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among the observed variables. This paper presents an extension of the factor analysis
model, called the skew-t factor analysis model, constructed by assuming a restricted
version of the multivariate skew-t distribution for the latent factors and a symmetric
t-distribution for the unobservable errors jointly. The proposed model shows robust-
ness to violations of normality assumptions of the underlying latent factors and pro-
vides flexibility in capturing extra skewness aswell as heavier tails of the observed data.
A computationally feasible expectation conditional maximization algorithm is devel-
oped for computing maximum likelihood estimates of model parameters. The useful-
ness of the proposed methodology is illustrated using both simulated and real data.
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1 Introduction

Factor analysis (FA), which originated from the work of (1904), is concerned with a
way of summarizing the variability between a number of correlated variables; see, for
example, (Lawley and Maxwell 1971). The correlations between the variables under
consideration are explained by their linear dependence on a usually much smaller
number of unobservable (latent) factors. In particular, FA can be considered as an
extension of principal component analysis (PCA), both of which are widely used
statistical tools for reducing dimensionality by constructing linear combinations of
the variables. Unlike the PCA model, the FA model enjoys a powerful invariance
property: changes in the scales of the variables in Y appear only as scale changes in
the appropriate rows of the matrix of factor loadings.

FA has been successfully applied to numerous problems that arise naturally in
many areas, see Basilevsky (2008) for a literature survey. In the FA framework, errors
and factors are routinely assumed to have a Gaussian distribution because of their
mathematical and computational tractability. However, the traditional FA approach
has often been criticized for the lack of stability and robustness against non-normal
characteristics such as skewness and heavy tails. Statistical methods which ignore
the departure of normality may cause biased or misleading inference. To remedy this
weakness, authors such as McLachlan et al. (2007), Wang and Lin (2013), and Zhang
et al. (2013) considered the use of the multivariate t (MT) distribution for robust
estimation of FA models, known as the tFA model.

When the data have longer than normal tails or contain atypical observations (the
so-called outliers), theMT distribution has been shown to be a natural extension of the
normal for making robust statistical inference (Lange et al. 1989; Kotz and Nadarajah
2004) as it has an extra tuning parameter, the degrees of freedom (df), to regulate the
thickness of tails. In many biological applications (cf. Pyne et al. 2009; Rossin et al.
2011; Ho et al. 2012) and other applied problems, however, the data often involve
observations whose distributions are highly asymmetric as well as having fat tails.

Over the past two decades, there has been a growing interest in proposing more
flexible parametric families that can accommodate skewness and other non-normal
features. In particular, the family of multivariate skew-t (MST) distributions (Azzalini
and Capitanio 2003; Jones and Faddy 2003; Sahu et al. 2003; Azzalini and Genton
2008) have received considerable attention. This family contains additional skewness
parameters for modeling asymmetry and includes the MT family as a special case.

This paper presents a robust version of the standard FA model by considering the
joint distribution of the factors and the error vector to have a joint restricted skew-t
distribution in which the skewness parameters are zero for the error vector; that is,
the latent factors have a rMST distribution and the error vector has a symmetric MT
distribution. Henceforth, we refer to this skew-t factor analysis as STFA. Notably, the
practical use of STFA would be more widely applicable as it includes the classical
FA as a limiting case and the tFA as a special case. The rMST distribution denotes
the skew distribution of (Sahu et al. 2003) with the restriction that the skewing latent
variables in its convolution formulation are all equal; that is, the rMST distribution
has a univariate skewing function. The rMST distribution is the same after an appro-
priate transformation as the skew-t distribution proposed by Azzalini and Capitanio
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(2003) and has been widely studied in the literature and used in practice. When the
df approaches infinity, the limiting distribution of rMST is the restricted multivariate
skew-normal (rMSN) distribution. A comprehensive overview of their characteriza-
tions together with their conditioning-type and convolution-type representations can
be found in Lee and McLachlan (2013, 2014).

Recently, several different skew factor-analytic models have been proposed in the
literature, for example, Montanari and Viroli (2010) and Wall et al. (2012). More
recently, Murray et al. (2014a) proposed a skew factor analysis model in which the
error vector is taken to have a generalized hyperbolic skew t (GHST) distribution
(Barndorff-Nielsen and Shephard 2001), while the factor vector is assumed to have a
MT distribution. For brevity, we call this approach the “generalized hyperbolic skew-t
factor analysis (GHSTFA)” model.

It is important to note that the GHST distribution is quite different from the rMST
distribution as pointed out in Aas and Haff (2006). Firstly, as the degrees of free-
dom parameter in the rMST distribution approaches infinity, the rMST distribution is
reduced to the restricted multivariate skew-normal (rMSN) distribution, whereas the
GHST distribution tends to an elliptically symmetric distribution, namely, an ordinary
multivariate normal (MN) distribution (Lee and Poon 2011). Secondly, the rMST dis-
tribution has heavy tails (polynomial) in all directions, whereas the GHST distribution
has some tails that are semi-heavy (exponential).

To further reduce the number of free parameters, Murray et al. (2014b) have put
forward an alternative to the GHSTFAmodel that assumes skew common factors. This
new approach is called the “generalized hyperbolic common skew-t factor analysis
(GHCSTFA)” model, constructed by taking the latent factor vector rather than the
error vector to have the GHST distribution. It is also important to note that except in
Lin et al. (2013) and Murray et al. (2014b), in all previous works the factor vector is
taken to have a symmetric distributionwith the asymmetric distribution being assumed
for the error vector as, for example, in Murray et al. (2013) and Tortora et al. (2013).

The paper is structured as follows. In Sect. 2, we establish the notation and briefly
outline some preliminary properties of the rMSN and rMST distributions. Section 3
discusses the specification of theSTFAmodel and presents the development of anECM
algorithm for obtaining theML estimates of model parameters. In Sect. 4, we describe
two simple ways of computing the standard errors of the STFA model parameters
based on the information-based method and the parametric bootstrap procedure. In
Sect. 5, we illustrate the usefulness of the proposed method with a real-life data set.
A simulation study is undertaken to compare the performance of the STFA, GHSTFA
and GHCSTFA methods. Some concluding remarks are given in Sect. 6 and technical
derivations are sketched in Supplementary Appendices.

2 Preliminaries

We begin with a brief review of the rMST distribution and a study of some essential
properties. To establish notation, we let φp(·;μ,�) be the probability density function
of Np(μ,�) (a p-variate MN distribution with mean μ and covariance matrix �);
�(·) be the cumulative distribution function (cdf) of the standard normal distribution;
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tp(·;μ,�, ν) be the pdf of tp(·;μ,�, ν) (a p-variate MT with location μ and scale
covariance matrix � and degrees of freedom ν); T (·; ν) be the cdf of the Student’s
t distribution with df ν; T N (μ, σ 2; (a, b)) be the truncated normal distribution for
N (μ, σ 2) lying within a truncated interval (a, b); M1/2 denote the square root of a
symmetric matrix M ; 1p denote a p × 1 vector of ones; Ip be the p × p identity
matrix; Diag{·} be a diagonal matrix created by extracting the main diagonal elements
of a square matrix or the diagonalization of a vector and vec(·) for a operator that
vectorizes a matrix by stacking its columns vertically.

Based on Pyne et al. (2009), a p-dimensional random vector Y is said to follow a
rMST distribution with location vector μ ∈ R

p, scale covariance matrix �, skewness
vector λ ∈ R

p and df ν ∈ (0,∞), denoted as r Stp(μ,�, λ, ν), if it can be represented
by

Y = μ + W−1/2X, X ∼ r SNp(0, �, λ),

W ∼ gamma(ν/2, ν/2), X ⊥ W, (1)

where gamma(α, β) stands for a gamma distribution with mean α/β. If λ = 0, the
distribution of Y reduces to tp(μ,�, ν) and to r SNp(μ,�, λ) as ν → ∞. In addition,
this class of distributions also includes the MN distribution, recovered by setting
λ = 0 and ν → ∞. Combining the strengths of the MT and rMSN distributions, the
rMST distribution offers a robustness mechanism against both asymmetry and outliers
observed in the data.

From (1), it is clear that the rMST distribution corresponds to a two-level hierar-
chical representation

Y | (W = w) ∼ r SNp
(
μ,w−1�,w−1/2λ

)
and W ∼ gamma(ν/2, ν/2). (2)

Integrating W from the joint density of (Y,W ) yields the marginal density of Y

f (y) = 2tp(y;μ,
, ν) T
(
A
( ν + p

ν + M

)1/2;ν + p
)
, (3)

where 
 = � + λλT, A = (1 − λT
−1λ)−1/2λT
−1(y − μ) and M = (y −
μ)T
−1(y − μ).

3 Skew-t factor analysis model

3.1 Model formulation

Suppose that Y = {Y1, . . . ,Yn} constitutes a random sample of n p-dimensional
observations. To improve the robustness for modeling correlation in the presence of
asymmetric levels of sources, we consider a generalization of the tFA model in which
the latent factor is described by the rMST distribution defined in (3). The model
considered here is
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Y j = μ + BUj + ε j with
[
Uj

ε j

]
∼ r Stq+p

([−aν�
−1/2λ

0

]
,

[
�−1 0
0 D

]
,

[
�−1/2λ

0

]
, ν

)
, (4)

for j = 1, . . . , n, where μ is a p-dimensional location vector, B is a p × q matrix
of factor loadings, Uj is a q-dimensional vector (q < p) of latent variables called
factors, ε j is a p-dimensional vector of errors called specific factors, D is a positive
diagonal matrix, � = Iq + (

1 − a2ν (ν − 2)/ν
)
λλT with

aν = (ν/π)1/2
� ((ν − 1)/2)

� (ν/2)
(5)

being a scaling coefficient. Marginally, the latent factors in (4) follow an asymmetric
rMST distribution, while the errors follow a (symmetric) MT distribution. Moreover,
one appealing feature of (4) is that

E(Uj ) = 0 and cov(Uj ) = {ν/(ν − 2)}Iq ,

which coincide with the conditions under the tFA model. According to (2), the STFA
model has a two-level hierarchical representation:

Y j | w j ∼ r SNp

(
μ − aνα,w−1

j �,w
−1/2
j α

)
and Wj ∼ gamma(ν/2, ν/2).(6)

Derivation of the marginal distribution of Y can be accomplished by direct calculation
which leads to

Y j ∼ r Stp(μ − aνα,�, α, ν),

where � = B�−1BT + D and α = B�−1/2λ. The marginal density of Y j is

f (y j ; θ) = 2tp(y j ;μ − aνα,
, ν)T

(

A j

(
ν + p

ν + Mj

)1/2

; ν + p

)

, (7)

where 
 = � + ααT, Mj = (y j − μ + aνα)T
−1(y j − μ + aνα) and A j = h j/σ

with h j = αT
−1(y j − μ + aνα) and σ 2 = 1 − αT
−1α.
The mean and covariance matrix of Y j can be obtained as

E(Y j ) = μ and cov(Y j ) = ν

ν − 2
(BBT + D).

It appears that both tFA and STFA models share the same first two moments for the
marginal distribution of Y j .

For a hidden dimensionality q > 1, the STFA model also suffers from an identifi-
ability problem associated with the rotation invariance of the loading matrix B, since
model (4) still satisfies when B is replaced by BR, where R is any orthogonal rotation
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matrix of order q. To remedy the situation of rotational indeterminacy, there are sev-
eral different ways of placing rotational identifiability constraints. The most popular
method is to choose R such that BTD−1B is a diagonal matrix (Lawley and Maxwell
1971) with its diagonal elements arranged in a descending order. The other commonly
used technique is to constrain the loading matrix B so that the upper-right triangle is
zero and the diagonal entries are strictly positive (e.g., Fokoué and Titterington 2003;
Lopes andWest 2004). Both methods impose q(q −1)/2 constraints on B. Therefore,
the number of free parameters to be estimated ism = p(q +2)+q −q(q −1)/2+1.

3.2 Maximum likelihood estimation via the ECM algorithm

To help the derivation of the algorithm,we adopt the following scaling transformation:

B̃
�= B�−1/2 and Ũ j

�= �1/2Uj .

Clearly, the model remains invariant under the above transformation. It follows from
(6) that the STFA model can be formulated in a flexible hierarchical representation as
follows:

Y j | (Ũ j , v j , w j ) ∼ Np(μ + B̃Ũ j , w
−1
j D),

Ũ j | (v j , w j ) ∼ Nq
(
(v j − aν)λ,w−1

j Iq
)
,

Vj | w j ∼ T N
(
0, w−1

j ; (0,∞)
)
,

Wj ∼ gamma(ν/2, ν/2). (8)

Consequently, applying Bayes’ rule, it suffices to show

Ũ j | (y j , v j , w j ) ∼ Nq
(
q j , w

−1
j C

)
,

Vj | (y j , w j ) ∼ T N
(
h j , w

−1
j σ 2; (0,∞)

)
,

f (w j ; y j ) =
�

(
w

1/2
j A j

)

T
(
A j

(
ν+p

ν+Mj

)1/2 ; ν + p
) fG

(
w j ; ν + p

2
,
ν + Mj

2

)
, (9)

where q j = C
{
d j + λ(v j − aν)

}
, d j = B̃TD−1(Y j − μ) and C = (Iq + B̃T

D−1 B̃)−1.

For notational convenience, let y = (yT1 , . . . , yTn )T be the observed data. Moreover,
we define U = (UT

1 , . . . , UT
n )T, V = (V1, . . . , Vn)T, and W = (W1, . . . ,Wn)

T,
which are treated as missing values in the complete data framework. In light of
(8), the complete data log-likelihood function for θ = (μ, B, D, λ, ν) given yc =
(yT,UT, V T,WT)T, aside from additive constants, is
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�c(θ; yc) = −n

2
log | D | −1

2
tr

⎛

⎝D−1
n∑

j=1

ϒ̃ j

⎞

⎠

−1

2

n∑

j=1

[
Wj

{
(Vj − aν)

2λTλ − 2(Vj − aν)λ
TŨ j + Ũ j Ũ

T
j

}]

+nν

2
log

(ν

2

)
− n log�

(ν

2

)
+ ν

2

n∑

j=1

(logWj − Wj ), (10)

where ϒ̃ j = Wj (y j − μ − B̃Ũ j )(y j − μ − B̃Ũ j )
T.

The expectation–maximization (EM) algorithm (Dempster et al. 1977) is a popular
iterative method to compute the ML estimates when the data are incomplete. Given
an initial solution θ(0), the implementation of the EM algorithm consists of alternat-
ing repeatedly the Expectation (E)- and Maximization (M)-steps until convergence
has been reached. Often in many practical problems, the solution to the M-step may
encounter some difficulties such that no closed-form expressions exist for updating
parameters. For ML estimation of the STFA model, we resort to the ECM algorithm
(Meng and Rubin 1993) in which the M-step is replaced by a sequence of compu-
tationally simpler conditional maximization (CM) steps while sharing all appealing
advantages of the standard EM algorithm.

To calculate the expectation of the complete data log-likelihood, called the Q-
function, we require the following conditional expectations:

ŵ
(k)
j = E(Wj | y j , θ̂ (k)), κ̂

(k)
j = E(logWj | y j , θ̂ (k)),

ŝ(k)
1 j = E(WjVj | y j , θ̂ (k)), ŝ(k)

2 j = E(WjV
2
j | y j , θ̂ (k)),

ˆ̃



(k)
j = E(WjŨ j Ũ

T
j | y j , θ̂ (k)),

ˆ̃η(k)
j = E(WjŨ j | y j , θ̂ (k)) and ˆ̃

ζ
(k)
j = E(WjVjŨ j | y j , θ̂ (k)), (11)

which are directly obtainable from using (A.1)–(A.7) given in Supplementary Propo-
sition 4. As a result, the Q-function can be written as

Q(θ; θ̂ (k)) = −n

2
log | D | −1

2
tr

⎛

⎝D−1
n∑

j=1

ˆ̃
ϒ

(k)
j

⎞

⎠

−1

2

n∑

j=1

{(
ŝ(k)2 j − 2aν ŝ

(k)
1 j + a2ν ŵ

(k)
j

)
λTλ − 2λT

( ˆ̃
ζ
(k)
j − aν

ˆ̃η(k)
j

)
+ ˆ̃



(k)
j

}

+nν

2
log

(ν

2

)
− n log�

(ν

2

)
+ ν

2

n∑

j=1

(κ̂
(k)
j − ŵ

(k)
j ), (12)
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where

ˆ̃
ϒ

(k)
j = ŵ

(k)
j (y j − μ)(y j − μ)T − B̃ ˆ̃η(k)

j (y j − μ)T − (y j − μ) ˆ̃η(k)T
j B̃T

+B̃ ˆ̃



(k)
j B̃T, (13)

which contains free parametersμ and B̃. In summary, the implementation of the ECM
algorithm proceeds as follows:

E-step: Given θ = θ̂ (k), compute ŵ
(k)
j , κ̂ (k)

j , ŝ(k)
1 j , ŝ

(k)
2 j ,

ˆ̃η(k)
j , ˆ̃

ζ
(k)
j and ˆ̃



(k)
j in (11),

for j = 1, . . . , n.

CM-step 1: Update μ̂(k) by maximizing (12) over μ, which leads to

μ̂(k+1) =
∑n

j=1

(
ŵ

(k)
j y j − ˆ̃B(k) ˆ̃η(k)

j

)

∑n
j=1 ŵ

(k)
j

.

CM-step 2: Given μ = μ̂(k+1), update ˆ̃B(k) by maximizing (12) over B̃, which
gives

ˆ̃B(k+1) =
⎧
⎨

⎩

n∑

j=1

(
y j − μ̂(k+1)

) ˆ̃η(k)T
j

⎫
⎬

⎭

⎛

⎝
n∑

j=1

ˆ̃



(k)
j

⎞

⎠

−1

.

CM-step 3: Given μ = μ̂(k+1) and B̃ = ˆ̃B(k+1), update D̂(k) by maximizing (12)
over D, which leads to

D̂(k+1) = 1

n
Diag

⎛

⎝
n∑

j=1

ˆ̃
ϒ

(k)
j

⎞

⎠ .

where ˆ̃
ϒ

(k)
j is ϒ̃

(k)
j in (13) with μ and B̃ replaced by μ̂(k+1) and ˆ̃B(k+1), respec-

tively.

CM-step 4: Update λ̂(k) by maximizing (12) over λ, which gives

λ̂(k+1) =
∑n

j=1

( ˆ̃
ζ

(k)
j − aν

ˆ̃η(k)
j

)

∑n
j=1

(
ŝ(k)
2 j − 2aν ŝ

(k)
1 j + a2ν ŵ

(k)
j

) .
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CM-step 5: Calculate ν̂(k+1) by maximizing (12) over ν, which is equivalent to
solving the root of the following equation:

−1

n

n∑

j=1

{(
−2a′

ν ŝ
(k)
1 j + 2a′

νaνŵ
(k)
j

)
λTλ + 2a′

νλ
T ˆ̃η(k)

j

}

+ log
(ν

2

)
− DG

(ν

2

)
+ 1 + 1

n

n∑

j=1

(
κ̂

(k)
j − ŵ

(k)
j

)
= 0,

where DG(·) denotes the digamma function and

a′
ν = daν

dν
= 1

2

(
1

πν

)1/2 �
(

ν−1
2

)

�
(

ν
2

) + 2
( ν

π

)1/2

×�
(

ν−1
2

)

�
(

ν
2

)
{
DG

(
ν − 1

2

)
− DG

(ν

2

)}
.

In the above CM-step 5, the R function ‘uniroot’ is employed to obtain the solu-
tion of ν. To facilitate faster convergence, the range of ν is restricted to have a
maximum of 200, which does not affect the inference when the underlying distri-
bution of factor scores has a near skew-normal or normal shape. Upon convergence,

the ML estimate of θ is denoted by θ̂ =
(
μ̂, B̂, D̂, λ̂

)
, where B̂ = ˆ̃B�̂1/2 and

�̂ = Iq +
(
1 − ν̂−2

ν̂
â2ν

)
λ̂λ̂T. Consequently, the estimation of factor scores through

conditional prediction is obtained by

Û j = E(Uj | y j , θ̂ ) = �̂−1/2Ĉ
{
d̂ j + λ̂

(
v̂ j − âν

)}
,

where v̂ j = E(Vj | y j , θ̂ ) can be evaluated via (A.2) with θ replaced by θ̂ , and âν is
aν in (5) with ν replaced by ν̂.

We further make some remarks on the implementation of the proposed ECM algo-
rithm.

Remark 1 To assess the convergence based on the monotonicity property of the algo-
rithm, we adopt the Aitken’s acceleration method (cf. Aitken 1926; Böhning et al.
1994), which outperforms the lack of progress criterion and allows to avoid the pre-
mature convergence (McNicholas et al. 2010). Denote by l(k) the log-likelihood value
evaluated at θ̂ (k). The asymptotic estimate of the log-likelihood at iteration k can be
calculated as

l(k+1)∞ = l(k) + 1

1 − a(k)
(l(k+1) − l(k)),

123



A robust factor analysis model 519

where a(k) = (l(k+1) − l(k))/(l(k) − l(k−1)) is called the Aikten acceleration factor.
Lindsay (1995) proposed that the algorithm can be considered to have converged when
�
(k)∞ − �(k) < ε, where ε is the desired tolerance.

Remark 2 Analogous to other iterative optimization procedures, one needs to search
for appropriate initial values to avoid divergence or time-consuming computation. A
direct way of deriving the initial estimate for mean vector, factor loading and error
covariance matrix can be obtained by performing a simple FA fit using the factanal
command in the R package. The resulting estimates are taken as initial values, namely
μ̂(0), B̂(0) and D̂(0), respectively. Next, compute the factor scores via the conditional
prediction method. The initial skewness vector λ̂(0) and df ν̂(0) are obtained by fitting
the rMST distribution to the sample of factor scores via the R package EmSkew (Wang
et al. 2009).

Remark 3 A number of information criteria taking the form of a penalized log-
likelihood −2�max + C(n)m are used for model selection and determination of q,
where �max is the maximized log-likelihood andm is the number of free parameters in
the considered model. Five popular criteria are considered in later analysis, including
the Akaike information criterion (AIC; Akaike 1973) with C(n) = 2, the consistent
version of AIC (CAIC; Bozdogan 1987) with C(n) = log(n) + 1, the Bayesian infor-
mation criterion (BIC; Schwarz 1978) with C(n) = log(n), the sample-size adjusted
BIC (SABIC; Sclove 1987) with C(n) = log((n + 2)/24), and the Hannan–Quinn
criterion (HQC, Hannan and Quinn 1979) with C(n) = 2 log(log(n)). When several
competing models are compared, the models with smaller values of these criteria are
favored on the basis of fit and parsimony.

4 Provision of standard errors

Under regularity conditions (Zacks 1971), the asymptotic covariance matrix of θ̂ can
be approximated by the inverse of the observed information matrix; see also Efron
and Hinkley (1978). Specifically, the observed information matrix is defined as

I (θ̂; y) = −∂2�(θ; y)
∂θ∂θT

∣∣∣
θ=θ̂

.

To obtain I (θ̂; y) numerically, Jamshidian (1997) suggested using the central dif-
ference method. Let G = [g1; . . . ; gm] be a m ×m matrix with the cth column being

gc = s(θ + hcec; y) − s(θ − hcec; y)
2hc

, c = 1, . . . ,m,

where s(θ; y) = ∂�(θ; y)/∂θ is the score vector of �(θ; y), ec is a unit vector with
all of its elements equal to zero except for its cth element which is equal to 1, hc is
a small number, and m is the number of parameters in θ . Explicit expressions for the
elements of s(θ; y) are summarized in Supplementary Appendix B.

123



520 T.-I. Lin et al.

Since G may not be symmetric, we suggest using

Ĩ (θ̂; y) = −G + GT

2
. (14)

to approximate I (θ̂; y). The asymptotic standard errors of θ̂ can be calculated by
taking the square roots of the diagonal elements of [ Ĩ (θ̂; y)]−1.

Notably, the inverse of (14) is not always guaranteed to yield proper (positive) stan-
dard errors. The parametric bootstrap method (Efron and Tibshirani 1986), although
computationally expensive, is often used instead to obtain estimates of the standard
errors. Let f (y; θ̂ ) be the estimated density function of (7) obtained from fitting the
STFAmodel to the original data. The calculation of bootstrap standard error estimates
consists of the following four steps.

1. Drawing a bootstrap sample y∗
1 , . . . , y

∗
n from the fitted distribution f (y; θ̂ ).

2. Compute the ML estimates θ̂∗ from fitting the STFA model to the generated boot-
strap samples y∗

1 , . . . , y
∗
n .

3. Repeat Steps 1 and 2 a large number of times, say B, thereby obtaining bootstrap
replications, namely θ̂∗

1 , . . . , θ̂∗
B .

4. Estimate the bootstrap standard errors of θ̂ via the sample standard errors of
θ̂∗
1 , . . . , θ̂∗

B .

5 Numerical examples

5.1 A simulation study

We conduct a simulation study to examine the performance of the STFA, GHSTFA
and GHCSTFA approaches. We implement the alternating expectation conditional
maximization (AECM) algorithms described in Murray et al. (2014a, b) for fitting the
latter twomodels. A comparison of some characterizations among the three considered
models is summarized in Table 1.

We generate artificial data from the basic FA model with p = 10 and 50 variables
and q = 2, 3 and 4 factors, while the underlying distribution for the latent factors
is non-normal. The presumed parameter values are μ = 0, B = Unif(p, q) and
D = Diag{Unif(p, q)}, where Unif(p, q) denotes a p×q matrix of random numbers
drawn fromauniformdistribution on the unit interval (0,1).Moreover, the latent factors
U are assumed to be one of two standardized distributions with varying degrees of
skewness and kurtosis, including Beta(0.1, 30) and Chi-square distribution with one
df (χ2

1 ). Indeed, the population skewness/kurtosis for Beta(0.1, 30) is 6/52 (high) and
that for χ2

1 is 2.8/12 (mild). Errors are generated from the MT distribution with zero
mean, scale covariance D and ν = 5.

The sample sizes evaluated range from small (n = 100) to moderately large (n =
300). The objective of such settings is to see how the performance of the three models
varies with respect to the degree of non-normality of the latent factors across different
numbers of p and q, and the sample size n. Assuming the number of latent factors is
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Ũ

|w
⊥

ε̃
|w

.

C
on

di
tio

na
l

di
st
ri
bu
tio

n
Y

|(Ũ
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Table 2 Numbers of free parameters involved in three skew-t factor analysis models

q p = 10 p = 50

STFA GHSTFA GHCSTFA STFA GHSTFA GHCSTFA

1 32 41 23 152 201 103

2 42 50 34 202 250 154

3 51 58 44 251 298 204

Table 3 Simulation results based on 100 replications

n p q High skew/kurtosis Mild skew/kurtosis
Beta (0.1,30) χ2

1

STFA GHSTFA GHCSTFA STFA GHSTFA GHCSTFA

100 10 2 Mean 2,603 2,652 2,615 2,675 2,774 2,760

Freq. 86 0 14 80 0 20

100 10 3 Mean 2,749 2,793 2,773 2,846 2,892 2,864

Freq. 95 0 5 91 0 9

100 10 4 Mean 2,859 2,896 2,892 2,976 3,013 29,96

Freq. 100 0 0 95 0 5

100 50 2 Mean 11,970 12,218 11,945 12,039 12,266 12,022

Freq. 24 0 76 21 0 79

100 50 3 Mean 12,448 12,690 12,494 12,529 12,750 12,594

Freq. 73 0 27 67 0 33

100 50 4 Mean 12,819 13,054 12,903 12,923 13,136 13,033

Freq. 89 0 11 84 0 16

300 10 2 Mean 7,606 7,770 7,670 7,843 7,951 7,902

Freq. 100 0 0 100 0 0

300 10 3 Mean 7,952 8,050 8,047 8,274 8,370 8,346

Freq. 100 0 0 100 0 0

300 10 4 Mean 8,426 8,512 8,532 8,779 8,855 8,854

Freq. 100 0 0 100 0 0

300 50 2 Mean 34,792 35,255 34,875 35,017 35,407 35,048

Freq. 100 0 0 75 0 25

300 50 3 Mean 35,794 36,242 35,947 36,074 36,450 36,181

Freq. 100 0 0 95 0 5

300 50 4 Mean 36,737 37,166 36,983 37,078 37,442 37,291

Freq. 100 0 0 100 0 0

known, each simulated datum is fitted using the three considered models. Simulation
results are based on the 100 repeated Monte Carlo samples.

The numbers of parameters contained in the three models with various p and q
are listed in Table 2. As can be seen, the model complexity of STFA falls between
GHSTFA and CHCSTFA. For ease of exposition, comparisons made in Table 3 are
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based on the average BIC values together with the frequencies of the particular model
chosen based on the smallest BIC value. In 23 out of a total of 24 scenarios, the STFA
model provides a better fit than the other two GH-based approaches. The performance
of STFA can be improved as the degree of non-normality and the sample size increase.
TheGHSTFAmodel has theworst fit and is never chosen as it is penalizedmore heavily
by BIC.

In this study, it is important to note that the results are limited to the extent of our
simulation experiments. We are certainly not making a claim that the STFA model
can replace any of the others. A comparison of our proposed model versus any of
the models in Murray et al. (2013, 2014a, b) is of limited practical value. This is
because each of the models applies to different situations. For example, if the data
were simulated from our proposed model, we can so specify it to ensure that it will
produce superior results to those based on themodels inMurray et al. (2013, 2014a, b).
Likewise, if the data were generated from the GHST distribution as in Murray et al.
(2014b), then the configuration of the latter can be chosen to make our model have
relative inferior performance. This study contributes to providing the user with a wider
choice of existing skew factor models to cover distinct situations that might arise in
practice.

5.2 The AIS data set

As an illustration, we apply the proposed technique to the Australian Institute of
Sport (AIS) data, which were originally reported by Cook and Weisberg (1994) and
subsequently analyzed by Azzalini and Dalla Valle (1996), Azzalini and Capitanio
(1999, 2003) and Azzalini (2005), among others. The dataset consists of p = 11
physical and hematological measurements on athletes in different sports which are
almost equally bisected between 102 male and 100 female.

For simplicity of illustration, we focus solely on n = 102 observations of male. A
summary of the 11 attributes along with their sample skewness and kurtosis is given in
Table 4. It is readily seen that most of the attributes are moderately to strongly skewed
with a heavy tail.

Table 4 An overview of 11 attributes of 102 male athletes of the AIS data

Attribute Variable Description Skewness Kurtosis

x1 rcc Red cell count 0.924 7.730

x2 wcc White cell count 0.859 4.579

x3 Hc Hematocrit 1.489 10.374

x4 Hg Hemoglobin 0.974 5.312

x5 Fe Plasma ferritin concentration 0.877 3.133

x6 bmi Body mass index 1.411 5.986

x7 ssf Sum of skin folds 1.386 4.789

x8 Bfat Body fat percentage 1.528 5.080

x9 lbm Lean body mass 0.274 3.621

x10 Ht Height (cm) 0.072 3.001

x11 Wt Weight (kg) 0.390 3.410
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Figure 1 depicts the histograms and corresponding normal quantile plots of the first
three factor score estimates obtained from the classical FA with q = 4. The factor
score estimates are obtained using the “regression”method, seeChapter 9.5 of Johnson
and Wichern (2007). The histograms in the left panels indicate that the distributions
of factor scores deviate from normality due to positive skewness and high excess
kurtosis. This feature can also be demonstrated through the normal quantile–quantile
plots shown in the right panels. The result motivates us to advocate the use of STFA
model as a proper tool for the analysis of this data set.

Next, we are interested in comparing the ML results of STFA with three of its
nested models, namely the FA, tFA and SNFA models. To assess the performance
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Fig. 1 Histograms and corresponding normal quantile plots of the estimated factor scores obtained from
fitting FA to 102 male athletes of the AIS data
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Table 5 Comparison of ML estimation results on 102 male athletes.

Model q �max m AIC CAIC BIC SABIC HQC

FA 3 −788.9 52 1,681.7 1,870.2 1,818.2 1,654.0 1737.0

4 −639.7 60 1,399.3 1,616.8 1,556.8 1,367.3 1,463.1

5 −637.2 67 1,408.4 1,651.3 1,584.3 1,372.6 1,479.6

6 −633.8 73 1,413.6 1,678.3 1,605.3 1,374.7 1,491.2

tFA 3 −709.7 53 1,525.4 1,717.5 1,664.5 1,497.1 1581.7

4 −590.7 61 1,303.4 1,524.5 1,463.5 1,270.8 1,368.2

5 −588.5 68 1,313.0 1,559.5 1,491.5 1,276.7 1,385.3

6 −586.1 74 1,320.2 1,588.4 1,514.4 1,280.7 1,398.9

SNFA 3 −761.5 55 1,632.8 1,832.2 1,777.2 1,603.45 1691.26

4 −609.6 64 1,347.1 1,579.1 1,515.1 1,313.0 1,415.2

5 −606.9 72 1,357.8 1,618.8 1,546.8 1,319.4 1,434.3

6 −615.1 79 1,388.1 1,674.5 1,595.5 1,346.0 1,472.1

STFA 3 −682.1 56 1,476.3 1,679.3 1,623.1 1,446.4 1535.8

4 −560.9 65 1,251.8 1,487.5 1,422.5 1,217.2 1,320.9

5 −557.8 73 1,261.5 1,526.2 1,453.2 1,222.6 1,339.1

6 −557.1 80 1274.1 1,564.1 1,484.1 1,231.5 1,359.2

GHSTFA 3 −693.6 64 1,515.2 1,747.2 1,683.2 1,481.0 1,583.2

4 −574.4 72 1,292.9 1,553.9 1,481.9 1,254.5 1,369.4

5 −572.4 79 1,302.7 1,589.1 1,510.1 1,260.6 1,386.7

6 −568.4 85 1,306.8 1,614.9 1,529.9 1,261.4 1,397.1

GHCSTFA 3 −714.0 48 1,523.9 1,697.9 1,649.9 1,498.3 1,575.0

4 −593.1 58 1,302.3 1,512.5 1,454.5 1,271.3 1,363.9

5 −585.5 67 1,305.1 1,547.9 1,480.9 1,269.3 1,376.3

6 −583.1 75 1,316.1 1,588.0 1,513.0 1,276.1 1,395.8

The best model chosen by the five information criteria was shown in bold

of non-nested models, comparisons are also made on the GHSTFA and CHCSTFA
approaches. The data have been standardized to have zero mean and unit standard
deviation to avoid variables having a greater impact due to different scales. We fit
these models with q ranging from 3 to 6 using the ECM algorithm developed in Sect.
3. Notice that the choice ofmaximum q = 6 satisfies the restriction (p−q)2 ≥ (p+q)

as suggested by Eq. (8.5) of McLachlan and Peel (2000).
A summary of ML fitting results, including the maximized log-likelihood values,

the number of parameters together with five model selection indices, is reported in
Table 5. From this table, the model selected by the five information criteria is the
STFA model with q = 4. Table 6 reports the ML solutions of the best chosen model
alongwith the standard errors in parentheses obtained using 500 bootstrap replications.
We found that the estimated skewness parameters are moderately to highly significant,
revealing that the joint distribution of latent factors is skewed.Moreover, the estimated
df (ν̂ = 6.15) is quite small, confirming the presence of thick tails.

Observing the unrotated solution of factor loadings displayed in the 3–6th columns
of Table 6, the first factor can be labeled general nutritional status, with a very high
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Table 6 Summary ML results together with the associated standard errors in parentheses for the best
chosen model

Variable Parameter

μ B d

rcc −0.034 −0.057 0.527 0.414 −0.057 0.203

(0.091) (0.087) (0.080) (0.094) (0.080) (0.032)

wcc −0.015 −0.044 −0.095 0.346 −0.018 0.699

(0.099) (0.087) (0.096) (0.098) (0.100) (0.118)

Hc −0.030 −0.051 0.631 0.457 0.026 0.015

(0.089) (0.083) (0.077) (0.091) (0.076) (0.017)

Hg −0.040 −0.041 0.589 0.445 0.134 0.124

(0.089) (0.084) (0.078) (0.095) (0.081) (0.025)

Fe −0.042 −0.007 −0.138 0.148 0.201 0.723

(0.100) (0.093) (0.094) (0.098) (0.098) (0.117 )

bmi −0.015 0.443 −0.091 0.451 0.395 0.002

(0.064) (0.056) (0.056) (0.072) (0.050) (0.001)

ssf 0.021 0.023 −0.341 0.652 0.030 0.001

(0.072) (0.055) (0.062) (0.058) (0.057) (0.007)

Bfat 0.029 −0.028 −0.360 0.665 0.072 0.001

(0.074) (0.054) (0.061) (0.055) (0.058) (0.002)

lbm 0.004 0.761 −0.077 0.325 −0.083 0.001

(0.043) (0.042) (0.059) (0.086) (0.033) (0.0003)

Ht 0.043 0.577 −0.147 0.199 −0.642 0.0001

(0.052) (0.047) (0.062) (0.089) (0.040) (0.002)

Wt 0.006 0.654 −0.156 0.447 −0.047 0.0001

(0.041) (0.041) (0.055) (0.079) (0.030) (0.0001)

λ ν

−3.778 −14.868 19.357 3.413 6.15

(0.589) (2.841) (2.102) (0.411) (1.610)

loading on lbm, followed by Wt, Ht and bmi. The second factor, which loads heavily
on rcc, Hc and Hg, might be called a hematological factor. The third factor can be
viewed as overweight assessment indices since the bmi, ssf and Bfat load highly on
this factor. The fourth factor is not easily interpreted at this point.

The comparison process is also conducted for the original (non-standardized) data.
Clearly, as shown in Supplementary Figure 1, the STFA still provides the best overall
fit. The fit of FA is the worst, indicating a lack of adequacy of normality assumptions
for this dataset. It is also noted that all criteria prefer four-factor solutions under all
scenarios.

We consider diagnostics to assess the validity of the underlying distributional
assumption ofY . For FA,we can use theMahalanobis-like distance (y−μ̂)T
̂−1(y−μ̂),
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Fig. 2 Healy’s plot for assessing the goodness of fit of fitted models

BMI

−3

−1

1

3

 0.05 

 0.1 

 0
.1

5 

 0.2 

Bfat

−3

−1

1

3

 0.05 

 0.1 

 0.
15

 

 0.
2 

 0.2 

 0
.4

  0.6 ssf

−3

−1

1

3

−3 −1 1 3

 0.05 

 0.1 

 0.15 

 0.2 

−3 −1 1 3

 0.05 

 0.1 

 0.15 

−3 −1 1 3

 0.05 

 0.1 

 0.15 LBM

Fig. 3 Scatter plots of pairs of four selected variables of 102 male AIS athletes and coordinate projected
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which has an asymptotic Chi-square distribution with p df. Checking the normality
assumption can be achieved by constructing Healy (1968) plot. To further assess
the goodness of fit of STFA, it follows from Supplementary Proposition 3 that
f j = (y j − μ̂)T
̂−1(y j − μ̂)/p follows the F(p, ν) distribution for j = 1, . . . , n.
In this case, one can construct another Healy-type plot (or Snedecor’s F plot) by plot-
ting the cumulative F(p, ν) probabilities associated with the ordered values of f j
against their nominal values 1/n, 2/n, . . . , 1. As such, one can examine whether the
corresponding Healy’s plot resembles a straight line through the origin having unit
slope. In other words, the greater the departure from the 45-degree line, the greater the
evidence for concluding a poor fitting of the model. Inspecting Healy’s plots shown
in Fig. 2, the STFA adapts the identity more closely than does the FA, suggesting that
it is appropriate to use a skew and heavy-tailed distribution.

Figure 3 depicts coordinate projected scatter plots for each pair of four selected
variables superimposed with the marginal contours obtained by marginalization of the
best fitted STFA model. A visual inspection reveals that the fitted contours adapt the
shape of the scattering pattern satisfactorily. To summarize, the implementation of
STFA tends to be more reasonable for analyzing this data set.

6 Conclusion

We introduce an extension of FAmodels obtained by replacing the normality assump-
tion for the latent factors and errors with a joint rMST distribution, called the STFA
model, as a new robust tool for dimensionality reduction. The model accommodates
both asymmetry and heavy tails simultaneously and allows practitioners for analyz-
ing data in a wide variety of situations. We have described a four-level hierarchical
representation for the STFA model and presented a computationally analytical ECM
algorithm for ML estimation in a flexible complete-data framework. We demonstrate
our approach with a simulation study and an analysis of the AIS data set. The numer-
ical results show that the STFA model performs relatively well for the experimental
data. The computer programs used in the analyses can be downloaded from http://
amath.nchu.edu.tw/www/teacher/tilin/STFA.html.

In the situation with the occurrence of missing data, our algorithm can be easily
modified to account for missingness based on the scheme proposed in Lin et al. (2006)
and Liu and Lin (2014). Due to recent advances in computer power and availability,
it would be interesting to develop Markov chain Monte Carlo (MCMC) methods (Lin
et al. 2009 and Lin and Lin 2011) for Bayesian estimation of the STFA model. It is
also of interest to consider a finite mixture representation of STFA models. Our initial
work on the latter problem has been limited to mixtures of factor analyzers with a
skew-normal distribution (Lin et al. 2013).
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