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Abstract A smooth simultaneous confidence band (SCB) is obtained for het-
eroscedastic variance function in nonparametric regression by applying spline regres-
sion to the conditional mean function followed by Nadaraya—Waston estimation using
the squared residuals. The variance estimator is uniformly oracally efficient, that is,
it is as efficient as, up to order less than n~ 12 the infeasible kernel estimator when
the conditional mean function is known, uniformly over the data range. Simulation
experiments provide strong evidence that confirms the asymptotic theory while the
computing is extremely fast. The proposed SCB has been applied to test for het-
eroscedasticity in the well-known motorcycle data and Old Faithful geyser data with
different conclusions.
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1 Introduction

Conditional variance function is an important ingredient in regression analysis, as
many statistical applications require knowledge of the variance function, such as
weighted least squares estimation of the mean function and construction of confi-
dence intervals/bands for the mean function. Compared to mean function estimation,
the literature on the estimation of variance function is rather sparse. Fan and Yao
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(1998) proved efficiency of the residual-based kernel variance estimator, Miiller and
Stadtmiiller (1987) and more recently, Levine (2006) and Brown and Levine (2007)
proposed difference-based kernel estimator and obtained its asymptotic normality,
while Wang et al. (2008) derived the minimax rate of convergence for variance function
estimation and constructed minimax rate optimal kernel estimators. For applications
of variance estimation in the analysis of assay and microarray data, see Davidian et al.
(1988) and Cai and Wang (2008).

Existing literature had mostly overlooked one crucial aspect of the problem, that is,
simultaneous confidence band (SCB) for the variance function, which is an extremely
powerful tool for inference on the global shape of curves, see for instance, Bickel and
Rosenblatt (1973), Hall and Titterington (1988), Hirdle (1989), Xia (1998), Claeskens
and Van Keilegom (2003), Ma et al. (2012), Wang et al. (2014), Zheng et al. (2014)
for theoretical works on SCB. This paper provides a spline—kernel two-step estimator
of the variance function that is oracally efficient and comes equipped with a smooth
SCB that substantially improves over the spline SCB of Song and Yang (2009), both
theoretically and computationally.

To describe the problem, let observations {(X;, ¥;)}!_, and unobserved errors
{ei }l:1 be i.i.d copies of (X, Y, ¢) satisfying the regression model

Y=mX)+e, (1

where E(¢ | X) =0, E (82 | X ) = 02 (X), and the conditional mean function m (x)
and variance function o2 (x), defined on a compact interval [a, b], are unknown.
Note that with squared errors Z; = el.z, 1<i<nEZ|X)= o2 (X;), hence
the variance function o2(x) is in fact the conditional mean function of Z; on X;. If
o2 (+) is constant, the model is homoscedastic, otherwise heteroscedastic, see Dette and
Munk (1998) for testing of heteroscedasticity, Carroll and Ruppert (1988), Akritas and
Van Keilegom (2001), Cai and Wang (2008) for regression methods in the presence
of heteroscedastic errors, and Hall and Marron (1990) for rate-optimal estimator of
homoscedastic variance.

Suppose for the sake of discussion that the mean function m (x) were known
by “oracle”, one could obtain a new data set {(X;, Z;)}!_;, in which Z; =
{Y; —m (X;)}*,1 <i <n,and estimate the function o 2(x) by a regressor 62 (x) of
the Z;’s on the X;’s, a would-be estimator called “infeasible estimator” as it is based
on unavailable knowledge, serves as a useful benchmark against which feasible ones
can be compared to. Fan and Yao (1998) had obtained two-step estimator 62 (x) of
o2 (x) by local linear regression of Zi = {Y; — m (X;)}* on X;, in which /i (x) is a
first-step local linear estimator of m (x), and shown that for any fixed x € (a, b), 52 (x)
was asymptotically as efficient as the “infeasible local linear estimator” &2(x). Since
this efficiency was merely pointwise, it allowed only the construction of confidence
interval for o2 (x) at a single point x, not at every point x € [a, b] with simultaneous
coverage, see also Hall and Carroll (1989) for the negligible effect of mean on the
estimation of variance function.

Song and Yang (2009) had formulated a two-step estimator & 2 (x) of 0% (x) by
spline regression of Z ={Y; —m (X; )} on X;, in which m (x) is a first step spline
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estimator of m (x), and established asymptotic efficiency of 52 (x) relative to an “in-
feasible spline estimator” &2(x) over the data range [a, b], and as a result an SCB was
obtained for the whole variance curve as formulated in Wang and Yang (2009). There
are some serious theoretical shortcomings, however with the shortcomings, however,
with the spline SCB of Wang and Yang (2009) and hence also of Song and Yang
(2009): the constant spline SCB is too wide and inaccurate; the linear spline SCB is
narrow but its coverage probability is higher than the nominal level.

We propose a two-step estimator of o2(x) by spline estimator 7 (x) of m (x) in
step one and kernel estimator 62 (x) of 02 (x) in step two, which is uniformly as
efficient as the infeasible kernel estimator, and hence oracally efficient. It is smooth
as it comes from kernel smoothing, and enjoys excellent convergence rate of kernel
smoother as well as coverage probability quickly approaching the nominal value. As
an illustration, consider the motorcycle data, with Fig. 4 depicting the spline—kernel
SCB of its variance function, at confidence levels 99.991 and 98.698 %, overlaid with
a constant variance estimate which is either a consistent estimate n =1 >""_, élz p orthe
maximum of lower confidence line, the constant variance hypothesis is rejected in both
scenarios, with p value = 0.00009 or 0.01302. While the proposed SCB is superior
to the SCB of Song and Yang (2009), the spline—kernel estimator is computationally
much faster than the kernel-kernel estimator of Fan and Yao (1998), due to using
spline instead of kernel in step one, which cuts computing burden substantially, see
Xue and Yang (2006) and Wang and Yang (2007) for speed comparison of spline
and kernel smoothing. The new spline—kernel estimator is shown in Theorem 1 to
be globally as efficient as the “infeasible kernel estimator” while the kernel—kernel
estimator of Fan and Yao (1998) is as efficient as the “infeasible kernel estimator”
only at a fixed point, see also Equation (3.2) of Hall and Carroll (1989) for pointwise
oracle efficiency. Furthermore, oracle efficiency in Theorem 1 is of order smaller than
n~1/2, which had not existed in previous works.

The paper is organized as follows. Section 2 presents main theoretical results and
Sect. 3 provides insights of proofs, Sect. 4 gives concrete steps to implement the SCB,
while Sects. 5 and 6 report simulation results and analysis of the motorcycle data
and Old Faithful geyser data. Section 7 concludes, and technical proofs are in the
“Appendix”.

2 Main result

Without loss of generality, we take [a, b] = [0, 1]. An asymptotic 100 (1 — ) %
simultaneous confidence band (SCB) for the unknown variance function o' (x) over a
sequence of subintervals [a,, b,] C [0, 1]wherea,, — 0, b, — lasn — oo, consists
of an estimator 62 (x) of o2 (x), lower and upper confidence limit 62 (x) — In.r (x),
62 (x) + I,y (x) atevery x € [ay, b,] such that

Jim P{o? (x) € [62 (1) —lnr (1), 62 (1) + v ()] Vx € [an, bul} = 1 -

Our goal is to construct error bound function [, 1,(x), I,y (x) based on data
{(X;, Y,-)}:':1 drawn from model (1). We describe briefly below the ideas of oracally
efficient estimation, which will be shown later to yield the SCB.
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Simultaneous confidence band for variance function 635

If the mean function m (x) were known by “oracle ”, one could compute the errors
&; = Y; —m (X;) and the squared errors Z; = 51.2, 1 <i < n, and then smooth the data
{(Xi, Z;)}!_,, taking advantage of the fact that E(Z; | X;) = o2 (X;). Specifically,
denote by K a kernel function, & = h, a sequence of smoothing parameters called
bandwidth, and K, (u) = K (u/h) / h, an “infeasible kernel estimator” of the variance
function is

S Kn(Xi —x)Z;
S Kn (Xi —x)

67 (x) =

2

To mimic this would-be kernel estimator &é (x) of 62 (x), a spline—kernel oracally
efficient estimator 6 (x) of o2 (x)is

S Kn (Xi —x) Z;

o5k (x) = ) 3
o > K (X —x)
where Z; = ?:lz p are the square of residuals &; , obtained from spline regression,
gip=Yi—mp(X;), 1<i=<n, “4)
the spline estimator 771, (x) is defined as follows, for some positive integer p,
A . n
i ()= argmin > (Y —g (X)), ®)

¢eG U 20,1]

in which G%’_z) is the space of functions that are piecewise polynomials of degree
(p — 1) on interval [0, 1], defined below.

The interval [0, 1] is divided into (N + 1) subintervals J; = [tj,tj4+1), ] =
0,...,N —1,Jy = [tn, 1] by a sequence of equally spaced points {tj}jzl, called
interior knots, given as

h=0<t<---<l=tyy1, tj=jH, j=0,1,...,N+1,

in which H = 1/ (N + 1) is the distance between neighboring knots. We denote by
G%Fz) = G%’*z) [0, 1] the space of functions that are polynomials of degree (p — 1)
on each J; and have continuous (p — 2)th derivative. In particular, Gg\?) denotes the
space of functions that are linear on each J; and continuous on [0, 1], with linear
B-spline basis {b ,-,z(x)}y:_1 being

X —1lj41

bjs(x) =Ko ( T

), j=-1,0,....N, for Ko@) =(—lul),.

Alternatively, one can estimate a2 (x) by spline local linear estimator &S2LL (x) based

on {X;, Z- };7:1, which mimics the would-be local linear estimator 6L2L (x) based on
{Xi, Zi}!_,,
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—1 N
{63 @68 @] = .0 (XTWX)  XTW(2.2),
in which the oracle and pseudo-response vectors are
Z=(Z.....2,). 2= (zlz,,)

with the same weight and design matrices

L N T 1 1
W =diag {K;, (X; —x)}i_;, X _(Xl—x X, —x)

The idea of synthesizing spline and kernel smoothing in one estimator appeared first in
Wang and Yang (2007), Wang and Yang (2009) for additive model and later extended
to generalized additive model in Liu et al. (2013).

To formulate the necessary technical assumptions, for sequences of real numbers
¢, and d,,, one writes ¢, < d, to mean ¢, /d, — 0,asn — o0.

(A1) The functionm (-) € CP [0, 1], p > 1.

(A2) The joint distribution of (X, &) is bivariate continuous with E(e | X) = 0,
E(e2 | X) = 02(X), and for some 5 > 1/2,5up,ci0.1 E(le|]*™ | X = x) =
M, < +oco.

(A3) The density function f(x) € C[0, 1], the variance function oz(x) e C?[0, 1],
and 0 < ¢y < f(x) < Cy < 4+00,0 < ¢ < 0(x) < C; < o0 for
x €0, 1].

(A4) The kernel function K € C(V(R) is a symmetric probability density function
supported on [—1, 1].

(A5) The bandwidth £ satisfies n2~! (log n* < h«n /3 (log n)~1/3, for some «
suchthato < 2/5,0(24+1n) > 1, a(1 +n) > 2/5.

(A6) The number of interior knots N = N,, satisfies

ma ( n )1/4p logn ) /2P=D <N <min a2 nh \'3 (n)1/5
x = , in{nh,{ —) (- .
h? h logn h

Assumptions (A1)—(A3) are adapted from Song and Yang (2009), Assumption (A4) is
standard for kernel regression, and Assumptions (AS) and (A6) are general conditions
on the choice of number of knots N and bandwidth % to ensure oracle efficient and the
extreme distribution result in (6) below. In particular, one may take the mean squared
error optimal order N ~ n'/2P+1) and an undersmoothing & = n~'/ (logn)~1/°%
for any § > 0, which satisfy all the requirements in Assumptions (AS5) and (A6). As an
example, data-driven implementation of N and £ is given in Sect. 4, aided by explicit
formulae (13) for BIC and (15) for rule-of-thumb bandwidth.
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Simultaneous confidence band for variance function 637

It follows from Assumption (A2) that the conditional variance of Z = &2 is v% x) =
var(Z | X = x) = g (x) — 0% (x) in which nq (x) = E(e* | X = x). In addition

247
sup E ()Z —o? (X)) | X = x) < sup E (Z2+" +o (XM X = x)
x€[0,1] x€[0,1]

< My, + CH™ < too.

Consequently, under Assumptions (A2)—(AS5), by applying classic SCB theory to the
unobservable sample {(X;, Z;)}!_,, one has

P[ahl sup ‘&é(x)—oz(x)‘/vn—bh]51:|—>e2"’1, treR (6)

xelh,1—h]
where

an = /—2logh, by =ay+a;’ {log(ﬁ/C (K)/27r)} , C(K)=+/Cx/Ck,

Ck :/K2 (w)du, Cg =/K/2 w)du, V, = vz (x){f (x)nk} 2%
@)

From (6) one obtains an asymptotic 100 (1 — ) % oracle SCB for o2 (x) over
[hv 1 - h] )

52 @+ v, (2106n7) " 0, @), ®)

where

log {C (K) /27} — log {—% log (1 — &)}

—1
Qnle) =1+ 2logh!

©))

In stating our main theoretical results in the next two Theorems, and throughout
this paper, we denote by |||, the supremum norm of a function r on [0, 1], i.e.,

Irlloo = sup,_o , I (OI-

Theorem 1 Under Assumptions (Al)—(A6), as n — oo, the estimator 652K (x) is
asymptotically as efficient as the “infeasible estimator”, 61% (x) ie.,

A2 =2 —1/2
I Y
o0

As commented in the introduction, the oracle efficiency stated in Theorem 1 is of the
unprecedented small order o), (n_l/ 2) , and the next result follows immediately.
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638 L. Cai, L. Yang

Theorem 2 Under Assumptions (Al)—(A6), an asymptotic 100 (1 — «) % oracally
efficient SCB for o2 (x) over [h, 1 — h]is

630 £V, (21025 7) " 0, ) (10)

with V,, and Q, («) given in (7) and (9) respectively. In other words,

. 2 A2 —1\!/?

lim P {0 (x) € 63 (1) £ V, (2logh ) 0, (@), ¥xe[h,1—hll =1—-a.
n

The proofs of Theorems 1 and 2 depend on Propositions 1, 2 and 3 given in Sect. 3. The
proofs of these Propositions are based on Lemmas 1, 4 and 2. All of them are provided
in the “Appendix”. Both Theorems 1 and 2 remain true with spline—kernel estimator
6521( (x) replaced by spline-local linear estimator 6SZLL (x), but detailed proofs for local
linear estimator are omitted as in Wang and Yang (2007, 2009).

3 Error decomposition

To break the estimation error 652K (x) — &I% (x) into simpler parts, we begin by dis-

cussing the spline space G%)—z)

in Eq. (5).
Denote by |l¢|l, the theoretical L? norm of a function ¢ on [0,1] , ie.,
1 ..
lpl3 = E{¢*(X)} = [y ¢* (x) f (x)dx, the empirical L> norm as [¢[3, =

n_IZLI(ﬁZ (Xi), and then define the rescaled B-spline basis {Bj»P(x)}yzlfp for

and the representation of the spline estimator of 771 , (x)

G%Fz), each with theoretical norm equal to 1

Biy () =bj,@|bj,®|,', 1-p<j<N.

The estimator p (x) in Eq. (5) can then be expressed as

N
iy (x)= Proj Y= > Aj,Bj, ).

GVP j=1-p
where the vector {5\1_ Do s A N. p}T solves the following least-squares problem
T n N 2
Picpp ) =aremin > Avi— > 4,8, 0t (11)
RNFP Gy j=1—p

We write Y as the sum of a signal vector m and a noise vector E,

Y=m+E m={mX),....mX)}, E={e1,...,en)7.
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Simultaneous confidence band for variance function 639

Projecting this relationship into the space G ,(f _2), one obtains

), = {mp (X1) s ... p (Xn)}T = Proj Y = Projm+ Proj E.
Gr(lpr) G;pr) G;pfz)

Correspondingly, in the space G%’_z), one has 11, (x) = p (x) + &, (x), where

N N
mp ()= D dypBr,(x), E,(x)= D dspBspx). (12)
J=1-p J=1-p
. > - T - - T, . .
with the vectors {)\1_,,”,,, R )»N’p} and {al_,,,p, R aN,,,} being solutions to

(11) with ¥; replaced by m(X;) and &; respectively.
Regarding variance estimator in (2) and (3)

Z?:l K, (X; —x) (I[,p +1I; , + HI,"p)
2?21 K, (Xi —x)
= 1) I+ 14113,

63 (x) — 67 (x) =

in which f (x) = n~' 37, K (X; — x),

n
I=1(x) :n_IZKh Xi —x)1; p,

i=1

n
M=10)=n"> Ky(X; =)L .
i=1

n
=11 (x) =n"" Z Kn (X; —x)1L; p,

i=1
Lip = {m X)) —m, (Xi)}2 + gf, (X)) +2{m, (X)) —m (X} &, (Xi),
1, = =26, (X)), 1ML, = {m (X;) —m, (Xi)} .

By Assumption (A3), f (x) = f (x)+up (1) = cy+up (1), hence Theorem 1 follows
from the next three Propositions on I, II, III.

Proposition 1 Under Assumptions (Al)—(A6), as n — 00,
oo = 0p {1~ (B2 + i) ™")} =0, (n7'72).
Proposition 2 Under Assumptions (Al)—(A6), as n — oo,

]l = Op (n_lh—l/zH—3/2 10g1/2n + n—1h1/2H—5/2) =0, (n_l/z) .
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640 L. Cai, L. Yang

Proposition 3 Under Assumptions (Al)—(A6), as n — oo,

My = O, {nq/zh,]/sz,l log"/2 n +n71/2h1/2Hp,2} o, (n*l/z) .

4 Implementation

We describe in this section one concrete procedure that implements the oracally
efficient SCB in Theorem 2, and is used throughout Sects. 5 and 6 for both simu-
lated and real data examples. Given any sample {(X;, ¥;)}7_; from model (1), let
a = min(Xy,...,X,),b = max (X, ..., X,) and transform the data range from
[a, b] into [0, 1] by the linear transformation x — (x — a)/(b — a). If this linear
operation fails to make design variable X conform to Assumption (A3), one applies
the quantile transformation x — F, = n! > (X < x).

To select the number of interior knots N, let NP be the minimizer of BIC defined
below, over integers from [0. 5Nr, min (5N, Th)], with N, = n= /@D and Th =
n/4 — 1, which ensures that N°Ptis order of n=1/2P+1 and the number of parameters
in the least-squares estimation is less than n/4. The chosen NoPt obviously satisfies
Assumption (A6), but other choices of N remain open possibility. For any candidate
integer N € [0.5N,, min (5N, Tb)], denote the predictor for the i-th response Y; by
ﬁ = n%p(Xi), and let g, = (1 + N,) be the number of parameters in (11), the BIC
value corresponding to N is,

" 12
BIC = log (MSE) + g, log (n) /n, MSE=n"">" {Y,- - Y,»} .13)
i=1

Algebra shows that the least-squares problem in Eq. (11) can be also solved via the
truncated power basis 11, x, ..., xP~L (x — tj)i_l, j=12,... N}, see de Boor
(2001), which is regularly used in implementation. In other words,

My (x) = Zrkx +Zr,,, , (14)

. A A A A T .
where the coefficients (ro, cesPpo1, T ps oo TN, p) are solutions to the least squares
problem

2
(f07 o fN,p)TZ argmin Z [Y Z rkX Z rj, p( tj)]fk] .

(r() N, p)ERN+Pl 1

To choose an appropriate bandwidth 4 = h,, for computing 6SK (x), one adopts the
following rule-of-thumb (ROT) bandwidth of Fan and Gijbels (1996), Equation (4.3):
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Simultaneous confidence band for variance function 641

1/5

. N2
3530 (Zi — Yo “lek)

Dot = n — — o2
n Yy (2ay + 6a3X; + 1244 X7)

15)

in which (@){_, = argming,, o ps > (2,- —SioamX lk)z One then sets h =
hy = heot(logn) ™12 ~ n=1/5 (log n)~'/2, which clearly satisfies Assumption (AS),
especially the undersmoothing condition # < n~'/> (logn)~'/3.

For constructing the SCB, the unknown functions v% (x) and f (x) are evaluated
and then plugged in, the same approach taken in Hall and Titterington (1988), Hairdle
(1989), Xia (1998), Wang and Yang (2009), Song and Yang (2009). Let K (u) =
15 (1 —u )2 I{|u| <1} /16 be the quadratic kernel and s, be the sample standard
deviation of {X;}!' ; and

rot f

where Ao, ¢ is the rule-of-thumb bandwidth in Silverman (1986). Define vl =
{Vi, 1 <i <n}, Vi ={Zi — 63 (X)), and

X X() 1 ey 1 )T w W() dia ]Z Xi_x) "
= X) = N - X) =
Xi—x,..., X, —x g hrot,o i=1

where hot o 15 the ROT bandwidth of Fan and Gijbels (1996) Equation (4.3), as A in
(15), but with the Z ’s replaced by V;’s, and define the following estimator of v% (x)

92 (x) = (1,0) (XTWX)A X"WV. (17)

The following results follow from Bickel and Rosenblatt (1973) and Fan and Gijbels
(1996)

sup {03 (0 =03 ()] + sup [ £ )= f 0| =0, (D). (18)
x€[0,1] x€[0,1]

The function V,, is approximated by the following, with f (x) and ﬁ% (x) defined in
Egs. (16) and (17)

1/2

v, = bz (x) {f(x)nh}_l/2CK

Then Eq. (18) and Theorem 2 imply that as n — oo, the SCB below is asymptotically
100 (1 — o) %

63 (1) £V, (210gh*1)”2 On (@) . (19)
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642 L. Cai, L. Yang

The construction described above of SCB according to Theorem 2, is over an
interior portion of the data range [0, 1], namely [a,, b, ] = [hn, 1 — hy] € (0, 1), as
seen in the SCB plots of Figs. 3,2, 4 and 5. It should be emphasized, however, that the
interval sequence [/, 1| — h,] covers the entire interior (0, 1) as sample size n — 00
and h, — 0, which reflects, for instance, the widening range in Fig. 3 of SCB in (c)
and (d) over (a) and (b).

Although any spline order p > 1 can be employed, we have used only linear splines
(with p = 2) for simplicity. It is well-known that the choice of kernel function is of
less importance, according to Assumptions (A4) and (AS), the kernel function K is
chosen to be the quadratic kernel. Simulation comparison will be made in Sect. 5 of
the above oracally efficient SCB with the infeasible SCB, which is computed from (8)
with v%(x) and f (x) replaced by 17% (x) and f (x) in (16), respectively, where 17%(x)
is the right side of (17) with V substituted by V, where VI' = {V;, 1 < i < n},
Vi =1{Z; = 5% (Xp).

5 Simulation

In this section, simulation results are presented to illustrate the finite-sample behav-
ior of the oracally efficient SCB, on data sets generated from model (1), with
X ~U[-1/2,1/2], and

m(x) =sin 2rx), o(x)=1/2— cx?, ¢ | x ~N {0, o’ (x)} . (20)

We choose ¢ = 1, ¢ = 0.5, which have included variance functions o2 (x) that are
strongly heteroscedastic (¢ = 1) and nearly homoscedastic (¢ = 0.5), while sample
sizes are taken to be n = 100, 200, 500 and the confidence levels are 1 — o =
0.99, 0.95. Table 1 contains the coverage frequency of the true curve o> (x) at all data

Table 1 Coverage frequency of

the oracally efficient SCB in " -« ggﬁzlrllzs CB ISné%asible
Theorem (2) and the infeasible
SCB in (8) from 500 replications L0 100 0.950 0.834 0.852
0.990 0.932 0.952
200 0.950 0.912 0.936
0.990 0.980 0.988
500 0.950 0.966 0.962
0.990 0.994 0.994
0.5 100 0.950 0.836 0.870
0.990 0.934 0.956
200 0.950 0.922 0.944
0.990 0.986 0.992
500 0.950 0.954 0.960
0.990 0.994 0.996
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Fig. 1 Boxplots of A, withac=1;bc=0.5

points {X;}!"_, by the oracally efficient SCB whose construction details are in Sect. 4
over 500 replications of sample size n. Coverage frequency over the same data sets of
the infeasible SCB in (8) is also listed in the table. In all cases, the coverage improves
with increasing sample size, which confirms to Theorem 2, and the two SCBs are quite
close to each other in terms of coverage frequency, showing positive confirmation of
Theorem 1. For both cases ¢ = 1 and ¢ = 0.5, the oracally efficient SCB has coverage
frequency approaching the nominal level for sample size as low as n = 200.

Figure 1 depicts the boxplots over 500 replications of A, = ./n max |&I% (x j) -
852K (xj) ,where {x;, j =1,2,...ngiq} points on [—0.5 + h, 0.5 — h] withn gjg =
401, h being the chosen bandwidth of estimator (3 ). it can be seen that the boxplot
of A, becomes narrower as n increases, implying that difference between the spline—
kernel variance estimator and the infeasible estimator with known mean function is
asymptotically of smaller order than n~'/2, which confirms Theorem 1. For visual
impression of the SCB, Figs. 3 and 2 are created based on sample sizes n = 100, 500,
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646 L. Cai, L. Yang

and ¢ = 1, 0.5, respectively, each with symbols: center thick line (true curve), center
solid line (the estimated curve), upper- and lower-dashed line (SCB). In all figures,
the SCB becomes narrower and fit better for n = 500 than for n = 100.

6 Empirical examples

In this section, we test the null hypothesis of homoscedasticity Hy : 0% (x) = 002 >0
for two well-known data sets. The first is the motorcycle data with n = 133 obser-
vations, with X = time (in milliseconds) after a simulated impact on motorcycles,
Y = the head acceleration of a PTMO (post mortem human test object). The data can
be called in R by the command “data(motorcycledata)”, see http://www.inside-r.org/
node/52453. In Fig. 4, the center thick lines are the spline—kernel estimator 8SZK (x) for
o2(x), the upper/lower solid lines represent the SCB for the variance function. Since
the 100(1 — 0.00009)% SCB in (a) does not contain the consistent estimate of 002
under the null hypothesis, which equals n ! > élz > one rejects the null hypothesis
of homoscedasticity with p value < 0.00009.

(a) —

1500 2500

500

0
|

(b) —
o
S _|
[Te)
(aV]
o
o
> 9
o
o
n
o — -
T T T T T
10 20 30 40 50
X

Fig. 4 For the motorcycle data, plots of SCB (solid) computed according to the (19), the spline-kernel
estimator 652K (x) (thick), the scatterplot of Z; = éizp a299.991% SCB, a constant variance fit which equals

n—1 Z?:] §i2p, a = 0.00009; b 98.698 % SCB, a constant variance fit which equals the maximum of
upper SCB, o = 0.01302
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(b) o -

Fig. 5 For the Old Faithful geyser data, plots of SCB (solid) computed according to the (19), the spline—
kernel estimator &SZK(x) (thick), a constant variance fit which equals n! erle élz » the scatterplot of

Z —8 a95%SCB o =0.05,b 88 % SCB, « = 0.12

Song and Yang (2009) had obtained a p value of 0.008 with spline SCB, as minimum
of the upper confidence line equals the maximum of the lower confidence line for
the spline SCB of confidence level 99.2 % = 1 — 0.008. The 99.2 % spline SCB
therefore contains completely a horizontal line, even though its height is not equal
to n~! > 8 . For comparison, we have computed the confidence level at which
the upper and lower lines of the spline—kernel SCB coincide, which turns out to be
98.698 %, thus one rejects the null hypothesis of homoscedasticity with p value
< 0.01302. Figure 4b depicts the 98.698 % spline—kernel SCB and the horizontal
line that completely fits inside the SCB. We have also constructed ad hoc local linear
SCBs by substituting 5321( (x) in (19) with the two-step local linear estimator of o2 (x)
in Fan and Yao (1998), and with minimum of upper line and maximum of lower
line equal, the confidence level is 99.999865 %, thus the p value is 0.00000135
for rejecting the null hypothesis of homoscedasticity. To sum up, for the motorcycle
data, homoscedasticity is rejected by all four approaches, with p values ranging from
0.00000135 to 0.01302.

The second data set is the Old Faithful geyser data, which can be downloaded
from http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat. Geysers are
a special kind of hot springs that erupt a mixture of hot water, steam and other gases,
and by studying geysers scientists obtain useful information about the structure and
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the dynamics of earth’s crust. The data consists of n = 272 observations for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA: X = eruption time in
mins, ¥ = the waiting time to next eruption. Figure 5 shows that for the geyser data
one can not reject the null hypothesis of homoscedasticity with a p value 0.12.

7 Conclusions

A spline—kernel estimator is proposed for the conditional variance function in non-
parametric regression model, which is shown to be oracally efficient, that is, it uni-
formly approximates an infeasible kernel variance estimator at the rate of 0, (n_l/ 2).
A powerful technical Lemma 4 is used in the proofs of Propositions 2 and 3, both
indispensable in establishing oracle efficiency. A data-driven procedure implements
the kernel SCB centered around the oracally efficient two-step estimator, with limiting
coverage probability equal to that of the infeasible kernel SCB. As illustrated by both
the motorcycle and the Old Faithful geyser data, the theoretically justified kernel SCB
is also a useful tool for testing hypotheses on the conditional variance function, and
is expected to find wide applications in many scientific disciplines.
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Appendix A

Throughout this Appendix, we denote by | &|| the Euclidean norm and || means
the largest absolute value of the elements of any vector £&. We use ¢, C to
denote any positive constants in the generic sense. We denote for any given con-
stant C > 0, a class of Lipschitz continuous functions by Lip ([0, 1],C) =

{o]le ) —¢ (¥')] < C|x —x'|, ¥x,x" €10, 11}.
A.1 Preliminaries

The Lemmas of this Subsection are needed for the proof of Propositions 1, 2 and 3.
These Propositions clearly establish Theorems 1 and 2.

Lemma 1 Under Assumptions (Al)—(A5), there exists a constant C, > 0, p > 1,
such that for any m € C? [0, 1] there is a spline function g, € G%’_b satisfying
||m —&p ||oo <CH?andm — g, € Lip ([0, 1], CHP_I). The function m , (x) given
in Equation (12)

||n~1p(x)—m(x)||OO§C,, inf g —mlle =0, (HP).
gEGE\’,’_Z)
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Moreover, for the function &, (x) given in Equation (12)

&5 )], = Op (n72N12) |7y )], = Op (072N 2 (10gm)2)

See Lemma A.1 of Song and Yang (2009), and also Wang and Yang (2009) for detailed
proof.

Lemma 2 Under Assumption (A6), as n — o0,

s {|{B sV B} =0 (5 ) e

See Lemma A.4 of Song and Yang (2009) for detailed proof.
The strong approximation result of Tusnady (1977) is also needed.

Lemma3 Let Uy, ..., U, be iid. rv.’s on the 2 -dimensional unit square with
PWU; <t)y=a(t),0<t<1, wheret= (t1.12) and 1 = (1, 1) are 2-dimensional
vectors, A (t) = titp. The empirical distribution function F} (t) based on sam-
ple (Uy, ..., U,) is defined as F* (t) = n=' 3" Ly, <ty for 0 < t < 1. The 2-
dimensional Brownian bridge B (t) is defined by B (t) = W (t) — A (t) W (1) for
0 <t <1, where W (t) is a 2-dimensional Wiener process. Then there is a version
B, (t) of B (t) such that

P |: sup ‘n1/2 {F,f (t) —A(t)} B, (t)) > (Clogn + x) 1/2:| < Ke ™™
0<t<1

holds for all x, where C, K, A are positive constants.

Denote the well-known Rosenblatt transformation for bivariate continuous (X, €) as
(X', &') =M (X, &) = {Fx (x), Fox (¢|0)}, (22)

so that (X e ) has uniform distribution on [0, 1]2, therefore
Z, {M—l (v, s/)} — 7, (v, 8) = VA {F, (x,8) — F (x, )}, 23)

with F,, (x, €) denoting the empirical distribution of (X, €). Lemma 3 implies that
there exists a version B, of 2-dimensional Brownian bridge such that

Sup |Z, (x, &) = By {M (x, 0)}| = Ous. (™" 10g% ) 4)
X,€

Lemma 4 Under Assumptions (A2)-(A5), as n — 00, for any sequence of functions
ra € Lip ([0, 11,1,) , I, > O with ||lry|lo = Pn = 0

@ Springer



650 L. Cai, L. Yang

n
n S Ky (X =) (X e = U,y (n_l/zh_l/zpn log!/?n + n—1/2h1/21n)
(25)
Proof Step 1. We first discretize the problem by letting 0 = xp < x; < -+ <xpy, =

1, M,, = n* by equally spaced points, the smoothness of kernel K in Assumption (A4)
imples that

-1
sup |n Kp(Xi —x)rp (Xi)ei| < max Kh r (X;) e
XE[OPH Z n i i 0<j <M, Z n i
-1
+ max sup Kh —xj rn (Xi)ei —n~ Ky (X; —x)r, (Xi) e
0=/ <Mn re[x;. x,ﬂ] Z Zl

n
+CM R Y (X0 &
i=1

n~! th (Xi —xj) rn (Xi) &

and the moment conditions on error ¢ in Assumption (A2), the rate of # in Assumption
(AS) imply next that

sup |n lZKh(X —X)r (X0) &
x€[0,1] i=1
< max |n IZK;, P = x) r (X) & + O, { 2}. (26)

Step 2. To truncate the error, we denote D, = n® with o as in Assumption (AS).
Assumption (AS) implies that D,n~"/?h=1/210g> n — 0, n1/2h1/2D7(1+") — 0,
Zf,ozl D;(zﬂ) < 00. Write g; = sl.l?l" +8€2, where le = ¢il{le;| > D, }’81 5 =
ei1{|e;| < D,},anddenote uP» (x) = E {g;1{|&;| < D,} | X; = x}.Oneimmediately
obtains that

sup ‘MD” (x)‘ <E {|e|2+'7 | X = x} Dy = (n—l/zh—l/z) ,
x€[0,1]

sup

=o0 (n_l/zh_l/zpn) . @27
x€[0,1]

En™' D" Ki (Xi — x)ra (Xi) P (X))

Next, since P (leil > D) < Ele”™ Dy *"™, 302, P (el > Dy) < Ele*™
> Dy @+~ 40, Borel-Cantelli Lemma then implies that
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P{wHN(a)),eff (w):O,i:1,2,...n,f0rn>N(a))} =1
So one has for any k£ > 0

n
sup ™ D Ki (Xi =) X et = Ous (n700) . @28)

xe[0,1]

Step 3. The truncated sumn ="' 37 K, (X; —x) rp, (X;) sfg equals [, -, Kn (u—x)
ry (u) ed Fy, (u, €), while =

n
/ Kn (= x)ry () edF (u, &) = En~" D" Ky (Xi — x) 1 (Xi) &3
lel<Dy ’

i=1

n
=En™' DK (Xi = 0 (X P (X = u (1720 2p,),
i=1

according to (27). The above two Equations imply that

n
n Ky (Xi = x)ra (Xi) 6] = n—l/Z/ Kn (u —x)ry (u) edZy (u, €)
i=1 le|<Dy

Fu (n*‘/zh”ﬂp,,) . (29)

Step 4. The term n~/2 f‘8|<Dn Kn (u—x)r, (u)edZ, (u, &) equals

—n—‘/2/|<D d{Kp (u—x)ry (u) €} Zy (u, €)
= ”_1/2/_”@ d{Kp (u—x)ry (u) e} [By {M (u, )} — Z, (u, £)]
_n_1/2/|_|<D d K (4 — x) 1 () €} B (M (1, £)}
Note that
”1/2/||<D d{Kp (u—x)ry () e} [By {M (u, )} — Zy (u, £)]

=n /2 / {dKp (u—x)ry )+ Kp (w—x) dry(u)} de [By{M (u, &)} —Z, (u, &)]
le|<Dy

} {n_l/2 10g2n x D, (h_l,o,, +l,,) n_l/z}

, {Dnn_lh_l log? n (pn + hln)]

Uas
U(LS
= ttas. {n =207 (o, + i) | (30)
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by the growth constraint on D,, = n%. Note also that
_n—1/2/ d{Kh (u—x)ry (u) g} B, {M (M,E)}
|€|SDn
_ n—l/z/ Kn (u — x) ry (1) ed By (M (u, &)}
le|<D,
:n_l/z/ Kh (I/l—x)rn (M)Sde {M(H,S)}
le|<D,

_,,—1/2/ K (= x) ry () 6d F (¢ [u) f () duWy (1, 1)
le|<Dy
in which

n—l/z/ Ky (u —x) 1y () ed F (g |u) f (u) duWy (1, 1)‘
‘8‘SDVL

< n_1/2/ le|dF (elu)/Kh (= x) |rn @] f ) du|W, (1, 1)|
|8|5Dn

<n V2B Dy p,Cp (W, (1, 1) = U, (n—l/ZDn_(Hﬂ)pn), (3D
Meanwhile
2
E [n_l/z/ Ky (u—x)ry (u) edWy {M (u, 8)}i|
|£|§Dn
:n_l/ Kp(u—x)2ry () e*dF (¢ lu) f (u)du
|8‘§Dn
— nil/ [/ e2dF (e |u)} Ky (u—x)*r (u) f (u) du
le|<Dn

<n! / Kp(u—x)2ry ) o® @) f (wydu <n"'h™' psC3Cy,

so the M,, Gaussian variables n~1/2 f|5|<Dn Kp (u—xj) ry (u) edW, {M (u, £)},0 <
j < M, each has variance less than n='h =1 p2C2C s, hence

-12 Kp (u— x; dW, {M
=0, (n_l/zh_1/2p,, logl/2 n) . (32)

Finally, putting together Egs. (26), (28 ), (29), (30), (31 ) and (32) proves the Lemma.
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A.2 Proof of Propositions

Proof of Proposition 11tis obvious that [1; ,| < 2 {iii,, (X;) —m (X;)}* +282 (X;).
m —”7‘/7”;,;1 < |m _’7117”20 = Op (H?). 1] is

Meanwhile applied Lemma 1,
bounded by

20~ e YT KA — 0/ (m (X0 =y (X0) 4 85 (X0}

2
2.n

<207 K {Hm iyl + |5

<2¢7 Ko {h*‘ (HZP + n*‘H*‘)} .

Proof of Proposition 2 By (12), £,(X;) = lev:l_p aj,pBy p(X;), Lemma 1 and
Wang and Yang (2009) entail that (levzl,p &3,17)1/2 = O0,(lEp(X)ll2n) =
Op,(n~'2N1/2) Setr, (x) = By, (x), then Lemma 2 entails that p, = O (H~1/?)
and it is easy to verify that [, = O (H -3/ 2). Applying Lemma 4, one obtains that

n
n~' D Ky (Xi —x) & By p (X0)
i=1

=U, (n—l/zh—l/ZH—l/Z log'/? n +n_l/2hl/2H_3/2) (33)
and hence
n
) = o' D" Ki (X; — x) 268, (X))
i=1
n N
=12n7' > Ky (Xi —x)ei Y dypBup (X))
i=1 J=1-p
N N n )12
<) 3, 3 [ Sk e, 00
J=1-p J=1-p i=1

0, (n*‘/zN‘/z) x (N + p)!/2
U, (n—l/Zh—l/2H—l/2 log"/2 n +n—1/2h1/2H—3/2)

= U, (n—lh—l/ZH—3/2 log1/2 n+ n—lhl/zH—S/z) ’

the lemma is proved.
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Proof of Proposition 3

I (x) = 207" > Ky (X; = x) {(m (X0) — gp (X)) &}

i=1

+2n~! Z Kn (Xi —x) {(gp (Xi) —mp (Xi)) &}

i=1
in which the spline function g, € G;’,’fz) satisfies ||m —&p ”OO <CH’,m—g, €

Lip ([0, 1], CHP~!) as in Lemma 1. Set r, (x) = m (x) — gp (x), then p, =
OHP), I, =0 (Hp_l), so applying Lemma 4 yields

n
n=! KR (X = x) {(m (Xi) — gp (X)) &}
i=1
— U, {(nh/logn)_l/zH” +n—1/2h1/2H1’—1}. (34)
Denoting g, (x) —mp (x) = levzl_p vJ,pBy,p (x) and applying Lemma 1, one has

N 1/2 i
(ZJZI—py‘%’p) SC“gp (‘x)_mp (.X)HZZO(HP)’

which, together with (33) imply that

207 P> Ky (Xi — ) {gp (Xi) — iy (X0} &
i=1

N

n
=2n7" > vip D> Kn(Xi —x) By (Xi) e
J=1-p
1/2 1/2
N Jpp— 2
> {2 Y KX =0 By (X e
J=1-p J=1-p

(Hp) <O (N]/Z) x U, (n71/2h71/2H71/2 log!/2 n +n*1/2h]/2H*3/2)

, (n—l/2h—l/2Hp—l 10g1/2n n n—l/2h1/2Hp—2) ’

|

LK QO —/—
M=
o
]

which, together with (34), prove the lemma.
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