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Abstract This paper deals with the classical statistical problem of comparing the
probability distributions of two real random variables X and X0, from a double inde-
pendent sample.While most of the usual tools are based on the cumulative distribution
functions F and F0 of the variables, we focus on the relative density, a function recently
used in two-sample problems, and defined as the density of the variable F0(X). We
provide a nonparametric adaptive strategy to estimate the target function. We first
define a collection of estimates using a projection on the trigonometric basis and a
preliminary estimator of F0. An estimator is selected among this collection of projec-
tion estimates, with a criterion in the spirit of the Goldenshluger–Lepski methodology.
We show the optimality of the procedure both in the oracle and the minimax sense:
the convergence rate for the risk computed from an oracle inequality matches with the
lower bound that we also derived. Finally, some simulations illustrate the method.
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1 Introduction

1.1 Statistical model

The study of differences among groups is the main challenge of two-sample prob-
lems, and statistical methods are required to do this in various fields (biology or social
research for example). Nonparametric inference procedures are well developed for
comparing samples coming from two populations, modeled by two real random vari-
ables, X0 and X . Most of the methods are based on the comparison of the cumulative
distribution functions (c.d.f. in the sequel) F0 and F of X0 and X, respectively. The
study of the relative density r of X with respect to X0 is quite recent. Assume that f0,
the density of X0, is defined on an interval A0 and does not vanish on it. Denote by
F−1
0 the inverse of F0. The relative density is defined as the density of the variable

F0(X) and can be expressed as

r(x) = f ◦ F−1
0 (x)

f0 ◦ F−1
0 (x)

, x ∈ F0(A), (1)

where ◦ is the composition symbol and f is a density of X , defined on an interval A ⊂
R. In the present work, we focus on the optimal adaptive estimation of this function
(in the oracle and minimax senses), from two independent samples (Xi )i∈{1,...,n} and
(X0,i0)i0∈{1,...,n0} of variables X and X0.

1.2 Motivation

The most classical nonparametric methods to tackle the initial issue of the comparison
of F and F0 are statistical tests such as Kolmogorov and Smirnov (Kolmogorov 1933,
1941; Smirnov 1939, 1944) and Wilcoxon (Wilcoxon 1945), or Mann and Whitney
tests (Mann and Whitney 1947), all of which propose to check the null hypothesis of
equal c.d.f.. We refer to Gibbons and Chakraborti (2011) for a detailed review of these
tests. Probability plotting tools such as quantile–quantile plots, whose functional form
is x �→ F−1

0 (F(x)), are also commonly considered. However, the representation of
the quantiles of one distribution versus the quantiles of the other may be question-
able. For example, Holmgren (1995) showed that it does not enable scale-invariant
comparisons of treatment effects and that it depends on outliers. Some authors have
thus been interested by an alternative, the probability–probability plot, a graph of the
percentiles of one distribution versus the percentiles of the other (see among all Li
et al. 1996). The functional form can be written x �→ F(F−1

0 (x)), which defines
the relative c.d.f., a function closely related to the receiver operating characteristic
(ROC) curve: the latter is x �→ 1 − F(F−1

0 (1 − x)). This curve is well known in
fields such as signal detection and diagnostic test, for example. Both the relative c.d.f.
and the ROC curve are based on the following transformation of data: to compare X
to X0, consider F0(X), a variable known in the literature as the grade transforma-
tion or most commonly as the relative transformation. Its c.d.f. is the relative c.d.f.
defined above. The basic idea is to look at the rank that a comparison value (that is
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Optimal adaptive estimation of the relative density 607

a value of X ) would have in the reference group (that is in the values of the sam-
ple of X0). To recover from a double sample the ROC curve or the relative c.d.f.
in a nonparametric way, two types of strategies have mainly been studied: estima-
tors based on the empirical c.d.f. of X and X0 (see Hsieh and Turnbull 1996a, b and
references therein), as well as kernel smoothers (see among all Lloyd 1998; Lloyd
and Yong 1999; Hall and Hyndman 2003 for the ROC curve, Gastwirth 1968; Hsieh
1995; Handcock and Morris 1999 for the relative c.d.f.). Conditional versions of the
previous strategies have also been studied (see the review provided by Pardo et al.
2013). These two functions are based on the c.d.f. F and F0 of the two variables to be
compared.

Nevertheless, focusing on their densities is likely to providemore precise and visual
details. That is why the present work addresses the problem of comparison through
the estimation of the relative density (1), which is the derivative of the relative c.d.f.
and thus a density of the variable F0(X). Graphically more informative than the ROC
curve (see the introduction of Molanes and Cao 2008b), another reason for the choice
of the relative density is that an estimate of this function is required to study the
asymptotic variance of any ROC curve estimator and thus to build confidence regions
based on it (see the references above and also Claeskens et al. 2003). Moreover, some
summarymeasures for the comparison of X and X0 are based on the relative density r :
the most classical example is the Kullback–Leibler divergence (Kullback and Leibler
1951) which can be recovered by the plug-in of an estimate of r (Mielniczuk 1992;
Handcock and Morris 1999). But there exist other measures that can pertain to the
relative density, such as the Gini separation measurement and some discriminant rules
(Gijbels and Mielniczuk 1995), Lorenz curves and the median polarization index
(Handcock and Morris 1999). It is also possible to build goodness-of-fit tests from the
relative density; see Kim (2000).

However, not many investigations are concerned with theoretical results for the
estimation of the relative density and most of the references are sociological ones. A
clear account is provided by Handcock and Janssen (2002). Early mathematical refer-
ences for the relative density are Bell and Doksum (1966) and Silverman (1978), who
approached the problemwith themaximum likelihood point of view. A kernel estimate
was first proposed by Ćwik and Mielniczuk (1993) and modified by Molanes and Cao
(2008a), who proved asymptotic developments for the mean integrated squared error
(MISE), under the assumption that r is twice continuously derivable. The problem of
bandwidth selection is also addressed, but few theoretical results are proved for the
estimators with the selected parameters to the best of our knowledge. The question has
also been studied in a semiparametric setting (see Cheng and Chu 2004 and references
therein). If the relative density can also be brought closer to the density ratio, for which
numerous studies are available (see Sugiyama et al. 2012 for a review), some authors
have noticed that the relative distribution leads to smoother and more stable results
(Yamada et al. 2013). Our work is the first to study a nonparametric projection method
in this setting and provide a detailed optimal study of an adaptive estimator.
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608 G. Chagny, C. Lacour

1.3 Contribution and overview

Our main contribution is a theoretical one. The novelty of our work is to provide a
theoretically justified adaptive estimatorwith optimal rate of convergence.A collection
of projection estimators on linear models is built in Sect. 2, and the quadratic risk is
studied: the upper bound is non-trivial and requires non-straightforward splittings. We
obtain a bias-variance decompositionwhich permits understandingwhatwe can expect
at best from adaptive estimation, which is the subject of Sect. 3: the model selection
is automatically performed in the spirit of the Goldenshluger–Lepski method in a
data-driven way (Goldenshluger and Lepski 2011). The resulting estimator is shown
to be optimal in the collection, but also from an asymptotic point of view among all
possible estimators for a large class of regular relative density. To be more precise, an
oracle-type inequality first proves that adaptation has no cost (Sect. 3.2): the estimator
achieves the same performance as the one which would have been selected if the
regularity index of the target function has been known. The choice of the quadratic
risk permits using the Hilbert structure and thus the standard model selection tools
(mainly concentration inequalities) even if our selection criterion is based on the
Goldenshluger–Lepski methodology. Rates of convergence are deduced for functions
r belonging to Besov balls: we obtain the nonparametric rate (n−1 + n−1

0 )2α/(2α+1),
where α is the smoothness index of r . These rates are also shown to be optimal: a
lower bound for the minimax risk is established (Sect. 3.3). Such results are new for
this estimation problem. Especially, no assumption about a link between the sample
sizes n and n0 is required and the regularity assumptions are not restrictive. Section 4
provides a brief discussion of some practical issues via simulations. Finally, the proofs
are gathered in Sect. 6 after some concluding remarks. A supplementary material is
available with further simulation results (reconstructions and risk computations), as
well as further details about technical definitions and proofs.

2 The collection of projection estimators

For the sake of clarity, we assume that the variables X and X0 have the same support:
A = A0. Hence, F0(A) = (0; 1) is the estimation interval. This assumption is natural
to compare the distribution of X to the one of X0.

2.1 Approximation spaces

We denote by L2((0; 1)) the space of square integrable functions on (0; 1), equipped
with its usual Hilbert structure: 〈., .〉 is the scalar product and ‖.‖ the associated norm.
The relative density r , defined by (1) and estimated on its definition set (0; 1), is
assumed to belong to L2((0; 1)). Our estimation method is based on this device:
we consider a family Sm , m ∈ M of finite dimensional subspaces of L2((0; 1))
and compute a collection of estimators (r̂m)m∈M , where, for all m, r̂m belongs to
Sm . In a second step, a data-driven procedure chooses among the collection the final
estimator r̂m̂ .
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Optimal adaptive estimation of the relative density 609

Here, simple projection trigonometric spaces are considered: the set Sm is linearly
spanned by ϕ1, . . . , ϕ2m+1, with

ϕ1(x) = 1, ϕ2 j (x) = √
2 cos(2π j x), ϕ2 j+1(x) = √

2 sin(2π j x), x ∈ (0; 1).

We set Dm = 2m+1, the dimension of Sm , andM = {1, 2, . . . , �min(n, n0)/2�−
1}, the collection of indices, whose cardinality depends on the two sample sizes.
The largest space in the collection has maximal dimension Dmmax , which is subject
to constraints appearing later. We focus on the trigonometric basis mainly for its
simplicity to be handled. It is also used for a lot of other nonparametric estimation
problems, by several authors (see, e.g., Efromovich 1999 among all). Moreover, the
presence of a constant function (namely ϕ1) in the basis is perfectly well adapted to
the relative density estimation context; see Sect. 4.2 below. The method may however
probably be extended to other projection spaces, thanks to different “tricks” in the
computations.

2.2 Estimation on a fixed model

For each index m ∈ M , we define an estimator for the orthogonal projection rm =
∑Dm

j=1 a jϕ j of r onto the model Sm , where a j = 〈ϕ j , r〉. First, notice that

E
[
ϕ j (F0(X))

]=
∫

A
ϕ j◦F0(x) f (x)dx=

∫

F0(A)

ϕ j (u)
f ◦ F−1

0 (u)

f0 ◦ F−1
0 (u)

du=〈ϕ j , r〉 = a j ,

(2)
with the change of variables u = F0(x) and keeping in mind that F0(A) = (0; 1).
Thus, the following function suits well to estimate rm :

r̂m(x) =
Dm∑

j=1

â jϕ j (x), with â j = 1

n

n∑

i=1

ϕ j

(
F̂0(Xi )

)
, (3)

and where F̂0 is the empirical c.d.f. of the sample (X0,i0)i0=1,...,n0 , that is

F̂0 : x �→ 1

n0

n0∑

i0=1

1X0,i0≤x .

Note that in the “toy” case of known c.d.f. F0, the procedure amounts to estimating
a density: r̂m is the classical density projection estimator (adapted to the estimation of
the density of F0(X)).

Remark 1 Comparison with other estimation methods.

1. The estimator r̂m defined in (3) can also be seen as aminimum of contrast estimate:
r̂m = arg inf t∈Sm γn(t, F̂0), m ∈ M , with

γn(t, F̂0) = ‖t‖2 − 2

n

n∑

i=1

t ◦ F̂0(Xi ).
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610 G. Chagny, C. Lacour

2. It is worthwhile to draw a parallel between the projection method and the kernel
estimator of Ćwik and Mielniczuk (1993) or Molanes and Cao (2008a). Thanks to
the properties of the sine–cosine basis,

r̂m(x) = 2

n

n∑

i=1

(Dm−1)/2∑

j=0

cos
(
2π j

(
F̂0(Xi ) − x

))
.

Heuristically, by setting (Dm − 1)/2 = �1/(2πh)� − 1, h > 0, the previous
expression shows that r̂m can be seen as an approximation of

r̃h(x) = 2

n

n∑

i=1

∫ 1/(2πh)

0
cos
(
2πu

(
F̂0(Xi ) − x

))
du,

= 1

2πn

n∑

i=1

∫ 1/h

−1/h
cos
(
u
(
F̂0(Xi ) − x

))
du,

= 1

2πn

n∑

i=1

∫ 1/h

−1/h
exp
(
−iu

(
x − F̂0(Xi )

))
du

= 1

n

n∑

i=1

1

h
K

(
x − F̂0(Xi )

h

)

,

with K the sinus cardinal kernel defined by its Fourier transform: F (K )(x) = 1
if x ∈ (0; 1);F (K )(x) = 0 otherwise. Our strategy thus seems to be close to the
kernel estimators of Ćwik and Mielniczuk (1993) and Molanes and Cao (2008a).
But contrary to them, the projection method makes possible to obtain an unbiased
estimate when the target function belongs to one of the approximation spaces. In
the relative density estimation setting, this can occur if the two variables X and
X0 have the same distribution and if the constant functions are included in one of
the models, which is the case.

2.3 Risk of a projection estimator

The global squared error is the natural criterion associated with the projection esti-
mation procedure. First, consider the toy case of known c.d.f. F0. The Pythagoras
theorem simply leads to the classical bias-variance decomposition:

∥
∥r − r̂m

∥
∥2 = ‖r − rm‖2 + ∥∥r̂m − rm

∥
∥2 . (4)

Moreover, the variance term can be easily bounded, still with known F0, and using
the property of the trigonometric basis:

E

[∥
∥r̂m − rm

∥
∥2
]

=
Dm∑

j=1

Var
(
â j
) ≤ 1

n

Dm∑

j=1

E

[
ϕ2
j (F0(X1))

]
= Dm

n
. (5)
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Optimal adaptive estimation of the relative density 611

The challenge in the general case comes from the plug-in of the empirical F̂0. It
seems natural but involves non-straightforward computations. This is why the proof
of the following upper bound for the risk is postponed to Sect. 6.

Proposition 1 Assume that the relative density r is continuously differentiable on
(0; 1). Assume also that Dm ≤ κn1/30 , for a constant κ > 0. Then, there exist two
positive constants c1 and c2, such that

E

[∥
∥r̂m − r

∥
∥2
]

≤ 3 ‖r − rm‖2 +
(

3
Dm

n
+ c1‖r‖2 Dm

n0

)

+ c2

(
1

n
+ 1

n0

)

. (6)

The constants c1 and c2 do not depend on n, n0 and m. Moreover, c1 also does not
depend on r.

The assumption on the model dimension Dm comes from the control of the deviations
between F̂0 and F0. Proposition 1 shows that the risk is divided into three terms: a
squared-bias term, a variance term [proportional to Dm(n−1 + n−1

0 )] and a remainder
[proportional to (n−1 + n−1

0 )]. The upper bound of (1) is nontrivial and the proof
requires tricky approximations (see Sect. 6.2).

2.4 Rates of convergence on Besov balls

The result (6) also gives the asymptotic rate for an estimator if we consider that r has
smoothness α > 0. Indeed, in this case, it is possible to calculate the approximation
error ‖r − rm‖. A space of functions with smoothness α which has good approxima-
tion properties is the Besov space Bα

2,∞, where index 2 refers to the L2 norm. This
space is somehow a generalization of the Sobolev space and is known to be optimal
for nonparametric estimation (Kerkyacharian and Picard 1993). More precisely, we
assume that the relative density r belongs to a Besov ball Bα

2,∞((0; 1), L) of radius L ,
for the Besov norm ‖.‖α,2 on the Besov space Bα

2,∞((0; 1)). A precise definition is
recalled in the supplementary material (Section 1 of the supplementary material, see
also DeVore and Lorentz (1993)). The following rate is then obtained.

Corollary 1 Assume that the relative density r belongs to the Besov ball Bα
2,∞

((0; 1), L), for L > 0, and α ≥ 1. Choose a model mn,n0 such that Dmn,n0
=

C(n−1 + n−1
0 )−1/(2α+1), for C > 0. Then, under the assumptions of Proposition

1, there exists a numerical constant C ′ such that

E

[∥
∥
∥r̂mn,n0

− r
∥
∥
∥
2
]

≤ C ′
(
1

n
+ 1

n0

) 2α
2α+1

.

This inequality is a straightforward consequence of the result of DeVore and Lorentz
(1993) and of Lemma 12 of Barron et al. (1999), which imply that the bias term
‖r − rm‖2 is of order D−2α

m . The minimum of the right-hand side term of (6) can thus
be computed, leading to Corollary 1. Nevertheless, it is worth noticing that the rate
depends on the two sample sizes n and n0. Heuristically, it is (min(n, n0))−2α/(2α+1).
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612 G. Chagny, C. Lacour

The ratewe obtain is new in nonparametric estimation, but it is not surprising.Actually,
it looks like the Kolmogorov–Smirnov two-sample test convergence result: it is well
known that the test statistic rate is

√
nn0/(n + n0) (see for example Doob 1949).

More recently, similar rates have been obtained in adaptive minimax testing (see, e.g.,
Butucea and Tribouley 2006).

Remark 2 The regularity condition α ≥ 1 ensures that there exists a dimension Dmn,n0

which satisfies Dm ≤ Cn1/30 while being of order (n−1 + n−1
0 )−1/(2α+1). When

α < 1, this choice remains possible and the convergence rate is preserved under
the additional assumption n ≤ n0/(n

(2−2α)/3
0 −1). Roughly, this condition means that

n ≤ n(2α+1)/3
0 < n0, and thus n and n0 must be put in order to handle this case.

It follows from Corollary 1 that the optimal dimension depends on the unknown
regularity α of the function to be estimated. The aim is to perform an adaptive selection
only based on the data.

3 Adaptive optimal estimation

3.1 Model selection

Consider the collection (Sm)m∈M of models defined in Sect. 2.1 and the collection
(r̂m)m∈M of estimators defined by (3). The aim is to propose a data-driven choice ofm
leading to an estimator with risk near the squared-bias/variance compromise [see (6)].
The selection combines two strategies: the model selection device performed with a
penalization of the contrast (see, e.g., Barron et al. 1999) and the recentGoldenshluger–
Lepski method (Goldenshluger and Lepski 2011). A similar device has already been
used in Comte and Johannes (2012), Bertin et al. (2013) and Chagny (2013). We set,
for every index m,

V (m) = c0

(
Dm

n
+ ‖r‖2 Dm

n0

)

,

A(m) = max
m′∈M

(∥
∥r̂m′ − r̂m∧m′

∥
∥2 − V (m′)

)

+ ,
(7)

where m ∧m′ is the minimum between m and m′, (x)+ the maximum between x and
0 (for a real number x), and c0 a tuning parameter. The quantity V must be understood
as a penalty term and A is an approximation of the squared-bias term (see Lemma 10).
The estimator of r is now given by r̂m̂ , with

m̂ = argminm∈M {A(m) + V (m)}.

By construction, the choice of the index m and hence the estimator r̂m̂ does not
depend on the regularity assumption on the relative density r .
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3.2 Optimality in the oracle sense

A non-asymptotic upper-bound is derived for the risk of the estimator r̂m̂ .

Theorem 2 Assume that the relative density r is continuously differentiable on (0; 1).
Assume also that Dm ≤ κn1/30 / ln2/3(n0), for a constant κ > 0. Then, there exist two
positive constants c and C such that

E

[∥
∥r̂m̂ − r

∥
∥2
]

≤ c min
m∈M

{(
Dm

n
+ ‖r‖2 Dm

n0

)

+ ‖rm − r‖2
}

+ C

(
1

n
+ 1

n0

)

.

(8)

The constant c is purely numerical, while C depends on r, but neither on n nor n0.

Theorem 2 establishes the optimality of the selection rule in the oracle sense. For
every index m ∈ M , {(Dm/n + ‖r‖2Dm/n0) + ‖rm − r‖2} has the same order as
E
[‖r̂m − r‖2] (see Proposition 1). Thus, Inequality (8) indicates that up to a mul-

tiplicative constant, the estimator r̂m̂ converges as fast as the best estimator in the
collection. The proof of such result is based on the following scheme: we first come
down to the case of a known c.d.f. F0, by using deviation results for the empirical
c.d.f. Then, we use concentration results for empirical processes to prove that A(m)

defined in (7) is a good estimate of the bias term.
The following corollary states the convergence rate of the risk over Besov balls.

Since the regularity parameter defining the functional class is not supposed to be
known to select the estimator r̂m̂ , it is an adaptation result: the estimator adapts to the
unknown regularity α of the function r .

Corollary 2 Assume that the relative density r belongs to Bα
2,∞((0; 1), L), for L > 0,

and α ≥ 1. Under the assumptions of Theorem 2,

E

[∥
∥r̂m̂ − r

∥
∥2
]

≤ C

(
1

n
+ 1

n0

) 2α
2α+1

.

It is worth noticing that the rate of convergence computed above (that is the one of
the best estimators among the collection, see Corollary 1) is automatically achieved
by the estimator r̂m̂ . The corollary 2 is established with regularity assumptions stated
on the target function r only. To the best of our knowledge, in the previous works,
convergence results for selected relative density estimators (among a family of kernel
ones) depended on strong assumptions on r (r ∈ C 6((0; 1)) e.g.) and also on the
regularity of f0.

The penalty term V given in (7) cannot be used in practice, since it depends on the
unknown quantity ‖r‖2. A solution is to replace it by an estimator and to prove that
the estimator of r built with this random penalty keeps the adaptation property. To that
aim, set, for an index m∗ ∈ M ,
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614 G. Chagny, C. Lacour

Ṽ (m) = c0

(
Dm

n
+ 4‖r̂m∗‖2 Dm

n0

)

,

Ã(m) = max
m′∈M

(∥
∥r̂m′ − r̂m∧m′

∥
∥2 − Ṽ (m′)

)

+ ,
(9)

and m̃ = argminm∈M { Ã(m) + Ṽ (m)}. The result for r̂m̃ is described in the following
theorem.

Theorem 3 Assume that the assumptions of Theorem 2 are satisfied and that r belongs
to Bα

2,∞((0; 1), L), for L > 0, and α ≥ 1. Choose m∗ in the definition of Ṽ such that

Dm∗ ≥ ln(n0) and Dm∗ = O(n1/4/ ln1/4(n)). Then, for n0 large enough, there exist
two positive constants c and C, such that

E

[∥
∥r̂m̃ − r

∥
∥2
]

≤ c min
m∈M

{(
Dm

n
+ ‖r‖2 Dm

n0

)

+ ‖rm − r‖2
}

+ C

(
1

n
+ 1

n0

)

.

As for Theorem 2, the result proves that the selection rule leads to the best trade-
off between a bias and a variance term. Our estimation procedure is thus optimal in
the oracle sense. The convergence rates derived in Corollary 2 remain valid for r̂m̃ .
Now, the only remaining parameter to tune is the constant c0 involved in the definition
of Ṽ . A value is obtained in the proof, but it is quite rough and useless in practice.
A sharp bound seems difficult to obtain from a theoretical point of view: obtaining
minimal penalties is still a difficult problem (see e.g., Birgé and Massart 2007), and
this question could be the subject of a full paper. Therefore, we experiment the tuning
by a simulation study over various models.

3.3 Optimality in the minimax sense

Until now,wehave drawn conclusions about the performance of the selected estimators
r̂m̂ or r̂m̃ within the collection (r̂m)m∈M of projection estimators. A natural question
follows: is the convergence rate obtained in Corollary 2 optimal among all the possible
estimation strategies? We prove that the answer is yes by establishing the following
lower bound for the minimax risk of the relative density estimation problem without
making any assumption.

Theorem 4 Let Fα be the set of relative density functions on (0; 1) which belong to
the Besov ball Bα

2,∞((0; 1), L), for a fixed radius L > 1, and for α ≥ 1. Then there
exists a constant c > 0 which depends on (α, L) such that

inf
r̂n,n0

sup
r∈Fα

E

[∥
∥r̂n,n0 − r

∥
∥2
]

≥ c

(
1

n
+ 1

n0

)2α/(2α+1)

, (10)

where the infimum is taken over all possible estimators r̂n,n0 obtained with the two
data samples (Xi )i∈{1,...,n} and (X0,i0)i0∈{1,...,n0}.

The optimal convergence rate is thus (n−1 + n−1
0 )2α/(2α+1). The upper bound of

Corollary 2 and the lower bound (10) match, up to constants. This proves that our
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estimation procedure achieves theminimax rate and is thus also optimal in theminimax
sense. The result is not straightforward: the proof requires specific constructions, since
it captures the influence of both sample sizes, n and n0. Although it is a lower bound
for a kind of density function, we think it cannot be easily deduced from the minimax
rate of density estimation over the Besov ball (see for example Kerkyacharian and
Picard 1992), since the two samples do not have symmetric roles.

4 Simulation

In this section, we present the performance of the adaptive estimator r̂m̃ on simulated
data. We have carried out an intensive simulation study (with the computing environ-
ment MATLAB) which shows that the results are equivalent to the ones of Ćwik and
Mielniczuk (1993) and Molanes and Cao (2008a). Here, we thus prefer to discuss two
types of questions, to evaluate the specific robustness of our method. After describing
the way we compute the estimator, we first focus on the quality of estimation when the
variable X is close (in distribution) to X0. Second, we investigate the role of the two
sample sizes, n and n0. For additional reconstructions, risk computations and details
about calibration, the reader may refer to the supplementary material (Sect. 2).

4.1 Implementation

The implementation of the estimator is very simple and follows the steps below.

– For each m ∈ M , compute (r̂m(xk))k=1,...,K defined by (3) for grid points
(xk)k=1,...,K evenly distributed across (0; 1), with K = 50.

– For each m ∈ M , compute Ṽ (m) and Ã(m), defined by (9).
– For Ṽ (h) we choose c0 = 1, but the estimation results seem quite robust to
slight changes. This value has been obtained by a numerical calibration on
various examples (see Section 2.2 of the supplementary material for more
details). The index m∗ of the estimator r̂m∗ used in Ṽ is the smallest integer
greater than ln(n0) − 1.

– For Ã(h), we approximate the L2 norms by the corresponding Riemann sums
computed over the grid points (xk)k :

∥
∥r̂m′ − r̂m∧m′

∥
∥2 ≈ 1

K

K∑

k=1

(
r̂m′(xk) − r̂m∧m′(xk)

)2
.

– Select the argmin m̃ of Ã(m) + Ṽ (m), and choose r̂m̃ .

The risksE[‖(r̂m̃)+−r‖2] are also computed: it is not difficult to see that the choice
of the positive part of the estimator can only make its risk decrease. To compute the
expectation, we average the integrated squared error (ISE) computed with N = 500
replications of the samples (X0,i0)i0 and (Xi )i . Notice that the grid size (K = 50) and
the number of replications (N = 500) are the same as Ćwik and Mielniczuk (1993).
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4.2 Experiment 1: two samples with close distributions

The trigonometric basis suitswell to recover relative densities. Indeed, thefirst function
of the basis is ϕ1 : x ∈ (0; 1) �→ 1, and thus the first estimated coefficient â1 in (3)
also equals 1. But we know that the relative density is constant and equal to 1 over
(0; 1)when X and X0 have the same distribution. Consequently, our procedure permits
obtaining an exact estimation in this case, provided that the data-driven criterion leads
to the choice of the first model in the collection. We hope to select Dm̂ = 1, that is
m̂ = 0. In this section, we check that the estimation procedure actually easily handles
this case.

First, we generate two samples (X0,i0)i0=1,...,n0 and (Xi )i=1,...,n coming from ran-
dom variables X0 and X, respectively, with one of the following common probability
distributions (Example (1) in the sequel): (a1) a uniform distribution in the set (0; 1),
(b1) a beta distribution B(2, 5), (c1) a Gaussian distribution with mean 0 and vari-
ance 1, (d1) an exponential distribution with mean 5. As explained, the estimator is
expected to be constant and equal to 1: the selected indexm must thus be 0. This is the
case for most of the samples we simulate: for example, only 1% of the 500 estimators
computed with 50 i.i.d. Gaussian pairs (X, X0) are not identically equal to 1. The
medians of the ISE over 500 replicated samples are always equal to 0, whatever the
distribution of X and X0, chosen among the examples (uniform, beta, Gaussian, or
exponential). The MISE values are dispayed in Table 1 for different possible sample
sizes.We can also check that they are muchmore smaller than theMISE obtained with
two different distributions for X and X0 (see Table 2 in the supplementary material,
Section 2.2).

Then, we investigate what happens when X is close to X0 but slightly different,
with samples simulated from the set of Example (2).

(a2) The variable X0 is from the uniform distribution on (0; 1), and the vari-
able X has the density f (x) = c1(0;0.5)(x) + (2 − c)1(0.5;1)(x), with c ∈
{1.01, 1.05, 1.1, 1.3, 1.5} (the case c = 1 is the case of the uniform distribu-
tion on (0; 1)).

(b2) The variable X0 is from the beta distributionB(2, 5), and the variable X from a
beta distribution B(a, 5) with a ∈ {2.01, 2.05, 2.1, 2.3, 2.5}. For this example,
the risks are computed over a regular grid of the interval [F0(0.01); F0(0.99)].

Figure 1 shows the true relative densities for these two examples.
The MISEs in Examples (2) (a2) and (b2) are plotted in Fig. 2 with respect to the

sample sizes n = n0. Details are also given in Table 1 of the supplementary material
(Sect. 2.2). The larger the c (resp. a) and the further the X from X0, the larger is the
MISE. The results are thus better especially when the two variable distributions are
close.

4.3 Experiment 2: influence of the two sample sizes

We now study the influence of the two sample sizes. Recall that the theoretical results
we obtain do not require any link between n and n0. On the contrary, they are often
supposed to be proportional in the literature. But we obtain a convergence rate in
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Table 1 Values of MISE ×10
averaged over 500 samples for
the estimator r̂m̃ , in Example (1)
[(a1) to (d1)]

n\n0 50 100 200 400

Example (a1)

50 0.213 0.206 0.156 0.185

100 0.114 0.159 0.115 0.096

200 0.125 0.109 0.058 0.056

400 0.089 0.078 0.054 0.036

Example (b1)

50 0.180 0.163 0.165 0.157

100 0.140 0.153 0.105 0.105

200 0.110 0.095 0.075 0.069

400 0.099 0.076 0.047 0.035

Example (c1)

50 0.245 0.162 0.202 0.119

100 0.125 0.131 0.110 0.099

200 0.141 0.103 0.077 0.055

400 0.132 0.086 0.051 0.039

Example (d1)

50 0.177 0.186 0.147 0.165

100 0.117 0.119 0.092 0.094

200 0.095 0.099 0.081 0.073

400 0.084 0.105 0.056 0.041
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Fig. 1 Plot of the different investigated relative densities of Examples (2), (a2) and (b2)

which n and n0 play symmetric roles (see Corollary 2). What happens in practice?
To briefly discuss this question, let us consider the observations of (Xi )i∈{1,...,n} and
(X0,i0)i0∈{1,...,n0} fitting the following model [Example (3)]. The variable X0 is from
the Weibull distribution with parameters (2,3) (we denote by W the corresponding
c.d.f.) and X is built such that X = W−1(S), with S a mixture of two beta distri-
butions: B(14, 37) with probability 4/5 and B(14, 20) with probability 1/5. The

123



618 G. Chagny, C. Lacour

)2b(elpmaxE)2a(elpmaxE

100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
c=1.01
c=1.05
c=1.1
c=1.3
c=1.5

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a=2.01
a=2.05
a=2.1
a=2.3
a=2.5

Fig. 2 Values of MISE (averaged over 500 samples) for the estimator r̂m̃ with respect to the sample sizes
n = n0 in Examples (2) (a2) and (b2)

example is borrowed from Molanes and Cao (2008a). Let us look at the beams of
estimates r̂m̃ : in Fig. 3, ten estimators built from i.i.d. samples of data are plotted
together with the true functions. This illustrates that increasing n0 for fixed n seems to
improve more substantially the risk than the other way round (the improvement when
n0 increases appears horizontally in Fig. 3). Such a phenomenon also appears when a
more quantitative criterion is considered: the MISE in Table 2 are not symmetric with
respect to n and n0, even if, as expected, they all get smaller when the sample sizes n
and n0 increase. Even if this can be surprising when compared with the theory, recall
that the relative density of X with respect to X0 is not the same as the relative density of
X0 with respect to X . The role of the reference variable is coherently more important,
even if it is not clear in the convergence rate of Corollary 2. The details of the compu-
tation in the proofs also show that n and n0 do not play similar roles (see Lemma 9).
An explanation may be the following: in the method, the sample (Xi )i∈{1,...,n} is used
in a nonparametric way, like in classical density estimation, while the other, that is
(X0,i0)i0∈{1,...,n0}, is useful through the empirical c.d.f. which is known to be conver-
gent at a parametric rate, faster than the previous one. Notice finally that the same
results are obtained for estimators computed from the sets of observations described
in the supplementary material (see Table 2 of the supplementary material). In any case,
such results might be used by a practitioner, when the choice of the reference sample
is not natural: a judicious way to decide which of the sample plays the role of (X0,i0)

is to choose the larger one.

5 Concluding remarks

In this paper, we have proposed a new method for estimating relative density. Our
procedure has two main advantages compared with the kernel methods of Ćwik and
Mielniczuk (1993) andMolanes and Cao (2008a). First, we obtain an unbiased estima-
tor that exactly recovers the target when the two variables X and X0 have the same dis-
tribution. Secondly, it permits to obtain precise theoretical results on the minimax rate
of convergence for relative density estimation. For a function with smoothness index
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Fig. 3 Beams of ten estimators built from i.i.d. samples of various sizes (n; n0) (thin lines) versus true
function (thick line) in Example (3)

Table 2 Values of MISE ×10
averaged over 500 samples for
the estimator r̂m̃ , in Example (3)

n\n0 50 100 200 400

50 12.05 7.977 5.631 3.745

100 11.68 7.596 4.789 3.297

200 12.57 7.557 4.831 2.731

400 11.26 7.445 4.429 2.729

α, and sample sizes n and n0, the minimax rate is proved to be (n−1 + n−1
0 )2α/(2α+1).

Although we do not assume knowing this smoothness index, our estimator achieves
this minimax rate as soon as α ≥ 1. Eventually, an outstanding issue is the theoretical
comprehension of the asymmetry in the roles of n and n0, which is noticeable in the
simulations.
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6 Proofs

Detailed proofs of Proposition 1 and Theorem 2 are gathered in this section. The proofs
of Theorems 3 and 4 are only sketched. Complete proofs are available in Section 3 of
the supplementary material.

6.1 Preliminary notations and results

6.1.1 Notations

We need additional notations in this section. First, we specify the definition of the
procedure. The estimators r̂m , m ∈ M defined by (3) are now denoted by r̂m(., F̂0).

Its coefficients in the Fourier basis are â F̂0
j . When we plug F0 in (3), we denote it by

r̂m(., F0) and the coefficients by â
F0
j . Then, we setU0,i0 = F0(X0,i0) (i0 = 1, . . . , n0)

and let Û0 be the empirical c.d.f. associated with the sample (U0,i0)i0=1,...,n0 . We also
denote byE[.|(X0)] the conditional expectation given the sample (X0,i0)i0=1,...,n0 (the
conditional variance will be coherently denoted by Var(.|(X0))).

Finally, for any measurable function t defined on (0; 1), we denote by ‖t‖∞ the
quantity supx∈(0;1) |t (x)|, and id is the function such that u �→ u on the interval (0; 1).

6.1.2 Useful tools

Key arguments for the proofs are the deviation properties of the empirical c.d.f. F̂0 of
the sample (X0,i0)i0 .

First, recall thatU0,i0 is a uniform variable on (0; 1) and that F̂0(F−1
0 (u)) = Û0(u),

for all u ∈ (0; 1). Keep in mind that the random variable supx∈A0
|F̂0(x)− F0(x)| has

the same distribution as ‖Û0−id‖∞. The following inequalities are used several times
to control the deviations of the empirical c.d.f. Ûn . Dvoretzky et al. (1956) established
the first one.

Proposition 5 (Dvoretzky–Kiefer–Wolfowitz’s Inequality) There exists a constant
C > 0, such that, for any integer n0 ≥ 1 and any λ > 0,

P
(∥
∥Û0 − id

∥
∥∞ ≥ λ

) ≤ C exp
(
−2n0λ

2
)

.

By integration, we then deduce a first other bound:

Proposition 6 For any integer p > 0, there exists a constant Cp > 0 such that

E

[∥
∥Û0 − id

∥
∥p∞
]

≤ Cp

np/2
0

.

More precise bounds are also required:
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Corollary 3 For any κ > 0, for any integer p ≥ 2, there exists also a constant C
such that

E

[(
∥
∥Û0 − id

∥
∥p∞ − κ

lnp/2(n0)

n p/2
0

)

+

]

≤ Cn−2
2−p
p κ2/p

0 . (11)

6.1.3 The talagrand inequality

The proofs of themain results (Theorems 2 and 3) are based on the use of concentration
inequalities. The first one is the classical Bernstein Inequality, and the second one is
the following version of the Talagrand Inequality.

Proposition 7 Let ξ1, . . . , ξn be i.i.d. random variables and define νn(s) =
1
n

∑n
i=1 s(ξi ) −E[s(ξi )], for s belonging to a countable classS of real-valued mea-

surable functions. Then, for δ > 0, there exist three constants cl , l = 1, 2, 3, such
that

E

[(

sup
s∈S

(νn (s))2 − c(δ)H2

)

+

]

≤ c1

{
v

n
exp

(

−c2δ
nH2

v

)

+ M2
1

C2(δ)n2
exp

(

−c3C(δ)
√

δ
nH

M1

)}

, (12)

with C(δ) = (
√
1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
s∈S

‖s‖∞ ≤ M1, E

[

sup
s∈S

|νn(s)|
]

≤ H, and sup
s∈S

Var (s (ξ1)) ≤ v.

Inequality (12) is a classical consequence of Talagrand’s Inequality given in Klein and
Rio (2005): see for example Lemma 5 (page 812) in Lacour (2008). Using density
arguments, we can apply it to the unit sphere of a finite dimensional linear space.

6.2 Proof of Proposition 1

A key point is the following decomposition which holds for any index m

∥
∥
∥r̂m(., F̂0) − r

∥
∥
∥
2 ≤ 3Tm

1 + 3Tm
2 + 3

∥
∥r̂m(., F0) − r

∥
∥2 ,

with

Tm
1 =

∥
∥
∥r̂m(., F̂0) − r̂m(., F0) − E

[
r̂m(., F̂0) − r̂m(., F0) |(X0)

]∥
∥
∥
2
,

Tm
2 =

∥
∥
∥E
[
r̂m(., F̂0) − r̂m(., F0) |(X0)

]∥
∥
∥
2
.

(13)

We have already proved [see (4) and (5)] that ‖r̂m(., F0)− r‖2 ≤ Dm/n+‖rm − r‖2.
Therefore, the two lemmas, proved in the two following sections, remain to be applied.
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Lemma 8 Under the assumptions of Proposition 1,

E
[
Tm
1

] ≤ 2π2 D
3
m

nn0
.

Lemma 9 Under the assumptions of Proposition 1,

E
[
Tm
2

] ≤ 3‖r‖2 Dm

n0
+ 3

π4

4
C4‖r‖2 D

4
m

n20
+ 32π6C6

3
‖r‖2 D

7
m

n30
+ 3

‖r ′‖2
n0

.

The result follows if Dm ≤ κn1/30 .

6.2.1 Proof of Lemma 8

The decomposition of the estimator in the orthogonal basis (ϕ j ) j yields

Tm
1 =

Dm∑

j=1

(
â F̂0
j − âF0

j − E

[
â F̂0
j − âF0

j |(X0)
])2

and, therefore,E[Tm
1 |(X0)] =∑Dm

j=1 Var(â
F̂0
j −âF0

j |(X0)).Moreover, for any index j ,

Var
(
â F̂0
j − âF0

j |(X0)
)

≤ 1

n
E

[(
ϕ j ◦ F̂0(X1) − ϕ j ◦ F0(X1)

)2 |(X0)

]

,

≤ 1

n

∥
∥
∥ϕ′

j

∥
∥
∥
2

∞

∫

A

(
F̂0(x) − F0(x)

)2
f (x)dx,

using themean-value theorem.Since‖ϕ′
j‖2∞ ≤8π2D2

m in theFourier basis, this leads to

E
[
Tm
1

] ≤ 8π2

n
D3
m

∫

A
E

[(
F̂0(x) − F0(x)

)2
]

f (x)dx .

Notice finally thatE[(F̂0(x)−F0(x))2] = Var(F̂0(x)) = (F0(x)(1−F0(x)))/n0 ≤
1/(4n0). This permits to conclude the proof of Lemma 8. ��

6.2.2 Proof of Lemma 9

Arguing as in the beginning of the proof of Lemma 8 yields

Tm
2 =

Dm∑

j=1

(∫

A

(
ϕ j ◦ F̂0(x) − ϕ j ◦ F0(x)

)
f (x)dx

)2

. (14)
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We apply the Taylor formula to the function ϕ j , with the Lagrange form for the
remainder. There exists a random number α̂ j,n0,x such that the following decomposi-
tion holds: Tm

2 ≤ 3Tm
2,1 + 3Tm

2,2 + 3Tm
2,3, where

Tm
2,1 =

Dm∑

j=1

(∫

A
ϕ′
j (F0(x))

(
F̂0(x) − F0(x)

)
f (x)dx

)2

,

Tm
2,2 =

Dm∑

j=1

⎛

⎜
⎝

∫

A
ϕ′′
j (F0(x))

(
F̂0(x) − F0(x)

)2

2
f (x)dx

⎞

⎟
⎠

2

,

Tm
2,3 =

Dm∑

j=1

⎛

⎜
⎝

∫

A
ϕ

(3)
j (α̂ j,n0,x )

(
F̂0(x) − F0(x)

)3

6
f (x)dx

⎞

⎟
⎠

2

.

We now bound each of these three terms. Let us begin with Tm
2,1. The change of

variables u = F0(x) permits obtaining first

Tm
2,1 =

Dm∑

j=1

(∫

(0;1)
ϕ′
j (u)

(
Û0(u) − u

)
r(u)du

)2

,

and, with the definition of Û0(u), we get

Tm
2,1 =

Dm∑

j=1

(
1

n0

n0∑

i=1

Bi, j − E[Bi, j ]
)2

, with Bi, j =
∫ 1

U0,i

r(u)ϕ′
j (u)du.

An integration by parts for Bi, j leads to another splitting Tm
2,1 ≤ 2Tm

2,1,1 + 2Tm
2,1,2,

with notations

Tm
2,1,1 =

Dm∑

j=1

{
1

n0

n0∑

i=1

r(U0,i )ϕ j (U0,i ) − E
[
r(U0,i )ϕ j (U0,i )

]
}2

,

Tm
2,1,2 =

Dm∑

j=1

{∫

(0;1)
r ′(u)

(
Û0(u) − u

)
ϕ j (u)du

}2
.

The expectation of the first term is a variance and is bounded as follows:

E
[
Tm
2,1,1

] ≤ 1

n0

Dm∑

j=1

E

[(
r(U0,1)ϕ j (U0,1)

)2
]

≤
∫ 1

0
r(u)2du

Dm

n0
.
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For Tm
2,1,2, we use the definitions and properties of the orthogonal projection operator

�Sm on the space Sm :

Tm
2,1,2 =

Dm∑

j=1

(〈r ′(Û0 − id), ϕ j 〉(0;1)
)2 = ∥∥�Sm (r ′(Û0 − id))

∥
∥2 ,

≤ ∥∥r ′(Û0 − id)
∥
∥2 ≤ ‖r ′‖2‖Û0 − id‖2∞.

Applying Proposition 6 proves that E[Tm
2,1,2] ≤ C2‖r ′‖2/n0. Therefore,

E
[
Tm
2,1

] ≤ ‖r‖2 Dm

n0
+ C2‖r ′‖2 1

n0
. (15)

Consider now Tm
2,2. The trigonometric basis satisfies ϕ′′

j = −(πμ j )
2ϕ j , with μ j = j

for even j ≥ 2, and μ j = j − 1 for odd j ≥ 2. We thus have

E
[
Tm
2,2

] = (π4/4)E

⎡

⎣
Dm∑

j=1

{∫

(0;1)
r(u)

(
Û0(u) − u

)2
μ2

jϕ j (u)du

}2
⎤

⎦ ,

≤ (π4/4)D4
mE

⎡

⎣
Dm∑

j=1

{
〈r (Û0 − id

)2
, ϕ j 〉(0;1)

}2
⎤

⎦ ,

≤ (π4/4)D4
mE

[∥
∥
∥r
(
Û0 − id

)2
∥
∥
∥
2
]

≤ (π4/4)D4
mE

[∥
∥Û0 − id

∥
∥4∞
] ∫

(0;1)
r2(u)du.

Thanks to Proposition 6, we obtain

E
[
Tm
2,1

] ≤ C4(π
4/4)‖r‖2 D

4
m

n20
. (16)

The last term is then easily controlled, using also Proposition 6:

E
[
Tm
2,3

] ≤ 32π6

9

Dm∑

j=1

‖r‖2E
[∥
∥Û0 − id

∥
∥6∞
]

≤ 32π6C6

9
‖r‖2 D

7
m

n30
. (17)

Lemma 9 is proved by gathering (15, 16) and (17). ��

6.3 Proof of Theorem 2

In the proof, C is a constant which may change from line to line and is independent
of all m ∈ M , n and n0. Let m ∈ M be fixed. The following decomposition holds:
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∥
∥
∥r̂m̂

(
., F̂0

)
− r
∥
∥
∥
2 ≤ 3

∥
∥
∥r̂m̂

(
., F̂0

)
− r̂m∧m̂

(
., F̂0

)∥
∥
∥
2

+3
∥
∥
∥r̂m∧m̂

(
., F̂0

)
− r̂m

(
., F̂0

)∥
∥
∥
2 + 3

∥
∥
∥r̂m

(
., F̂0

)
− r
∥
∥
∥
2
.

We use successively the definition of A(m̂), A(m) and m̂ to obtain

∥
∥
∥r̂m̂

(
., F̂0

)
− r
∥
∥
∥
2 ≤ 6 (A(m) + V (m)) + 3

∥
∥
∥r̂m

(
., F̂0

)
− r
∥
∥
∥
2
.

Keeping in mind that we can split ‖r̂m(., F̂0)−r‖2 ≤ 3Tm
1 +3Tm

2 +3‖r̂m(., F0)−r‖2
with the notations of Sect. 6.2, we derive from (4) and (5):

∥
∥
∥r̂m̂

(
., F̂0

)
− r
∥
∥
∥
2 ≤ 6 (A(m) + V (m)) + 9Tm

1 + 9Tm
2 + 9

Dm

n
+ 9 ‖rm − r‖2 .

We also apply Lemmas 8 and 9. Taking into account that Dm ≤ κn1/30 , we thus
have

E

[∥
∥
∥r̂m̂

(
., F̂0

)
− r
∥
∥
∥
2
]

≤ 6E [A(m)] + 6V (m) + C
Dm

n
+ C‖r‖2 Dm

n0

+9 ‖rm − r‖2 + C

n0
+ C

n
.

Therefore, the conclusion of Theorem 2 is the result of the following lemma.

Lemma 10 Under the assumptions of Theorem 2, there exists a constant C > 0 such
that, for any m ∈ M ,

E [A(m)] ≤ C

(
1

n
+ 1

n0

)

+ 12 ‖rm − r‖2 .

��

6.3.1 Proof of Lemma 10

To study A(m, F̂0), we write, for m′ ∈ M ,

∥
∥
∥r̂m′

(
., F̂0

)
− r̂m∧m′

(
., F̂0

)∥
∥
∥
2 ≤ 3

∥
∥
∥r̂m′

(
., F̂0

)
− rm′

∥
∥
∥
2 + 3 ‖rm′ − rm∧m′ ‖2

+3
∥
∥
∥rm∧m′ − r̂m∧m′

(
., F̂0

)∥
∥
∥
2
.

Let S (pm′) be the set {t ∈ Spm′ , ‖t‖ = 1} for pm′ = m′ or pm′ = m ∧ m′ . We
note that

∥
∥
∥rpm′ − r̂ pm′ (., F̂0)

∥
∥
∥
2 =

Dpm′∑

j=1

(
ν̃n(ϕ j )

)2 = sup
t∈S (pm′ )

ν̃n(t)
2, (18)
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with ν̃n(t) = n−1∑n
i=1 t◦ F̂0(Xi )−E[t◦F0(Xi )].Since the empirical process ν̃n is not

centered, we consider the following splitting: (ν̃n(t))2 ≤ 2ν2n (t) + 2((1/n)
∑n

i=1(t ◦
F̂0(Xi ) − t ◦ F0(Xi )))

2, with

νn(t) = 1

n

n∑

i=1

(t ◦ F0(Xi ) − E [t ◦ F0(Xi )]) . (19)

But, we also have

sup
t∈S (pm′ )

(
1

n

n∑

i=1

(
t ◦ F̂0(Xi ) − t ◦ F0(Xi )

)
)2

=
Dpm′∑

j=1

(
â F̂0
j − âF0

j

)2 ≤ 2T
pm′
1 + 2T

pm′
2 ,

with the notations of Sect. 6.2. This shows that
∥
∥
∥rpm′ − r̂ pm′ (., F̂0)

∥
∥
∥
2 ≤ 2 sup

t∈S (pm′ )
(νn(t))

2 + 4T
pm′
1 + 4T

pm′
2 . (20)

We thus have
∥
∥
∥r̂m′

(
., F̂0

)
− r̂m∧m′

(
., F̂0

)∥
∥
∥
2

≤ 6 sup
t∈S (m′)

(νn(t))
2 + 6 sup

t∈S (m∧m′)
(νn(t))

2 + 12Tm′
2 + 12Tm∧m′

2

+ 12Tm′
1 + 12Tm∧m′

1 + 3 ‖rm′ − rm∧m′ ‖2 .

Weget back to the definition of A(m). To do so,we subtractV (m′). For convenience,
we split it into two terms: V (m′) = V (1)(m′) + V (2)(m′), with V (1)(m′) = c0Dm/n
and V (2)(m′) = c0‖r‖2Dm/n0. Thus,

E [A (m)] ≤ 6E

[

max
m′∈M

(

sup
t∈S (m′)

(νn(t))
2 − V (1)(m′)

12

)

+

]

+3 max
m′∈M

‖rm′ − rm∧m′ ‖2

+6E

[

max
m′∈M

(

sup
t∈S (m∧m′)

(νn(t))
2 − V (1)(m′)

12

)

+

]

+12E

[

max
m′∈M

(

Tm′
2 − V (2)(m′)

24

)

+

]

+12E

[

max
m′∈M

(

Tm∧m′
2 − V (2)(m′)

24

)

+

]

+12E

[

max
m′∈M

Tm′
1

]

+ 12E

[

max
m′∈M

Tm∧m′
1

]

.
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For the deterministic term, we notice that

max
m′∈M

‖rm′ − rm∧m′ ‖2 ≤ 2 max
m′∈M
m≤m′

‖rm′ − r‖2 + 2 ‖r − rm‖2 .

If m ≤ m′, the spaces are nested Sm ⊂ Sm′ ; thus the orthogonal projections rm and
rm′ of r onto Sm and S′

m, respectively, satisfy ‖rm′ − r‖2 ≤ ‖rm − r‖2. Thus,

max
m′∈M

‖rm′ − rm∧m′ ‖2 ≤ 4 ‖rm − r‖2 . (21)

Moreover, for pm′ = m′ or pm′ = m ∧ m′, T pm′
1 ≤ Tmmax

1 (recall that mmax is the
largest index in the collection M ). Therefore,

12E

[

max
m′∈M

Tm′
1

]

+ 12E

[

max
m′∈M

Tm∧m′
1

]

≤ 24E
[
Tmmax
1

] ≤ C
D3
mmax

nn0
≤ C

n
.

Consequently, we have at this stage

E [A (m)] ≤ C

n
+ 12 ‖rm − r‖2 + 6E

[

max
m′∈M

(

sup
t∈S (m′)

(νn(t))
2 − V (1)(m′)

12

)

+

]

+6E

[

max
m′∈M

(

sup
t∈S (m∧m′)

(νn(t))
2 − V (1)(m′)

12

)

+

]

+12E

[

max
m′∈M

(

Tm′
2 − V (2)(m′)

24

)

+

]

+12E

[

max
m′∈M

(

Tm∧m′
2 − V (2)(m′)

24

)

+

]

.

Since V (l)(m′) ≥ V (l)(m′ ∧ m), the two following terms it need to be bound:

E

[

max
m′∈M

(

sup
t∈S (pm′ )

(νn(t))
2 − V (1)(pm′)

12

)

+

]

and E

[

max
m′∈M

(

T
pm′
2 − V (2)(pm′)

24

)

+

]

.

We use the two following lemmas. The first one is proved below and the second one
is proved in Section 3.1 of the supplementary material.

Lemma 11 Assume that r is bounded on (0; 1). The deviations of the empirical
process νn defined by (19) can be controlled as follows,

∀δ > 0, E

[

max
m′∈M

{

sup
t∈S (pm′ )

ν2n (t) − V̄δ(pm′)

}

+

]

≤ C(δ)

n
,

where V̄δ(pm′) = 2(1 + 2δ)Dpm′ /n and C(δ) a constant which depends on δ.
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We fix a δ > 0 (e.g., δ = 1/2). We choose c0 in the definition of V (see (7)) large
enough to have V (1)(pm′)/12 ≥ V̄δ(pm′), for every m′ and the inequality of Lemma
11 with V (1)(pm′) as a replacement for V̄δ(pm′).

Lemma 12 Under the assumptions of Theorem 2,

E

[

max
m′∈M

(
T

pm′
2 − V2(pm′)

)

+

]

≤ C

n0
,

with V2(pm′) = c2‖r‖2Dp′
m
/n0, c2 a positive constant large enough, andC depending

on the basis, on r , and on the constants Cp of Proposition 6.

We choose c0 in the definition of V [see (7)] large enough to have V (2)(pm′)/24 ≥
V2(pm′), for every m′. This enables to apply Lemma 12 with V (2)(pm′) as a replace-
ment for V2(pm′).

The proof of Lemma 10 is completed. ��

6.3.2 Proof of Lemma 11

We roughly bound

E

[

max
m′∈M

{

sup
t∈S (pm′ )

ν2n (t) − V̄δ(pm′)

}

+

]

≤
∑

m′∈M
E

[{

sup
t∈S (pm′ )

ν2n (t) − V̄δ(pm′)

}

+

]

.

We apply the Talagrand Inequality recalled in Proposition 7. To this aim, we com-
pute M1, H2 and v. Write for a moment νn(t) = (1/n)

∑n
i=1 ψt (Xi ) − E[ψt (Xi )],

with ψt (x) = t ◦ F0(x).

– First, for t ∈ S (pm′), supx∈A |ψt (x)| ≤ ‖t‖∞ ≤ √Dpm′ ‖t‖ = √Dpm′ =: M1.

– Next, we develop t ∈ S (pm′) in the orthogonal basis (ϕ j ) j=1,...,Dpm′ . This leads
to

E

[

sup
t∈S (pm′ )

ν2n (t)

]

≤
Dpm′∑

j=1

E

[
νn(ϕ

2
j )
]

=
Dpm′∑

j=1

E

[(
âF0
j − a j

)2
]

≤ Dpm′
n

=: H2,

thanks to the upper-bound for the variance term [see (5)].
– Last, for t ∈ S (pm′), Var(ψt (X1)) ≤ ∫A t2(F0(x)) f (x)dx = ∫

(0;1) t
2(u)r(u)du

≤ ‖r‖∞‖t‖2 = ‖r‖∞ =: v.

Inequality (12) gives, for δ > 0,

∑

m′∈M
E

[(

sup
t∈S (pm′ )

ν2n (t) − c(δ)H2

)

+

]

≤ c1
∑

m′∈M

{
1

n
exp
(−c2δDpm′

)

+ Dpm′
C2(δ)n2

exp
(
−c3C(δ)

√
δ
√
n
)}

,
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where cl , l = 1, 2, 3 are three constants.Now, it is sufficient to use that Dp′
m

= 2pm′+1
and that the cardinal of M is bounded by n to end the proof of Lemma 11.

6.4 Sketch of the proof of Theorem 3

The main idea is to introduce the set

 =
{∣
∣
∣
∣
∣

‖r̂m∗(., F̂0)‖
‖r‖ − 1

∣
∣
∣
∣
∣
<

1

2

}

and to split

E

[
‖r̂m̃(., F̂0) − r‖2

]
= E

[
‖r̂m̃(., F̂0) − r‖21

]
+ E

[
‖r̂m̃(., F̂0) − r‖21c

]
.

Then, the aim is to show that the first term gives the order of the upper bound of
Theorem 3 and that the probability of the setc is negligible compared to 1/n+1/n0.
See the supplementary material (Sect. 3.2).

6.5 Sketch of the proof of Theorem 4

Denote by φn,n0 = (min(n, n0))−2α/(2α+1). Since there exists a constant c′ > 0
(depending on α) such that (n−1 + n−1

0 )2α/(2α+1) ≤ c′φn,n0 , it is sufficient to prove
Inequality (10) with the lower bound φn,n0 . We also separate two cases: n ≤ n0 and
n > n0. Then the result comes down to the proof of two inequalities. For each of these
inequalities, the proof is based on the general reduction scheme which can be found
in Section 2.6 of Tsybakov (2009): the main idea is to reduce the class of functions
Fα to a finite well-chosen subset {ra, r1, . . . , rM }, M ≥ 2. All the technical details
are provided in the supplementary material (Sect. 3.3).
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