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Abstract The class of generalized autoregressive conditional heteroscedastic
(GARCH) models has been proved to be particularly valuable in modeling finan-
cial data. This paper is devoted to study the empirical characteristic function process
of the residuals. Specifically, it is shown that such process uniformly converges to the
population characteristic function (CF) of the innovations in compact sets. The weak
convergence of this empirical process, suitably normalized, is also studied. The limit
depends on the population CF of the innovations, the equation defining the GARCH
model and the parameter estimators employed to calculate the residuals. Applications
of the obtained results for testing symmetry and goodness-of-fit to the law of the
innovations are given.
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1 Introduction

Empirical processes play a prominent role in Statistics, since statistical procedures
often involve functionals of them. In certain settings, such as linear models or time
series, some variables of interest, such as the errors or innovations, cannot be directly
observed and the inference is based on the residuals, whose calculation involves the
estimation of certain parameters in the model. GARCH models, introduced by Boller-
slev (1986), belong to this class. The present paper is concerned with the study of the
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empirical characteristic function (ECF) of the residuals of these models. This study
is motivated by the fact that the last decades have witnessed an increasing number
of statistical procedures based on functions of the ECF process in a wide range of
models and settings: for example, in point estimation (Feuerverger and McDunnough
1981a,b), the k-sample problem (Hušková and Meintanis 2008; Alba Fernández et al.
2008) and goodness-of-fit (GOF) tests (Epps and Pulley 1983; Baringhaus and Henze
1988; Gürtler and Henze 2000; Meintanis 2004; Matsui and Takemura 2005, 2008;
Jiménez-Gamero et al. 2009, for independent and identically distributed (IID) obser-
vations, and Hušková and Meintanis 2007, 2010 and Jiménez-Gamero et al. 2005, for
the errors in regression models, among many others). Much of the appeal of these
procedures is that the application usually requires weaker conditions than their ana-
logues based on the empirical distribution function (EDF). Another advantage of the
statistical procedures based on the ECF over those based on the EDF is that while the
data dimension plays an important role in the later ones (for instance, the Cramér von
Mises test cannot be readily calculated for d-dimensional data, for any d ≥ 2), it plays
no role for many ECF-based tests, since the Cramér Wold device (see, for example,
Serfling 1980, pp 17–18) is automatically applied. A key step towards the development
of statistical procedures based on the ECF for making inferences on GARCH models
is to study the ECF process of the residuals.

Some other processes associated with the residuals of GARCH models have been
previously studied. For example, Berkes and Horváth (2001) have studied the empirical
process of the observations; Berkes and Horváth (2003) have studied the empirical
process of the squared residuals; the results in this last paper inspired those in Horváth
et al. (2004), where some GOF tests based on the EDF of the squared residuals were
numerically studied; Kulperger and Yu (2005) have studied partial sums of kth powers
of residuals, with applications to change-point problems and GOF; Koul and Ling
(2006) have studied the empirical process of the residuals with applications to testing
GOF for the distribution of the innovations; Horváth et al. (2008) have studied partial
sums of the squared observations and of its EDF.

This paper is devoted to study the limit behavior of the ECF process of the residuals.
Specifically, we study the convergence in the class of continuous functions defined on
a compact set, as well as the convergence in the Hilbert space L2(w) = { f : R →
C : ‖ f ‖2

w = ∫ | f (t)|2w(t)dt < ∞}, for some nonnegative function w satisfying
0 <

∫
w(t)dt < ∞. We also study the convergence in law to a Gaussian process. The

covariance structure of the limit process depends on the distribution of the innovations,
the estimators employed to approximate the parameters of the GARCH model and
the equation defining the model. Applications of the obtained results are reported.
Specifically, we consider the problem of testing symmetry, which is equivalent to
testing that the imaginary part of the population characteristic function (CF) of the
innovations is equal to 0. Surprisingly, the limiting null distribution of the considered
test statistic coincides with that derived for IID data, which only depends on the
population CF. Another application to the problem of testing GOF for the distribution
of the innovations is also given. In both applications, the null distribution of the test
statistic is approximated by a bootstrap algorithm. The consistency of these bootstrap
estimators is proven.
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The paper is organized as follows. Section 2 describes the model and summa-
rizes some properties that will be used along the paper. The main results concerning
the asymptotic behavior of the ECF process of the residuals are studied in Sect. 3.
Section 4 provides two applications of the obtained results to testing symmetry and
GOF for the distribution of the innovations. All proofs, as well as some intermediate
results, are sketched in the Appendix.

Before ending this section, we introduce some notation: all vectors are column
vectors; for any vector v, vk denotes its kth coordinate, ‖v‖ its Euclidean norm and v′
its transpose; for any complex number x = a + ib, x̄ = a − ib and |x | = √

a2 + b2 =√
x x̄ ; for any complex function f (x), Re f (t) and Im f (t) denote the real and the

imaginary parts of f , respectively, that is to say, f (x) = Re f (t) + iIm f (x); P0, E0
and Cov0 denote probability, expectation and covariance, respectively, by assuming
that the null hypothesis is true; P∗, E∗ and Cov∗ denote the conditional probability
law, expectation and covariance, given X1, X2, . . . , Xn , respectively; all limits in this

paper are taken when n → ∞;
L→ denotes convergence in distribution;

P→ denotes
convergence in probability;

a.s.→ denotes the almost sure convergence; an unspecified
integral denotes integration over the whole real line R; 〈·, ·〉 denotes the scalar product
in the Hilbert space L2(w); without loss of generality it will be assumed along the
paper that

∫
w(t)dt = 1.

2 The model

Let p, q ∈ N ∪ {0}. A stochastic process {X j , −∞ < j < ∞} is said to follow a
GARCH(p, q) model if it satisfies the equations

X j = σ jε j , (1)

with

σ 2
j = c +

p∑

k=1

ak X2
j−k +

q∑

l=1

blσ
2
j−l , (2)

for −∞ < j < ∞, where c > 0, ak ≥ 0 and bl ≥ 0. If q = 0 then we get
an autoregressive conditional heteroscedastic (ARCH) model, introduced by Engle
(1982). Throughout this paper, it will be assumed that {X j , −∞ < j < ∞} satisfies
(1) and (2), that it is stationary, that {ε j , −∞ < j < ∞} are IID variables with
E(ε j ) = 0 and E(ε2

j ) = 1, and that ε j is independent of {X j−k, k ≥ 1}.
Bougerol and Picard (1992a,b) have given necessary and sufficient conditions for

the existence of a unique strictly stationary solution of (1) and (2). A necessary and
sufficient condition for the process {X j , −∞ < j < ∞} to be (strictly) stationary
with E(X2

j ) < ∞ is (see, for example, Theorem 4.4 in Fan and Yao 2003)

p∑

k=1

ak +
q∑

l=1

bl < 1.
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In this case, E(X j ) = 0 and

E(X2
j ) = c

(

1 −
p∑

k=1

ak −
q∑

l=1

bl

)−1

.

Let F j be the σ -algebra generated by {εk, −∞ < k ≤ j}. Since E(X2
j | F j−1) =

σ 2
j , the expectations of X2

j and σ 2
j coincide. If E(log σ 2

0 ) < ∞, then Theorem 2.1 in

Berkes et al. (2003) shows that σ 2
j can be expressed as (see also Hall and Yao 2003)

σ 2
j = σ 2

j (θ) = c

1 −∑l bl
+

p∑

k=1

ak X2
j−k

+
p∑

k=1

ak

∞∑

v=1

q∑

l1

. . .

q∑

lv

bl1 . . . blv X2
j−k−l1−···−lv,

where θ = (c, a1, . . . , ap, b1, . . . , bq)′ and the multiple sum vanishes if q = 0. From
Lemma 2.3 in Berkes et al. (2003), a sufficient condition for E(log σ 2

0 ) < ∞ to hold
is that E(|ε2

0|δ) < ∞, for some δ > 0. Since we assume that E(ε2
0) = 1, then the

above expansion for σ 2
j holds. Let r = 1 + p + q denote the dimension of θ , which

is assumed to be fixed but unknown.
As in Berkes and Horváth (2003), it will be also assumed that θ ∈ �0 =

�(ρ0, ρ1, ρ2) = {u = (γ, α1, . . . , αp, β1, . . . , βq) : β1 + · · · + βq ≤ ρ0, ρ1 ≤
min{γ, α1, . . . , αp, β1, . . . , βq} ≤ max{γ, α1, . . . , αp, β1, . . . , βq} ≤ ρ2}, for some
constants ρ0, ρ1, ρ2 satisfying 0 < ρ0 < 1, 0 < ρ1 < ρ2, qρ1 ≤ ρ0. Note that this
assumption requires p and q to be known, and rules out zero coefficients in θ .

To estimate θ , it is often assumed that the errors ε j are normally distributed. This
estimator, θ̂ , is called the Gaussian maximum likelihood estimator (GMLE). If

E(ε4) < ∞, (3)

then
√

n(θ̂ − θ) is asymptotically normally distributed, even if the errors are not nor-
mally distributed (see Hall and Yao 2003; Francq and Zakoïan 2004). Moreover, even
if (3) does not hold then, under certain conditions, nκ(θ̂ −θ) is bounded in probability,
for some κ > 0 (see Hall and Yao 2003). Although the GMLE has become the most
popular estimator, other estimators have been proposed. Examples are the estimators
in Peng and Yao (2003), which are asymptotically normally distributed without requir-
ing (3), and those in Berkes and Horváth (2004), where a class of estimators including
the GMLE is studied. From now on, we will denote through θ̂ to any estimator of θ .

3 Main results

In a GARCH model, the errors are not observable. Thus to make inferences on the
errors, we must approximate them by means of the residuals. With this aim, we must
first estimate σ 2

j (θ). Note that σ 2
j (θ) depends on {Xk, −∞ < k ≤ j − 1}, whereas
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we observe X1, . . . , Xn . So, in order to calculate the residuals, instead of σ 2
j (θ̂), we

consider σ̃ 2
j (θ̂), where

σ̃ 2
j (θ) = c

1 −∑l bl
+

min{p, j−1}∑

k=1

ak X2
j−k

+
p∑

k=1

ak

∞∑

v=1

q∑

l1

. . .

q∑

lv

bl1 . . . blv X2
j−k−l1−···−lv I ( j − k − l1 − · · · − lv)

and I (S) denotes the indicator function of the set S, which only depends on the
observations X1, . . . , X j−1. Let {ε̃ j = X j/σ̃ j (θ̂), 1 ≤ j ≤ n} be the residuals and
let ϕn,ν(t) denote the ECF of the residuals ε̃ν+1, . . . , ε̃n

ϕn,ν(t) = 1

n − ν

n∑

j=ν+1

eit ε̃ j ,

for some integer ν ≥ 1. The reason for only considering the residuals ε̃ν+1, . . . , ε̃n ,
instead of all of them, ε̃1, . . . , ε̃n , is that for small j , σ̃ 2

j (θ) is not a good approximation

to σ 2
j (θ), and thus early terms in the series should be avoided.

For IID data, it is well known that the ECF of the data estimates consistently the
population CF and that the ECF process converges to a complex Gaussian process
in finite intervals (see, for example, Feuerverger and Mureika 1977; Csörgő 1981a,b;
Marcus 1981). The next theorems state similar results for the ECF of the residuals.
Let ϕ(t) denote the CF of ε0.

Theorem 1 Assume that θ ∈ �0 and nκ(θ̂ − θ) = OP (1), for some κ > 0. Let
ν = ν(n) be an integer satisfying

ν/n → 0. (4)

Then,

(a) supt∈S

∣
∣ϕn,ν(t) − ϕ(t)

∣
∣ P−→ 0, ∀S compact interval.

(b) ‖ϕn,ν − ϕ‖w
P−→ 0.

Next, we study the convergence in law of the ECF process Yn,ν(t) = √
n − ν

{ϕn,ν(t) − ϕ(t)} and of its L2(w)-norm, ‖Yn,ν‖w. With this aim, we will assume that√
n(θ̂ − θ) is asymptotically normal. Specifically, we will assume that θ̂ satisfies the

following.

(A.1) θ̂ can be expressed as

θ̂ = θ + n−1
n∑

j=1

L j (θ) + oP (n−1/2),

123



414 M. D. Jiménez Gamero

where L j (θ) = (g1(ε j )l1(ε j−1, ε j−2, . . .), . . . , gr (ε j )lr (ε j−1, ε j−2, . . .))
′,

1 ≤ j ≤ n,

E{gu(ε0)}=0, E{gu(ε0)
2}<∞, E{lu(ε−1, ε−2, . . .)

2} < ∞, 1≤u ≤r.

The GMLE as well as other often used estimators of θ satisfy (A.1) (see Sect. 3
of Berkes and Horváth 2003). If θ̂ satisfies (A.1) then, by the Martingale Central

Limit Theorem (see, for example, Kundu et al. 2000),
√

n(θ̂ − θ)
L−→ Nr (0, �θ ),

an r -variate zero mean normal law with variance matrix �θ = var{L0(θ)} = (ςuv),
where

ςuv = E{gu(ε0)gv(ε0)}E{lu(ε−1, ε−2, . . .)lv(ε−1, ε−2, . . .)}, 1 ≤ u, v ≤ r.

Let μc(t) = ∂
∂t Reϕ(t) = E{−ε0 sin(tε0)} and μs(t) = ∂

∂t Imϕ(t) = E{ε0 cos(tε0)}.
Observe that these derivatives exist because we assume that the innovations have
finite first moment. Finally, let σ 2

j (θ)A j (θ) be the r -vector of derivatives of σ 2
j (θ)

with respect to θ , that is, A j (θ) = 1
σ 2

j (θ)

∂
∂θ

σ 2
j (θ).

Theorem 2 Assume that θ ∈ �0 and that θ̂ satisfies (A.1). Let ν = ν(n) be an integer
satisfying (4). Let Yn,ν(t) = √

n − ν{ϕn,ν(t) − ϕ(t)} and let Y (t) be a zero mean
complex valued Gaussian process with covariance structure

Cov{ReY (t), ReY (s)} = Cov{C(t), C(s)},
Cov{ReY (t), ReY (s)} = Cov{C(t), S(s)},
Cov{ReY (t), ReY (s)} = Cov{S(t), S(s)},

∀t, s ∈ R, where C(t) = cos(tε0) − Reϕ(t) − 1
2 tμc(t)E{A0(θ)}′L0(θ), S(t) =

sin(tε0) − Imϕ(t) − 1
2 tμs(t)E{A0(θ)}′L0(θ). Then,

(a) Yn,ν(t) converges weakly to Y(t) in every compact interval.
(b) If

∫
t4w(t)dt < ∞, (5)

then ‖Yn,ν‖2
w

L−→ ‖Y‖2
w.

Remark 1 Let mc(t) = Cov{cos(tε0), L0(θ)} and ms(t) = Cov{sin(tε0), L0(θ)}.
Note that,

Cov{C(t), C(s)} = 1

2
{Reϕ(t + s) + Reϕ(t − s)} − Reϕ(t)Reϕ(s)

−1

2
tμc(t)E{A0(θ)}′mc(s) − 1

2
sμc(s)E{A0(θ)}′mc(t)

+1

4
tsμc(t)μc(s)E{A0(θ)}′�θ E{A0(θ)},
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On the empirical characteristic function 415

Cov{C(t), S(s)} = 1

2
{Imϕ(t + s) + Imϕ(t − s)} − Reϕ(t)Imϕ(s)

−1

2
tμc(t)E{A0(θ)}′ms(s) − 1

2
sμs(s)E{A0(θ)}′mc(t)

+1

4
tsμc(t)μs(s)E{A0(θ)}′�θ E{A0(θ)},

Cov{S(t), S(s)} = 1

2
{−Reϕ(t + s) + Reϕ(t − s)} − Imϕ(t)Imϕ(s)

−1

2
tμs(t)E{A0(θ)}′ms(s) − 1

2
sμs(s)E{A0(θ)}′ms(t)

+1

4
tsμs(t)μs(s)E{A0(θ)}′�θ E{A0(θ)},

∀t, s ∈ R. Therefore, in contrast to the IID case, the limit law of the ECF process
depends not only on the CF of the innovations, but also on the estimator of θ employed,
through �θ , mc(t) and ms(t), and on the equation defining the GARCH model through
E{A0(θ)}.

4 Applications

4.1 Testing for symmetry

Many commonly used packages allow the practitioner to choose between several
symmetric distributions for obtaining the (quasi) maximum likelihood estimator of
the parameter θ , usually: normal (obtaining the GMLE), Laplace and Student t . The
two later distributions let us model tails which are heavier than those of the normal
law, a fact frequently observed in financial time series (see Rydberg 2000). Note that
all of these distributions are symmetric, a hypothesis questioned by several authors,
in the light of certain practical applications (see also Rydberg 2000). So, one could
wish to test if the hypothesis of symmetry is supported by the data. This hypothesis is
equivalent to the following

H0S : the law of the errors is symmetric ⇐⇒ H0S : Imϕ(t) = 0,∀t.

As a consequence of Theorem 1, under the assumptions in this theorem, if w is a
weight function such that w(t) > 0, ∀t ∈ R, then

Tn,ν = Tn,ν(X1, . . . , Xn) = ‖Imϕn,ν‖2
w

P−→ ‖Imϕ‖2
w ≥ 0, (6)

with ‖Imϕ‖w = 0 if and only if H0S is true. So a reasonable test for testing H0S

should reject the null hypothesis for “large” values of Tn,ν . This statistic (with ν = 0)
was first proposed by Feuerverger and Mureika (1977) for testing symmetry in the IID
case (see also Henze et al. 2003). Now, to determine what are large values of Tn,ν , we
should calculate the null distribution of Tn,ν , or at least a consistent approximation to
it. Clearly, the null distribution of Tn,ν is unknown. A classical way to approximate
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the null distribution of a test statistic is through its asymptotic null distribution. As a
consequence of Theorem 2, under H0S ,

(n − ν)Tn,ν
L−→ W0S = ‖Y0S‖2

w, (7)

where Y0S(t) = ImY (t), Y (t) being as defined in Theorem 2. From Theorem 2 and
Remark 1, since under H0S we have that Imϕ(t) = 0 and μs(t) = ∂

∂t Imϕ(t) = 0, ∀t ,
it follows that the Covariance structure of Y0S(t) is given by

K (s, t) = E{Y0S(t), Y0S(s)} = 1

2
{−ϕ(t + s) + ϕ(t − s)}. (8)

Note that the asymptotic null distribution of (n−ν)Tn,ν depends neither on the estima-
tor of θ employed nor on the equation defining the GARCH model governing the data,
but only on the population CF of the innovations. In fact, the asymptotic null distrib-
ution of (n − ν)Tn,ν coincides with that obtained in Feuerverger and Mureika (1977)
for the IID case. In other words, under H0S ,

√
n − νϕn,ν(t) asymptotically behaves

just like
√

nϕn(t) in the sense that both processes have the same weak limit, where
ϕn(t) = 1

n

∑n
j=1 ε j . Let 0 < α < 1. The limit (7) tells us that (n − ν)Tn,ν = OP (1),

and thus from (6), it follows that the test function for testing H0S

�S = �S(X1, X2, . . . , Xn) =
{

1, if (n − ν)Tn,ν ≥ tα,

0, otherwise,
(9)

where tα is the 1 − α percentile of the null distribution of (n − ν)Tn,ν , or a consistent
approximation to it, is consistent against fixed alternatives, that is to say, it rejects H0S

with probability tending to one when it is false.
As observed before, the null distribution of (n−ν)Tn,ν cannot be exactly calculated.

The asymptotic null distribution of (n − ν)Tn,ν cannot be used to approximate its null
distribution, because it depends on the unknown CF of the innovations. Thus, we have
to resort to other methods to approximate the null distribution of the test statistic.

The test (9) has been numerically investigated by Klar et al. (2012). To approximate
the null distribution of the test statistic, these authors have employed the following
bootstrap algorithm, which is quite similar to the bootstrap schemes employed in Hall
and Yao (2003); Horváth et al. (2004) and Pascual et al. (2006).

Algorithm 1 (i) On the basis of X1, . . . , Xn , compute θ̂ = θ̂ (X1, . . . , Xn) = (ĉ, â1,

. . . , âp, b̂1, . . . , b̂q)′.
(ii) Compute the residuals ε̃1, . . . , ε̃n .

(iii) Define the bootstrap observations

X∗
n, j = σ̃ ∗

j (θ̂)ε∗
j ,
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On the empirical characteristic function 417

where

σ̃ ∗2
j (θ̂) = ĉ +

min{p, j−1}∑

k=1

âk X∗2
n, j−k +

min{q, j−1}∑

l=1

b̂l σ̃
∗2
j−l(θ̂)

and ε∗
j = υ j ε̃ j , j = 1, . . . , n, υ1, . . . , υn are IID with P(υ j = −1) =

P(υ j = 1) = 0.5, and υ1, . . . , υn are also independent of ε̃1, . . . , ε̃n .
(iv) Based on the bootstrap data, X∗

n = (X∗
n,1, . . . , X∗

n,n) calculate the test statistic,
obtaining T ∗

n,ν = Tn,ν(X∗
n,1, . . . , X∗

n,n). Approximate the null distribution of
(n − ν)Tn,ν through the conditional distribution of (n − ν)T ∗

n,ν , given the data.

The above algorithm can be slightly modified by generating the bootstrap innovations
from a symmetrization of the EDF of the residuals. We call Algorithm 2 to the resulting
bootstrap algorithm.

Algorithm 2 Steps (i), (ii) and (iv) are as in Algorithm 1.
(iii) The bootstrap observations are defined as in Algorithm 1, but now ε∗

ν+1, . . . , ε
∗
n

are IID from the EDF of ε̃ν+1, . . . , ε̃n,−ε̃ν+1, . . . ,−ε̃n .

In practice, the bootstrap estimation of the null distribution of (n − ν)Tn,ν in
step (iv) in Algorithms 1 and 2 must be carried out by simulation, that is, by gen-
erating a high number of bootstrap samples, say X∗1

n , . . . , X∗B
n , and then approx-

imating the null distribution of (n − ν)Tn,ν through the EDF of (n − ν)T ∗1
n,ν =

(n − ν)Tn,ν(X∗1
n ), . . . , (n − ν)T ∗B

n,ν = (n − ν)Tn,ν(X∗B
n ). This requires the calcu-

lation of θ̂∗1 = θ̂ (X∗1
n ), . . . , θ̂∗B = θ̂ (X∗B

n ) as well as the bootstrap residuals, ε̃∗b
j ,

ν + 1 ≤ j ≤ n, 1 ≤ b ≤ B.
We can considerably save computing time by taking advantage of the property that,

under H0S ,
√

n − νϕn,ν(t) asymptotically behaves the same as
√

nϕn(t). With this aim,
we treat the residuals ε̃ν+1, . . . , ε̃n as if they were the true errors εν+1, . . . , εn and then
act as in the IID setting (following for example the approach in Henze et al. 2003). This
way we elude the calculation of (n − ν)T ∗1

n,ν = (n − ν)Tn,ν(X∗1
n ), . . . , (n − ν)T ∗B

n,ν =
(n − ν)Tn,ν(X∗B

n ). Algorithms 3 and 4 give two bootstrap null distribution estimators
that make use of this fact.

Algorithm 3 Steps (i) and (ii) are as in Algorithm 1.
(iii) Let ε∗

j = υ j ε̃ j , j = 1, . . . , n, where υ1, . . . , υn are IID with P(υ j = −1) =
P(υ j = 1) = 0.5, and υ1, . . . , υn are also independent of ε̃1, . . . , ε̃n .

(iv) Approximate the null distribution of (n − ν)Tn,ν through the conditional dis-
tribution of (n − ν)T ∗

n,ν , given the data, where T ∗
n,ν = ‖S∗

n,ν‖2
w and S∗

n,ν(t) =
1

n−ν

∑n
j=ν+1 sin(tε∗

j ).

Algorithm 4 Steps (i), (ii) and (iv) are as in Algorithm 3.
(iii) ε∗

ν+1, . . . , ε
∗
n are IID from the EDF of ε̃ν+1, . . . , ε̃n,−ε̃ν+1, . . . ,−ε̃n .

We next show the consistency of the distribution estimators yielded by Algorithms
3 and 4. Observe that no additional assumption is assumed to prove such consistency.
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Before stating these results, we want to remark that to derive the convergence in (7),
it is not necessary to assume that θ̂ satisfies (A.1), but only that

√
n(θ̂ − θ) = OP (1)

(this is evident from the proof of Theorem 2).

Theorem 3 Assume that θ ∈ �0, that (5) holds and that
√

n(θ̂ − θ) = OP (1). Let
ν = ν(n) be an integer satisfying (4). If T ∗

n,ν is as defined in Algorithm 3 or Algorithm
4, then

sup
x

|P∗{(n − ν)T ∗
n,ν ≤ x} − P(W0S ≤ x)| P→ 0,

where W0S is as defined in (7).

Let {λ j } be the set of eigenvalues of operator A defined on L2(w) by

Av(y) =
∫

K (x, y)v(y)w(x)dx .

The random variate W0S is distributed as a (infinite) sum of independent chi-squared
variates with one degree of freedom, χ2

1 , multiplied by the eigenvalues of A,
∑

j λ jχ
2
1 j .

The set {λ j } is unknown because K (t, s) is unknown. Nevertheless, K (s, t) can be
consistently estimated by

Kn(t, s) = 1

n − ν

n∑

j=ν+1

sin(t ε̃ j ) sin(sε̃ j )

= 1

2(n − ν)

n∑

j=ν+1

[
cos{(t − s)ε̃ j } − cos{(t + s)ε̃ j }

]
.

From Lemma 6 in Sect. 5, Kn(t, s)
P→ K (t, s), ∀s, t ∈ R. Thus, we can approximate

the distribution of W0S , and thus the null distribution of (n − ν)Tn,ν , by means of

Wn =
∑

j

λ̂ jχ
2
1 j , (10)

where {λ̂ j } are the eigenvalues of operator An defined by Anv(y) = ∫ Kn(x, y)v(y)

w(x)dx . Routine calculations show that {λ̂ j } are the eigenvalues of the (n−ν)×(n−ν)-
matrix M = (m jk) with

m jk = 1

2(n − ν)

{
Iw(ε̃ j − ε̃k) − Iw(ε̃ j + ε̃k)

}
,

where Iw(t) = ∫
cos(t x)w(x)dx . Therefore, the set {λ̂ j } can be easily calculated

using most statistical and mathematical programming languages. Wn is also a bootstrap
estimator of the null distribution of (n − ν)Tn,ν . It is usually called a “bootstrap in
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the limit” estimator, since it has been built by replacing all unknown quantities in the
limit distribution of the test statistic by appropriate estimators. The next result shows
that Wn estimates consistently the null distribution of (n − ν)Tn,ν .

Theorem 4 Under assumptions in Theorem 3,

sup
x

|P∗{Wn ≤ x} − P(W0S ≤ x)| P→ 0,

where Wn and W0S are defined in (10) and (7), respectively.

We will call Algorithm 5 to the bootstrap approximation to the null distribution of
(n − ν)Tn,ν in Theorem 4.

Algorithm 5 Steps (i) and (ii) are as in Algorithm 1.

(iii) Calculate the eigenvalues {λ̂ j } of matrix M
(iv) Approximate the null distribution of (n − ν)Tn,ν through the conditional distri-

bution of Wn =∑ j λ̂ jχ
2
1 j , given the data.

Remark 2 Using the trigonometric identity 2 sin(a) sin(b) = cos(a −b)−cos(a +b),
it can be easily derived the following alternative expression for (n − ν)Tn,ν ,

(n − ν)Tn,ν =
n∑

j,k=ν+1

m jk,

which is useful from a computational point of view.

Remark 3 In practice, the bootstrap distribution estimators in Algorithms 1–4 must
be approximated by simulation. As for the null distribution estimator in Algorithms 5,
since the distribution of a linear combination of χ2 variates is unknown, the conditional
distribution of Wn must be approximated either by simulation or by some numerical
method (see, for example, Kotz et al. 1967; Castaño-Martínez and López-Blázquez
2005).

We have presented five bootstrap algorithms to estimate the null distribution of
(n − ν)Tn,ν . To compare their finite sample performance, we carried out a small sim-
ulation experiment. We generated data from a GARCH(1,1) model with c = 0.1,
a1 = 0.3, b1 = 0.3 and several symmetric distributions for the innovations, namely,
normal, Laplace and t5. The sample size we took was n = 400 and ν = 10. We took
as weight function w in the definition of test statistic Tn,ν the density of the standard
normal distribution. As in Klar et al. (2012), in order to approximate the bootstrap p
value of the observed value of the test statistic, we generated B = 200 bootstrap sam-
ples for Algorithms 1–4. The conditional distribution of Wn was also approximated by
simulation. This experiment was repeated 1,000 times. The parameters in the GARCH
model were estimated through the GMLE. To calculate the parameter estimators as
well as the residuals, we used the packagetseries of the R language. Table 1 reports
the number of bootstrap p values less than or equal to α, for α = 0.05, 0.10, which are
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Table 1 Estimated probabilities of type I errors and relative CPU

Normal Laplace t5 CPUi /CPU1(%)

0.05 0.10 0.05 0.10 0.05 0.10

Algorithm 1 0.051 0.100 0.062 0.109 0.050 0.104 100.00

Algorithm 2 0.055 0.101 0.058 0.110 0.059 0.104 122.48

Algorithm 3 0.052 0.090 0.058 0.103 0.049 0.106 81.50

Algorithm 4 0.052 0.093 0.057 0.105 0.052 0.102 85.83

Algorithm 5 0.050 0.088 0.053 0.094 0.047 0.095 2.19

Table 2 Estimated powers for
nominal level α = 0.05

Skewed normal Skewed Laplace Skewed t5

γ : 1.3 1.9 1.1 1.2 1.1 1.2
Skewness: 0.39 0.76 0.40 0.74 0.43 0.78

Algorithm 1 0.538 0.987 0.371 0.877 0.226 0.556

Algorithm 2 0.542 0.986 0.378 0.891 0.232 0.554

Algorithm 3 0.541 0.987 0.372 0.860 0.220 0.542

Algorithm 4 0.530 0.982 0.371 0.877 0.224 0.544

Algorithm 5 0.523 0.985 0.362 0.867 0.213 0.535

the estimated type I errors. Looking at this table, we see that the estimated type I errors
are quite close to the nominal values in all cases. We also compared the algorithms
in terms of the CPU consumed. Last column in Table 1 displays the obtained results.
Algorithm 5 emerges as the cheapest in terms of computing time.

The power of the test �S , when the null distribution of the test statistic is estimated
by means of Algorithm 1, has been numerically investigated by Klar et al. (2012). To
study if the method of approximating the null distribution has any impact on the power
for finite sample size, we repeated the above experiment with samples from skewed
versions of the symmetric distributions in Table 1. Such skewed versions were obtained
by applying the skewing mechanism proposed in Fernández and Steel (1998), namely,
the density of the skewed distribution, indexed by a scalar γ ∈ (0,∞), is generated
from the symmetric density f as follows

fγ (t) = 2

γ + 1/γ
{ f (t/γ )I (t ≥ 0) + f (γ t)I (t < 0)} .

For γ = 1, we obtain the symmetric density f , for γ > 1 (γ < 1) fγ is skewed to
the right (left). Since fγ (t) = f1/γ (−t), it is sufficient to consider values γ > 1. As
in Klar et al. (2012), the values of γ were chosen so that the value of the skewness
coefficient (that in our case coincides with the third moment because E(ε j ) = 0 and
E(ε2

j ) = 1) has comparable values across the different distributions. Table 2 displays
the obtained results for nominal level α = 0.05. Looking at this table, we conclude
that the method of estimating the null distribution of the test statistic has little effect
on the power, since all estimated powers are quite close.
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Summarizing, since the levels and the powers yielded by the five algorithms are
very close, and Algorithm 5 is, from a computational point of view, the cheapest, we
recommend its use.

4.2 Testing goodness-of-fit for the distribution of the innovations

To estimate the parameters of a GARCH model, it is usually assumed that the errors
or innovations are normally distributed. Under certain not very restrictive conditions,
the resultant estimator is normally distributed, even if the errors are not normally
distributed (see Hall and Yao 2003; Berkes et al. 2003; Francq and Zakoïan 2004;
Escanciano 2009). Nevertheless, as shown in Berkes and Horváth (2004) and numer-
ically observed by Huang et al. (2008), the choice of the correct likelihood leads to
more accurate estimates of the parameters. In addition, as argued in Angelidis et al.
(2004) and Koul and Ling (2006), among many others, the knowledge of the error
distribution plays an important role in evaluating the Value at Risk (VaR), a quantity
very useful in economics and finance, whose calculation involves the distribution of
the innovations. Hence, for certain purposes, a very important step in the analysis of
GARCH models is to check if the data support the distributional hypothesis made on
the innovations.

Some tests have been proposed for testing GOF for the innovations distribution.
Since the innovations or errors are not observable, all these tests are necessarily based
on the estimated errors or residuals. The proposed tests are “residual versions” for
testing GOF for IID data. For example, Horváth et al. (2004) have numerically studied
some GOF tests based on the EDF of the squared residuals for testing GOF for normal-
ity; Kulperger and Yu (2005) have proposed a Jarque–Bera type normality test; Koul
and Ling (2006) and Bai and Chen (2008) have proposed a Kolmogorov–Smirnov type
GOF test for testing a simple null hypothesis; Horváth and Zytikis (2006), Mimoto
(2008) and Koul and Mimoto (2012) have proposed GOF tests for testing a simple
null hypothesis, which are based on a kernel-type density estimator calculated from
the residuals.

In a recent paper, Klar et al. (2012) have numerically studied a test based on the
ECF of the residuals, comparing it with some of the tests cited above, for the problem
of testing normality. From the obtained numerical results, they conclude that the test
based on the ECF is one of the most powerful. The test statistic based on the ECF
considered in Klar et al. (2012) is just Rn,ν = ‖Yn,ν‖2

w, with ϕ(t) = ϕ0(t) the CF of
the normal law and w the density of the standard normal distribution. Thus, the results
in Sect. 3 provide a theoretical basis for this test. Specifically, for testing

H0G : the CF of ε0 is ϕ0(t),

for some ϕ0(t) totally specified, from Theorems 1(b) and 2(b) it follows that the test

�G = �G(X1, X2, . . . , Xn) =
{

1, if Rn,ν ≥ rα,

0, otherwise,
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where rα is the 1 − α percentile of the null distribution of Rn,ν , or a consistent
approximation to it, is consistent against fixed alternatives, that is to say, it rejects
H0G with probability tending to one when it is false, whenever w(t) > 0, ∀t ∈ R. The
null distribution of Rn,ν cannot be exactly calculated. The asymptotic null distribution
of Rn,ν cannot be used to approximate its null distribution because it depends on
unknowns (recall Remark 1). To approximate the null distribution of Rn,ν , Klar et al.
(2012) have employed the following bootstrap algorithm.

Algorithm 6 (i) On the basis of X1, . . . , Xn , compute θ̂ = (ĉ, â1, . . . , âp,

b̂1, . . . , b̂q)′.
(ii) Define the bootstrap data

X∗
n, j = σ ∗

j (θ̂)ε∗
j

where {ε∗
j , −∞ < j < ∞} are IID with common CF ϕ0(t) and

σ ∗2
j (θ̂) = ĉ +

p∑

k=1

âk X∗2
n, j−k +

q∑

l=1

b̂lσ
∗2
j−l(θ̂), j ∈ Z.

(iii) Approximate the null distribution of Rn,ν = Rn,ν(X1, . . . , Xn) through the con-
ditional distribution of R∗

n,ν = Rn,ν(X∗
1, . . . , X∗

n), given X1, . . . , Xn ,

To prove that the above bootstrap scheme provides a consistent null distribution
estimator of Rn,ν , we will assume that θ̂∗ = θ̂ (X∗

1, . . . , X∗
n) satisfies the following

assumption, which is equal to assumption (A.1) plus a Lindeberg condition to ensure
that

√
n(θ̂∗ − θ̂ ) is asymptotically normal, plus a continuity condition to ensure that

when H0 is true
√

n(θ̂ − θ) and
√

n(θ̂∗ − θ̂ ) both converge in law to the same limit.

(A.2) (a) θ̂∗ can be expressed as

θ̂∗ = θ̂ + n−1
n∑

j=1

L j (θ̂) + r∗,

with r∗ = oP∗(n
−1/2) in probability, that is to say, with probability tending

to 1, and

L j (θ̂) = (g1(ε
∗
j )l1(ε

∗
j−1, ε∗

j−2, . . .), . . . ,

gr (ε
∗
j )lr (ε

∗
j−1, ε

∗
j−2, . . .))

′, 1 ≤ j ≤ n.

(b) E∗{gu(ε∗
0)} = 0, E∗{gu(ε∗

0)2} < ∞, E∗{lu(ε∗−1, ε
∗−2, . . .)

2} < ∞, 1 ≤
u ≤ r , in probability.

(c) For every b ∈ R
r , 1

n

∑n
j=1 E∗

[
{b′L j (θ̂)}2 | F0 j−1

]
P∗→ b′�0θb, with prob-

ability tending to 1, where F0 j is the σ -algebra generated by {ε∗
k , −∞ <

k ≤ j} and �0θ = Cov0{L0(θ)}.
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(d) lim Ln(ε, ek) = 0 for every ε > 0 and every 1 ≤ k ≤ r , in probability,
where {e1, . . . , er } is any basis of R

r and for b ∈ R
r ,

Ln(ε, b) = 1

n

n∑

j=1

E∗
[
{b′L j (θ̂)}2 I {|b′L j (θ̂)| > ε}

]
.

(e) For every b ∈ R
r , 1

n

∑n
j=1 E∗

{
cos(tε∗

j )b
′L j (θ̂) | F0 j−1

}
P∗→ E0{cos(tε0)

b′L0(θ)} and 1
n

∑n
j=1 E∗

{
sin(tε∗

j )b
′L j (θ̂)|F0 j−1

}
P∗→ E0{sin(tε0)b′L0(θ)}

in probability, ∀t ∈ R.

If θ̂∗ satisfies (A.2)(a)–(d) then, from Theorem 1.3 in Kundu et al. (2000), it follows
that

sup
x

∣
∣
∣P∗{

√
n(θ̂∗ − θ̂ ) ≤ x} − P(Z ≤ x)

∣
∣
∣

P−→ 0,

where Z ∼ Nr (0, �0θ ). If in addition θ̂ satisfies (A.1) and H0 is true, then
√

n(θ̂ − θ)

and
√

n(θ̂∗ − θ̂ ) both converge in law to the same limit.
Let μ0c(t) = ∂

∂t Reϕ0(t) and μ0s(t) = ∂
∂t Imϕ0(t). The next result shows the

consistency of the bootstrap approximation in Algorithm 6 as an estimator of the null
distribution of the test statistic Rn,ν .

Theorem 5 Assume that θ ∈ �0, that
√

n(θ̂ −θ) = OP (1) and that θ̂∗ satisfies (A.2).
Let ν = ν(n) be an integer satisfying (4). Let Y0(t) be a zero mean complex valued
Gaussian process with Covariance structure

Cov{ReY (t), ReY (s)} = Cov0{C0(t), C0(s)}
Cov{ReY (t), ReY (s)} = Cov0{C0(t), S0(s)}
Cov{ReY (t), ReY (s)} = Cov0{S0(t), S0(s)}

∀t, s ∈ R, where C0(t) = cos(tε0) − Reϕ0(t) − 1
2 tμ0c(t)E0{A0(θ)}′L0(θ), S0(t) =

sin(tε0) − Imϕ0(t) − 1
2 tμ0s(t)E0{A0(θ)}′L0(θ). Let w be a non-negative function

satisfying (5) and let W0 = ‖Y0‖2
w. Then

sup
x

∣
∣P∗(R∗

n,ν ≤ x) − P(W0 ≤ x)
∣
∣ P→ 0.

The result in Theorem 5 holds whether or not H0 is true. If H0 is true and θ̂ satisfies
(A.1), then the conditional distribution of R∗

n,ν , given X1, . . . , Xn , and the distribution
of Rn,ν are close in the sense that both converge to the same limit.

Remark 4 The following alternative expression of Rn,ν , which can be easily derived
using elementary formulas for the sine and the cosine of a sum, is useful from a
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computational point of view,

Rn,ν = 1

n − ν

n∑

j=ν

n∑

k=ν

h(ε̃ j , ε̃k),

where h(x, y) = Iw(x − y) − Iw0(x) − Iw0(y) + Iw00, with Iw0(x) = ∫
Iw(x −

y)d F0(y) and Iw00 = ∫ ∫ Iw(x − y)d F0(x)d F0(y), F0 being the cumulative distrib-
ution function corresponding to ϕ0.

Acknowledgments The author thanks the anonymous referees for their constructive comments and sug-
gestions which helped to improve the presentation. The author also acknowledges financial support from
grant UJA2013/08/01.

5 Appendix: proofs

Before proving the results in Sects. 3 and 4, we state some preliminary results.

Lemma 1 There exist ρ01 ≤ ρ1 and ρ02 ≤ ρ2, with 0 < ρ01 < ρ02, such that
θ ∈ �1 = �(ρ0, ρ01, ρ02) and

E

{

sup
u∈�1

σ
2ξ
0 (θ)

σ
2ξ
0 (u)

}

< ∞, ξ = 1, 2.

Proof Recall that we assume that {X j , −∞ < j < ∞} is stationary. From Propo-
sition 1 in Francq and Zakoïan (2004), this implies that there exists s > 0 such that
E(X2s

0 ) < ∞.
If u1, u2 ∈ �1, with u j = (γ j , α j1, . . . , α j p, β j1, . . . , β jq), j = 1, 2, then

β1k

β2k
≤ ρ02

ρ01
:= 1 + δ, (11)

1 ≤ k ≤ q. From the proof of Theorem 2.2 in Francq and Zakoïan (2004),

sup
u∈�1

σ 2
j (u)

σ 2
j (θ)

≤ D

(

1 +
p∑

k=1

∞∑

v=1

(1 + δ)vρvς X2ς
j−k−v

)

,

for some positive constant D and some 0 < ρ < 1, ∀ ς ∈ (0, 1). Choosing ς such
that E(X4ς

0 ) < ∞ and ρ01, ρ02 such that δ = (1 − ρς)/(2ρς ), we get the result for
ξ = 2, which implies the result for ξ = 1. ��

A detailed reading of the proof of Lemma 1 reveals that the result is still true if
instead of keeping θ ∈ �0 fixed, we consider a sequence of values for θ , say {θm}, all
of them in �1, since the bound in (11) is valid for all u1, u2 ∈ �1. Next lemma states
this fact.
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Lemma 2 There exist ρ01 ≤ ρ1 and ρ02 ≤ ρ2, with 0 < ρ01 < ρ02, such that
θ ∈ �1 = �(ρ0, ρ01, ρ02) and for any {θm} ⊂ �1

sup
m

E

{

sup
u∈�1

σ
2ξ
0 (θm)

σ
2ξ
0 (u)

}

< ∞, ξ = 1, 2.

Recall that σ 2
j (θ)A j (θ) is the r -vector of derivatives of σ 2

j (θ) with respect to θ .

Let σ 2
j (θ)B j (θ) be the r × r -matrix of second-order derivatives of σ 2

j (θ) with respect

to θ , that is, B j (θ) = 1
σ 2

j (θ)

∂2

∂θ∂θ ′ σ 2
j (θ). The following result is in the proof of Lemma

5.6 in Berkes et al. (2003).

Lemma 3 (a) E
(
supu∈�0

|A0(u)|ζ ) < ∞, for any ζ > 0,
(b) E

(
supu∈�0

|B0(u)|ζ ) < ∞, for any ζ > 0,

where |V | denotes the largest of the absolute values of the elements of the vector (or
matrix) V .

Let {ε̂ j = X j/σ j (θ̂), 1 ≤ j ≤ n} be the non-truncated version of the residuals.
The following result is Eq. (5.6) in Koul and Mimoto (2012). Here, we state it under
weaker assumptions.

Lemma 4 Assume that θ̂ ∈ �1, where �1 is as in Lemma 1. Then

∞∑

j=1

|ε̃ j − ε̂ j | = O(1), a.s. (12)

Proof To derive (12), Koul and Mimoto (2012) use Lemma 5.1 in Berkes et al. (2003),
which proves that

E

{

sup
u∈�0

σ 2
0 (θ)

σ 2
0 (u)

}

< ∞, (13)

provided that E(|ε0|2(1+ξ)) < ∞ for some ξ > 0. The Lemma also assumes that
limx→0 x−μ P(ε2

0 ≤ x) = 0, for some μ > 0. Nevertheless, Francq and Zakoïan
(2004) showed that (13) holds by only assuming that {X j , −∞ < j < ∞} is station-
ary if instead of taking the supremum in u ∈ �0, it is taken in an adequately chosen
subset �1 ⊆ �0 (recall the proof of Lemma 1). ��
Lemma 5 Assume that θ ∈ �1, where �1 is as in Lemma 1, and that nκ(θ̂ − θ) =
OP (1), for some κ > 0. Let ν = ν(n) be an integer satisfying (4). Then

(a) 1
n−ν

∑n
j=ν+1 |ε̂ j − ε j | = oP (1).

(b) If κ > 0.25, 1√
n−ν

∑n
j=ν+1(ε̂ j − ε j )

2 = oP (1).
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Proof Let D > 0 be a constant. By the Mean Value Theorem and Markov inequality,

P

⎛

⎝ 1

n − ν

n∑

j=ν+1

|ε̂ j − ε j | > D ‖θ̂ − θ‖
⎞

⎠ ≤ 1

D

1

n − ν

n∑

j=ν+1

E

(
|X j |

σ j (θ̃ j )
‖A j (θ̃ j )‖

)

,

with θ̃ j = τ j θ̂ + (1 − τ j )θ , for some 0 < τ j < 1. By Hölder inequality,

E

(
|X j |

σ j (θ̃ j )
‖A j (θ̃ j )‖

)

≤ E1/2

(
X2

j

σ 2
j (θ̃ j )

)

E1/2
(
‖A j (θ̃ j )‖2

)
.

E

(
X2

j

σ 2
j (θ̃ j )

)

= E

(

ε2
j

σ 2
j (θ)

σ 2
j (θ̃ j )

)

≤ E

(

ε2
j sup

u∈�1

σ 2
j (θ)

σ 2
j (u)

)

= E

(

sup
u∈�1

σ 2
0 (θ)

σ 2
0 (u)

)

< ∞,

where the last equality comes from the fact that supu∈�1

σ 2
j (θ)

σ 2
j (u)

only depends on

{Xk, k ≤ j − 1}, the independence between ε j and {Xk, k ≤ j − 1} and E(ε2
j ) = 1.

On the other hand, if θ̂ ∈ �1, from Lemma 3,

E
(
‖A j (θ̃ j )‖2

)
≤ E

(

sup
u∈�1

‖A j (u)‖2

)

= E

(

sup
u∈�1

‖A0(u)‖2

)

< ∞.

Thus, if θ̂ ∈ �1, 1
n−ν

∑n
j=ν+1 |ε̂ j − ε j | = Op(‖θ̂ − θ‖). Since we assume that

nκ(θ̂ − θ) = OP (1), for some κ > 0, which implies that ‖θ̂ − θ‖ = oP (1) and that
P(θ̂ ∈ �1) → 1, it readily follows the result in (a).

Part (b) can be proven following similar steps to those given in the proof of part (a).
��

Note that the results in Lemmas 1, 2, 4 (and thus also Lemma 5) depend of a
subset �1 ⊂ �0 containing θ . To simplify notation, from now on we will assume that
�1 = �0.

Proof of Theorem 1 (a) Let ε̂ j = X j/σ j (θ̂), 1 ≤ j ≤ n, and cn,ν(t) =
1

n−ν

∑n
j=ν+1 eitε j , which satisfies

sup
t∈S

|cn,ν(t) − ϕ(t)| P−→ 0, (14)

for any fixed compact interval S. We have

|ϕn,ν(t) − cn,ν(t)| ≤ 2|t |
⎧
⎨

⎩
1

n − ν

n∑

j=ν+1

|ε̃ j − ε̂ j | + 1

n − ν

n∑

j=ν+1

|ε̂ j − ε j |
⎫
⎬

⎭
.

(15)
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The result follows from (14), (15) and Lemmas 4 and 5.
(b) Let δ > 0. There exists a compact interval S = S(δ) such that

∫
S w(t)dt ≥ 1 − δ.

Since |ϕn,ν(t)−ϕ(t)|2 ≤ 4, we have that ‖ϕn,ν −ϕ‖2
w ≤ 4δ + supt∈S |ϕn,ν(t)−ϕ(t)|

and, therefore, the result follows from part (a). ��
Proof of Theorem 2 (a) Let S ⊂ R be any compact set. We have

∣
∣
∣
∣
∣
∣

1√
n−ν

n∑

j=ν+1

eit ε̂ j − 1√
n−ν

n∑

j=ν+1

eit ε̃ j

∣
∣
∣
∣
∣
∣
≤2|t | 1√

n−ν

n∑

j=ν+1

|ε̂ j −ε̃ j | =|t |oP (1),

(16)

where the last equality follows from Lemma 4. Since ε̂ j = ε j + (ε̂ j − ε j ), by Taylor
expansion,

1√
n − ν

n∑

j=ν+1

{cos(t ε̂ j ) − Reϕ(t)} = Vn(t) + tWn(t) + t2 Zn(t),

where

Vn(t)= 1√
n −ν

n∑

j=ν+1

{cos(tε j )−Reϕ(t)}, Wn(t)= −1√
n−ν

n∑

j=ν+1

sin(tε j )(ε̂ j −ε j ),

and |Zn(t)| ≤ Zn1, ∀t ∈ R, with Zn1 = (n − ν)−1/2∑n
j=ν+1(ε̂ j − ε j )

2 = op(1),

from Lemma 5. By Taylor expansion of θ̂ around θ , Wn(t) = W1n(t) + W2n(t) +
W3n(t) + W4n(t) + W5n(t), with

W1n(t) = 1

2

√
n(θ̂ − θ)

1√
(n − ν)n

n∑

j=ν+1

{
sin(tε j )ε j + μc(t)

}
A j (θ),

W2n(t) = 1

2

√
n(θ̂ − θ)μc(t)

1√
(n − ν)n

n∑

j=ν+1

[
A j (θ) − E{A0(θ)}] ,

W3n(t) = −1

8

√
n(θ̂−θ)

1

n
√

n−ν

n∑

j=ν+1

sin(tε j )ε j A j (θ̃ j )A j (θ̃ j )
′ σ j (θ)

σ j (θ̃ j )

√
n(θ̂−θ)′,

W4n(t) = 1

4

√
n(θ̂ − θ)

1

n
√

n − ν

n∑

j=ν+1

sin(tε j )ε j B j (θ̃ j )
σ j (θ)

σ j (θ̃ j )

√
n(θ̂ − θ)′,

W5n = −1

2

√
n(θ̂ − θ)

(
n − ν

n

)1/2

μc(t)E{A0(θ)},

where θ̃ j = α j θ̂ + (1 − α j )θ , for some α j ∈ (0, 1), ∀ j . Recall that F j

denotes the σ -algebra generated by {εk, −∞ < k ≤ j}. For each fixed t ∈ R,
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{
sin(tε j )ε j A j (θ) − μc(t)A j (θ)

}
is a real-valued martingale difference with respect

to {F j }. Thus, from the Central Limit Theorem for real-valued martingale differences

1√
n − ν

n∑

j=ν+1

{
sin(tε j )ε j − μc(t)

}
A j (θ) = OP (1).

Taking into account that
√

n(θ̂ − θ) = OP (1), we get that W1n(t) = oP (1) for each
fixed t ∈ R. From the Ergodic Theorem and taking into account that

√
n(θ̂ − θ) =

OP (1), we get that W2n(t) = oP (1) for each fixed t ∈ R. We also have W3n(t) =
oP (1) and W4n(t) = oP (1) for each fixed t ∈ R. Since W1n(t) + W2n(t) + W3n(t) +
W4n(t) is continuous as a function of t , we conclude that

sup
t∈S

|t {W1n(t) + W2n(t) + W3n(t) + W4n(t)}| = oP (1).

From (A.1),

sup
t∈S

∣
∣
∣
∣
∣
∣
tW5n(t) + 1

2
tμc(t)E{A0(θ)}′ 1√

n

n∑

j=1

L j (θ)

∣
∣
∣
∣
∣
∣
= oP (1).

Because ν/n → 0, it is easy to see that supt∈S |Vn(t) − Vn1(t)| = oP (1), where
Vn1(t) = 1√

n

∑n
j=1{cos(tε j ) − Reϕ(t)}. Putting all above results together, we get

sup
t∈S

∣
∣
∣
∣
∣
∣

1√
n − ν

n∑

j=ν+1

{cos(t ε̂ j ) − Reϕ(t)} − 1√
n

n∑

j=1

C j (t)

∣
∣
∣
∣
∣
∣
= oP (1),

with C j (t) = cos(tε j )−Reϕ(t)− 1
2 tμc(t)E{A0(θ)}′L j (θ), 1 ≤ j ≤ n. Analogously,

sup
t∈S

∣
∣
∣
∣
∣
∣

1√
n − ν

n∑

j=ν+1

{sin(t ε̂ j ) − Imϕ(t)} − 1√
n

n∑

j=1

S j (t)

∣
∣
∣
∣
∣
∣
= oP (1),

with S j (t) = sin(tε j ) − Imϕ(t) − 1
2 tμs(t)E{A0(θ)}′L j (θ), 1 ≤ j ≤ n. Let Yn(t) =

1√
n

∑n
j=1{C j (t) + iS j (t)}. This process satisfies: E{Yn(t)} = 0, ∀t ∈ R and

Cov{ReYn(t), ReYn(s)} = Cov{C1(t), C1(s)} = Cov{ReY (t), ReY (s)},
Cov{ImYn(t), ImYn(s)} = Cov{S1(t), S1(s)} = Cov{ImY (t), ImY (s)},
Cov{ImYn(t), ReYn(s)} = Cov{S1(t), C1(s)} = Cov{ImY (t), ReY (s)}, ∀t, s ∈ R.

The Central Limit Theorem for real-valued martingale differences and the Cramér
Wold device prove that for all finite collections s1, . . . , sv , the random vector
(Yn(s1), . . . , Yn(sv)) converges in distribution to (Y (s1), . . . , Y (sv)). To finish the
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proof, we must prove that the measures ReYn(t) and ImYn(t) are tight. Since
E(ε2) = 1 < ∞, 1√

n

∑n
j=1{cos j (tε j ) − Reϕ(t)} is tight in every finite interval (see

Csörgő 1981a). Because E{A0(θ)} is finite, 1√
n

∑n
j=1 L j (θ) is bounded in probability

and tμc(t) is a continuous function, we get that tμc(t)E{A0(θ)}′ 1√
n

∑n
j=1 L j (θ) is

tight in every finite interval. Thus, ReYn(y) is tight in every finite interval. Analogously,
ImYn(y) is tight in every finite interval. These facts imply the uniform convergence
of Yn,ν(t) to Y (t) in finite intervals.

(b) From the proof of part (a):
∣
∣Yn,ν(t) − Yn(t)

∣
∣ ≤ a0n + a1nt + a2nt2, with a jn =

oP (1), j = 0, 1, 2, which implies ‖Yn,ν − Y‖2
w = oP (1). The result follows from the

this equality by taking into account that ‖Yn,ν‖2
w = ‖Y‖2

w +‖Yn,ν −Y‖2
w +2Cn , with

|Cn|2 ≤ ‖Y‖2
w‖Yn,ν − Y‖2

w = oP (1). ��
To prove Theorem 3, we will use the following auxiliary result.

Lemma 6 Suppose assumptions in Theorem 3 hold. Let

Kn(t, s) = 1

n − ν

n∑

j=ν+1

sin(t ε̃ j ) sin(sε̃ j ).

Then

sup
(t,s)∈S

|Kn(t, s) − K (t, s)| P→ 0,

∀S ⊂ R
2 compact set, where K (t, s) is as defined in (8).

Proof The result is a consequence of Theorem 1 (a) since, by applying elementary
trigonometric identities, we have the following alternative expression for Kn(t, s)

Kn(t, s) = 1

2(n − ν)

n∑

j=ν+1

[
cos{(t − s)ε̃ j } − cos{(t + s)ε̃ j }

]
.

��
Proof of Theorem 3 To prove the result, we apply Theorem 1.1 in Kundu et al. (2000).
So we will check that conditions (i)–(iii) in such Theorem hold. With this aim, we first
note that E∗{sin(tε∗

j )} = 0, ν + 1 ≤ j ≤ n, ∀n and

Cov∗{S∗
n,ν(t), S∗

n,ν(s)} = 1

n − ν

n∑

j=ν+1

sin(t ε̃ j ) sin(sε̃ j ) = Kn(t, s),

for both algorithms. From Lemma 6, Kn(t, s)
P→ K (t, s), ∀s, t ∈ R. Note also that

|K (t, s)| ≤ 1, ∀s, t ∈ R. Let {ek, k ≥ 0} be an orthonormal basis of L2(w). Since
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Kn(t, s)
P→ K (t, s) and |K (t, s)| ≤ 1, Dominated Convergence Theorem yields

lim〈Rnek, el〉 = lim
∫

Kn(t, s)ek(t)el(s)w(t)w(s)dtds = 〈Rek, el〉,

in probability. This proves that condition (i) holds. To verify condition (ii), using
Monotone Convergence Theorem, Parseval’s relation and Dominated Convergence
Theorem, we get

lim
∞∑

k=0

〈Cnek, ek〉 = lim
∞∑

k=0

E∗{〈Rn, ek〉2}

= lim E∗{‖Rn‖2
w} =

∫
lim Kn(t, t)w(t)dt

=
∫

K (t, t)w(t)dt = E‖Y0S‖w < ∞,

in probability. Let Wnj = (n − ν)−1/2 sin(tε∗
j ). To prove condition (iii), we first

notice that |〈Wnj , ek〉| ≤ 1/
√

n − ν, whence E
(〈Wnj , ek〉2 I {|〈Wnj , ek〉| > ε}) = 0

for sufficiently large n. Thus, lim
∑n

j=1 E
(〈Wnj , ek〉2 I {|〈Wnj , ek〉| > ε}) = 0, for

every ε > 0 and every k ≥ 0. ��
Proof of Theorem 4 Let ε > 0 be arbitrary but fixed. Let a ∈ L2(w) such that ‖a‖w =
1. There exists m = m(ε) > 0 such that

∫
C a2(t)w(t)dt ≥ 1−ε, where C = [−m, m].

Let C̄ denote the complementary set of C . Let yn = sups,t∈C |Kn(t, s) − K (s, t)|.
Taking into account that

∫ |a(t)|w(t)dt ≤ 1,
∫

C̄ |a(t)|w(t)dt ≤ √
ε and |Kn(t, s) −

K (s, t)| ≤ 2, we get

∫
|Kn(t, s) − K (s, t)| a(t)a(s)w(t)w(s)dsdt ≤ yn + 2ε.

The above inequality and Lemma 6 both imply that
∫ |Kn(t, s) − K (s, t)| a(t)a(s)

w(t)w(s)dsdt = oP (1). By Corollary XI.9.4 (a) in Dunford and Schwartz (1963, p.
1090), this implies that |λ j − λ̂ j | = oP (1), ∀ j , where λ1 ≥ λ2 ≥ . . . and λ̂1 ≥ λ̂2 ≥
. . ., and hence

sup
x

|P∗(Wn ≤ x) − P(W0S ≤ x)| P−→ 0.

The above limit and (7) both imply the result. ��
Proof of Theorem 5 The proof closely follows that of Theorem 2, so we omit it. ��
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