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Abstract In this paper the authors show how it is possible to establish a common
structure for the exact distribution of themain likelihood ratio test (LRT) statistics used
in the complex multivariate normal setting. In contrast to what happens when dealing
with real random variables, for complex random variables it is shown that it is possible
to obtain closed-form expressions for the exact distributions of the LRT statistics to test
independence, equality of mean vectors and the equality of an expected valuematrix to
a given matrix. For the LRT statistics to test sphericity and the equality of covariance
matrices, cases where the exact distribution has a non-manageable expression, easy
to implement and very accurate near-exact distributions are developed. Numerical
studies show how these near-exact distributions outperform by far any other available
approximations. As an example of application of the results obtained, the authors
develop a near-exact approximation for the distribution of the LRT statistic to test the
equality of several complex normal distributions.
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1 Introduction

The implementation of many important likelihood ratio tests (LRTs) used inmultivari-
ate analysis is often hindered because of difficulties in handling the exact distribution,
which is most of the time too complicated to be used in practice. On the other hand, the
commonly available asymptotic distributions do not deliver the necessary accuracy,
particularly for small samples and/or large numbers of variables involved.

In this paper the authors show how, in the complex multivariate normal setting, it
is possible to obtain simple closed form expressions for the exact distribution of the
LRT statistics to test (i) independence of sets of variables, (ii) equality of mean vectors
and (iii) the equality of an expected value matrix to a given matrix, and very sharp
near-exact distributions for the LRT statistics to test (iv) sphericity and (v) equality of
covariance matrices.

These results are obtained, based on the fact that the LRT statistics in (i)–(v) have,
under the null hypothesis, a common structure for their exact distributions, which for
some p ∈ N and u ∈ N0, may be written as

Λ
st∼
⎛
⎝

p−1∏
j=1

e−Z j

⎞
⎠×

(
u∏

k=1

Yk

)
. (1)

In (1), Λ represents the LRT statistic, ‘
st∼’ is to be read as ‘is stochastically equivalent

to’, and, for r j ∈ N ( j = 1, . . . , p − 1) and ak, bk > 0 (k = 1, . . . , u),

Z j ∼ Γ

(
r j ,

n − 1 − j

n

)
and Yk ∼ Beta(ak, bk), (2)

are independent r.v.’s (random variables). In (2), Γ (r j , λ j ) denotes a gamma distribu-
tion with shape parameter r j and rate parameter λ j and n is the sample size. In (1), p
represents the number of variables involved, for the tests in (i), (iv) and (v), or the sum
of the number of variables plus the number of vectors minus 1, for the test in (ii), or
the sum of the number of variables involved plus the number of columns in the matrix
μ in (22), for the test in (iii). Also, in (1), we have u = 0 for the LRT statistics in (i),
(ii) and (iii).

Krishnaiah et al. (1976) used the first four moments of the LRT statistics to test
independence, equality of covariance matrices and sphericity to approximate the dis-
tributions of certain powers of these LRT statistics by Pearson type I distributions,
while Fang et al. (1982) use infinite mixtures of beta distributions to asymptotically

123



388 C. A. Coelho et al.

approximate the distributions of the first two of those LRT statistics. Khatri (1965)
obtained the exact distribution of the LRT statistic to test if an expected value matrix
is null also in terms of an infinite mixture of beta distributions, while Gupta (1971)
obtained closed form expressions for the distribution of the same test statistic for
the cases of two and three variables, stating the possibility of extending such rep-
resentations to a general number of variables, although without obtaining explicit
expressions for the parameters in the distribution. Pillai and Nagarsenker (1971) and
Nagarsenker and Das (1975) address the exact distribution of the LRT statistic for
sphericity through contour integration, obtaining representations in terms of Meijer
G functions and infinite series. Authors such as Nagarsenker and Nagarsenker (1981)
and Nagar et al. (1985) studied a block sphericity test, which has as a particular case
the common sphericity test, obtaining the exact distribution for the corresponding LRT
statistic in the formof series representation,which in the case of the first authors has the
form of an infinite mixture of beta distributions for the LRT statistic itself, or the form
of an infinite mixture of chi-square distributions for its logarithm, while the second
authors start with representations based onMeijer G and hypergeometric functions, to
end-up with highly complicated series representations. Gupta (1976) and Gupta and
Rathie (1983) address the non-null distribution of Wilks Λ statistic for MANOVA,
obtaining in the first reference explicit expressions for the probability density function
(pdf) of Λ only for p = 2 and p = 3 and only the general form of the expression for
p > 3 and in the second reference the distribution for general p, in the form of Meijer
G functions and what the authors claim to be computable series forms, which anyway
in the null case remain too intricate. Somehow similar representations were obtained
by Pillai and Jouris (1971) also for the LRT statistic for MANOVA and the LRT sta-
tistics to test equality of two covariance matrices and independence of two groups of
variables. Mathai (1973) refers the non-computability of the representations involving
Meijer G functions, which is still a reality, and obtains series representations for the
distribution of the LRT for the equality of two covariance matrices and for sphericity,
which anyway have very elaborate expressions.

In this paper the authors obtain

– very simple expressions for the exact pdf and cumulative distribution function (cdf)
of the statistics in (i), (ii) and (iii), avoiding the need for the approximations in
Krishnaiah et al. (1976), Fang et al. (1982), Khatri (1965) and the complex expres-
sions in Khatri (1965), Gupta (1971), Tang andGupta (1986), Gupta (1976), Gupta
and Rathie (1983), Pillai and Jouris (1971), Mathai (1973) even for the null case,

– very accurate manageable near-exact distributions for the statistics in (iv) and (v),
which are far more precise and manageable than the approximations and expres-
sions in Krishnaiah et al. (1976), Fang et al. (1982), Tang and Gupta (1986), Pillai
and Jouris (1971), Mathai (1973), Pillai and Nagarsenker (1971), Nagar et al.
(1985), Nagarsenker and Das (1975), Nagarsenker and Nagarsenker (1981).

In Sect. 2 the exact distributions for the LRT statistics in (i), (ii) and (iii) are derived
and it is shown that they have simple closed form expressions, which do not involve
any infinite sums. In Sects. 3 and 4 the exact distribution of the LRT statistics in
(iv) and (v) is obtained in the form of (1). Then, in Sect. 5, near-exact distributions
for these statistics are developed, and in Sect. 6 some numerical studies are carried
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out, confirming the very good performance of these near-exact distributions. Based
on the results obtained, near-exact distributions for the LRT statistic to test equality
of several complex normal distributions are developed in Sect. 7, and an example of
application of these near-exact distributions is provided in the supplementary material
in the Online Resource.

Near-exact distributions are asymptotic distributions developed under a new con-
cept. Usually based on factorizations of the characteristic function (c.f.) of the test
statistic under study, or of its logarithm, they are built by leaving unchanged one part
of this c.f. and replacing asymptotically the remaining part, in such a way that the
resulting c.f. corresponds to a manageable distribution. These distributions, when cor-
rectly built for statistics used in Multivariate Analysis, are not only asymptotic for
increasing sample sizes but also have a marked asymptotic behavior for increasing
number of variables and number of populations involved. All this amounts to obtain-
ing asymptotic distributions that lie much closer to the exact distribution than common
asymptotic distributions (Marques et. al. 2011).

In this paper the definition of the complex multivariate normal distribution that will
be used is that found inWooding (1956), Goodman (1963a), Brillinger (2001, sec. 4.2)
and Anderson (2003, prob. 2.64): the random vector X (p × 1) has a complex multi-
variate normal distribution, with expected value μ and Hermitian variance-covariance
matrix Σ if the pdf of X is

fX (x) = π−p|Σ |−1 e−(x−μ)′Σ−1(x−μ),

where (x − μ) denotes the complex conjugate of (x − μ) and the prime denotes the
transpose, with

Σ = 2Θ + 2iΦ,

where Θ = Cov(Re(X)) = Cov(Im(X)) and Φ = Cov(Re(X), Im(X)) are, respec-
tively, a positive-definite and a skew-symmetric matrix. In this case we will write

X ∼ CNp(μ,Σ). (3)

The complex multivariate normal distribution has applications in a wide range of
areas, from crystallography (Pannu et al. 2003) to spectral analysis in time series
(Brillinger and Krishnaiah 1982; Brillinger 2001; Shumway and Stoffer 2006; Good-
man 1963a; Turin 1960; Krishnaiah et al. 1976) and to studies on satellite images,
signal processing, communications and information theory (Conradsen 2012; Con-
radsen et al. 2003; Lehmann et al. 2007).

2 The exact distribution of the LRT statistics to test independence, the equality
of mean vectors and the equality of an expected value matrix to a given matrix

In this section it is shown how, in contrast to what happens when dealing with real
r.v.’s (Marques et. al. 2011), in the complex case it is possible to obtain the exact
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distribution for the negative logarithm of the LRT statistics to test independence, the
equality of mean vectors or the equality of an expected value matrix to a given matrix
as generalized integer gamma (GIG) distributions (Coelho 1998), for any number of
variables ormean vectors involved, thisway obtaining the exact distribution of the LRT
test statistics in the form in (1), with u = 0. The simplicity of the expressions obtained
for the exact pdf’s and cdf’s is quite striking when compared with the expressions
obtained by other authors (Fang et al. 1982; Gupta and Rathie 1983; Khatri 1965;
Krishnaiah et al. 1976; Pillai and Jouris 1971), and although bearing some resemblance
with the expressions in Tang and Gupta (1986), they have, in contrast to these, the
advantage of involving only finite sums. Even when compared with the quite close
representations inGupta (1971),Mathai (1973), Gupta (1976), they have the advantage
of being more general and with coefficients which have much simpler forms. This is
especially the case with respect to the representation in Gupta (1976), while in Gupta
(1971) the author did not obtain explicit expressions for such coefficients.

2.1 The LRT statistic to test independence among sets of variables

Suppose that the random vector X in (3) is split into m subvectors Xk (k = 1, . . . ,m)

and that we intend to test the independence of thesem subvectors. The partition of the
vector X will induce the following structure for Σ :

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ11 · · · Σ1k · · · Σ1m
...

. . .
...

...

Σk1 · · · Σkk · · · Σkm
...

...
. . .

...

Σm1 · · · Σmk · · · Σmm

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Σkk = Var(Xk) (k = 1, . . . ,m) and Σi j = Cov(Xi , X j ) (i, j ∈ {1, . . . ,m}).
The hypothesis of mutual independence of the random subvectors Xk , may thus be
written as

H0 : Σ = diag(Σ11, . . . , Σkk, . . . , Σmm) ≡ Σi j = 0, for all i �= j. (4)

Let us further suppose that, for each k, Xk has pk variables, with p = ∑m
k=1 pk .

Then, for a sample of size n, the LRT statistic to test H0 in (4) is

Λ1 =
( |A|∏m

k=1 |Akk |
)n

, (5)

where A is the maximum likelihood estimator (MLE) of Σ and Akk its k-th diagonal
block (k = 1, . . . ,m), with

A = 1

n

(
X − 1

n
Enn X

)′ (
X − 1

n
Enn X

)
, (6)

where once again the bar denotes the complex conjugate, X is the n×p sample matrix
and Enp is an n×p matrix of ones (see Goodman 1963a; Anderson 2003, problem
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3.11 for references concerning the MLE of Σ for the multivariate complex normal
distribution).

Following a similar procedure to that used in the real case it is possible to show
that, under H0 in (4), for h > p/n − 1,

E
(
Λh

1

)
=

m−1∏
k=1

pk∏
j=1

Γ (n − j) Γ (n − qk − j + nh)

Γ (n − qk − j)Γ (n − j + nh)
=

m−1∏
k=1

pk∏
j=1

E
(
Ynh
jk

)
, (7)

where Y jk ∼ Beta (n − qk − j, qk) are a set of p = ∑m
k=1 pk independent r.v.’s (for

a proof, see Appendix B, section B.1 in the Online Resource, or section B.5.1 for an
alternative proof based on the results in Jensen (1988, Thm. 5)). Note that (7) matches
the expressions for the moments of Λ1 in Krishnaiah et al. (1976) and Fang et al.
(1982).

But then, since 0 < Λ1 < 1, its distribution is well defined by the set of its moments
and consequently

Λ1
st∼

m−1∏
k=1

pk∏
j=1

(
Y jk
)n

.

Therefore, the c.f. of

W1 = − logΛ1, (8)

may be written as

ΦW1
(t)=E

(
eitW1

)
=E

(
Λ−it

1

)
=

m−1∏
k=1

pk∏
j=1

Γ (n − j)

Γ (n − qk − j)

Γ (n − qk − j − nit)

Γ (n − j − nit)
,

(9)

giving rise to Theorem 1.

Theorem 1 The exact distribution of W1 in (8) is a GIG distribution of depth p − 1
with pdf (see Marques et al. (2011, App. B) for the notation on the GIG pdf and cdf)

fW1
(w) = f GIG

(
w
∣∣ r1, . . . , rp−1; n − 2

n
, . . . ,

n − p − 2

n
; p − 1

)

and cdf

FW1
(w) = FGIG

(
w
∣∣ r1, . . . , rp−1; n − 2

n
, . . . ,

n − p − 2

n
; p − 1

)
,

where w > 0 and

r j =
{
h j j = 1
h j + r j−1 j = 2, . . . , p − 1

(10)

with, h j = (number of pk greater or equal to j) − 1, for j = 1, . . . , p − 1.
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Proof From (9), using, for any complex number z and positive integer n, the relation

Γ (z + n)

Γ (z)
=

n−1∏
ν=0

(z + ν), (11)

it follows that

ΦW1
(t) =

m−1∏
k=1

pk∏
j=1

qk−1∏
ν=0

n − qk − j + ν

n − qk − j + ν − nit
=

p−1∏
j=1

(
n − 1 − j

n

)r j (n − 1 − j

n
− it

)−r j
,

which is the c.f. of the sum of p − 1 independent gamma r.v.’s with shape para-
meters r j , given by (10) in the body of the Theorem, and rate parameters n−1− j

n
( j = 1, . . . , p − 1), which is a GIG distribution of depth p − 1, with shape parame-
ters r j and rate parameters n−1− j

n .

Then Corollary 1 gives the exact pdf and cdf of Λ1 = e−W1 .

Corollary 1 The exact pdf and cdf of the statistic Λ1 = e−W1 in (5) are, for
0 < 
 ≤ 1,

fΛ1
(
) = f GIG

(
− log 


∣∣ r1, . . . , rp−1; n − 2

n
, . . . ,

n − p − 2

n
; p − 1

)
1




and

FΛ1
(
) = 1 − FGIG

(
− log 


∣∣ r1, . . . , rp−1; n − 2

n
, . . . ,

n − p − 2

n
; p − 1

)
,

for r j given by (10).

The exact distribution of Λ1 is thus of the form (1), with u = 0.

2.2 The LRT statistic to test the equality of several mean vectors

Let us suppose that

X j ∼ CNp(μ j
,Σ j ), j = 1, . . . , q

and that, assuming Σ1 = · · · = Σq(=Σ), the null hypothesis to be tested is

H0 : μ
1

= · · · = μ
q
, (12)

based on q independent samples, the j-th of which is from X j , with size n j . Also,
suppose that the j-th sample is stored in the n j×p matrix X j .
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Then, the LRT statistic used to test H0 in (12) is given by

Λ2 =
( |A|

|A + B|
)n

(13)

where n =∑q
j=1 n j ,

A =
q∑
j=1

(
X j − En j1 X̃

′
j

)′ (
X j − En j1 X̃

′
j

)
and B =

q∑
j=1

n j

(
X̃ j − X̃

) (
X̃ j − X̃

)′
,

(14)

where once again the bar denotes the complex conjugate and where

X̃ j = 1

n j
X ′

j En j1,

is the vector of sample means from the j-th sample, and

X̃ = 1

n

q∑
j=1

n j X̃ j .

The p×p matrix A has what is called a complex Wishart distribution Goodman
(1963a, b) with n−q degrees of freedom and parameter matrixΣ . This fact is denoted
by A ∼ CWp(n−q,Σ). Under H0 in (12), B ∼ CWp(q −1,Σ), and then, given the
independence, for normal r.v.’s, of the MLE’s of the mean and variance, the matrices
A and B are independent and thus, under H0 in (12),

A + B ∼ CWp(n − 1,Σ).

It then follows that (see Goodman 1963b),

2p |A| st∼ |Σ |
p∏

j=1

Wj and 2p |A + B| st∼ |Σ |
p∏

j=1

Z j ,

where Wj ( j = 1, . . . , p) and Z j ( j = 1, . . . , p) are two independent sets of p
independent r.v.’s, with

Wj ∼ χ2
2(n−q− j+1) and Z j = Wj + W ∗

j ∼ χ2
2(n−1− j+1),

where each

W ∗
j ∼ χ2

2(q−1), j = 1, . . . , p,

is independent of Wj ( j = 1, . . . , p).
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Thus, under H0 in (12),

Λ2
st∼

p∏
j=1

(Y j )
n where Y j ∼ Beta (n − q − j + 1, q − 1) ,

are p independent r.v.’s.
(15)

But then, for h > (p + q)/n − 1,

E
(
Λh

2

)
=

p∏
j=1

Γ (n − j)

Γ (n − q − j + 1)

Γ (n − q − j + 1 + nh)

Γ (n − j + nh)
. (16)

This result may also be obtained in an alternative way as in Appendix B.2 in the Online
Resource.

From (16), the c.f. of

W2 = − logΛ2 (17)

may be written as

ΦW2
(t)=E

(
eitW2

)
=E

(
Λ−it

2

)
=

p∏
j=1

Γ (n − j)

Γ (n−q− j+1)

Γ (n − q − j + 1 − nit)

Γ (n − j − nit)
,

(18)

from which Theorem 2 may be established.

Theorem 2 The exact distribution of W2 in (17) is a GIG distribution of depth
p + q − 2 with pdf

fW2
(w) = f GIG

(
w
∣∣ r1, . . . , rp+q−2; n − 2

n
, . . . ,

n − p − q + 1

n
; p + q − 2

)

and cdf

FW2
(w) = FGIG

(
w
∣∣ r1, . . . , rp+q−2; n − 2

n
, . . . ,

n − p − q + 1

n
; p + q − 2

)
,

where w > 0 and

r j =
{
h j j = 1
h j + r j−1 j = 2, . . . , p + q − 2

(19)

with h j = (# of elements in {p, q − 1} greater or equal to j) − 1, for j = 1, . . . ,
p + q − 2.
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Proof From (18), using the relation in (11), the c.f. of W2 may be written as

ΦW2
(t)=

p∏
j=1

q−2∏

=0

n − q − j + 1 + 


n − q − j + 1 + 
 − nit
=

p+q−2∏
j=1

(
n − 1 − j

n

)r j (n − 1 − j

n
− it

)−r j

(20)

with r j given by (19) in the body of the theorem. From (20) it is possible to conclude
that the distribution ofW2 is indeed a GIG distribution of depth p + q − 2, with shape
parameters r j and rate parameters n−1− j

n ( j = 1, . . . , p + q − 2).

Then Corollary 2 gives the exact pdf and cdf of Λ2 = e−W2 .

Corollary 2 The exact pdf and cdf of the statistic Λ2 = e−W2 in (13) are, for
0 < 
 ≤ 1,

fΛ2
(
)= f GIG

(
−log 


∣∣ r1, . . . , rp+q−2; n−2

n
, . . . ,

n− p−q + 1

n
; p + q − 2

)
1




and

FΛ2
(
)=1 − FGIG

(
−log 


∣∣ r1, . . . , rp+q−2; n−2

n
, . . . ,

n− p−q+1

n
; p + q − 2

)
,

for r j given by (19).

Once again, the distribution of Λ2 is of the form (1) with u = 0.

2.3 The LRT statistic to test if an expected value matrix is equal to a given matrix

A generalization of the test for an expected value matrix developed in Khatri (1965,
Subsection 3.2) will be addressed in this subsection. Let Z (p×n) be a matrix with
a complex multivariate normal distribution with expected value µM , where µ is a
p×q complex matrix and M is q×n of rank q (≤n), and variance In ⊗ Σ , that is, with
var(vec(Z)) = In ⊗ Σ . This fact is denoted by

Z p×n ∼ CNp×n(µM, In ⊗ Σ). (21)

Let us then suppose that the hypothesis to be tested, for a given matrix Ξ , is

H0 : µ(p×q) = Ξ(p×q). (22)

Then, according to Khatri (1965), the LRT statistic to test H0 is

Λ3 =
⎛
⎝ |Ψ |∣∣∣Ψ + 1

n (β − Ξ)(MM
′
)(β − Ξ)′

∣∣∣

⎞
⎠

n

, (23)
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396 C. A. Coelho et al.

where

Ψ = 1

n
Z

(
In − M

′(
MM

′)−1
M

)
Z

′
and β = ZM

′ (
MM

′)−1
(24)

are, respectively, the MLE’s of Σ and μ, and as such independent.
But then, since (In − M

′
(MM

′
)−1M) is the projector on the null space of the

columns of M , it is idempotent with

rank

(
In − M

′ (
MM

′)−1
M

)
= tr

(
In − M

′ (
MM

′)−1
M

)
= n − q.

Then, given the distribution of Z in (21),

Ψ ∼ CWp

(
n − q,

1

n
Σ

)
. (25)

From (21),

β = ZM
′(
MM

′)−1 ∼ CNp×q

(
µ,
(
MM

′)−1⊗ Σ

)
,

so that

(β − Ξ)
(
MM

′)1/2 ∼ CNp×q

(
(µ − Ξ)

(
MM

′)1/2
, Iq ⊗ Σ

)
,

where, under H0 in (22), (µ − Ξ)
(
MM

′)1/2 = 0. Consequently under H0 in (22),

(β − Ξ)
(
MM

′)
(β − Ξ)′ ∼ CWp(q,Σ),

independent of Ψ , so that, under H0 in (22),

Ψ + 1

n
(β − Ξ)(MM

′
)(β − Ξ)′ ∼ CWp

(
n,

1

n
Σ

)
.

Thus, following similar steps to those in Sect. 2.2 (see also Appendix B.2 in the
Online Resource), under H0 in (22) for n > q + p − 1,

Λ3
st∼

p∏
j=1

(
Y j
)n where Y j ∼ Beta (n − q − j + 1, q)

are p independent r.v.’s
(26)

123



The exact and near-exact distributions of the main likelihood 397

so that, for h > (q + p − 1)/n − 1,

E
(
Λh

3

)
=

p∏
j=1

Γ (n + 1 − j)

Γ (n + 1 − q − j)

Γ (n + 1 − q − j + nh)

Γ (n + 1 − j + nh)
.

Thus, the c.f. of W3 = − logΛ3 is

ΦW3
(t) = E

(
ei tW3

)
= E

(
Λ−i t

3

)

=
p∏

j=1

Γ (n + 1 − j) Γ (n + 1 − q − j − nit)

Γ (n + 1 − q − j) Γ (n + 1 − j − nit)
=

p∏
j=1

q−1∏

=0

n + 1 − q − j + 


n + 1 − q − j + 
 − nit

(27)

=
p+q−1∏
j=1

(n − j)r j (n − j − nit)−r j =
p+q−1∏
j=1

(
n − j

n

)r j (n − j

n
− it

)−r j
(28)

for r j given by (19) in Theorem 2, with q replaced by q + 1.
Comparing (26) with (5.2.2) and (5.2.3) in Khatri (1965) and the first expression in

(27) with (5.3.1) and (5.3.3) in the same reference, it can be seen that there is a small
mistake in Khatri’s paper, where q has to be subtracted from the first argument of the
beta r.v.’s in (5.2.2) and (5.2.3) and also from the arguments of all gamma functions
in (5.3.1) of Khatri (1965).

From (28) Theorem 3 and Corollary 3 may be established.

Theorem 3 The exact distribution of W3 = − logΛ3 is a GIG distribution of depth
p + q − 1 with pdf

fW3
(w) = f GIG

(
w
∣∣ r1, . . . , rp+q−1; n − 1

n
, . . . ,

n − p − q + 1

n
; p + q − 1

)

and cdf

FW3
(w) = FGIG

(
w
∣∣ r1, . . . , rp+q−1; n − 1

n
, . . . ,

n − p − q + 1

n
; p + q − 1

)
,

where w > 0 and r j ( j = 1, . . . , p) are given by (19) in Theorem 2, with q replaced
by q + 1.

Corollary 3 The exact pdf and cdf of the statistic Λ3 = e−W3 in (23) are, for
0 < 
 ≤ 1,

fΛ3
(
)= f GIG

(
−log 


∣∣ r1, . . . , rp+q−1; n − 1

n
, . . . ,

n− p−q + 1

n
; p + q − 1

)
1
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and

FΛ3
(
)=1 − FGIG

(
−log 


∣∣ r1, . . . , rp+q−1; n − 1

n
, . . . ,

n− p−q + 1

n
; p+q−1

)
,

for r j given by (19), with q replaced by q + 1.

This test may be easily extended to test hypothesis of the type

H0 : μD = 0, (29)

where D is a q×q non-random matrix.
By the invariance property of the MLEs, which entails the invariance of the LRT

statistics, the LRT statistic to test H0 in (29) may be obtained just by replacing β = μ̂

in the expression of Λ3 by β∗ = μ̂D = μ̂D. Since in many cases D will not be
full-rank, the distribution of the matrix B∗, where

B∗ = 1

n
β∗(MM

′
)β

∗′
with β∗ = ZM

′
(MM

′
)−1D (30)

is now a complex Wishart distribution with a number of degrees of freedom equal to

rank(M
′
D

′
(MM

′
)−1DM)

which, since MM
′
is full-rank, will be equal to rank(D).

The LRT statistic to test H0 in (29) is thus

Λ∗
3 =

( |Ψ |
|Ψ + B∗|

)n

, (31)

with Ψ ∼ CWp
(
n − q, 1

nΣ
)
, as in (25), and B∗ as in (30). If rank(D) = q∗(≤ q),

then

B∗ ∼ CWp

(
q∗, 1

n
Σ

)
,

independent ofΨ , so thatΨ +B∗ ∼ CWp
(
n − q + q∗, 1

nΣ
)
and as such (see Appen-

dix B.2 in the Online Resource)

Λ∗
3

st∼
p∏

j=1

(
Y ∗
j

)n
where Y ∗

j ∼ Beta (n − q − j + 1, q∗)
are p independent r.v.’s.

Then, with an appropriate choice of the matrices Z , M and D, this test may be
used to implement the test of equality of mean vectors in Sect. 2.2 Indeed, if Z is the
sample matrix, with
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Z =
(p×n)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z111 . . . Z11n1 Z211 . . . Z21n2 . . . Zk11 . . . Zk1nk . . . Zq11 . . . Zq1nq
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Z1 j1 . . . Z1 jn1 Z2 j1 . . . Z2 jn2 . . . Zkj1 . . . Zkjnk . . . Zq j1 . . . Zq jnq
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Z1p1 . . . Z1pn1 Z2p1 . . . Z2pn2 . . . Zkp1 . . . Zkpnk . . . Zqp1 . . . Zqpnq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where Zkj
 represents the 
-th observation for the j-th variable in the k-th population,
for k = 1, . . . , q , j = 1, . . . , p and 
 = 1, . . . , nk , the matrix M the design matrix,
with

n1︷ ︸︸ ︷ n2︷ ︸︸ ︷ nk︷ ︸︸ ︷ nq︷ ︸︸ ︷

M
(q×n)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0 . . . 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1 . . . 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0 . . . 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

D
(q×q)

= Iq − 1

n
MM′Eqq =

⎡
⎢⎢⎢⎢⎣

1 − n1
n − n1

n · · · − n1
n

− n2
n 1 − n2

n · · · − n2
n

...
...

. . .
...

− nq
n − nq

n · · · 1 − nq
n

⎤
⎥⎥⎥⎥⎦

,

clearly with rank(D) = q − 1, then the matrix B∗ in (30) is exactly the same as
matrix B in (14), while the matrix Ψ in (24) is the same as matrix A in (14) and the
distribution of the LRT statistic Λ∗

3 in (31) the same as that of Λ2 in Sect. 2.2.

3 The exact distribution of the LRT statistic to test sphericity of the covariance
matrix

Suppose that X ∼ CNp(μ,Σ), and that the hypothesis to be tested is

H0 : Σ = σ 2 Ip (for some unspecified σ 2 > 0). (32)

Then, for a sample of size n, the LRT statistic to test H0 in (32), is,

Λ4 =
⎛
⎜⎝ |A|(

tr 1
p A
)p

⎞
⎟⎠

n

, (33)

where A is the MLE of Σ [see (6) and the note after this expression for references on
the MLE of Σ]. Under H0 in (32), the h-th moment of Λ4 is

123



400 C. A. Coelho et al.

E
(
Λh

4

)
=

p−1∏
j=1

Γ
(
n − 1 + j

p

)

Γ (n − j − 1)

Γ (n − j − 1 + nh)

Γ
(
n − 1 + j

p + nh
) =

p−1∏
j=1

E
(
Y j
)nh

, (34)

for h >
p
n − 1, andwhere Y j ∼ Beta

(
n − j − 1, j

p + j
)
are p−1 independent r.v.’s.

See sections B.3 and B.5.2 of Appendix B in the Online Resource for details on the
derivation of the expression for E

(
Λh

4

)
.

Since the whole set of moments of Λ4 defines its distribution,

Λ4
st∼

p−1∏
j=1

(
Y j
)n

.

Then, for W4 = − logΛ4, since the expression in (34) is well defined for h in a
neighborhood of zero, it follows that (see Appendix C in the Online Resource for
details),

ΦW4 (t) = E
(
eitW4

)
= E

(
Λ−it

4

)
=

p−1∏
j=1

Γ
(
n − 1 + j

p

)

Γ (n − j − 1)

Γ (n − j − 1 − nit)

Γ
(
n − 1 + j

p − nit
)

=
⎧⎨
⎩
p−1∏
j=1

(
n − j − 1

n

)p− j (n − j − 1

n
− it

)−(p− j)
⎫⎬
⎭

︸ ︷︷ ︸
Φ1,W4

(t)

⎧⎨
⎩

p−1∏
j=1

Γ
(
n − 1 + j

p

)
Γ (n − 1 − nit)

Γ (n − 1) Γ
(
n − 1 + j

p − nit
)
⎫⎬
⎭

︸ ︷︷ ︸
Φ2,W4

(t)

(35)

which shows that the exact distribution ofW4 is the same as the distribution of the sum
of a GIG distributed r.v. with depth p− 1, with shape parameters r j = p− j and rate

parameters n− j−1
n ( j = 1, . . . , p − 1), with p − 1 independent Logbeta

(
n − 1, j

p

)

r.v.’s ( j = 1, . . . , p−1). This shows that the distribution ofΛ4 is thus of the form (1),
with u = p − 1. The possibility of expressing the exact distribution ofΛ4 in this form
will enable us to develop a very accurate near-exact distribution for Λ4 in Sect. 5.1.

4 The exact distribution of the LRT statistic to test equality of several
covariance matrices

In this section the authors will only address the case of equal sample sizes. The case of
unequal sample sizes, given its complexity, will only be addressed in the next section.

Hence, suppose that Xk ∼ CNp(μk
,Σk), (k = 1, . . . , q), and that, based on q

independent samples, each of size n, the hypothesis to be tested is

H0 : Σ1 = · · · = Σq . (36)

Then, the LRT statistic is

Λ5 =
(
q pq

∏q
k=1 |Ak |
|A|q

)n

, (37)
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where Ak is n times the MLE of Σk (k = 1, . . . , q), and A = A1 + · · · + Aq [see
(6) and the note after for references on the MLE’s of Σk]. Under H0 in (36), the h-th
moment of Λ5 is

E
(
Λh

5

)
=

p∏
j=1

q∏
k=1

Γ (n + nh − j)

Γ (n − j)

Γ
(
n − 1 + k− j

q

)

Γ
(
n − 1 + k− j

q + nh
) =

p∏
j=1

q∏
k=1

E
(
Ynh
jk

)

(38)

which may be obtained from expression (70) in Appendix B.4 in the Online Resource
(see also subsection B.5.3 in Appendix B in the Online Resource for an alternative
proof based on the results in Jensen (1988, Thm. 5)), and where

Y jk ∼ Beta

(
n − j, j − 1 + k − j

q

)

are pq − 1 independent r.v.’s. Since the distribution of Λ5 is determined by the set of
its moments,

Λ5
st∼

p∏
j=1

q∏
k=1

(except for j=k=1)

(
Y jk
)n

.

Then, takingW5 = − logΛ5, we have (see Appendix D in the Online Resource for
details)

ΦW5(t) = E
(
e−itW5

)
= E

(
Λ−it

5

)
=

p∏
j=1

q∏
k=1

Γ
(
n − 1 + k− j

q

)
Γ (n − j − nit)

Γ
(
n − 1 + k− j

q − nit
)

Γ (n − j)

=
⎧⎨
⎩

p−1∏
j=1

(
n − 1 − j

n

)r j(n − 1 − j

n
− it

)−r j
⎫⎬
⎭

︸ ︷︷ ︸
Φ1,W5

(t)

×
⎧⎨
⎩

p∏
j=1

q∏
k=1

Γ
(
n − 1 + k− j

q

)
Γ
(
n − 1 +

⌊
k− j
q

⌋
− nit

)

Γ
(
n − 1 +

⌊
k− j
q

⌋)
Γ
(
n − 1 + k− j

q − nit
)
⎫⎬
⎭

︸ ︷︷ ︸
Φ2,W5

(t)

(39)

for

r j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(q − 1)
(
j − 1

2

)
j = 1, . . . ,

⌈
p−1
q

⌉
− 1

1
2

(
p − p2 + 2 j pq + q

−3 jq − q2( j − 1)2
) j =

⌈
p−1
q

⌉

q(p − j) j =
⌈

p−1
q

⌉
+ 1, . . . , p − 1,

(40)
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which shows that the exact distribution of Λ5 is of the form (1), with u = pq. As a
consequence, as was the case for the statistic in the previous section, very accurate
near-exact distributions can be developed for Λ5. See Sect. 5.2.

5 Near-exact distributions

Given the complexity of the exact distributions of the statistics in Sects. 3 and 4, or
rather, of the expressions that might be obtained for their exact pdf’s and cdf’s and the
concomitant issues related with their manageability, the development of near-exact
distributions for such statistics arises as a sensible goal.

Let then, as a general notation, W stand for the negative logarithm of the LRT
statistics in Sects. 3 and 4. The near-exact distributions developed in this section, forW ,
assume the form of mixtures of generalized near-integer gamma (GNIG) distributions
(see Marques et. al. 2011, App. B for the complete notation of the pdf and cdf of these
distributions), which, for some m∗ ∈ N, will have pdf’s and cdf’s, respectively, of the
form

f (w) =
m∗∑
ν=0

πν f GNIG
(

w
∣∣ r1, . . . , rp−1, r + ν; n − 2

n
, . . . ,

n − p

n
, λ; p

)
(41)

and

F(w) =
m∗∑
ν=0

πν FGNIG
(

w
∣∣ r1, . . . , rp−1, r + ν; n − 2

n
, . . . ,

n − p

n
, λ; p

)
, (42)

where w > 0 represents a possible value of W and where, for the statistic in Sect. 3,

r = p − 1

2
, λ = n−1

n
and r j = p − j, (43)

for j = 1, . . . , p − 1, while for the statistic in Sect. 4, r j are given by (40),

r = p
q − 1

2
and λ = λ∗,

where λ∗ is the rate parameter in

Φ∗∗
2,W5

(t) = p1(λ
∗)s1(λ∗ − it)−s1 + (1 − p1)

(
λ∗)s2 (λ∗ − it

)−s2 , (44)

which is determined together with s1, s2 and p1 in such a way that the first 4 derivatives
of Φ∗∗

2,W5
(t) and Φ2,W5

(t) in (39) at t = 0 are the same.
These near-exact distributions are built by leaving Φ1,W4(t) and Φ1,W5(t), respec-

tively, in (35) and (39), unchanged and then asymptotically approximating the c.f.’s
Φ2,W4(t) and Φ2,W5(t) in the same expressions by c.f.’s of finite mixtures of gamma
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distributions. This replacement is done based on the results in Sects. 5 and 6 of Tri-
comi and Erdélyi (1951), which show that any Logbeta(a, b) distribution may, for
non-integer b, be asymptotically approximated by an infinite mixture of Γ (b + ν, a)

(ν = 0, 1, . . .) distributions.
This yields as near-exact distributions forW , finite mixtures of sums of p indepen-

dent gamma r.v.’s, p− 1 of which have integer shape parameters r j while the pth one
has shape parameter r . For non-integer r , these are finite mixtures of GNIG distribu-
tions of depth p, but since for odd p, r = p−1

2 and for odd q, r = p q−1
2 are integers,

for Λ4 with odd p and for Λ5 with odd q, the components of the mixtures are indeed
GIG distributions (see Marques et. al. 2011, App. B for a complete notation of the pdf
and cdf of these distributions), although for generality of notation the components of
the mixtures in (41) and (42) are denoted as GNIG distributions.

The near-exact distributions built in this way are asymptotic not only for increasing
sample sizes but also for increasing number of variables and populations involved, as
is shown by the numerical studies carried out in the next section. These studies also
show the extreme closeness of these near-exact distributions to the corresponding exact
distributions even for very small sample sizes. Their parameters being very simple to
determine, their implementation is very easy with the help of adequate software.

Further details on the construction of these near-exact distributions are given in the
subsections ahead.

5.1 Near-exact distribution for the LRT statistic in Sect. 3

Using the results in Sects. 5 and 6 of Tricomi and Erdélyi (1951), as a first step,

Φ2,W4
(t) in (35), which is the c.f. of the sum of p−1 independent Logbeta

(
n − 1, j

p

)

r.v.’s ( j = 1, . . . , p − 1), multiplied by n, is replaced by the c.f. of the sum of

p−1 independent infinite mixtures of Γ
(

j
p + ν, n − 1

)
distributions (ν = 0, 1, . . .),

multiplied by n, which is the c.f. of the sum of p − 1 independent infinite mixtures of

Γ
(

j
p + ν, n−1

n

)
distributions (ν = 0, 1, . . .), andwhich in turn, and given that the rate

parameters of the gamma distributions are not functions of either j or ν, is an infinite

mixture of Γ
((∑p−1

j=1
j
p

)
+ ν, n−1

n

)
distributions, where

∑p−1
j=1

j
p = p−1

2 . This way

we obtain a representation of the distribution which bears some resemblance with the
representations in Nagar et al. (1985), Nagarsenker and Das (1975), Tang and Gupta
(1986), but with coefficients which are much simpler to compute. This representation
has the advantage of allowing for the easy development of very accurate near-exact
approximations. Moreover, our representation does not have any parameters that are
not well-defined, in contrast to the representation in Tang and Gupta (1986).

Therefore, to obtain a near-exact distribution for W4, Φ2,W4
(t) in (35) will be

replaced by the c.f. of a finite mixture of Γ
(
p−1
2 + ν, n−1

n

)
distributions, for ν =

0, . . . ,m∗,

Φ∗
2,W4

(t) =
m∗∑
ν=0

πν

(
n − 1

n

) p−1
2 +ν (n − 1

n
− it

)−
(

p−1
2 +ν

)

, (45)
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where the weights π0, . . . , πm∗−1 are determined as the numerical solution of the
system of m∗ equations

∂h

∂th
Φ∗

2,W4
(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ2,W4

(t)

∣∣∣∣
t=0

, h = 1, . . . ,m∗ (46)

with πm∗ = 1 −∑m∗−1
ν=0 πν . In this way these near-exact distributions have, by con-

struction, the first m∗ moments equal to the first m∗ exact moments of W4. Hence,

Φ∗
W4

(t) = Φ1,W4(t) Φ∗
2,W4

(t),

with Φ1,W4
(t) given by (35) and Φ∗

2,W4
(t) given by (45), will be used as a near-exact

c.f. for W4, to which corresponds the pdf and the cdf in (41) and (42), with r and λ

given by (43).
Then, Theorem 4 and Corollary 4 may be stated.

Theorem 4 Let W4 = − logΛ4,whereΛ4 is the LRT statistic in (33). Then, for some
m∗ ∈ N, distributions with pdf and cdf given by (41) and (42), with r, λ and r j given
by (43) and π0, . . . , πm∗−1 determined from (46), with Φ∗

2,W4
(t) given by (45) and

πm∗ = 1 −∑m∗−1
ν=0 πν, are near-exact distributions for W4.

From Theorem 4, Corollary 4 is then readily obtained.

Corollary 4 Let Λ4 be the LRT statistic in (33). Then, distributions with pdf and cdf,
respectively, given by f (− log 
) 1



and 1 − F(− log 
) where f ( · ) and F( · ) are

given by (41) and (42), with 0 < 
 ≤ 1 representing a possible value for Λ4 and r j
( j = 1, . . . , p − 1), r, λ and πν (ν = 0, . . . ,m∗) defined as in the previous theorem,

are near-exact distributions for Λ4.

5.2 Near-exact distribution for the LRT statistic in Sect. 4

5.2.1 The case of equal sample sizes

For the statistic Λ5 in Sect. 4, in the case where all q samples have size n,
we may asymptotically replace Φ2,W5

(t) in (39), which is the c.f. of the sum

of pq − min(p, q) independent Logbeta
(
n − 1 +

⌊
k− j
q

⌋
,
k− j
q −

⌊
k− j
q

⌋)
r.v.’s

( j = 1, . . . , p; k = 1, . . . , q; j �= k), multiplied by n, by the c.f. of the sum of pq −
min(p, q) independent infinitemixtures ofΓ

(
k− j
q −

⌊
k− j
q

⌋
+ν, 1

n

(
n − 1+

⌊
k− j
q

⌋))

distributions (ν = 0, 1, . . .). If it were the case that the rate parameters in these
gamma distributions were functions of neither j nor k, as happened in the previ-
ous subsection, then this sum of mixtures would yield a simple mixture of gamma
distributions. However, since now the rate parameters of the gamma distributions
in the sum of mixtures are functions of both j and k, it renders it difficult to
add the different mixtures of gamma distributions. For this reason it is used as an
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asymptotic replacement for Φ2,W5
(t) in (39) the c.f. of a finite mixture of m∗ + 1

Γ
(∑p

j=1

∑q
k=1

k− j
q −

⌊
k− j
q

⌋
+ ν, λ∗

)
distributions (ν = 0, . . . ,m∗), which is

Φ∗
2,W5

(t) =
m∗∑
ν=0

πν(λ
∗)r+ν(λ∗ − it)−(r+ν), (47)

with

r =
p∑

j=1

q∑
k=1

k − j

q
−
⌊
k − j

q

⌋
= p

q − 1

2
, (48)

and where λ∗ is the common rate parameter of a mixture of two gamma distributions
whose first four moments match the first four moments of the sum of independent
logbeta r.v.’s whose c.f. is Φ2,W5(t) in (39), that is, where λ∗ is the rate parameter in
Φ∗∗

2,W5
(t) in (44), which is determined together with s1, s2 and p1 in such a way that,

∂h

∂th
Φ∗∗

2,W5
(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ2,W5

(t)

∣∣∣∣
t=0

, h = 1, . . . , 4, (49)

and where the weights πν (ν = 0, . . . ,m∗ − 1), are then determined in such a way
that

∂h

∂th
Φ∗

2,W5
(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ2,W5

(t)

∣∣∣∣
t=0

, h = 1, . . . ,m∗, (50)

with πm∗ = 1 −∑m∗−1
ν=0 πν .

Therefore,

Φ∗
W5

(t) = Φ1,W5(t) Φ∗
2,W5

(t),

with Φ1,W5
(t) given by (39) and Φ∗

2,W5
(t) given by (47), will be used as a near-exact

c.f. for W5, and as such one may thus enunciate the results summarized in Theorem 5
and Corollary 5.

Theorem 5 Let W5 = − logΛ5, where Λ5 is the LRT statistic in (37). Then, for
some m∗ ∈ N, distributions with pdf and cdf given by (41) and (42), with r j given
by (40), r given by (48) and λ = λ∗ obtained by solving (49) in order to λ∗, s1, s2
and p1, and π0, . . . , πm∗−1 determined from (50), with Φ∗

2,W5
(t) given by (47) and

πm∗ = 1 −∑m∗−1
ν=0 πν, are near-exact distributions for W5.

Corollary 5 Let Λ5 be the LRT statistic in (37). Then distributions with pdf and cdf,
respectively, given by f (− log 
) 1



and 1 − F(− log 
) where f ( · ) and F( · ) are

given by (41) and (42), with 0 < 
 ≤ 1 representing the running value for Λ5 and r j
( j = 1, . . . , p − 1), r, λ and πν (ν = 0, . . . ,m∗) defined as in the previous theorem,

are near-exact distributions for Λ5.
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5.2.2 The case of unequal sample sizes

When the samples have different sizes, with the k-th sample having size nk , the LRT
statistic Λ5 is now

Λ5 = NNp

∏q
k=1 n

nk p
k

∏q
k=1 |Ak |nk
|A|N , (51)

where N =∑q
k=1 nk , and Ak (k = 1, . . . , q) is equal to nk times the MLE of Σk and

A = A1 + · · · + Aq .
The c.f. ofW5 = − logΛ5 may be obtained from (69) in the supplementarymaterial

in the Online Resource, replacing h by −it , as

ΦW5
(t) = E

(
Λ−it

5

)

= N −Npit

∏q
k=1 n

−nk pit
k

p∏
j=1

{
Γ (N − q + 1 − j)

Γ (N − q + 1 − j − N it)

q∏
k=1

Γ (nk − j − nk it)

Γ (nk − j)

}
.

It happens that the exact distribution of Λ5 in (51) is quite complicated and it is not
even possible to give it a structure of the form (1).

However, using a procedure similar to the one used in Coelho and Marques (2012),
the c.f. of W5 may be written as

ΦW5
(t) = Φ1,W5

(t)
ΦW5

(t)

Φ1,W5
(t)

,

where Φ1,W5
(t) is given by (39), now with n = N/q . Then, to build a near-exact

approximation for W5, Φ1,W5
(t) will be left unchanged and

ΦW5
(t)

Φ1,W5
(t) will be replaced

by Φ∗
2,W5

(t), given by (47), once again with λ∗ defined in a similar manner to the one
used in the previous subsection, with r either equal to s1 in (44) or given by (48). As
it will be shown in the next section, while the first choice for r will yield near-exact
distributions that are asymptotic for increasing sample sizes as well as for increasing
values of p and q, the second choice may give slightly better approximations for small
values of p and even better approximations for large sample sizes. However, these
latter near-exact distributions will no longer be asymptotic for increasing values of p
or q, but only for increasing sample sizes.

As such, in terms of near-exact distributions, for the case of unequal sample sizes,
similar results to the ones in Theorem 5 andCorollary 5 still hold, with the due changes
in the parameters, namely with all the occurrences of n changed to N/q.

6 Numerical studies

In order to assess the proximity of the near-exact distributions developed in Sect. 5
to the exact distribution and their performance in different situations, we will use the
measure
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Δ = 1

2π

∫ +∞

−∞

∣∣∣∣
ΦW (t) − Φ∗

W (t)

t

∣∣∣∣ dt,

which yields

max
0<
≤1

∣∣FΛ(
) − F∗
Λ(
)

∣∣ = max
w>0

∣∣FW (w) − F∗
W (w)

∣∣ ≤ Δ,

whereW represents generally eitherW4 orW5,Λ = e−W ,ΦW (t) represents the exact
c.f. ofW and Φ∗

W (t) its approximate c.f., usually a near-exact c.f., but occasionally an
asymptotic or other c.f., FW ( · ) and FΛ( · ) the exact cdf’s ofW andΛ, corresponding
to ΦW (t), and F∗

W ( · ) and F∗
Λ( · ) the cdf’s corresponding to Φ∗

W (t). Some further
details on Δ and its relation with the Berry–Esseen bound are discussed in Coelho
and Marques (2012). It should be noted that, quite clearly, a given value of Δ for
any approximation to the exact distribution of either W4 or W5 will be the same as
the corresponding value of the measure for the corresponding approximation to the
distribution of, respectively, either Λ4 = e−W4 or Λ5 = e−W5 .

All computations are done with Mathematica�, version 7.0.0.

6.1 Numerical studies on the approximations for Λ4

In Table 1 may be analyzed the values of the measure Δ for the statistic Λ4, for values
of p, the number of variables involved, ranging from 3 to 50 and sample sizes n which
exceed p by 2, 12, 50 and 100. In order to compare the performance of the near-
exact distributions with other available approximations in the literature, the Box type
asymptotic distribution (Box 1949), used in Nagarsenker and Nagarsenker (1981)
and the Pearson type I distribution used in Krishnaiah et al. (1976) have also been
considered. The Pearson type I distribution was fitted by matching the first four exact
moments of Λ

1/nb
4 . In each case it is used for b the positive integer value which would

give a better fit, this way obtaining indeed much better approximations than the ones
obtained in Krishnaiah et al. (1976). These values of b are specified in Table 1, inside
square brackets, right after the value ofΔ for the Pearson type I approximation. It may
be noted that this Pearson type I approximation, with the slight change introduced,
has a much better performance than truncations, even with a rather large number of
terms, of any of the expansions in Nagarsenker and Das (1975).

The results in Table 1 show that although the Pearson type I distribution, with the
improvement introduced of finding the integer value of bwhich gives the best fit to the
exact distribution, has a good performance, with an asymptotic behavior not only for
increasing sample sizes but also for increasing values of p, it still is no match even for
the near-exact distributionwhichmatches only 4moments. Besides, finding the integer
value of b which gives the best fit for the Pearson type I distribution is not an easy
task, and it was not possible to fit any such distribution for p = 50 and n = 52. The
Box type asymptotic distribution has the poorest behavior of all the approximations. Its
performance being worse for larger values of p, with values ofΔ greater than 1, which
shows that in these cases the asymptotic distribution yielded by the approximation is
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Table 1 Values of the measure Δ for the near-exact and asymptotic distributions for the LRT statistic to
test sphericity

p n Near-exact distribution # of exact moments matched Box Pearson type I

4 6 10 15

3 5 1.09× 10−8 2.74× 10−11 3.57× 10−13 9.28× 10−16 5.75× 10−2 2.17× 10−3 [1]

15 6.27× 10−11 1.21× 10−13 1.39× 10−18 4.27× 10−23 9.12× 10−3 2.78× 10−5 [1]

53 2.21× 10−11 3.42× 10−14 1.19× 10−18 7.73× 10−23 2.88× 10−3 6.85× 10−7 [1]

103 1.08× 10−12 6.43× 10−16 1.16× 10−21 2.71× 10−27 1.52× 10−3 9.58× 10−8 [1]

10 12 3.54× 10−16 2.18× 10−20 2.61× 10−28 2.39× 10−37 8.07× 10−1 3.56× 10−4 [3]

22 2.19× 10−15 7.50× 10−20 2.26× 10−27 1.64× 10−35 3.52× 10−1 2.17× 10−6 [5]

60 1.21× 10−15 3.02× 10−20 7.29× 10−28 2.04× 10−36 1.16× 10−1 7.88× 10−8 [5]

110 9.24× 10−17 7.55× 10−22 3.06× 10−30 2.87× 10−40 6.17× 10−2 1.19× 10−8 [5]

50 52 6.91× 10−18 3.35× 10−25 8.87× 10−35 8.46× 10−47 6.48× 100 —

62 2.57× 10−16 6.21× 10−23 1.88× 10−32 4.66× 10−43 4.85× 100 1.27× 10−6 [16]

100 1.56× 10−16 3.48× 10−23 3.92× 10−33 8.04× 10−46 2.48× 100 2.91× 10−8 [24]

150 8.77× 10−18 6.80× 10−25 5.13× 10−36 3.71× 10−48 1.57× 100 3.97× 10−9 [27]

not a true distribution. Moreover, it produces values ofΔ quite close to 1 for a number
of other cases.

The near-exact distributions always show a very good performance, with very
low values of Δ. They exhibit a very good performance even for the smaller sam-
ple sizes, always showing an asymptotic behavior both for increasing sample sizes
as well as for increasing values of p, and, of course, with the near-exact distribu-
tions which match a larger number of exact moments showing an increasingly better
performance.

6.2 Numerical studies on the approximations for Λ5

For the case of equal sample sizes, are shown in Table 2 the values of the measure
Δ for the statistic Λ5, for different values of p, q and n, respectively, the number
of variables involved, the number of covariance matrices involved and the common
sample size of the q independent samples. In order to compare the performance of
the near-exact distributions with other available approximations in the literature, the
mixture of two beta distributions in Fang et al. (1982) and the Pearson type I distribu-
tion used by Krishnaiah et al. (1976) are used. These two distributions were fitted by
matching, respectively, the first two and four exact moments of Λ

1/nb
5 , for the choice

of b ∈ Nwhich gives the lowest value ofΔ. These values of b are specified in Table 2,
inside square brackets, right after the value of Δ for each of these approximations.
The mixture of two beta distributions used is a mixture of two beta distributions with
the same first parameter and a second parameter given by expressions (4.7) and (4.9)
in Fang et al. (1982). Then the first weight in the mixture and the first parameter
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in the beta distributions were determined by equating the two first exact moments
of Λ

1/nb
5 and the two first moments of the mixture. The mixture of two beta dis-

tributions in Fang et al. (1982) is indeed not implemented exactly in this way. The
decision to follow this alternative implementation was due to the facts that not only
the definition of the parameter s in (4.9) and (4.10) in Fang et al. (1982) yields a
conflicting definition for A2 in the same reference, but also to the fact that by defin-
ing the parameters as suggested above, the approximation has indeed a much better
performance.

From the results in Table 2 is possible to see how the Pearson type I approximation
always outperforms the mixture of two beta distributions, mainly for the larger sample
sizes. However, the Pearson type I distribution is always itself largely outperformed
by the near-exact distribution which matches only 4 moments. The near-exact distrib-
utions once again show not only a marked asymptotic behavior for increasing sample
sizes but also for increasing values of both p and q, as well as a consistent extremely
good performance for very small sample sizes, avoiding the cumbersomeness of the
determination of the best value for the parameter b in the Pearson type I and in the
mixture of betas approximations.

In the case of different sample sizes, it was not feasible to fit the Pearson type I
approximation to any case. Actually the authors in Krishnaiah et al. (1976) have only
used this approximation for the case of equal sample sizes. However, it was possible
to fit the mixture of two beta distributions to powers of Λ

1/b
5 . But, when trying to

find the best integer value of b many local minima were found, rendering the process
of determining the best value of b a very frustrating and time consuming task. This,
together with the fact that the near-exact distributions have a very good performance
also for this different sample sizes case, for all sample sizes and all values of p and
q, leads to the conclusion that it is indeed much preferable to use the near-exact
approximations, which seem to be the only approximations with a very good and
consistent performance.

The near-exact distributions which use for λ∗ and r , respectively, the values of λ∗
and s1 in (44), obtained by solving the system of equations in (49) exhibit a very
good performance even for the smaller sample sizes and a clear asymptotic behavior
not only for increasing sample sizes but also for increasing values of p and q. The
near-exact distributions which match only four exact moments always outperform the
mixture of two beta distributions except for the smaller sample sizes for p = 5, with
the measures for this mixture exhibiting a somewhat erratic behavior. Values of Δ for
these near-exact distributions as well as for the mixture of two beta distributions, with
the indication, inside square brackets, of the value of b used, may be analyzed in Table
3 in the supplementary material in the Online Resource.

The near-exact distributions which use the same value of λ∗ as the ones above,
but use for r the value given by (48), give better values of Δ for larger sample
sizes and also for smaller values of p, but they lose their asymptotic character for
increasing values of p, the number of variables involved. See Table 4 in the sup-
plementary material in the Online Resource for the values of Δ for these near-exact
distributions.
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7 An application of the results obtained: the LRT statistic to test the equality
of several multivariate complex normal distributions

In this section the authors showhow the results obtainedmay be combined, as proposed
in Coelho and Marques (2009), allowing a smooth path towards the development
of near-exact distributions for LRT statistics for more elaborate hypotheses. As an
application, the authors will show how very sharp near-exact distributions may be
obtained for theLRTstatistic to test the equality of severalmultivariate complexnormal
distributions, based on the results in the previous sections. Numerical results show the
extreme closeness of the near-exact distribution obtained to the exact distribution of
the LRT statistic.

Let us consider q independent samples of size n, the k-th of which obtained from
CNp(μk

,Σk) (k = 1, . . . , q), and that we want to test the hypothesis of equality of
the q CNp(μk

,Σk) distributions,

H0 : μ1 = · · · = μ
k

= · · · = μ
q
, Σ1 = · · · = Σk = · · · = Σq . (52)

The null hypothesis H0 in (52) may be written as

H0 ≡ H02|05 o H05

where “o” is to be read as “after” or “composed with”, and where

H05 : Σ1 = · · · = Σk = · · · = Σq (53)

and

H02|05 : μ
1

= · · · = μ
k

= · · · = μ
q
,

assuming H05
(54)

which are the null hypotheses in Sects. 4 and 2.2.
According to Lemma 10.3.1 in Anderson (2003), the LRT statistic to test H0 in

(52) will be the product of the LRT statistics to test H05 in (53) and H02|05 in (54), so
that this statistic will be

Λ =
(
q pq

∏q
k=1 |Ak |
|A|q

)n

︸ ︷︷ ︸
Λ5

|A|nq
|A + B|nq︸ ︷︷ ︸

Λ2|5

=
(
q pq

∏q
k=1 |Ak |

|A + B|q
)n

, (55)

where Λ5 is the LRT statistic to test H05 in (53) (see Sect. 4), Λ2|5 is the LRT statistic
to test H02|05 (see Sect. 2.2), A = A1 + · · · + Ak + · · · + Aq and B is given by (14),
with n j = n, with Ak being equal to n times the MLE of Σk .

Given the independence of Λ5 and Λ2|5 (see Anderson 2003, Lemma 10.4.1), the
h-th moment of Λ may be obtained as

E
(
Λh
)

= E
(
Λh

5

)
E
(
Λh

2|5
)

,
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where E(Λh
5) is the h-th moment of Λ5 and as such, given by (38), and E(Λh

2|5) is the
h-th moment of Λ2|5, and as such given by (16), using nq in place of n. In this context
and assuming H0 in (52), Λ5 and Λ2|5 are independent, given that Λ5 is independent
of A = A1 + · · · + Ak + · · · + Aq , which may be shown using a similar procedure to
the one in Anderson (2003, Sec. 10.4).

The c.f. of W = − log Λ may be written, from (39) and (20), where in this last
expression n has to be replaced by nq, as

ΦW (t) =
⎧⎨
⎩

p−1∏
j=1

(
n − 1 − j

n

)s j (n − 1 − j

n
− it

)−s j
⎫⎬
⎭

×

⎧⎪⎪⎨
⎪⎪⎩

p+q−2∏
j=1

j �=αq−1

(
n−( j+1)/q

n

)r j(n−( j+1)/q

n
−it

)−r j

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
φ1,W (t)

×
⎧⎨
⎩

p∏
j=1

q∏
k=1

Γ
(
n−1+ k−j

q

)
Γ
(
n−1+

⌊
k−j
q

⌋
−nit

)

Γ
(
n−1+

⌊
k−j
q

⌋)
Γ
(
n−1+ k−j

q −nit
)
⎫⎬
⎭

︸ ︷︷ ︸
Φ2,W (t)

,

where

s j =
{
r∗
j j = 1, . . . , p − 1, j �= αq − 1

r∗
j + rαq−1 j = αq − 1,

for α = 2, . . . ,
⌊
p−1
q

⌋
, with r j ( j =1, . . . , p+q−2) given by (19) and r∗

j ( j=1, . . . ,

p−1) equal to r j in (40).
Near-exact distributions for W and Λ are thus obtained by leaving Φ1,W (t)

unchanged and replacing Φ2,W (t) by Φ∗
2,W (t) in (47), with r given by (48) and λ∗

determined as described in Sect. 5.2.1. These near-exact distributions will have pdf’s
and cdf’s which for Λ are given by

fΛ(
) =
m∗∑
ν=0

πν f GNIG
(

− log 


∣∣∣∣ r1, ... , r j , ... , rp+q−2︸ ︷︷ ︸
j �=αq−1, α=2,...,�(p−1)/q�

, s1, ... , sp−1, r + ν;

n − 2/q

n
, ... ,

n − ( j + 1)/q

n
, ... ,

n − (p + q − 2)/q

n︸ ︷︷ ︸
j �=αq−1, α=2,...,� p−1

q �

,
n − 2

n
, ... ,

n − p

n
, λ∗;

2p + q − 2 −
⌊
p − 1

q

⌋)
1
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and

FΛ(
) = 1 −
m∗∑
ν=0

πν FGNIG
(

− log 


∣∣∣∣ r1, ... , r j , ... , rp+q−2︸ ︷︷ ︸
j �=αq−1, α=2,...,�(p−1)/q�

, s1, ... , sp−1, r + ν;

n − 2/q

n
, ... ,

n − ( j + 1)/q

n
, ... ,

n − (p + q − 2)/q

n︸ ︷︷ ︸
j �=αq−1, α=2,...,� p−1

q �

,
n − 2

n
, ... ,

n − p

n
, λ∗;

2p + q − 2 −
⌊
p − 1

q

⌋)
,

(56)

where the GNIG components of the mixture may indeed be replaced by GIG compo-
nents in case the shape parameter r , given by (48) is an integer.

These near-exact distributions yield very sharp approximations to the exact distrib-
ution, which are asymptotic not only for increasing sample sizes but also for increasing
values of the number of variables in the distributions (p) and the number of distribu-
tions involved (q), as it may be seen from the values of the measure Δ in Table 5 in
the Online Resource.

An example of application of this test is provided in the supplementary material in
the Online Resource.

8 Conclusions

The authorswere able to show that themain LRT statistics used inmultivariate analysis
in the complex multivariate normal setting all have a distribution which can be written
in the form in (1). This enabled a much deeper insight into the true structure of such
distributions and made possible to obtain very simple expressions for the exact distri-
butions of the LRT statistics to test the independence of several groups of variables,
the equality of several mean vectors and the equality of an expected value matrix to a
given matrix and to develop very well-fitting near-exact approximations for the LRT
statistics to test sphericity and the equality of covariance matrices.

Although (1) may seem to bear some resemblance to the form obtained for the real
multivariate normal distribution in Marques et. al. (2011), there are major differences
between the complex and real cases: in the complex case (i) it is possible to obtain the
exact distribution for the statistics discussed in Sect. 2 in a closed and verymanageable
form, thus avoiding the necessity for approximations as in Krishnaiah et al. (1976),
Fang et al. (1982), Khatri (1965), or the complex expressions in Khatri (1965), Gupta
(1971), Tang and Gupta (1986), Gupta (1976), Gupta and Rathie (1983), Pillai and
Jouris (1971),Mathai (1973), even for the null case, and (ii) for the statistics in Sects. 3
and 4, the shape parameters of the gamma r.v.’s in the exact and near-exact distributions
have much simpler expressions.

The near-exact approximations show very good performances even for very small
sample sizes, displaying an asymptotic behavior not only for increasing sample sizes
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but also for increasing number of variables and matrices involved, outperforming by
far any other available approximations, such as those in Krishnaiah et al. (1976), Fang
et al. (1982). Using one of the symbolic softwares available their implementation is
very simple and their use enables us to avoid the cumbersome problems associatedwith
the determination of the best value for the parameter b in the Pearson approximation.
Moreover, the numerical determination of their parameters iswell defined and poses no
numerical problems. Benefiting from all these features, the near-exact approximations
are, beyond any doubt, the recommended approximation for the statistics Λ4 and Λ5.

The common structure of the distributions of the LRT statistics addressed, estab-
lished in (1), also enables the smooth development of near-exact distributions for LRT
statistics for more elaborate hypotheses. In Sect. 7, this feature is used to address the
test of equality of multivariate complex normal distributions and to develop near-exact
distributions for its LRT statistic. Numerical studies confirm the extreme closeness
between the near-exact distributions obtained and the exact distribution.

Modules for the near-exact distributions developed in this paper are available in the
web-site: https://sites.google.com/site/nearexactdistributions/complex-normal, and a
short users-guide for these modules is made available in Appendix A.
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cia e a Tecnologia, project PEst-OE/MAT/UI0297/2014 (CMA/UNL). The authors would like to express
their gratitude to two anonymous Referees, the Associate Editor and also the Editor-in-Chief, whose sug-
gestions contributed to a more solid and self-contained paper.

Appendix A: Short user’s guide for the computational modules

A.1 Modules for the exact distributions of statistics in Sect. 2

Concerning themodules for the exact distributions of the threeLRT statistics addressed
in Sect. 2, there are five modules made available for each statistic Λi . These modules
are CFWi, PDFWi, CDFWi, PDFLi and CDFLi, where i is to be replaced by either 1, 2
or 3. Thesemodules give as output, respectively, the value for the c.f. ofWi = − log Λi

(i = 1, 2, 3), the value for its pdf, the value for its cdf, the value for the pdf of Λi and
the value for the cdf of Λi , computed at the value for the running variable.

In the case of the LRT statistic Λ1, the arguments of these five modules are, in this
order: (i) a list whose components are the number of variables of each group, (ii) the
sample size, (iii) the running variable for the function. For Λ2, the arguments are, in
this order: (i) the number of variables (equal for each population), (ii) the number of
mean vectors being tested, (iii) the overall sample size, (iv) the running variable for
the function. In the case ofΛ3, the arguments are (i) the number of variables, (ii) either
the rank of the matrix D, in case this matrix is used, or the number of columns of the
matrix μ.

The modules used to compute the pdf and cdf of Wi = − logΛi make use of the
modules for the pdf and cdf of the GIG distribution, while the modules for the pdf and
cdf of Λi make use of the corresponding modules for Wi , using the usual technique
of r.v. transformation.
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To obtain the computational modules and for a few examples of their use down-
load the Mathematica� file Mathematica_Modules_for_Exact_distr_
stats_Sec_2.nb, readily available from the web-page https://sites.google.com/
site/nearexactdistributions/complex-normal.

A.2 Modules for the near-exact distributions of statistics in Sects. 3 and 4

For the statistics Λ4 and Λ5, in Sects. 3 and 4 and whose near-exact distributions are
developed in Sect. 5, there are also fivemodulesmade available for each statistic. These
modules are: NECFWi, NEPDFWi, NECDFWi, NEPDFLi and NECDFLi, where i is
to be replaced by either 4 or 5. These modules give as output, respectively, the value
for the near-exact c.f. of Wi = − logΛi (i = 4, 5), the value for its near-exact pdf
and cdf and the value for the near-exact pdf and cdf of Λi , computed at the value for
the running variable.

In the case of the LRT statistic Λ4, the arguments of the five modules are, in the
following order: (i) the number of variables, (ii) the sample size, (iii) the number of
exact moments to be matched, (iv) the running variable for the function and (v) an
optional argument which is the number of precision digits used to compute the exact
moments to be matched by the near-exact distribution and which has a default value of
100. ForΛ5, the arguments are, in the following order: (i) the number of variables, (ii)
the number of covariance matrices being tested, (iii) the sample size, (iv) the number
of exact moments to be matched, (v) the running variable for the function and (vi) the
same optional argument as in (v) for Λ4.

The modules used to compute the near-exact pdf and cdf of Wi = − log Λi

(i = 4, 5) make use of the modules for the pdf and cdf of the GIG and GNIG dis-
tributions, while the modules for the near-exact pdf and cdf of Λi make use of the
corresponding modules for Wi , by using the usual technique of r.v. transformation.

To obtain the computational modules and for a few examples of their use download
the Mathematica� file Mathematica_Modules_for_Near-Exact_distr_
stats_Sec_3_4.nb, readily available from the web-page https://sites.google.
com/site/nearexactdistributions/complex-normal.
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