICi p, as well as the use of the
nonparametric bootstrap, EICinp. We also considered alternative model selection cri-
teria in the Monte Carlo simulations: AICc (Hurvich and Tsai 1989), SIC (Schwarz
1978), SICc (McQuarrie 1999), HQ (Hannan and Quinn 1979) and HQc (McQuarrie
and Tsai 1998).2 The covariates values were obtained as random U(0, 1) draws; they
were kept constant throughout the experiment. The logit link function was used in
both submodels.

Performance evaluation of the different criteria is done as in Hannan and Quinn
(1979), Hurvich and Tsai (1989), Shao (1996), McQuarrie et al. (1997), McQuarrie
and Tsai (1998), Pan (1999), Shi and Tsai (2002), Davies et al. (2005), Shang and
Cavanaugh (2008),Hu andShao (2008), Liang andZou (2008), and Seghouane (2010).
For each criterion, we present the frequency of correct order selection (=k0), as well
as the frequencies of underspecified (<k0) and overspecified (>k0) selected models.

The following data generating processes were used:

logit(μt ) = −1.5 + xt2 + xt3, logit(σt ) = −0.7 − 0.6xt2 − 0.6xt3, (6)

logit(μt ) = 1 − 0.75xt2 − 0.25xt3, logit(σt ) = −0.7 − 0.5xt2 − 0.3xt3, (7)

logit(μt ) = −1.5 + xt2 + xt3, logit(σt ) = −1.1 − 1.1xt2 − 1.1xt3, (8)

logit(μt ) = 1 − 0.75xt2 − 0.25xt3, logit(σt ) = −1.45 − 1xt2 − 0.5xt3. (9)

The first two models, (6) and (7), entail large dispersion whereas the remaining two
models, (8) and (9), have small dispersion. Considering the parameters values, we note
that the regression models in (6) and (8) are easily identifiable whereas the models in
(7) and (9) are weakly identifiable. In the weak identifiability scenario, variations in
the covariates have different impacts on the mean response. The terminology “easily
identified models” is used here in the same sense as in McQuarrie and Tsai (1998),
Caby (2000) and Frazer et al. (2009). We emphasize that such a concept of model
identifiability differs from the usual concept which relates to the model parameters
uniqueness (Paulino and Pereira 1994; Rothenberg 1971). The numerical results for
models with large and small dispersion are similar and, for that reason, we only present
results for models with small dispersion, (8) and (9).

In all cases, the correct model order dimension is k0 = 6: there are three para-
meters in the mean submodel and three parameters in the regression structure for the
dispersion. The sample sizes are n = 25, 30, 40, 50 and five candidate covariates are
considered for both submodels. The candidate models are sequentially nested for the
mean submodel, that is, the candidate model with r parameters in the mean regression
structure consists of the submodel with the 1, 2, . . . , r first parameters. The dispersion
submodels are also sequentially nested. Thus, for each value of r we vary s from 1 to
6, totaling 6 × 6 = 36 candidate models.

Since the true model belongs to the set of candidate models, the evaluation of
the different selection criteria is done by counting the number of times that each
criterion selects the correct model order (k0, r0 or s0). Three different approaches

2 The use of these criteria in beta regression models is done in an ad hoc manner.
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Table 1 Frequencies of correct and incorrect order selection from 1000 independent replications; mean
and dispersion regressors jointly selected in an easily identified model [Model (8)]

n = 25 n = 30 n = 40 n = 50

<k0 =k0 >k0 <k0 =k0 >k0 <k0 =k0 >k0 <k0 =k0 >k0

AIC 195 100 705 229 169 602 181 273 546 156 345 499

AICc 618 167 215 532 233 235 329 373 298 242 464 294

SIC 476 122 402 557 190 253 518 312 170 439 423 138

SICc 883 72 45 864 99 37 718 237 45 607 337 56

HQ 274 121 605 325 191 484 288 333 379 253 436 311

HQc 734 128 138 671 192 137 507 349 144 386 457 157

BQCV 861 107 32 640 267 93 309 466 225 187 506 307

632QCV 678 234 88 387 371 242 151 420 429 80 362 558

EIC1p 964 28 8 950 28 22 893 77 30 886 73 41

EIC2p 980 19 1 920 63 17 722 249 29 515 419 66

EIC3p 856 129 15 521 368 111 267 422 311 203 429 368

EIC4p 215 6 779 314 0 686 424 7 569 704 11 285

EIC5p 93 9 898 97 11 892 505 53 442 821 103 76

EIC1np 991 9 0 955 36 9 799 183 18 486 425 89

EIC2np 997 3 0 985 11 4 921 76 3 675 300 25

EIC3np 463 133 404 438 273 289 275 399 326 174 433 393

EIC4np 998 2 0 981 15 4 894 99 7 674 293 33

EIC5np 281 78 641 379 243 378 229 355 416 151 365 484

BCV 999 1 0 993 6 1 948 50 2 795 193 12

632CV 997 3 0 978 17 5 890 104 6 649 308 43

were considered. First, we used the different model selection criteria to jointly select
the mean and dispersion regressors; the results are given in Tables 5 and 2. Afterwards,
for a correctly specified dispersion submodel, we used the model selection criteria to
select the regressors in the mean submodel; the results are given in Tables 1 and 4.
Finally, for a correctly specified mean submodel, we performed model selection on
the dispersion submodel; the results are presented in Tables 5 and 6. In all tables, the
best results are highlighted.

The figures in Table 1 show that the proposed criteria yield reliable joint selection
of mean and dispersion regressors in easily identifiable models. We note that for
n = 25 and n = 30, 632QCV was the best performing criterion. For n = 40 and
n = 50, BQCV was the best performer. Among the extensions (EIC’s) of the AIC, the
criterion that stands out is the EIC3 in their two versions, both with parametric and
with nonparametric bootstrap. In this scenario, the AICc stands out when compared to
alternative criteria that do notmake use of bootstrapped log-likelihood. It is noteworthy
the poor performance of the BCV, 632CV and EIC’s criteria. When the sample size
increases, the performances of the nonparametric EIC’s improve, becoming similar.
The same does not hold, however, for the parametric EIC’s: EIC1p and EIC4p perform
poorly in all sample sizes.
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Table 2 Frequencies of correct and incorrect order selection from 1000 independent replications; mean
and dispersion regressors jointly selected in a weakly identified model [Model (9)]

n = 25 n = 30 n = 40 n = 50

<k0 =k0 >k0 <k0 =k0 >k0 <k0 =k0 >k0 <k0 =k0 >k0

AIC 317 69 614 439 100 461 517 136 347 484 157 359

AICc 778 75 147 748 118 134 736 112 152 676 150 174

SIC 662 56 282 778 78 144 861 65 74 889 67 44

SICc 963 18 19 957 33 10 966 25 9 957 30 13

HQ 424 71 505 572 101 327 685 105 210 694 133 173

HQc 867 58 75 856 86 58 867 74 59 849 95 56

BQCV 866 82 52 791 145 64 699 161 140 544 229 227

632QCV 726 158 116 573 237 190 452 218 330 313 225 462

EIC1p 960 30 10 931 50 19 901 61 38 827 113 60

EIC2p 984 14 2 966 26 8 949 33 18 887 80 33

EIC3p 885 88 27 721 213 66 657 154 189 587 180 233

EIC4p 326 7 667 484 8 508 641 15 344 804 44 152

EIC5p 11 0 989 29 0 971 228 9 763 630 128 242

EIC1np 994 6 0 977 17 6 951 42 7 856 117 27

EIC2np 1000 0 0 995 5 0 977 23 0 930 62 8

EIC3np 593 91 316 672 160 168 636 172 192 582 169 249

EIC4np 999 1 0 994 4 2 968 32 0 912 76 12

EIC5np 362 34 604 588 148 264 572 208 220 496 204 300

BCV 1000 0 0 1000 0 0 991 9 0 969 28 3

632CV 999 1 0 994 6 0 975 25 0 911 76 13

Under weak identifiability, the good performances of the BQCV and 632QCV cri-
teria become even more evident; see Table 2. The 632QCV criterion was the best
performer for n = 25, 30, 40. For n = 50, BQCV outperformed the competition. It is
noteworthy that for n = 25, 30, the 632QCV criterion outperformed all nonbootstrap-
based criteria by at least 200%. The EIC3 performs well relative to the other bootstrap
extensions when regressors are jointly selected for both submodels in a weakly iden-
tifiable model. We also note the weak performances of the BCV and 632CV criteria.
TheAICc clearly outperforms theAIC. For instance, theAIC selected an overspecified
model in 614 replications whereas that happened only 147 times when the AICc was
used.

We shall now focus on selecting regressors for themean submodel. Here, the disper-
sion submodel is correctly specified and the interest lies in identifyingwhich covariates
must be included in the mean submodel. The results for a weakly identifiable model
are displayed in Table 3. They again show the good finite sample performances of
our two model selection criteria. For n = 25, 30, the 632QCV criterion was the best
performer. For n = 40, the best performer was BQCV, and for n = 50, the EIC2p cri-
terion outperformed the competition. Once again, the best performing AIC extension
was EIC3 and the BCV and 632CV criteria performed poorly. The figures in Table 3
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Table 3 Frequencies of correct and incorrect order selection from 1000 independent replications; mean
regressors selected in an easily identified model [Model (8)]

n = 25 n = 30 n = 40 n = 50

<r0 =r0 >r0 <r0 =r0 >r0 <r0 =r0 >r0 <r0 =r0 >r0

AIC 120 360 520 98 426 476 70 531 399 44 617 339

AICc 326 519 155 209 589 202 114 654 232 68 739 193

SIC 278 461 261 233 538 229 192 652 156 144 754 102

SICc 559 390 51 459 486 55 335 613 52 239 714 47

HQ 160 402 438 136 496 368 105 607 288 75 722 203

HQc 383 501 116 291 579 130 190 677 133 121 769 110

BQCV 487 510 3 279 699 22 115 776 109 56 801 143

632QCV 316 668 16 168 779 53 65 705 230 27 673 300

EIC1p 932 68 0 904 94 2 869 110 21 827 157 16

EIC2p 790 210 0 560 438 2 297 680 23 147 823 30

EIC3p 543 456 1 279 694 27 112 705 183 58 737 205

EIC4p 404 4 592 408 5 587 818 8 174 959 17 24

EIC5p 313 2 685 722 4 274 968 9 23 968 13 19

EIC1np 970 30 0 927 72 1 603 384 13 300 634 66

EIC2np 974 26 0 958 41 1 725 268 7 471 495 34

EIC3np 325 502 173 222 624 154 126 677 197 76 722 202

EIC4np 974 26 0 956 43 1 723 269 8 463 497 40

EIC5np 324 426 250 248 558 194 162 584 254 83 616 301

BCV 976 24 0 965 35 0 783 210 7 582 396 22

632CV 975 25 0 953 47 0 689 302 9 419 540 41

also show that the AICc and the HQc are the best performers among the criteria that
do not use bootstrapped log-likelihood.

Table 4 contains the frequencies of correct model selection for the mean submodel
when the model is weakly identifiable. The criteria that stands out are the same of
the previous settings. For n = 25, 30, 40 (n = 50), 632QCV (BQCV) was the best
performer. The EIC5p criterion tends to select models that are overspecified in small
samples; see also Table 2.

In our third and final approach, the mean submodel is correctly specified and the
interest lies in selecting covariates for the dispersion submodel. The results are pre-
sented in Table 5. They show that the 632QCV criterion performswell when themodel
is easily identifiable; indeed, it was the best performer in all sample sizes. The 632QCV
criterion was the only bootstrap AIC variant that outperformed all nonbootstrap-based
criteria when n = 25. For the remaining sample sizes, only BQCV and EIC3p outper-
formed the criteria that do not employ bootstrapped log-likelihood. Table 6 presents
results for a weakly identifiable model. This was the only scenario in which 632QCV
was not the best performing model selection criterion for n = 25, 30; it still performs
well, nonetheless. For larger sample sizes, n = 40, 50, the proposed criterion was
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Table 4 Frequencies of correct and incorrect order selection from 1000 independent replications; mean
regressors selected in a weakly identified model [Model (9)]

n = 25 n = 30 n = 40 n = 50

<r0 =r0 >r0 <r0 =r0 >r0 <r0 =r0 >r0 <r0 =r0 >r0

AIC 369 173 458 421 202 377 437 256 307 453 269 278

AICc 711 171 118 702 199 99 614 250 136 598 259 143

SIC 626 153 221 729 164 107 722 196 82 772 180 48

SICc 892 86 22 893 93 14 850 131 19 851 135 14

HQ 449 173 378 535 204 261 572 246 182 611 246 143

HQc 783 145 72 791 152 57 724 204 72 727 211 62

BQCV 846 153 1 779 211 10 600 330 70 546 325 129

632QCV 743 247 10 651 307 42 451 376 173 378 323 299

EIC1p 941 58 1 908 90 2 836 139 25 796 168 36

EIC2p 958 42 0 918 82 0 808 182 10 765 221 14

EIC3p 856 142 2 737 243 20 582 297 121 551 288 161

EIC4p 583 17 400 625 21 354 848 60 92 899 75 26

EIC5p 52 1 947 238 4 758 764 89 147 796 101 103

EIC1np 982 17 1 985 15 0 905 93 2 827 166 7

EIC2np 983 16 1 988 12 0 945 54 1 875 123 2

EIC3np 696 175 129 717 218 65 618 278 104 576 290 134

EIC4np 983 16 1 990 10 0 940 59 1 873 124 3

EIC5np 652 149 199 690 219 91 579 300 121 549 292 159

BCV 985 14 1 992 8 0 958 41 1 907 91 2

632CV 985 14 1 989 11 0 934 65 1 863 133 4

the best performer. For n = 25 (n = 50), model selection based on the HQ (EIC3p)
criterion was the most accurate.

The simulation results presented above lead to important conclusions on beta regres-
sion model selection. Such conclusions can be summarized as follows:

– The model selection criteria proposed in this paper generally work very well and
lead to accurate model selection. The 632QCV criterion performed better as the
sample size was small and the BQCV performed better in larger samples.

– Among the criteria that do not use the bootstrapped log-likelihood, the AICc and
the HQc criteria were the best performers. The AICc stood out when the sample
size was small and the HQc performed better in larger samples.

– Among the AIC extensions (EIC’s), the EIC3 was the criterion that delivered most
accurate model selection. Its nonparametric bootstrap implementation (EIC3np)
displayed the best performances in small samples and EIC3p performed best in
larger sample sizes.

– The finite sample performances of the different information criteria are consider-
ably superiorwhen such criteria are used to select regressors for themean submodel
rather than to pursue dispersion submodel selection; compare the results in Tables 3
and Table 5, and also the results in Tables 4 and 6.

123



790 F. M. Bayer, F. Cribari-Neto

Table 5 Frequencies of correct and incorrect order selection from 1000 independent replications; mean
and dispersion regressors jointly selected in an easily identified model [Model (8)]

n = 25 n = 30 n = 40 n = 50

<s0 =s0 >s0 <s0 =s0 >s0 <s0 =s0 >s0 <s0 =s0 >s0

AIC 328 230 442 295 313 392 254 401 345 246 466 288

AICc 632 252 116 523 342 135 396 452 152 339 499 162

SIC 567 221 212 553 303 144 519 394 87 535 409 56

SICc 838 143 19 785 183 32 679 297 24 650 331 19

HQ 398 247 355 378 332 290 361 430 209 357 480 163

HQc 705 223 72 620 301 79 508 421 71 467 465 68

BQCV 882 118 0 783 216 1 471 493 36 348 571 81

632QCV 734 266 0 574 413 13 304 582 114 214 572 214

EIC1p 974 26 0 941 59 0 810 174 16 716 227 57

EIC2p 994 6 0 969 31 0 800 196 4 664 327 9

EIC3p 842 158 0 625 371 4 348 511 141 299 517 184

EIC4p 617 21 362 622 15 363 701 55 244 809 116 75

EIC5p 155 11 834 313 37 650 541 140 319 535 174 291

EIC1np 1000 0 0 995 5 0 870 127 3 736 246 18

EIC2np 1000 0 0 999 1 0 952 47 1 883 114 3

EIC3np 564 236 200 509 355 136 358 468 174 290 480 230

EIC4np 1000 0 0 1000 0 0 947 52 1 872 126 2

EIC5np 533 183 284 514 303 183 382 388 230 318 388 294

BCV 1000 0 0 1000 0 0 962 38 0 922 76 2

632CV 1000 0 0 998 2 0 935 62 3 852 145 3

– The criteria that employ bootstrapped log-likelihood for beta regression model
selection clearly outperform the competitors.

We emphasize that the two model selection criteria we propose can be used in other
classes of regressionmodels based on likelihood inferences, such as generalized linear
models (McCullagh and Nelder 1989) and count data models (Winkelmann 2008).
Numerical evaluation of their finite sample performances in different contexts will be
done in future research.

5 Application

We use the data given in Griffiths et al. (1993) (Griffiths et al. 1993, Table 15.4) on
food expenditure, income and number of people in 38 households of a major city in the
United States. These data were modeled by Ferrari and Cribari-Neto (2004), who used
a constant dispersion beta regression. We performed model selection using the two-
step model selection scheme proposed in Bayer and Cribari-Neto (2015) coupled with
the BQCV and 632QCV criteria proposed in this paper. In this scheme, the dispersion
is taken to be constant and the mean submodel covariates are selected; next, using the
selected mean submodel, model selection is carried out in the dispersion submodel.
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Table 6 Frequencies of correct and incorrect order selection from1000 independent replications; dispersion
regressors selected in a weakly identified model [Model (9)]

n = 25 n = 30 n = 40 n = 50

<s0 =s0 >s0 <s0 =s0 >s0 <s0 =s0 >s0 <s0 =s0 >s0

AIC 455 110 435 487 156 357 520 201 279 531 214 255

AICc 812 98 90 762 135 103 689 182 129 669 206 125

SIC 738 89 173 782 109 109 807 122 71 818 147 35

SICc 947 38 15 939 50 11 913 69 18 900 87 13

HQ 537 114 349 606 152 242 658 186 156 685 192 123

HQc 876 70 54 848 104 48 809 131 60 787 164 49

BQCV 975 25 0 928 70 2 800 175 25 690 243 67

632QCV 911 88 1 832 161 7 619 290 91 530 293 177

EIC1p 991 9 0 967 33 0 900 93 7 833 139 28

EIC2p 999 1 0 997 3 0 950 49 1 911 83 6

EIC3p 943 57 0 812 180 8 665 237 98 610 239 151

EIC4p 729 18 253 778 6 216 829 26 145 900 78 22

EIC5p 45 2 953 181 16 803 559 147 294 566 188 246

EIC1np 1000 0 0 1000 0 0 967 33 0 892 101 7

EIC2np 1000 0 0 1000 0 0 985 15 0 950 47 3

EIC3np 723 110 167 742 151 107 636 224 140 606 228 166

EIC4np 1000 0 0 1000 0 0 987 13 0 945 51 4

EIC5np 643 88 269 711 132 157 595 231 174 546 262 192

BCV 1000 0 0 1000 0 0 994 6 0 971 27 2

632CV 1000 0 0 1000 0 0 980 20 0 933 62 5

As shown in Bayer and Cribari-Neto (2015), this selection scheme tends typically
outperforms the joint selection of regressors for the mean and dispersion submodels
at a much lower computational cost. An implementation of such a model selection
procedure in R language (R Core Team 2014) with the proposed BQCV and 632QCV
criteria and two-step scheme is available at http://www.ufsm.br/bayer/auto-beta-reg.
zip. The file contains computer code for model selection in beta regressions and also
the dataset used in this empirical application.

Following Ferrari and Cribari-Neto (2004), wemodel the proportion of food expen-
diture (y) as a function of income (x2) and of the number of people (x3) in each
household. We use the logit link function for the mean and dispersion submodels.
The following covariates are also considered for inclusion in both submodels: the
interaction between income and the number of people (x4 = x2 × x3), x5 = x22 and
x6 = x23 .

Assuming constant dispersion, the selected mean submodel, both by BQCV and by
632QCV, uses x3 and x4 as covariates. Assuming that this is the correct submodel for
mean, we now select the regressors to be included in the dispersion submodel. The
dispersion submodel selected by the BQCV and 632QCV criteria only includes one
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Table 7 Parameter estimates of the selected varying dispersion beta regression model; data on food expen-
diture

Parameter Estimate Std. error z stat p value

Submodel for μ

β1 (Constant) −1.3040 0.1103 −11.826 0.0000

β3 (Number of people) 0.2890 0.0754 3.835 0.0005

β4 (Interaction) −0.0031 0.0011 −2.975 0.0054

Submodel for σ

γ1 (Constant) −2.4825 0.3720 −6.673 0.0000

γ3 (Number of people) 0.2011 0.1118 1.798 0.0813

R2
FC = 0.4586

R2
LR = 0.5448

covariate, namely: x3. The parameter estimates of the selected model are presented in
the Table 7.

We note that the parameter estimates show that there is a positive relation between
the mean response and the number of people in each household, as well as a negative
relationship with the interaction variable (x4). There is also a positive relationship
between the number of people in each household and the response dispersion. The
varying dispersion beta regression model we selected and fitted has a pseudo-R2

considerably larger than that of the constant dispersion model used by Ferrari and
Cribari-Neto (2004): R2

ML = 0.5448 versus R2
ML = 0.4088.

6 Conclusions

In this paper, we considered the issue of beta regression model selection in small sam-
ples. We proposed two new model selection criteria for the class of varying dispersion
beta regression models. The new criteria were obtained as bootstrap variations of the
AIC and provide direct estimators for the expected log-likelihood. The proposed cri-
teria are based on the bootstrap method and on a procedure called quasi-CV. They are
then called bootstrapped likelihood quasi-CV (BQCV) and 632QCV. In addition to the
proposed criteria, we investigated other criteria corrected for small samples.We did an
extensive literature review and identified different bootstrap variations of the AIC that
have been proposed for other classes of models. The finite sample performances of
the proposed criteria relative to alternative model selection schemes were numerically
evaluated in the context of varying dispersion beta regression modeling. The Monte
Carlo evidence we presented favors the criteria we proposed: they typically lead to
more accurate model selection than alternative criteria. We thus suggest the use of
BQCV and 632QCV for beta regression model selection. An empirical application
was also presented and discussed.
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Appendix A: score function and information matrix of the beta regression
model with varying dispersion

This appendix presents the score function and Fisher’s information matrix for the
varying dispersion beta regression model described in Sect. 3.

The score function is obtained by differentiating the log-likelihood function with
respect to the unknown parameters. The score function of log f (Y |θk) with respect to
β is given by

Uβ(β, γ )! = X
� T (y∗ − μ∗),

where�=diag

{
1−σ 2

1
σ 2
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, . . . ,
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σ 2
n
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andψ(·) is the digamma function, i.e.,ψ(u)= ∂ log�(u)
∂u , for u > 0. The score function

of log f (Y |θk) with respect to γ is
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Ha,
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Fisher’s information matrix for β and γ is given by

K (β, γ ) =
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K(β,β) K(β,γ )

K(γ,β) K(γ,γ )

)
,

where K(β,β) = X
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 = X
CT HZ and K(γ,γ ) =

Z
DZ . Also, we have W = diag{w1, . . . , wn}, C = diag{c1, . . . , cn} and D =
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