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Abstract Large spatial data sets require innovative techniques for computationally
efficient statistical estimation. In this comment some aspects of local predictor selec-
tion are explored, with a view towards spatially coherent field prediction and uncer-
tainty quantification.

Keywords Stochastic spatial models · Non-stationarity · Stochastic partial
differential equation · Predictive scoring rules · Local model selection

1 Motivation

The paper by Bradley et al. (2014) investigates the use of local selection of spatial
predictors to aid the analysis of large spatial data sets. The idea is that, even if globally
constructed predictors may not be locally optimal individually, given a set of different
predictors one can select the locally optimal predictor for each location, based on
a validation criterion. In this comment, I will discuss some possible generalisations,
aimed at the more difficult problem of constructing spatially consistent representations
of uncertainty. As the authors rightly note, the sheer size of a data set does not imply
that it is also necessarily spatially dense, so Bayesian process prior models (or essen-
tially equivalent loss-function regularisation methods) are still useful and sometimes
necessary tools for practical data analysis.

The computation time for the SPD and LKR methods, and likely similarly for the
other methods considered in the paper, is dominated by the numerical optimisation
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36 F. Lindgren

of a very flat likelihood. While the full SPD estimations that we will explore here
take on average almost 3 min each, when using 20,000 observations to predict onto
26,002 other locations using the INLA R package (Rue et al. 2013), each individual
kriging field evaluation takes less than 1 s. For non-stationary models, global para-
meter estimation completely dominates the computational effort (Aune et al. 2014),
and local methods become attractive, since estimating several smaller models can be
faster than estimating a single large model. It is therefore slightly surprising that the
paper does not consider that additional step, but only uses the global estimates to do
local selection. With the current popularity of quantifying uncertainty with spatially
coherent samples from conditional distributions, which was already a natural thing to
do in Bayesian settings, the problem of estimating probabilistic non-stationary models
therefore remains. However, the simplicity of the local predictor selection approach
makes it an attractive starting point for model based methods, both parametric and
non-parametric. The aim in this comment is to (1) explore selection criteria using
predictive distribution information, and (2) assess to what extent the selected local
predictors associate with a true non-stationary random process model.

2 A constructed test model

The term white noise used in the paper for the measurement noise process ε(u) is
slightly problematic, since it typically implies a spatially defined spectral measure
representation, which the measurement noise process does not have. In spatially con-
tinuous contexts, white noise is typically defined precisely as a spectrally white ran-
dom measure, on R

d informally identified with the derivative of a Brownian sheet,
which does not have a practical point-wise meaning. The distinction becomes impor-
tant when we now consider a version of the stochastic partial differential equation
used to construct the SPD spatial predictor in the paper. As shown by Whittle (1954,
1963), the Matérn correlation with spatial scale parameter κ can be identified with the
solutions to a fractional stochastic partial differential equation, which in turn can be
closely approximated by an expansion in compactly supported basis functions with
Markov-dependent coefficients (Lindgren et al. 2011). A non-stationary extension to
the sphere is given by

(
κ(u)2 − ∇ · ∇

)
Y (u) du = κ(u)E (du), u ∈ S

2, (1)

where E (·) is a zero mean Gaussian random measure such that for any pair of mea-
surable sets A, B ⊆ S

2, cov (E (A),E (B)) = 4π
τ

|A ∩ B|. Note that (1) should be
interpreted only as shorthand notation for a proper stochastic integral equation. The
parameter τ is nominally the precision (inverse variance) of Y (u), but the true vari-
ance will depend on κ(·). Small κ(·) increases the variance because of the spherical
topology, and the variance is also somewhat dependent on the derivatives of κ(·).

As in the CO2 example in the paper, we consider the model structure

Z(u) = Y (u) + ε(u),
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Fig. 1 The true field Y (·), the computational triangulation mesh for the SPDE/GMRF construction, the
training data Z(si ), si ∈ Dtrn, and the validation data Z(si ), si ∈ Dval

where Z(u) is observed at a set of locations D, which we split into n = 20,000
training locations Dtrn and m = 10,000 validation locations Dval. The process Y (·)
is interpreted as a hidden, or latent, Gaussian random field, and ε(·) is interpreted as
independent zero mean Gaussian measurement noise with location dependent variance
var(ε(u)) = σ 2

ε v(u). For simplicity, we assume that v(·) is known. Note that, in reality,
ε(·) lives only on D, but we treat its potential value at arbitrary locations as real to
simplify the predictive distribution formulations. The latent process Y (u) is modelled
as the sum of a weighted sum of rotationally invariant spherical harmonics up to order
2 and a realisation of the SPDE in (1).

The simulated test case is constructed so that log(v(·)) varies linearly in sin(lat),
starting at − log(16) at the north pole, and increasing to log(16) at the south pole.
Similarly, the spatial range is smoothly varying in sin(lon), with minimum 15 at (90W,
0N) and maximum 60 at (90E, 0N). The true field Y (·), the computational triangulation
mesh, the training data, and the validation data, are shown in Fig. 1. The triangulation
is a quasi-regular mesh with 16,002 nodes based on a subdivided icosahedron, and is
used to define the finite elements for the Gaussian Markov random field approximation
at the heart of the SPDE/GMRF modelling approach. Further details of the simulation
study will be given in Sect. 4.

3 Alternative selection criteria

The paper uses punctured local predictor selectors, constructed so that the behaviour is
different if for some reason one wants to predict at one of the validation data locations.
The reason why this construction is used appears to be to guarantee that the locally
selected predictor improves on the sum of the validation errors. However, when treating
the hidden process Y (u) as a field on a continuous domain, a more relevant quantity
might be the full spatial average of the expected prediction error, which is unaffected
by changes on a null set.
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From this point of view, the simple local predictor, SLS, is not meaningfully dif-
ferent from the global selection method GSP, and the similar puncture of the MWS
and NNS methods only serves to retain some of the discontinuities they were meant to
remove. Here we will instead consider a non-punctured version of the moving-window
predictor, with added distance weighting to further stabilise the local predictor.

3.1 Distance weighted selectors

Let W (u, s) be a non-negative weighting function, defined for all u in the continuous
domain, and all s ∈ Dval. The local validation sets H ⊆ Dval and associated locally
renormalised weights W can then be defined through

H(W, u) = {s : s ∈ Dval, W (u, s) > 0}
W (u, s) = W (u, s)∑

s′∈H(W,u) W (u, s′)

With the exclusion of the puncturing, the unweighted MWS method in the paper
corresponds to using the weight function

W0(u, s) =
{

1, if ‖s − u‖ ≤ w,

0, otherwise,

with W 0(u, s) = 1/|H(W0, u)| for all s ∈ H(W0, u). We now introduce the distance
weighting

W1(u, s) = max(0, 1 − ‖s − u‖/w)

as a simple alternative, that gives a spatially less abrupt reaction to outlier observations.
A similarly weighted version of the g-nearest-neighbour method, NNS, can also be
formulated in this manner, but we refrain from doing that here, and note that the
Voronoi method, VPS, is identical to NNS with g = 1.

3.2 Alternative scoring rules

With the understanding that all the local selection criteria only consider the validation
data set, we can consider alternative measures of validation error. As noted in the
discussion section of the paper, using the standard errors of the selected predictor,
when available, as estimates of the standard errors of the resulting LSP may lead
to underestimating the uncertainty. Also, in order to use local selection as part of
a local model selection procedure, it seems reasonable to consider more aspects of
the predictors than their point estimate of the hidden fields. Probabilistic prediction
estimates, such as those based on Bayesian hierarchical models, contain additional
information that can be used to inform the local selector. We therefore turn to Gneiting
et al. (2007) for inspiration on alternative proper scoring rules that are able to utilise
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such information. Note that this does not in itself require distributional modelling
assumptions to be made, but it does make sure that the scoring rules are consistent
with distributional aspects of the spatial predictions.

First, we reformulate the LSVE metric from the paper into an equivalent root mean
squared error LRMSE, and introduce a similar mean absolute error LMAE:

LRMSEZ (u; W, Ŷ (k)) =
⎧⎨
⎩

∑
s∈H(W,u)

W (u, s)
(

Z(s) − Ŷ (k)(s)
)2

⎫⎬
⎭

1/2

LMAEZ (u; W, Ŷ (k)) =
∑

s∈H(W,u)

W (u, s)
∣∣∣Z(s) − Ŷ (k)(s)

∣∣∣

For methods that generate prediction distributions, let Ŷ (u) and V̂Z (u) be the data
predictive expectation and variance. In a Bayesian setting, take for example

Ŷ (u) = E
(
Y (u) | Z(si ), si ∈ Dtrn) ,

V̂Z (u) = var
(
Y (u) | Z(si ), si ∈ Dtrn) + σ̂ε

2v(u),

which is readily available in the estimation output of the INLA package. In frequentistic
settings, the Markov representation of the SPDE model provides an efficient way
to calculate the kriging variances, which then replace the posterior variances in the
Bayesian formulation. Following the treatment by Gneiting et al. (2007), the negatively
orientated continuous ranked probability score (CRPS) is given by

CRPS∗(F, x) =
∫ ∞

−∞
(F(y) − 1(y ≥ x))2 dy

for the cumulative probability function F of a probabilistic forecast of an observation
x . When F describes a pure point estimate, the CRPS is equal to the absolute error,
and acts as a natural generalisation for probabilistic forecasts. The CRPS has a simple
closed form expression in the Gaussian case, and we can define a local predictor
selector criterion via

LCRPSZ (u; W, Ŷ (k)) =
∑

s∈H(W,u)

W (u, s) CRPS∗ (
N

(
Ŷ (k)(s), V̂(k)

Z (s)
)

, Z(s)
)

.

Another option is derived from the moment based logarithmic score,

LOGS∗((μ, σ 2), x) = (x − μ)2

σ 2 + log σ 2,

which favours predictive distributions where σ 2 is close to (x − μ)2.
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40 F. Lindgren

4 Results

In the CO2 example in the paper, the spatial predictors used as input to the local
selection procedure all produced similar spatial fields, with the exception of the SPD
estimate, which smoothed out the all fine scale structure. Despite this, the SPD pre-
dictor was chosen nearly as often as the FRK predictor. However, despite extensive
testing, I have been unable to construct a test case producing such overly smooth
SPD predictors, which indicates a problem with the parameter optimisation settings
used in the paper. One clear difference between the FRK and SPD results is that
the variable observation noise model was not used in the SPD case, possibly leading
to an unreasonably high overall estimated noise-to-signal ratio, as also indicated by
the small Lag-1 semivariogram for the SPD estimate (Bradley et al. 2014, Table 3).
Speaking against this hypothesis is that the LKR estimate also did not use the full
noise model, and was seemingly unaffected. In the simulation test case here I used
a spatially variable observation noise model both for the SPD and LKR predictors,
via inla(..., scale=1/v) in INLA and LKrig(..., weights=1/v) in
LatticeKrig (Nychka et al. 2013, 2014), for a known weight function v(·). One could
conceivably include a semi-parametric estimate of v(·) by applying the full force of the
general latent Gaussian model structure available in INLA, since such a model can be
programmed as a special case of the existing internal representation of non-stationary
SPDE precision models.

In order to evaluate the local selection procedure on the simulated model from
Sect. 2, seven global predictors were constructed using the training data set:

Ŷ (0)(·) = INLA of the true model,

Ŷ (k)(·) = INLA of stationary models, for ranges rk = 7.5, 15, 30, 60, and120,

Ŷ LKR(·) = LatticeKrig estimate, with default long range.

The ranges rk where chosen so that the true model range lies inside the span of r2, r3,
and r4, with r1 being clearly shorter than the smallest range, and r5 being clearly larger
than the largest. The resulting spatial prediction fields are shown in Fig. 2 (left). Since
Ŷ LKR(·) was similar to the longer range SPD estimates, and the current standard error
implementation in LatticeKrig is comparatively slow, it was excluded from further
analysis, to allow fair comparisons for the scores based on predictive distributions,
CRPS and LOGS.

The aim is to compare the behaviour of the LSP predictor based on the stationary
models used for Ŷ (k), k = 1, . . . , 5, with the predictor based on the full non-stationary
model, Ŷ (0). For j = 0 and 1 (for the two weighting schemes W0 and W1 in Sect. 3,
with radius w = 5◦), the LSP construction proceeded as follows:

k̂LRMSE(W j )(u) = arg maxk∈{1,2,3,4,5} LRMSEZ (u; W j , Ŷ (k)),

ŶLRMSE(W j )(u) = Ŷ
(̂kLRMSE(W j ))(u).
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Comments on: Comparing and selecting spatial predictors using local criteria 41

The procedure was then repeated for LMAE, LCRPS, and LLOGS, generating a total
of eight LSP estimates, all based on Ŷ (k)(·), k = 1, . . . , 5, only. The resulting predictor
indices k̂·(·) are shown in Fig. 2 (right). In contrast to the CO2 results in the paper,
these results exhibit a much stronger spatial coherence. This is to be expected, as the
input predictors were chosen to have fixed ranges covering the true model ranges, and
the overall effect is that the model with range r1 was chosen in 33 % of the locations,
and r5 was chosen in 55 %, in a pattern matching the transition from short range in
the western hemisphere to long range in the eastern hemisphere. Note however that
these two predominantly chosen models are both outside the spread of the true model
range function, so even though they produced the lowest scores, they should not be
mistaken for good estimates of the true model.

In order to evaluate the behaviour of the LSP under the alternative scoring rules,
the validation scores of the final predictors were calculated. Figure 3 (left) shows the
differences between the scores for each LSP and the full model predictor for Z(·), and
Table 1 (left) show the globally averaged scores. The scores are very close, giving the
appearance that the LSP method was able to construct reasonable predictions under
each scoring rule. However, in a practical application the focus would normally be on
predicting the hidden process Y (·) itself, and not on predicting noisy data. As shown
in the rightmost parts of Fig. 3 and Table 1, the global non-stationary model is clearly
better than the LSP at producing Y (·)-predictions, in particular with respect to the
scores sensitive to the full predictive distributions, LCRPS and LLOGS. The effect
is most clearly seen in the eastern hemisphere, where the true model has long spatial
correlation range.

Finally, since the fine-scale detail made visual assessment of some of the aspects of
the estimates difficult, the procedure was repeated using weighting windows of radius
w = 10, which revealed that the distance weighting scheme, W1, as intended is indeed
less abruptly sensitive to outliers than the flat weighting W0. Also as expected, the
spatial coherence in the predictor selections increased, and the scoring behaviour was
similar to the result presented here.

5 Discussion

As observed in Sect. 4, the gain in local prediction error using the LSP method can be
very small, compared with using a more problem adapted model, but does show great
promise for cases when such models are too computationally expensive. One benefit
is robustness to mis-specified or overly simple global prediction estimators, and using
a wide variety of simple predictors may be faster than using a more complex model.
However, the results also show that the LSP in its current form may not be adequate
for generating suitable uncertainty estimates, an issue touched upon briefly in the final
discussion of the Bradley et al. (2014) paper.

A worthwhile direction to explore is to replace the simple global estimators with
equally simple but local estimators as input to the LSP, that may have a better chance
of capturing non-stationary behaviour in both mean and variance, as well as being
computationally more efficient. Selection criteria based on local joint predictive dis-
tributions may also be necessary to capture the spatially coherent structure of the
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Table 1 Global average validation scores for prediction of Z(·) and Y (·)

Type Z | Ŷ (0) Z | ŶLSP Y | Ŷ (0) Y | ŶLSP

LRMSE(W0) 0.321 0.323 0.170 0.176

LRMSE(W1) 0.319 0.318 0.168 0.172

LMAE(W0) 0.259 0.260 0.134 0.140

LMAE(W1) 0.259 0.257 0.134 0.138

LCRPS(W0) 0.183 0.186 0.095 0.105

LCRPS(W1) 0.183 0.184 0.095 0.104

LLOGS(W0) −1.694 −1.569 −2.852 −2.435

LLOGS(W1) −1.693 −1.580 −2.856 −2.441

The first value of the top row shows LRMSEZ (u; W0, Ŷ (0)), and analogously for the other entries. The
scores are comparable for Z(·)-prediction, but for Y (·)-predictions there is a benefit to using the global
non-stationary model, in particular for LCRPS and LLOGS

hidden process. Of the scores investigated in this comment, the logarithmic score gen-
eralises naturally to multivariate distributions, and even generalises to fully Bayesian
settings, in the form of a negated log-posterior density.

The analysis code is available as online supplementary material. All the compu-
tations and timings (3 min each for the 6 full SPD estimates, <1 s per SPD kriging
evaluation, and 9 min for a full LatticeKrig estimate, 2 min in total for computing
all LSPs and diagnostic scores) were generated on a quad core 2.2 GHz Intel Core
i7–4702HQ laptop, with 16 GB memory.

Acknowledgments I want to thank the editors for the invitation to comment, and Jonathan Bradley, Noel
Cressie, and Tao Shi for producing a paper that it was well worth the effort on which to comment.
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