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Abstract The instrumental variable (IV) formula has become widely used to address
the issue of identification of a causal effect in linear systems with an unobserved
variable that acts as direct confounder. We here propose two alternative formulations
to achieve identification when the assumptions underlying the use of IV are violated.
Parallel to the IV, the proposed formulas exploit the conditional independence structure
of a directed acyclic graph and can be obtained via a series of univariate regressions,
a feature that renders the results particularly attractive and easy to implement. By
exploiting the notion of Markov equivalence, the derivations can also be applied to
regression graphs, thereby enlarging the class of models to which the results are of
use.

Keywords Causal effect · Confounder · Directed acyclic graph · Identification ·
Latent variable · Regression graph · Structural equation model
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1 Introduction

Latent variables are ubiquitous in applied research. They may arise in observational
studies where self-selection possibly occurs or in randomized studies with post-
assignment complications, such as non compliance. Inmost situations, latent variables
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act as direct confounders, i.e., they influence both the explanatory (X ) variable and
the response variable (Y ). If not taken into account, conclusions on the effect of the
explanatory variable on the response may be severely distorted.

The first way to tackle the problem was suggested in a seminal paper by Theil
(1953) that introduced the concept of instrumental variables (IV), see also Bowden
and Turkington (1984). With reference to a system of linear equations, if an additional
variable that satisfies some conditional independence assumptions is available, the
so-called instrument, the regression coefficient of the explanatory variable X on the
outcome Y is identified from the distribution of the observable variables, and therefore
can be estimated.

More recently, several contributions have appeared that embed the notion of iden-
tification of causal effects within graphical models, that are natural tools to describe
conditional independence assumptions. The first contribution comes from the semi-
nal paper of Pearl, see Pearl (1995), that best clarifies that a causal effect of X on
Y is the effect of an hypothetical intervention on X . In words, it is assumed that the
data-generating process is described through a causal directed acyclic graph (DAG),
that is a DAG which includes all relevant variables, irrespective of whether they are
observable or unobservable. It is also assumed that the DAG is stable under an external
intervention that sets to x the value of X , i.e., the intervention does not destroy the basic
features of the DAG. A causal effect is then defined as the conditional distribution of Y
after an external intervention is performed to set to x the value of the random variable
X . This notion is known as conditioning by intervention, as opposed to conditioning
by observation, which is the usual concept. In a non-parametric framework, Pearl
and coauthors have derived graphical conditions under which the causal effect can be
identified. These are known as back-door and front-door conditions, see Pearl (2009
Chap. 3). Later contributions allow to determine a complete algorithm to find which
causal effects in a DAG are identifiable, see Huang and Valtorta (2006), Shpitser and
Pearl (2008), Tian and Pearl (2002).

If some parametric assumptions are made, the abovementioned criteria can be
enlarged: under the additional assumption that the DAG is causal, the IV itself is
an instance where the assumption of linearity allows for identification where the non-
parametric criteria fail. More instances for the identification of causal effect in the
linear case are in Kuroki and Pearl (2014), where results on identification in the binary
case have also been presented, see also Stanghellini and Vantaggi (2013).

We here confine our research to linear regression models. In Fig. 1, the building
block of our investigation: we are interested in the linear regression coefficient of X

Fig. 1 A DAG showing the simplest example of a confounding problem: when U is associated with an
unmeasured random variable the linear regression coefficient of X on Y , after conditioning onU , βyx .u , is
not identified from the observable distribution of X and Y
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Identification of causal effects in linear models 491

on Y after conditioning on U , that we denote by βyx ·u . However, U is not observable
and the effect of interest cannot be identified from the marginal distribution of the
observable variables only. This work complements the work of Wermuth and Cox,
see Wermuth and Cox (2008), where conditions of identification of linear regres-
sion parameters under marginalization and conditioning on indirect confounders are
given. It also builds on results by Stanghellini and Wermuth and Kuroki and Pearl,
see Stanghellini and Wermuth (2005) and Kuroki and Pearl (2014). Other examples
are in Kuroki (2007) and Chan and Kuroki (2010). A similar work is also in Brito
and Pearl (2002). However, our approach here is to assume that there is one latent
variable responsible of the correlation induced between the observable variables. As
such, some models that are not identified according to Theorem 1 of Brito and Pearl
(2002) become identifiable. An instance is presented in Fig. 6a. Marginalization over
U induces a model such that the corresponding graph violates conditions of Theorem
1 of Brito and Pearl (2002), but it is however identified.

The structure of the paper is as follows. In Sect. 2, we introduce the notion of
DAG models, while in Sect. 3, we give the definition of causal graphs and introduce
the concept of identification in the non-parametric context. We then turn into the
parametric notion of identification in Sect. 4, and give details on the instrumental
variable result. Regression graphs extend DAGs’ models. They are introduced in Sect.
5, together with their pairwise Markov property. The notion of parameter equivalent
regression graphs is introduced in Sect. 6, while the essential problem of the paper
is presented in Sect. 7, and addressed in Sect. 8, which contains the main results. In
Sect. 9, we report the problem of identification of a causal effect in the well-known
Coleman’s study and in Sects. 10 and 11 the derivations presented in the previous
Sections are used to readdress the problem and propose new solutions. In Sect. 12, we
draw some conclusions.

2 Directed acyclic graph models

A directed acyclic graph GV
dag = (V, E) is a mathematical object composed by V , the

set of vertices or nodes, and E ⊆ (V × V ) the set of edges. An edge is directed if and
only if (a, b) ⊆ E ⇒ (b, a) /∈ E . A directed edge between two vertices a and b such
that (a, b) ⊆ E is denoted by an arrow, pointing from a to b, i.e., a → b. A graph
GV

dag = (V, E) is said a directed graph if all edges in E are directed.
A path between a and b is a sequence of nodes a0 = a, a1, . . . , an = b such as

(ai−1, ai ) ∈ E or (ai , ai−1) ∈ E . A direction preserving path is that every directed
edge in the path points to the same direction. A cycle is a direction preserving path from
a node directed to itself, or back to itself. An acyclic directed graph GV

dag = (V, E) is
a directed graph without directed cycles.

We can use here the terminology of kinship: let a and b are two nodes in DAG G.
If a → b then a is called a parent of b, and b is called the child of a. The set of parent
of b is denoted pa(b). A node a is said transition node if there are two nodes b and c
such that b → a → c; it is said source node if b ← a → c.

We have a |V |-vector of random variables Y = (Y1, . . . ,Y|V |) in a one-to-one
correspondence with the set V with joint distribution function P(y). We assume P(y)
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admits a density f (y) (this assumption can be removed). Then we say that the density
f (y) factorizes according to GV

dag = (V, E) if:

f (y) =
∏

v∈V
f (yv|ypa(v)).

Assuming that Y is a vector of mean-centered random variables with Gaussian joint
distribution with covariance matrix �, the recursive system can be written as:

AY = ε, and cov(ε) = �, (2.1)

where A is an upper triangular matrix with ones along the main diagonal and the
negative of the off-diagonal element −αi j = βi j.pa(i)\ j corresponds to the partial
regression coefficient of Y j in the regression of Yi against its parents, and is associated
with a directed edge, Y j → Yi . The � is a nonsingular diagonal covariance matrix
of the residuals, with the partial variances δi i = σi i.pa(i) along the diagonal. Markov
Properties of DAGs are presented in Lauritzen (1996, Chap. 3).

3 Non-parametric identification of causal effects

The notion of identification varies with the different meaning and use of DAGs
appeared in the literature. Broadly speaking, we can say that there is stream of lit-
erature that looks at a DAG as tool for causal inference and a stream of the literature
that looks at it as a statistical model. The first stream originated from the work of
Pearl and coauthors (see Pearl 2009), while the second originated from the work of
Cox, Wermuth and coauthors (see Cox and Wermuth 1996). Pearl and coauthors give
the definition of a causal DAG as a tool that graphically describes the data-generating
process and is suitable to infer the effect of interventions as well as spontaneous
changes on the variables. A causal DAG also allows to identify causes of reported
events (see Pearl 2001). In this context, causal DAGs are also denoted as Causal
Bayesian Networks.

More technically, let X ⊂ Y . We first introduce the notion of conditioning by
intervention. This is an operation that forces a particular set of variables to take on
specific values. Intervention will be denoted as do(X = x) and the interventional
distribution will be written as P(Y |do(X = x)). Let P(y) denote the joint distribution
that factorizes according to a DAG and Px (y) be the interventional distribution, i.e.,
the joint distribution of Y after intervention do(X = x). Then we have the following
definition (see Pearl 2009, p. 24).

Definition 1 (Causal DAG) Let P(y) be a probability distribution on a set V of vari-
ables, and let Px (y) denote the distribution resulting from the intervention do(X = x)
that sets a subset X of variables to a constant x . Denote by P∗ the set of all interven-
tional distributions Px (y), X ⊆ V , including P(y), which represents no intervention
(i.e., X = ∅). A DAG GV

dag is said to be a causal DAG compatible with P∗ if and only
if the following three conditions hold for every Px ⊆ P∗:
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Identification of causal effects in linear models 493

1. Px (y) factorizes according to GV
dag;

2. Px (yv) = 1 for all Yv ⊆ X whenever yv is consistent with X = x ;
3. Px (yv|ypa(v)) = P(yv|ypa(v)) for all Yv /∈ X whenever ypa(v) is consistent with

X = x , i.e., each P(yv|ypa(v)) remains invariant to interventions not involving Yv .

Conditioning by intervention is opposed to conditioning by observation, denoted
by P(Y |X = x), that is the usual understanding of the concept (see Lauritzen 2001 for
a discussion). As a matter of fact, the interventional and conditional distributions need
not coincide. Interventional distributions are also known as truncated factorization,
as:

Px (y) =
∏

Yv /∈X
P

(
yv|ypa(v)

)
for all yv consistent with x .

An instance of when they coincide is the following. Let X = pa(Y ). Then in a causal
graph:

P(Y |do(X = x)) = P(Y |X = x).

The causal effect of X onY is identifiable from aDAG if the quantity P(Y |do(X = x))
can be computed uniquely from any positive probability of the observed variables. The
major results on identification are known as back-door, that we here recall, and front-
door criteria, see Pearl (2009), Chaps. 3, 4.

Definition 2 (Blocked path) In a DAGGV
dag , a path p between node a and b is blocked

by a (possibly empty) set Z if one of the following conditions holds:

1. p contains at least one non-collider that is in Z ;
2. p contains at least one collider that is not in Z and has no descendant in Z .

If all paths between a and b are blocked by Z , we say that Z d-separates a and b.
Let GV

dag,X be the DAG obtained by deleting all arrows emerging from X . Then the
following definition applies.

Definition 3 (Back-door criterion) Let {X,Y } and S be three disjoint subsets of V in
a DAG GV

dag. S is said to meet the back-door criterion if it satisfies the following two
conditions:

1. no vertex in S is a descendant of X ;
2. S d-separates X and Y in GV

dag,X .

A causal effect is identifiable if there exists a set S that satisfies the back-door
criterion. Typically, in a causal graph, no reference to the parametric form of the joint
distribution is made. Therefore, all results derived in this context are non-parametric.
Since we will work on parametric models, we refer the reader to the above reference
for more details.
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4 Parametric identification

The second stream ismore granted in the statistical literature. In this context, DAGs are
probabilistic models suitable to describe associations. Also in this case, the ordering
among the variables is given a priori and the joint distribution of the random variables
is parametrically specified. The objective is to make inference on parameters from
random samples drawn from the joint distribution of the observable variables. This
requires the notion of parametric identification.

We assume to have a family M(	) = {Pθ : θ ∈ 	} of probability distributions,
with parameter space 	, that is Markov with respect to a given DAG. The family is
said to be globally identifiable at θ0 ∈ 	 if for any θ 	= θ0, Pθ and Pθ0 are different
(see Rothenberg 1971; Bowden 1973). If this condition holds for all θ0 ∈ 	 then
it is said to be globally identifiable. Global identifiability is also referred to as strict
identifiability.

The family M(	) is said to be locally identified at θ0 ∈ 	 if there exists a neigh-
borhood of θ0, N (θ0), such that for any θ ∈ N (θ0), the corresponding probability
distributions Pθ and Pθ0 are different. If this condition holds for any θ0 ∈ 	, then the
model is said to be locally identified.

We denote with ψ : θ → Pθ the parametrization map. In this paper, we restrict to
the models with polynomial ψ . Global identification coincides with injectivity of ψ ,
while local identification corresponds to k-to-one map for finite value of k. For this
reason, we say that a parametric model is identifiable if there exists a finite-to-one
parametrization map.

As argued in Allman et al. (2009), also the above definition may be too restrictive
from the statistical point of view. There may be models such that the parametrization
mapping is finite-to-one almost everywhere (i.e., everywhere except in a subspace of
null measure). In this case, we speak of generically (globally or locally) identifiable
models. Generically identifiable models may be the object of inference, provided that
we are aware of the existence of the subspace of null measure where identifiability
breaks down (see also Stanghellini and Vantaggi 2013).

As already noticed, when X = pa(Y ), the non-parametric identification of the
causal effects of X on Y coincides with identification of the conditional distribution
P(Y |X = x). Therefore, when dealing with a causal Gaussian DAG, the αi j ’s are
the causal effects and the parameters of interest are (subsets of) A and �. It is trivial
to show that a Gaussian DAG without latent variables is always strictly identified,
provided that the covariance matrix � is positive definite.

When the DAG contains unobserved variables, things are more complex. An exam-
ple is the well-known instrumental variable problem, as depicted in Fig. 4a: we are
interested in the value of αyx = βyx ·u . Notice that U is not observed, so we cannot
regress Y on X andU . However, we have an instrumental variableW such thatW ⊥⊥ U
and Y ⊥⊥ W |{X,U }. Therefore,

σwy = σwxβyx ·u, and hence (4.1)

βyx ·u = σwy

σwx
= βyw

βxw
. (4.2)
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Since the last equation is the ratio between identified entities, the coefficient βyx ·u
is identified, provided that βxw 	= 0. Moreover, since the mapping is one-to-one,
this is an instance of a generically (globally) identified model. A single-factor model
with three observable indicators is identified provided that λ 	= 0, with λ the fac-
tor loadings. Notice that the model is identified up to the sign of λ, therefore,
the mapping is two-to-one. This is an instance of generically (locally) identified
model.

5 Regression graphs

It often happens that the set of variables under study naturally partitions into groups,
that we here denote by Ya , Yb, Yc, . . .. Variables Ya are called primary responses, as
they can potentially be responses of all other variables; variables in Yb are intermediate
variables, as they can be potentially explanatory variables of Ya , but they can be also
potential responses for all other variables, but Ya . Variables in the last block of the
ordering are not only context variables, but also background variables. Within blocks,
variables are said to be of equal standing.

Situations like this are dealt with regression graphs (see Wermuth and Sadeghi
2011). They are constructed in a way that nodes representing variables on equal
standing are put in a box. Starting with the response of primary interest, boxes are
ordered, usually from right to left. Edges can be of three types: arrows if they con-
nect nodes in two different boxes, originating from any node in the box to the right;
undirected dashed edges if they connect nodes within any given box and full-line
edges if they couple context nodes. Graphs containing full-line edges only are called
undirected.

More formally: a regression graph is a graph GV
reg = (V, E) on given a set of

nodes V , partitioned as V = (u, v), where v are the context variables. The edge set
E ⊂ (V × V ) contains three types of edges: full lines, arrows or dashed lines. The
connected components g j , j = {1, 2, . . . , J }, are the disconnected undirected graphs
that remain after removing all arrows. Since different orderings are possible, we speak
of compatible ordering if each arrow starting from a node in g j points to the future, i.e.,
node in a box gr , with r < j , and never to the past. Let g> j denote the past, i.e., the set
g> j = g j+1 ∪ · · · ∪ gJ . We have a collection of random variables Y = (Y1, . . . ,Y|V |)
with joint distribution function P(y). We again assume P(y) admits a density f (y).
Then we say that the density f (y) factorizes according to a regression graph if:

f (y) =
J∏

j=1

f
(
yg j |yg> j

)
.

Furthermore, we let the marginal density of the variables corresponding to the nodes
in c to factorize according to the undirected graph in the corresponding box. The
factorization represents a sequence of regressions for the joint responses given the
past. Regression graphs are studied in detail in Wermuth and Sadeghi (2011), where
the interpretation of each edge in the graph is given. We here recall the pairwise
Markov property.
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(a) (b) (c)

Fig. 2 An example of a regression graph with three blocks: in Ya the primary responses, in Yb the inter-
mediate variables, and in Yc the context variables

Definition 4 (Pairwise Markov Property for regression graphs) Pairwise Markov
properties for regression graphs: Let GV

reg = (V, E) be a regression graph. A prob-
ability distribution PV is said to satisfy the pairwise Markov property if, for any
non-adjacent nodes i, k ∈ V , PV satisfies:

(1) i⊥⊥ k|g> j for i , k both in a response component g j of u;
(2) i⊥⊥ k|g> j\{k} for i in g j of u and k in g> j ;
(3) i⊥⊥ k|v\{i, k} for i , k both in a context component g j of v.

It then follows that, for the model the joint distribution of which is represented in
Fig. 2, each variable in Ya is conditionally independent from each other variable in Yc
given Yb, as no arrow originating from a node in Yc points directly to a node in Ya .
Furthermore, Q is independent of P given B, S is independent of U given A, R, Q,
B and P .

Regression graphs extend directed acyclic graphs by allowing boxes with two types
of undirected graph, one type for components of joint responses and the other for
components of the context vector variable. DAG models are regression graphs with
one variable per box. Regression graphs have an interest in their own, as possible
models of the complex sets of data. They also arise after marginalization over source
nodes in DAGs, provided that the children of the source node are not adjacent. More
precisely, a dashed edge a−−−b can always be seen as arising after marginalization
over a source node v in the following structure: a ← v → b. With this in mind,
the collision nodes in a regression graphs are the inner nodes of the following three
configurations: ◦ − − − ◦ − − − ◦, ◦ − − − ◦ ←− ◦ or ◦ −→ ◦ ←−. Each of these
configurations is also called V-structure.

6 Markov equivalent and parameter equivalent models

Twomodels areMarkov equivalent whenever their associated graphs capture the same
independence structure, that is, the graphs imply the same set of independence state-
ments. This implies that we never test a model but a whole class of observationally
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(a) (b) (c)

Fig. 3 Three Markov equivalent regression graphs

equivalent models that cannot be distinguished by any statistical means. It asserts as
well that this equivalence class can be constructed from the graph, which thus provides
the researcher with a clear representation of the compatible alternatives.

The following theorem is due to Wermuth and Sadeghi, see Wermuth and Sadeghi
(2011):

Theorem 1 (Markov equivalent regressiongraphs)Two regressiongraphs areMarkov
equivalent if and only if they have the same skeleton and the same V-structures, irre-
spective of the type of the edge.

Three Markov equivalent regression graphs are in Fig. 3.
Since regression graphs contain DAGs, the theorem extends the result due to Fry-

denberg (1990) and Verma and Pearl (1991) on Markov equivalent DAGs. Parameter
equivalence between twomodels concerns the existence of a one-to-onemapping from
the parameters of the first model to the parameters of the secondmodel. Another result,
which is useful for our derivations, is the following, seeWermuth and Sadeghi (2011):

Theorem 2 (Parameter equivalent Gaussian regression graphs) If two regression
graphs are Markov equivalent for regular Gaussian distribution, then the distribu-
tions are also parameter equivalent.

It follows from the fact that in the Gaussian case we have only one parameter
attached to each edge, and the Gaussian distribution is closed under marginalization
and conditioning, so that two models are parameter equivalent if they are Markov
equivalent.

The results onMarkov and parameter equivalent models allow to extend our deriva-
tions to regression graphs. As a matter of fact, we initially work with DAGs and
establish rules for identification of a given causal effect, depicted in the DAG by a
particular arrow. Then, we translate the identification rules into regression graphs that
are Markov equivalent to the DAG we are dealing with. In doing so, we will make
sure that the causal effect in the regression graph still remains depicted by an arrow.
Since in the Gaussian case, Markov equivalence implies also parameter equivalence,
then the rules for the identification of the causal effect of interest can be extended to
regression graphs.
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7 The confounding problem

With reference to the DAG represented in Fig. 1, the essence of the confounding
problem lies on the fact that the linear least-squares regression coefficient βyx ·u , that
we shortly denote by αyx , is not identified from the marginal distribution, i.e., the
distribution of X and Y only. When the assumptions defining a causal DAG hold, this
parameter is called the causal effect of X on Y .

We extend the graph of Fig. 1 by assuming that we have one more observable
variable W . Figure 4 presents the six DAGs obtained when W is either the endpoint
or the source node on one arrow only. Without additional information, only Fig. 4a
leads to identification of αyx ; see Kuroki and Pearl (2014) for an example of additional
information that permits identification of models as in Fig. 4e. In Fig. 5, we present
the regression graph that is parameter equivalent to Fig. 4a, obtained by making use
of the results on parameter equivalent between DAGs and regression graph models
presented in the previous section. Notice that Fig. 4a is not parameter equivalent to
Fig. 4d, as it contains a different set of V-structures.

(a) (b) (c)

(d) (e) (f)

Fig. 4 SixDAGsobtainedby addingnodeW to Fig. 1,withW havingoneneighbor nodeonly.a corresponds
to the instrumental variable model and is the only model that permits identification of βyx ·u

Fig. 5 A regression graph that
is Markov equivalent to the
instrumental variable graph in
Fig. 4a
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8 A general rule for the identification of α yx

We can now state our rule for DAGs models in which X is a parent of Y and both are
children of latent variable U . We assume we have at least four observed variables.

Theorem 3 In a Gaussian DAG GV
dag = (V, E) with A ⊆ V , A = {Y,U, X, Z ,W },

such that the effect of X on Y is confounded by U, the parameter αyx = βyx ·pa(y)\x
is identified if:

1. in V \A there exists a set C of random variables such that {Z ,U,W,C} blocks
every back-door path from X to Y ;

2. {X,W,U,C} d-separates Y from Z, i.e., βyz·xwuc = 0 ; and
3. at least one of the two following conditions hold:

a. (U,C) d-separates W from {X, Z};
b. (U,C) d-separates Z from {W, X}.

Furthermore, if Condition 3(a) holds:

αyx = βyx ·cβwz·c − βwx ·cβyz·c
βwz·c − βxz·cβwx ·c

(8.1)

=
(
βyx ·zwcβwz·yxc

) − (
βwx ·yzcβyz·xwc

)

βwz·yxc + (
βyz·xwcβwy·xzc

) . (8.2)

Otherwise, if Condition 3(b) holds:

αyx = βzw·cβyx ·c − βzx ·cβyw·c
βzw·c − βzx ·cβxw·c

(8.3)

=
(
βyx ·zwcβzw·yxc

) − (
βyw·xzcβzx ·ywc

)

βzw·yxc + (
βyw·xzcβzy·xwc

) . (8.4)

Proof See “Appendix”. The above identification rules require the denominator of each
expression not to vanish, and therefore lead to generic identifiability of αyx . Notice
that Eq. (8.1) is a straightforward extension of Kuroki and Pearl (2014) formula (6).
See also Cai and Kuroki (2012). Also Eq. (8.4) is implicit in Stanghellini (2004).

The two formulas also have implications in terms of estimating procedures, as
they provide the explicit expression of αyx as a function of univariate linear regression
coefficients. Therefore, estimation can be performedwithout resorting toMLmethods,
but simply using the methods of moments. Note further that the assumption of joint
Gaussianity may be relaxed in favor to the standard assumptions of linear regression
models, as in structural equation models (SEM), see Bollen (1989). In Fig. 6 the
most complex DAGs with five variables are shown, for which identification of αyx is
possible according to Theorem 3. 
�

9 Coleman’s research

In 1980, James Coleman and his colleagues conducted a comprehensive study about
the students’ performance in secondary schools, see Coleman et al. (1982). The study
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Fig. 6 The most complex
DAGs with five nodes satisfying,
in order, a conditions 3(a) and b
conditions 3(b) of Theorem 3. In
the corresponding models βyx .u
is identified

(a) (b)

(a) (b)

Fig. 7 Two DAGs representing criticism on Coleman’s model on the effect of schools’ choice (D) on
students’ test score at the 12th grade (Y ): in a the effect is not identified while in b the use of the students’
test score at the 10th grade (Yt−1) as a proxy permits identification

has been extensively discussed in Morgan (2007). The objective of the study was to
figure out what types of school characteristics are associated with students’ success.
Coleman and colleagues did focus on the single schools characteristic:whether schools
are public or private. Given that Catholic schools constitute a large and relatively
homogeneous group in the private school sector, they decided to direct most of their
research to the differences between Catholic schools and public ones. They examined
achievement test data and concluded that students in Catholic schools learn more than
students in public ones. However, criticism arose around what is known as Coleman’s
conclusion, as the model did not take into account that best students may choose to
attend the Catholic schools, and that the positive effect may be illusorily created by
the self-selection mechanism. The model depicted in Fig. 7a represents the described
criticism, with one variable U representing students’ unmeasured ability, influencing
both the choice of the school (D, an observed binary variable, taking value 1 for
those attending Catholic schools and 0 for those who do not) and the standardized
achievement test score at the 12th grade (Y ). Then, U is an unobserved factor that
confounds the effect of school on the test score in the direction that best students, i.e.,
students with high level of U , are more likely to choose Catholic schools. X is the
determinant factor of achievement test scores that is not associated with the school
selection, and O is the ultimate background that stimulate both score achievement test
score and school selection (notice that X and O may be vectors of variables). The
objective of Coleman’s research is represented by the effect of D on Y . Given that
there is one latent variable U indeed the effect is not identifiable.

To account for the criticism, Coleman later proposed a solution to answer the
unidentifiability of that effect. He added another observed variable that could be a
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(a) (b)

Fig. 8 Two DAGs representing the criticism raised on Coleman’s model with the proxy variable: a U is
influencing both test scores (Y and Yt−1) and b there is an unobserved factor E such that conditioning on
Yt−1 creates a back-door path. In both cases, the causal effect of D on Y is not identified

(a) (b)

Fig. 9 Two alternative DAGs as proposed by Morgan and Winship (2007), with a Z is an instrumental
variable or b M a mediator variable. In both cases, the effect of D on Y is identified

proxy for the test score of the 12th grade, that is the 10th grade score Yt−1. He argued
that those who obtain good score at the 10th grade would also obtain good score at
the 12th grade, see Fig. 7b. Therefore, the test score in the 10th grade would be an
effective pre-test variable for the 12th grade. Then, the effect is identified by repeated
use of back-door criterion.

However, this solution is not without criticism too. It is argued in Morgan (2007,
Chap. 6), that the latent variable U should also influence the 12th grade score. The
unobserved factor U would affect both 10th and 12th grade levels, as in Fig. 8a,
therefore confounding the influence of the choice on the school. Another criticism
concerns the possible existence of another unobserved confounder, denoted by E , for
10th and 12th grade students, such that conditioning on Yt−1 creates a back-door path
that is not blocked by any observed variable, see Fig. 8b.

InMorgan (2007,Chap. 6) two solutions are proposed. Thefirst uses an instrumental
variable, see Fig. 9a.

The instrumental variable may be the geographic area, denoted by Z , in a hypo-
thetical study that randomly assigns tuition vouchers that could be redeemed at the
Catholic schools. The second solution is by adding a mediator variable, that represents
a full mechanism of the effect of D on Y , denoted by M , see Fig. 9b. Note that the
front-door criterion holds here.
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Fig. 10 Four alternative DAGs
to solve Coleman’s problem for
which: a, b (8.2) and c, d (8.4)
applies and therefore the effect
of D on Y is identified

(a) (b)

(c) (d)

10 Coleman’s research revisited

Previous solutions are in some sense questionable too. As an instance, the possibility
to perform a random assignment of tuition vouchers that renders the geographic area
Z an exogenous variable is very much theoretical. In practice, the geographic area Z
can be influenced by factors, such as parents’ wealth and education, that can be very
much related to the unobserved factor U . However, taking into account all covariates
plus the Z variable, we have 6 variables of which 5 are observed and 1 is latent. The
range of models leading to identification of the effect of D on Y can be enlarged by
making use of Theorem 3. In particular, by making use of Fig. 10, we lay down the
assumptions that permit to use (8.2) or (8.4).

In Fig. 10a, b, the most complex model allowing to use (8.2) is presented, while
Fig. 10(c, d) the most complex model allowing to use (8.4) is presented. Notice that
Fig. 10b, d are obtained from Fig. 10(a, c) by flipping the arrow (U, X) and thereby
Markov equivalence is preserved. In the first case, we have:

αyd =
(
βyd·oxzβoz·dyx

) − (
βod·yxzβyz·dox

)

βoz·dyx + (
βyz·doxβoy·dxz

) (10.1)

while in the second case, we have:

αyd =
(
βyd·oxzβzo·dyx

) − (
βyo·dxzβzd·yxo

)

βzo·dyx + (
βyo·dxzβzy·dox

) . (10.2)

Notice that both formulas imply conditioning on D, so it does not make much of
practical difference here if D is continuous or binary. Notice further that all models
obtained from Fig. 10a, b by deleting arrows are also identified, provided that the
denominator of αyd does not vanish.
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(a) (b)

Fig. 11 Two regression graphs that are Markov equivalent to DAGs of Fig. 10, and such that the effect of
D on Y is identified

The models entail different conditional independence assumptions. In particular
models that satisfy condition 3(a) of Theorem 3 (for which therefore (8.2) can be
applied) imply that O is an explanatory variable of Y but not of D, whereas models
that satisfy condition 3(b) (for which (8.4) can be applied) allow O to be explanatory
variable of D but not of Y . Furthermore, the second class of models does not allow
Z to be directly explanatory variable of D and endogeneity of Z is accounted by the
arrow emanating fromU . Choice between the two strategies must be made on subject
matter considerations.

11 Regression graphs for Coleman’s problem

Having found various DAGs structures that provide solutions to the Coleman’s prob-
lem, we can also derive the regression graphs that are Markov equivalent to those
DAGs. Using the results in previous sections, this implies that they are also parameter
equivalent. Therefore, if a DAG is such that one of the previous rule leads to an identi-
fication of the effect of D on Y , the formula will also apply to their Markov equivalent
regression graphs. In Fig. 11, some examples are presented.

Figure 11a shows a regression graph which is Markov equivalent to DAG Fig. 10(a,
b) while Fig. 11b represents a regression graph which is Markov equivalent to Fig.
10c, d). In the first graph depicted in Fig. 11a O is a context variable, potentially
explanatory to all the others, while U and X are on equal standing. The rest follows
the original DAG structure. In the second graph depicted in Fig. 11b we consider
variables {O,U, X} to be context variables, while the rest are ordered according to
the original structure.

12 Conclusions

Graphical models are natural tools to address issues of causality and identification.
After clarifying under which conditions a parameter of a Gaussian DAG can be
enhanced with the interpretation of a causal effect, we have enlarged the set of DAGs
that permit identification of a linear causal effect. Moreover, thanks to results on para-
meter equivalent models, the results can be applied to regression graphs, i.e., graphs
that specify the ordering only among groups of variables. Since the identification is
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achieved throughout a series of univariate regressions, moment estimation methods
can be used. Bootstrapping procedures can be easily implemented to estimate the vari-
ance of the estimates of the parameters of interest and this has been done in Pakpahan
(2012). Notice, that the assumption of joint Gaussianity of the random variables can
be relaxed in favor of the ones underlying SEM.

Acknowledgments The authors are grateful to Prof. Nanny Wermuth and to Prof. Giovanni Maria
Marchetti for their constructive and detailed comments.

Appendix A: Proof of (8.1) and (8.2)

Without loss of generality assume C = ∅ (otherwise derivations hold conditionally
on C). To see that Eq. (8.1) is a straightforward extension of Kuroki and Pearl (2014)
formula, notice that their formula is:

αyx = σxyσzw − σxwσzy

σxxσzw − σxzσxw
(12.1)

and by multiplication with σxx
σxx

σzz
σzz

the result follows.
The derivations are taken from Kuroki and Pearl (2014). See also Cai and Kuroki

(2012). Since we are interested in parameter αyx = βyx ·zuw, we will then make use
the definition of least-squares regression:

⎡

⎢⎢⎣

βyx ·zuw

βyz·xuw

βyu·xzw
βyw·xuz

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

σxx σxz σxu σxw
σzx σzz σzu σzw
σux σuz σuu σuw

σwx σwz σwu σww

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

σyx

σyz

σyu

σyw

⎤

⎥⎥⎦ ,

thus we take the first two expressions, that is σyx and σyz , as follows:

[
σyx

σyz

]
=

[
σxx σxw
σzx σzw

] [
βyx ·zuw

βyw·xzu

]
+

[
σxu
σzu

]
βyu·xzw +

[
σzx
σzw

]
βyz·xwu,

then we have
[
σxx σxw
σzx σzw

] [
βyx ·zuw

βyw·xzu

]
=

[
σyx

σyz

]
−

[
σxu
σzu

]
βyu·xzw −

[
σzx
σzw

]
βyz·xwu,

thus

[
βyx ·zuw

βyw·xzu

]
=

[
σxx σxw
σzx σzw

]−1 {[
σyx

σyz

]
−

[
σxu
σzu

]
βyu·xzw −

[
σzx
σzw

]
βyz·xwu

}
,

= K

[
σzw −σxw
−σzx σxx

] { [
σyx

σyz

]
−

[
σxu
σzu

]
βyu·xzw −

[
σzx
σzw

]
βyz·xwu

}
,
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where K = (σzwσxx −σxwσzx )
−1. Given that αyx = βyx ·zuw and that from Condition

2 βyz·xwu = 0, thus we can calculate for the first element only, as follows:

βyx ·zuw = K

{
(σzwσyx − σxwσyz) − (σzwσxu − σxwσzu)βyu·xzw

}
.

By noting that from Condition 3(a):

σwx = σwuσ
−1
uu σux ,

σwz = σwuσ
−1
uu σuz,

thus σzwσxu − σxwσzu = 0. Then what remains lead to (12.1) and therefore to (8.1).
The equivalence between (8.1) and (8.2) can be proved by first principles, or using

arguments similar to the ones in Stanghellini (2004) and Stanghellini and Wermuth
(2005). We here follow the second strategy. We assume without loss of generality that
V \A = ∅. We partition A = {O,U } with O = {Y, X, Z ,W }. By denoting with λ

the vector of covariances between O and U , the observable covariance matrix of the
random variables in O is:

�OO = λλT σuu + �OO·U ,

with inverse:
�−1

OO = −δδT + �−1
OO·U . (12.2)

where δ = �OU/
√

σ uu , σuu and σ uu are, in order, the marginal variance of U and
the concentration of U after conditioning on O , �−1

OO is the concentration matrix of
the observable variables after marginalizing on U and �−1

OO·U is the concentration
matrix of the observable variables after conditioning on U . Elements of each matrix
are denoted as follows:

�−1
OO =

⎡

⎢⎢⎣

σ yy(u) ∗ ∗ ∗
σ xy(u) σ xx(u) ∗ ∗
σ zy(u) σ zx(u) σ zz(u) ∗
σwy(u) σwx(u) σwz(u) σww(u)

⎤

⎥⎥⎦ ,

�−1
OO·U =

⎡

⎢⎢⎣

σ yy ∗ ∗ ∗
σ xy σ xx ∗ ∗
σ zy σ zx σ zz ∗
σwy σwx σwz σww

⎤

⎥⎥⎦ ,

and

δδT =

⎡

⎢⎢⎣

δyδy ∗ ∗ ∗
δxδy δxδx ∗ ∗
δzδy δzδx δzδz ∗
δwδy δwδx δwδz δwδw

⎤

⎥⎥⎦ ,
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from which we can see that, as an instance, that σ xy(u) is an element of the inverse
of �OO . From Condition 2 σ zy = 0 and therefore δzδy = σ zy(u). Furthermore,
from Condition 2 and 3(a) σwz = 0 and therefore δwδz = σwz(u). Finally, from 3(a)
σ yw = −βyw·uσ yy and σ xw = βyw·uσ yyαyx , therefore:

αyx = −σ xw

σ yw
. (12.3)

We derive σ xw first:

σ xw = σ xw(u) + δxδw, where

δxδw = δxδy δzδw

δzδy

=
(
σ xy − σ xy(u)

)
σ zw(u)

σ zy(u)

= σ xyσ zw(u) − σ xy(u)σ zw(u)

σ zy(u)
, and thus

σ xw = σ xw(u) + σ xy·uσ zw(u) − σ xy(u)σ zw(u)

σ zy(u)

= σ xw(u) − σ xy(u)σ zw(u)

σ zy(u)
+ σ xyσ zw(u)

σ zy(u)

= σ xw(u)σ zy(u) − σ xy(u)σ zw(u)

σ zy(u)
+ σ xyσ zw(u)

σ zy(u)
. (12.4)

Now we do the same for σ yw:

σ yw·u = σ yw(u) + δyδw, where

δyδw = δyδy δzδw

δzδy

=
(
σ yy·u − σ yy(u)

)
σ zw(u)

σ zy(u)

= σ yy·uσ zw(u) − σ yy(u)σ zw(u)

σ zy(u)
, and thus

σ yw·u = σ yw(u) + σ yyσ zw(u) − σ yy(u)σ zw(u)

σ zy(u)

= σ yw(u) − σ yy(u)σ zw(u)

σ zy(u)
+ σ yyσ zw(u)

σ zy(u)

= σ yw(u)σ zy(u) − σ yy(u)σ zw(u)

σ zy(u)
+ σ yyσ zw(u)

σ zy(u)
. (12.5)
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Using (12.3)–(12.5) αyx can be so derived:

αyx = −σ xw(u) + δxδw

σ yw(u) + δyδw

(12.6)

= −σ xw(u)σ zy(u) − σ xy(u)σ zw(u) + σ xy·uσ zw(u)

σ yw(u)σ zy(u) − σ yy(u)σ zw(u) + σ yy·uσ zw(u)
(12.7)

= −σ xw(u)σ zy(u) − σ xy(u)σ zw(u) − αyxσ
yyσ zw(u)

σ yw(u)σ zy(u) − σ yy(u)σ zw(u) + σ yy·uσ zw(u)
, (12.8)

and after some simple manipulations we have:

αyx = −σ xy(u)σ zw(u) − σ xw(u)σ zy(u)

σ yw(u)σ zy(u) − σ yy(u)σ zw(u)
, (12.9)

and the result follows after multiplication with: σww(u)

σ yy(u)
σww(u)

σ yy(u) .

Appendix B: Proof of (8.3) and (8.4)

We first proof (8.4). With reference to (12.2) αyx can be obtained by

αyx = −σ yx ·u

σ yy·u = −σ yx(u) + δyδx

σ yy(u) + δ2y
.

From Conditions 2 and 3(b), it follows that σ yz = σ yw = σwz = σ xz = 0, thus we
can breakdown the rhs of formula above as follows:

σ yx ·u = σ yx(u) + δyδx

= σ yx(u) − σ yw(u)σ xz(u)

σ zw(u)

= σ yx(u)σ zw(u) − σ yw(u)σ xz(u)

σ zw(u)
,

σ yy·u = σ yy(u) + δ2y

= σ yy(u) − σ yw(u)σ yz(u)

σ zw(u)

= σ yy(u)σ zw(u) − σ yw(u)σ yz(u)

σ zw(u)
,

and now we can obtain the parameter as follows:

αyx = −σ yx(u)σ zw(u) − σ yw(u)σ xz(u)

σ yy(u)σ zw(u) − σ yw(u)σ yz(u)
,
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and if we multiply with σ yy(u)

σ yy(u)
σ zz(u)

σ zz(u) we arrive finally at (8.4).

Transform (8.4) into (8.3) by noting that

⎡

⎣
βyx .zw

βyz.xw

βyw.xz

⎤

⎦ =
⎡

⎣
σxx σxz σxw
σzx σzz σzw
σwx σwz σww

⎤

⎦
−1 ⎡

⎣
σxy
σzy
σwy

⎤

⎦ ,

and

⎡

⎣
βzw·yx
βzx ·yw
βzy·xw

⎤

⎦ =
⎡

⎣
σww σwx σwy

σxw σxx σxy
σyw σyx σyy

⎤

⎦
−1 ⎡

⎣
σzw
σzx
σzy

⎤

⎦ .

Therefore, after some tedious derivations, we have

βyx ·zw = σxyσzzσww− σxyσ
2
wz− σzyσxzσww+σzyσxwσwz+σwyσxzσwz− σwyσxwσzz

σxxσzzσww− σxxσ 2
wz − σ 2

xzσww+ 2 σxzσxwσwz− σ 2
xwσzz

,

βyw·xz = σxyσxzσwz− σxyσxwσzz− σzyσxxσwz+σzyσxzσxw+σwyσxxσzz− σwyσ
2
xz

σxxσzzσww− σxxσ 2
wz− σ 2

xzσww+2 σxzσxwσwz− σ 2
xwσzz

,

βzw·yx = −σxzσxwσyy − σxzσxyσwy − σwzσxxσyy + σwzσ
2
xy − σyzσxyσxw + σyzσwyσxx

σxxσwwσyy − σxxσ 2
wy − σ 2

xwσyy + 2 σxwσxyσwy − σ 2
xyσww

,

βzx ·yw = −−σxzσwwσyy+σxzσ
2
wy+σwzσxwσyy− σwzσxyσwy+σyzσxyσww − σyzσwyσxw

σxxσwwσyy− σxxσ 2
wy −σ 2

xwσyy+2 σxwσxyσwy− σ 2
xyσww

,

βzy·xw = −σxzσxyσww+σxzσwyσxw+σwzσxyσxw − σwzσwyσxx+σyzσxxσww − σyzσ
2
xw

σxxσwwσyy− σxxσ 2
wy− σxw2σyy+2 σxwσxyσwy− σ 2

xyσww

,

and applying these expressions to (8.4) we arrive at

αyx = σwzσxy − σxzσwy

σxxσwz − σxzσxw
,

which can be transformed into (8.3) by multiplication with σww

σww

σxx
σxx

.
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