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Abstract The aim of this paper is to extend the ideas of generalized additive mod-
els for multivariate data (with known or unknown link function) to functional data
covariates. The proposed algorithm is a modified version of the local scoring and
backfitting algorithms that allows for the nonparametric estimation of the link func-
tion. This algorithm would be applied to predict a binary response example.
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1 Introduction

For multivariate covariates, a Generalized Linear Model (GLM) (McCullagh and
Nelder 1989) generalizes linear regression by allowing the linear model to be related
with a response variable Y which is assumed to be generated from a particular dis-
tribution in the exponential family (normal, binomial, Poisson, etc.). The response is
connected with the linear combination of the covariates, Z = (Z1, . . . ,Zp)′, through
a link function. GLM models provide practitioners a great flexibility to handle with
responses that arise in many fields that are far from being Gaussian. The indicator
of suffering a certain disease or the number of patients are classical examples from
medicine, but in every field non-Gaussian responses can be found. Generalized Addi-
tive Models (GAM) (Hastie and Tibshirani 1986) are an extension of GLMs in which
the linear predictor is not restricted to be linear in the covariates but is the sum of
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smoothing functions applied to the covariates. GAMs are a good compromise be-
tween flexibility and complexity and provide a great tool to a practitioner to decide
which model could be more adequate. Some other alternatives are the Single-Index
Models (SIM) (see, for example, Horowitz 1998, and references therein) and the
GAM with an unknown link function (Horowitz 2001), the latter nesting all the pre-
vious models. Our aim is to extend these ideas to the functional covariates. There are
some previous works in this direction specially devoted to extend GLM to functional
data. As an example, the functional logit model is considered in Escabias et al. (2004,
2006) using principal components or functional PLS to represent the functional co-
variates. In James (2002), Cardot and Sarda (2005), Müller and StadtMüller (2005)
the same is done through a representation in a basis with or without penalization. An
extension of these methods using functional and nonfunctional covariates and possi-
bly dependent responses can be found in Goia (2012). The extension to SIM models
with functional predictors is studied in Ait-Saïdi et al. (2008) and more recently in
Chen et al. (2011). To extend the GAM models to functional data, there are two pre-
vious papers following two different approximations. The first one, Müller and Yao
(2008), implements an additive model from the projection of the functional compo-
nents on the eigenbasis of the covariance operator. The second one, Ferraty and Vieu
(2009), uses a two-step procedure to estimate an additive model of two functional
predictors. We will see both approximations in Sect. 2. More recently, Fan and James
(2012) have proposed the FAR model which extends the functional linear regression
using the ideas from penalized linear squares optimization approach.

The aim of this paper is to extend the local scoring and backfitting algorithm to
functional data in a nonparametric way where the response belongs to the exponen-
tial distribution family. Among all the available methods for regression in a univari-
ate framework, the GAMs provide the flexibility to find out the contribution of every
covariate against the rigidity of linear models which are more interpretable. In the
comparison between GAMs and linear models, the former could be considered as a
diagnostic tool to assess about when a linear model is good enough to explain the
variability of the response or when a more sophisticated design is desired. This rea-
soning is again true in the functional context but with a main difference. A functional
datum is a complex object that may contain different information depending on how
we look at it or, rather, depending on the metric or semimetric employed to catch that
information. So, one possibility is to explore several semimetrics for one functional
covariate at the same time using a GAM model. From the results of the model, a prac-
titioner could select the informative semimetrics, removing those with no information
and/or adding new ones. This flexibility is not possible with linear models because
they are restricted to work with Hilbert spaces (or transformations of Hilbert spaces
that lead to a new Hilbert space). Of course, it is important to distinguish those semi-
metrics that can provide different sources of information. To this end, the distance
correlation introduced in the paper by Szekely et al. (2007) could help. This distance
correlation (R) characterizes independence between X ∈ R

p and Y ∈ R
q , p and q

being arbitrary finite dimensions, and it is computed only with the distances between
the elements. The same results is not proved yet for infinite spaces, but, in any case, it
is an interesting empirical tool for detecting when two semimetrics provide the same
information.
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In Sect. 2 we describe some background on GLM and GAM. If the link is sup-
posed to be known, the procedure could be extended to other exponential distribution
families. If not, some modifications should be done. Section 3 is devoted to describe
a generalized version of the local scoring algorithm that allows us (a) to estimate
nonparametrically the GAM (with known or unknown link function) and thus (b) to
obtain the corresponding predictive equations. In the nonparametric estimation pro-
cess, kernel smoothers will be used, and the bandwidths are found automatically by
generalized cross-validation. Finally, Sects. 4 and 5 are devoted to simulation studies
and applications, respectively.

2 Generalized functional additive models

The extension of classical GLMs to functional predictor (FGLM in the following)
simply consists in replacing the linear combination of the covariates by the inner
product in the functional space. So, Z = {X i}pi=1 being a set of functional covariates
with values in the product of p infinite-dimensional Hilbert spaces E = E 1 ×· · ·× E p ,
the GLM has the following expression:

E(Y |Z) = μ = g−1(ηz) = g−1(β0 + 〈Z,β〉) (1)

where β = (β1, . . . , βp) is a functional parameter taking values in E, 〈Z,β〉 =∑p

i=1〈X i , βi〉, and g is the link function, describing the functional relationship be-
tween the expected value μ of a datum y and the systematic component ηz = 〈Z,β〉.
Most of the methods for estimating β on functional context differs on how the
term ηz is computed or approximated. Typically, the solution is the projection of
Z and β onto a finite number of elements of a functional basis, which can be ei-
ther chosen data-adaptively such as the eigenbasis of the auto-covariance operator
of the predictor (see for example, Cardot and Sarda 2005; Escabias et al. 2004,
2006, and references therein), or fixed in advance such as the Wavelet, B-spline
or Fourier basis including or not, some penalization (see for example, James 2002;
Ramsay and Silverman 2005, and references therein). An obvious extension of the
FGLM (1) is the addition of scalar variables as is done in Goia (2012). Once selected
how the term ηz will be approximated, the remaining steps of the procedure are the
same as in the multivariate case and depends on the distribution family of the re-
sponse: the choose of the link function and the corresponding analysis of deviance as
the goodness-of-fit criterion. This method can be only applied to covariates that be-
longs to a Hilbert space because the use of projections (the inner product). This could
be a limitation in certain situations due to, as mentioned before, a functional datum
could contain different information depending on the semimetric used. Obviously, in
the case of FGLM we are restricted to L2 spaces. For a list of common semimetrics
used in Functional Data Analysis (see Ferraty and Vieu 2006, Chap. 3). Some tricks
have been developed to surpass this limitation. For example, the information provided
by the semimetric of the derivatives is equivalent to use the information provided by
the Hilbert space of the derivatives. But, similar ideas cannot be employed with other
semimetrics like, for example, the semimetric of the supremum.

The above models make the hypothesis that the link function has a known form.
This fixed form is, however, rarely justified. Respect to this, the semiparametric single
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index model (SIM) (Horowitz 1998) generalizes the GLM (1) by allowing the link to
be an arbitrary smooth function that has to be estimated from the data. The SIM can
be expressed as:

E(Y |Z) = μ = r(ηz) = r
(〈Z,β〉). (2)

This model (see, James and Silverman 2005; Ait-Saïdi et al. 2008; Chen et al.
2011) has an important drawback from the practical point of view: the procedure to
select the optimal projection β . This is solved, as in the multivariate case, computing
a countable number of projections based on a truncated representation of the func-
tional covariates in a basis or computing the optimal projection in a step-by-step way.
Recently, the work by Fan and James (2012) contains two models: FAR and NL-FAR
which are, respectively, modified versions of FGLM and SIM models using penalized
least squares optimization techniques to find those relevant parts of the functional co-
variates. But again, the use of inner products restricts the application only to Hilbert
spaces.

One way to extend the GLMs for multivariate data is to express the systematic
component as the sum of smooth functions. This structure correspond to the so called
Generalized Additive Models (GAM) and was introduced by Hastie and Tibshirani
(1986). The extension to functional context maybe not so straight as in the case of
GLM. The functional GAM model can be expressed as:

E(Y |Z) = μ = g−1(ηz) = g−1

(

β0 +
p∑

j=1

fj

(
X j

)
)

(3)

where the key question here is the estimation of the partial functions fj . An answer to
this question is done in Müller and Yao (2008) through the functional principal com-
ponent (FPC) scores of X j , fj (X j ) := ∑K

k=1 f k
j (ξk

j ) being smooth functions of ξk
j ,

the k-principal score of variable j . We will refer to this approach as the General-
ized Spectral Additive Model (GSAM) because of the use of spectral decomposition
of the covariance operator of X , although the use of another basis representation is
possible or even, in certain cases, desirable. The GSAM model has an increasing flex-
ibility while avoiding the curse of dimensionality. Indeed, the fact that the FPC scores
are always uncorrelated for every functional covariate ensures that the estimation of
partial functions associated with that covariate will not suffer concurvity problems.
Concurvity can only occur if the scores of one functional variate are closely related
with the scores of another one, but taking into account that the scores are scalars,
concurvity can be detected with the usual diagnostic plots between scores of differ-
ent functional variates. On the other hand, the FPC decomposition is again only valid
for Hilbert spaces, and so, other sources of information depending in semimetrics are
simply ignored. Also, there is no guarantee that the first K components have predic-
tive information about the response, and the selection of the components to enter in
the model is still an open problem.

The other direction to extend GAM to functional context is the work by Ferraty
and Vieu (2009), where the estimation of fj functions is done using functional kernel
estimates of the partial functions and considering the response as continuous. In fact,
the proposed solution is a one cycle conditional algorithm (one step for each func-
tional covariate conditionally on previous estimation). We will refer to this model
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as the Functional Additive Model (FAM). Our proposal takes the FAM model as its
starting point, extending to the situations with response coming from the exponential
distribution family and to those situations in which there is not enough information
either about the form of the link (as in the SIM) or about the shape of the partial
functions (as in the GAM). Particularly, the estimation of the partial functions in a
nonparametric way makes our algorithm applicable to functional covariates in Ba-
nach spaces or even in metric spaces.

3 GAM: estimation and prediction

The main goal of this paper is to propose an algorithm to solve this broader class of
models. Such a general formulation will be presented here as G-GKAM (Generalized
Kernel Additive Models with unknown link function) with the purpose of widening
the assumptions regarding the link in generalized additive models. We propose to
adapt the techniques shown in Roca-Pardiñas et al. (2004) in such a way that it will
allow the nonparametric estimation of the partial functions fj and, if needed, the
joint nonparametric estimation of the inverse link g−1 = H, when the covariates are
curves. Our proposal is to extend the backfitting algorithm to this context, and so, the
estimation of the partial functions at step l should be done in the following way:

f̂ l
j

(
X j

) =
∑n

i=1(Yi − Ŷ
−j,l
i )Kj (

dj (X j ,X j
i )

hj
)

∑n
i=1 Kj(

dj (X j ,X j
i )

hj
)

(4)

where Ŷ
−j,l
i = ∑j−1

i=1 f̂ l
i (X i ) + ∑p

i=j+1 f̂
(l−1)
i (X i ) is the prediction without vari-

able j , dj is the distance (induced by the norm) in space Ej , and Kj and hj are an
asymmetric kernel function and the bandwidth, respectively. Some advantages can be
deduced from Eq. (4):

1. The estimator only uses distances between covariates, and so, it can be applied to
functional covariates in general metric spaces. Of course, scalar covariates can be
included. Also, it is possible to include linear terms in the algorithm.

2. The use of Nadaraya–Watson-type estimator for partial functions ensures that the
algorithm converges and has a unique global solution (see, Buja et al. 1989) be-
cause the smoother matrix is always strictly shrinking. Note that, the convergence
to a global solution is guaranteed, but not to the partial ones.

3. The estimator does not suffer from curse of dimensionality because at each step,
the process involves just one parameter, the bandwidth.

4. Finally, additive models give us the opportunity to look at that complex object
from different points of view or semimetrics and so, to extract as much as infor-
mation the functional covariate contains. So, it is possible to include the same
functional datum under different semimetrics in the model and, reading carefully
the results, to obtain a useful insight about which semimetric is more informative.

In the case of an unknown link, the estimator of the link function must provide also its
derivative in order to obtain an estimation of the variance of the linearized response.
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This motivates the use of Linear Local Regression when the estimation of the link is
demanded.

Before estimating the partial functions and the link, some restrictions have to be
imposed in order to ensure the GKAM (G-GKAM) identification. This is a usual
topic in multivariate GAM and SIM models. In the GAM context, identification is
guaranteed by introducing a constant β0 into the model and requiring a zero mean
for the partial functions (E(fj ) = 0). In the SIM and G-GAM, however, given that
the link function is not fixed, it is necessary to establish further conditions in order
to avoid different combinations of H and fj s that could lead to the same model. In
this paper, we follow the same ideas, and when estimating a GKAM (G-GKAM), we
impose the following conditions:

1. (General condition) E[fj ] = 0 (j = 1, . . . , p).
2. (G-GKAM only) β0 = 0 and E[(∑p

j=1 fj )
2] = 1.

These are the same two conditions as in Roca-Pardiñas et al. (2004). Note that,
from these conditions, the systematic component ηz becomes standardized when a
G-GKAM is estimated.

The proposed algorithm is as follows:
For a given (Z, Y ), the local scoring maximizes an estimation of the expected

log-likelihood E[l{ηz;Y }|Z], for example, when the response is a binary variable:

l{ηz;Y } = Y log
[
H(ηz)

] + (1 − Y) log
[
1 − H(ηz)

]
(5)

by solving iteratively a reweighted least squares problem in the following way.
In each iteration, given the current guess η̂0

Z , the linearized response Ỹ and the
weight W̃ are constructed as

Ỹ = η̂0
Z + (Y − μ̂0)

(
dη

dμ

)

μ̂0

and Ŵ−1
0 = Var(Ỹ |Z) = V0

(
dη

dμ

)2

0
(6)

where V0 is the variance function evaluated at μ̂0. Typically, the above equations can
be expressed in terms of H and its derivatives. For example, in the case where the
response is a binary variable, the above equations are reduced to the following form:

Ỹ = η̂0
Z + Y − H(η̂0

Z)

H′(η̂0
Z)

and Ŵ−1
0 = Var(Ỹ |Z) = H(η̂0

Z)(1 − H(η̂0
Z))

H′(η̂0
Z)2

. (7)

To estimate the fj s, we fit an additive regression model to Ỹ , treating it as a
response variable with associated weight Ŵ0. The resulting estimation of η̂Z is η̂0

Z

of the next iteration. This procedure must be repeated until negligible changes in
the systematic component. For the estimation of the fj s and H, the following two
alternating loops must be performed.

Loop 1. Let η̂0
Z and μ̂0 = Ĥ0(η̂0

Z) (and possibly Ĥ′0(η̂0
Z)) be the current estimates.

Replacing the functions H (and H′) by their current estimates, Ĥ0 (and Ĥ′0), in for-
mulas given in (6), η̂Z = β0 + ∑p

j=1 f̂j (X j ) is then obtained by fitting an additive

model of Ỹ on Z with weights Ŵ . If the link must be estimated, then the systematic
component is rescaled to fulfill identifiability conditions.
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Loop 2. (G-GKAM only) Fixing η̂Z , the two estimates μ̂0 = Ĥ(η̂Z) and their
derivatives are then obtained by fitting a regression model of Y on Z weighted by
V −1

0 using a polynomial local kernel estimators in order to also have estimations of
the derivatives.

These two loops are repeated until the relative change in deviance is negligible.
At each iteration of the estimation algorithm, the partial functions are estimated

by applying Nadaraya–Watson weighted kernel smoothers to the data {X j ,Rj } with
weights Ŵ , Rj being the residuals associated to X j obtained by removing the effect
of the other covariates. In this paper, for each f̂j , the corresponding bandwidth hj

is selected automatically by minimizing, in each of the cycles of the algorithm, the
weighted GCV error criterion, whereas the bandwidth for estimating the link function
(if needed) is found minimizing the cross-loglikelihood error criterion (analogous
to (5)). In all cases, the computation of the optimal bandwidths are done in a suitable
grid, although any other unidimensional algorithm is possible.

As initial estimates, we consider f 0
j := 0, β0 = g(Ȳ ) for a GKAM model, and in

the case of a G-GKAM, β0 = 0, f 0
1 = ∫

X (t) dt , and f 0
j = 0, j �= 1.

3.1 Practical considerations

There are several practical aspects that must be taken into account when implement-
ing the above steps:

• The contribution of every partial function in the response can be measured in terms
of the determination coefficient with respect to the linearized response η. This
information, jointly with the effective number of parameters (eqPar) of the partial
function, gives an idea about the importance of that functional covariate and its
complexity. In our case, the effective number of parameters of partial function i

is defined as df (Sj ) = trace(Sj ) where Sj is the smoothing matrix of the partial
function fj .

• The bandwidth for every step is selected applying a GCV criterion in order to
maintain the algorithm in a reasonable time consuming. Every GCV criterion uses
a penalizing term which is a function of the eqPar consumed by the model. In our
case, at each step, we have employed the global degree of freedom as a penalizing
term (the sum of eqPar from the current estimation of partial functions).

• Stop criteria. As usual in the univariate case, the algorithm stops when the fol-
lowing both conditions are satisfied: (1) |f j

i (Xi ) − f
j+1
i (Xi )| ≤ ε|f j

i (Xi )|, and
(2) |η̂j − η̂j+1| ≤ ε|η̂j |, ε being a precision constant.

• When the response is binary, the inverse of weights at each step could be arbitrary
close to zero because the probability could be close to zero or one. Typically, those
data are discarded. If this occurs for too many curves, the algorithm could try to
estimate the partial functions without enough data. To avoid this, when the number
of weights significantly distinct from zero are less than the equivalent number of
parameters of the estimator, the algorithm stops.

• The known problems of additive models for univariate data have their reflection
in the functional context. The boundary effect of the Nadaraya–Watson estimators
also applies here, boundary effect meaning that a curve is not closely surrounded
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by others. Also, additive models could suffer concurvity (some smooth terms could
be approximated by one or more of the other smooth terms). In functional context,
concurvity occurs when certain relationship among the distances holds, and so,
avoiding those terms based on similar distances (for example, the L2 distance and
semimetric of principal components) should be enough to ensure that the algo-
rithm does not break down. The distance correlation mentioned above could be
a useful tool providing a measure of dependence between distances discovering
what information in one distance is similar to another.

4 Simulation study

We have considered three scenarios to assess the performance of the algorithm pro-
posed (FGKAM) in comparison with the other competing methods: FGLM and
GSAM. These scenarios are computed from two Gaussian processes X1 and X2 eval-
uated in a fine grid of N = 101 points {t1, . . . , tN } ∈ [0,1] with covariance matrices
Σ1(s, t) = 1

2 exp(−0.8|s − t |) and Σ2(s, t) = 2
5 exp(−0.6|s − t |), respectively. Also,

we added a systematic sinusoidal trend to X1.
The response of the three scenarios are computed in the following way:

M1: y = 3 + 5〈X1, β1〉 − 〈X2, β2〉 + ε

M2: y = 4(
∫

X 2
1 (t) dt)1/3 − 5(

∫
X 2

2 (t) dt)1/3 + ε

M3: y = 2
5

∫
X1(t)

3 dt − 3 exp(−d2(X2,C)) + ε

where β1(t) = t (1 − t), β2(t) = 1, C(t) = log(t + 1), and d2 is the distance under the
L2 norm. An example of the functional covariates and the density of the responses
for the different scenarios are shown in Fig. 1.

In every case, ε is a Gaussian variate with σ 2
ε = snr · Var(S), where the signal-to-

noise ratio snr = 0.01,0.1,0.2, and the signal S = f1(X1) + f2(X2).
The M1 scenario corresponds to a classical functional linear model, and so, the

FGLM must be optimal, although GSAM and FGKAM methods should be close. The
two terms of M2 scenario are related with the L2 norm of X1 and X2, respectively,
and so, it is a case designed for GSAM, but it will be a hard scenario for FGLM.
Finally, the M3 scenario is also hard for GSAM (and, of course, for FGLM) because
it contains some terms which cannot be explained successfully only with the L2 norm.
Here, the better results can be obtained using for X1 a metric based on the L3 norm
in the FGKAM procedure.

For every scenario, N = 100,500,1000 data were generated, using the first half
(50,250,500) as training sample, and the latter for validation purposes. The results
for B = 100 replications are shown in Table 1. In all cases, the distance used was the
L2 distance for FGKAM procedure, although in M3 the results could be improved if a
metric related with L3 were employed. In this case, the distance correlation between
distances L2 and distances L3 for the first covariate is R(X L2

1 , X L3
1 ) = 0.9987. For

GSAM procedure, the number of eigenfunctions considered was k = 3, which ex-
plains about 84 % of the total variability in both functional variates. In scenario M1,
the Mean Square Error (MSE) of the residuals is quite similar among the three com-
petitors with a tendency of FGKAM method to provide smaller values especially for
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Fig. 1 Response for scenarios M1, M2 and M3 (top row) and functional covariates X1 and X2 (bottom
row)

snr �= 0.01. Probably, there is a tendency to overtrain for FGKAM method. The re-
sults on prediction in this scenario for FGKAM are slightly worse than for FGLM
and GSAM, which basically are the same. The difference between models is reduced
when the sample size or the signal-to-noise ratio increases. The loss of FGKAM is
probably due to the prediction in data far from training sample (boundary effect).
The scenarios M2 and M3 cannot be handled by FGLM method, and the FGLM re-
sults here are poor. The FGKAM procedure obtain the best results, closely followed
by the GSAM method in the M2 scenario, although here increasing the number of
eigenfunctions could improve the results of this procedure. In the M3 scenario, the
FGKAM procedure clearly outperforms the other competitors, the most significative
differences being when the snr is small and the sample size is large. The effect of
sample size in the prediction is more important in the case of FGKAM method than
in the others. The rows corresponding to prediction errors are quite stable for FGLM
and GSAM with respect to the sample size, whereas the improvement for the MSE
of the FGKAM method with respect to the sample size is notable.

Also, in order to check other distributions in the response, we have generated sam-
ples with Bernoulli response using p = P{Y = 1|Z} = exp{cS∗}

1+exp{cS∗} with c ∈ {1,2.5}
and S∗ = S − S̄, the recentered signal. The results are showed in Table 2 only for the
case N = 500 using the MSE of the residuals (with respect to p) and the percentage
of good classification in the testing sample. The MSE follows the guidelines shown
above for Gaussian response, but the percentage of good classification gives a not-so-
clear message, especially for scenario M3. In this scenario, the FGLM obtains results
in classification similar to the other two methods, GSAM and FGKAM. This can be
explained taking into account that for the percentage of good classification, only the
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Table 1 Mean residual square error (res.) and mean prediction square error (pred.) for scenarios M1, M2,
and M3 of the three competitors: FGLM, GSAM, and FGKAM

Scenario Model\snr N = 50 N = 250 N = 500

0.01 0.1 0.2 0.01 0.1 0.2 0.01 0.1 0.2

M1 Res. FGLM 0.0059 0.0593 0.1146 0.0062 0.0609 0.1217 0.0062 0.0621 0.1233

GSAM 0.0056 0.0568 0.1101 0.0061 0.0600 0.1198 0.0061 0.0616 0.1223

FGKAM 0.0117 0.0496 0.0947 0.0110 0.0521 0.1041 0.0104 0.0557 0.1077

M1 Pred. FGLM 0.0066 0.0676 0.1335 0.0066 0.0644 0.1285 0.0064 0.0633 0.1266

GSAM 0.0068 0.0697 0.1365 0.0066 0.0649 0.1293 0.0064 0.0635 0.1272

FGKAM 0.0288 0.0881 0.1602 0.0195 0.0776 0.1448 0.0155 0.0731 0.1386

M2 Res. FGLM 0.5816 0.6429 0.6802 0.6083 0.6624 0.7339 0.6124 0.6782 0.7491

GSAM 0.0835 0.1333 0.1925 0.0859 0.1464 0.2096 0.0859 0.1483 0.2151

FGKAM 0.0530 0.0902 0.1355 0.0494 0.0934 0.1423 0.0467 0.0952 0.1486

M2 Pred. FGLM 0.6913 0.7464 0.8297 0.6459 0.7136 0.7783 0.6486 0.6990 0.7724

GSAM 0.1078 0.1726 0.2453 0.0961 0.1602 0.2286 0.0927 0.1535 0.2223

FGKAM 0.1038 0.1691 0.2506 0.0754 0.1403 0.2104 0.0626 0.1238 0.1945

M3 Res. FGLM 0.2438 0.3370 0.4260 0.2668 0.3605 0.4637 0.2774 0.3633 0.4700

GSAM 0.1034 0.1861 0.2776 0.1268 0.2117 0.3149 0.1347 0.2206 0.3237

FGKAM 0.0335 0.0933 0.1578 0.0357 0.1015 0.1783 0.0352 0.1065 0.1886

M3 Pred. FGLM 0.3081 0.4187 0.5171 0.2935 0.3915 0.5013 0.2935 0.3873 0.4839

GSAM 0.1608 0.2735 0.3761 0.1570 0.2522 0.3684 0.1477 0.2448 0.3413

FGKAM 0.1327 0.2332 0.3401 0.0941 0.1891 0.3061 0.0728 0.1691 0.2691

Table 2 MSE and percentage of good classification for scenarios M1, M2, and M3 with binary response

FGLM GSAM FGKAM

MSE % good class. MSE % good class. MSE % good class.

c = 1 M1 0.0046 63.8 % 0.0048 63.8 % 0.0057 64.4 %

M2 0.0412 49.4 % 0.0152 62.8 % 0.0149 58.2 %

M3 0.0143 61.2 % 0.0091 61.4 % 0.0098 64.6 %

c = 2.5 M1 0.0051 74.0 % 0.0051 74.0 % 0.0142 73.6 %

M2 0.1085 54.2 % 0.0177 72.8 % 0.0246 72.0 %

M3 0.0315 71.0 % 0.0078 75.4 % 0.0152 76.0 %

behavior of the model around p = 0.5 is important. The constant c, when increasing,
has the effect of separating the groups, making the estimate of p less important.

All simulations were done using the R-package fda.usc (Febrero-Bande and
Oviedo de la Fuente 2012a, 2012b) where the methods in the comparison are imple-
mented. In order to have an idea about the computing cost of each method, some of
the simulations were run in a computer with Intel Core i5 CPU Processor 2.67 GHz.
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Table 3 Average CPU times (in secs.) as functions of sample size

Basis FGLM GSAM Distances FGKAM (h)

N = 50 0.29 0.31 0.36 0.14 1.08 (0.15)

N = 250 4.05 4.08 4.29 3.78 23.67 (3.15)

N = 500 5.73 5.77 5.89 14.86 86.9 (12.0)

The average CPU times in seconds are showed in Table 3 as functions of the sam-
ple size including some of the intermediate tasks for every method. For the FGLM
and GSAM methods, the intermediate task is to represent the functional data in the
chosen basis, in this case, the first three eigenfunctions for each covariate. In the case
of the FGKAM method, the intermediate task is to obtain the matrix of distances
between data, which is done once for every covariate and depends on the number
of discretization points (done here by numerical integration). The other source of
time consumption is the task of finding the optimal bandwidth for each covariate
at each iteration. This is done in our implementation looking for the optimal band-
width in a fine grid of 51 values. This time is reflected in the column FGKAM in
parentheses. The FGKAM is quite high demanding, although the comparison is not
fair because the FGLM and GSAM methods use standard R methods fully optimized
(stats::glm.fit and mgcv::gam, respectively), and this is not done yet for
FGKAM. Of course, any improvement in the computation of the distances and/or in
finding the optimal bandwidth will have an important impact on the CPU times.

5 Application

In this section, we present an application of the FKGAM model (3) to the Tecator
dataset. This data set was widely used in examples with functional data (see, Ferraty
and Vieu 2006) to predict the content of fat content on samples of finely chopped
meat. For each food sample, the spectrum of the absorbances recorded on a Tecator
Infratec Food and Feed Analyzer working in the wavelength range 850–1050 mm by
the near-infrared transmission (NIT) principle is provided also with the fat, protein,
and moisture contents, measured in percent and determined by analytic chemistry.
We had n = 215 independent observations, usually divided into two data sets: the
training sample with the first 165 observations and the testing sample with the others.
In this study, we are trying to predict the fat content, Y1 = Fat and also, an indi-
cator variable related with the fat content, Y2 = I {Fat ≥ 15} where Z = (A, A′′),
A being the absorbances, and A′′ its second derivative. The use of the second deriva-
tive is justified by previous works (see, for example, Aneiros-Pérez and Vieu 2006;
Ferraty and Vieu 2009, among others), where the models with information including
the second derivative have better prediction results. The curves and the second deriva-
tive are shown in Fig. 2. Here, the gray group (fat over 15 %) is clearly quite well
separated when considering the second derivative and quite mixing when considering
the spectrum itself. This suggests that the relevant information about high percentage
of fat is mainly related with the second derivative. The prediction of fat content is
included only for comparison purposes with those previous works.
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Fig. 2 Spectrum and second derivative of training sample colored by binary response (gray =
I(Fat ≥ 15 %))

Fig. 3 Fat prediction error vs fat content in the testing sample for FGLM, GSAM, and FKGAM models

The work by Ferraty and Vieu (2009) makes the comparison between models using
the Mean Square Residuals (MSR) of the testing sample obtaining 1.88 as the best re-
sult of the nonparametric additive model before the boosting stages. In Aneiros-Pérez
and Vieu (2006), the functional nonparametric model using only the second deriva-
tive has an MSR of 4.31 (the original table shows the MSR divided by the variance
of the fat content in the testing sample). In our case, the MSR of FGLM, GSAM,
and FKGAM was 12.39, 1.53, and 3.23, respectively. The bad results obtained by the
FGLM suggest that, in this example, the fat content cannot be well explained with a
functional linear model. This can be checked in Fig. 3, where the prediction errors
are plotted against fat content with a Lowess estimation of the trend. The Lowess line
for FGLM is far for being constant, suggesting that there is something nonlinear that
should be included in the model. The lines for GSAM and FKGAM are both quite
flat, although the FKGAM one shows a small trend for low fat contents. Probably,
this boundary effect could explain the high MSR of the FKGAM model with respect
to GSAM. The distance correlation between both covariates is R(A, A′′) = 0.522,
which clearly indicates no concurvity.
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Fig. 4 Estimation of the partial effects (gray = I(Fat ≥ 15 %))

Table 4 Statistics for percentage of good classification in 500 replications

Method Sample Min. 1st. Qu. Median Mean 3rd. Qu. Max.

FGLM Training 100 % 100 % 100 % 100 % 100 % 100 %

Testing 88.0 % 96.0 % 98.0 % 97.5 % 98.0 % 100 %

GSAM Training 100.0 % 100.0 % 100.0 % 100 % 100 % 100 %

Testing 54.0 % 92.0 % 94.0 % 93.8 % 98.0 % 100 %

FKGAM Training 97.58 % 98.18 % 98.8 % 98.7 % 98.8 % 100 %

Testing 90.0 % 96.0 % 98.0 % 97.9 % 100.0 % 100 %

In the second case, the model can be expressed by

E(Y2 = 1|Z) = p(Z) = p
(

A, A′′) = H(ηz) = H
(
β0 + f1(A) + f2

(
A′′)) (8)

where H is the logit link.
The impression that the second derivative is informative could be confirmed in

Fig. 4, where the contribution of every functional covariate to η is shown in the cen-
tral and right plots. The spectrum curves show a chaotic behavior with respect to
η, whereas the second derivative of each curve shows a clearly increasing pattern.
Indeed, the trace of the smoothing matrices S1, S2 associated with f1, f2 are respec-
tively 2.5 and 88.6, which indicates a higher contribution of the second derivative.
These values were similar to those obtained in the first case where the response is
continuous. Classifying every observation according to the estimated probability, the
percentage of good classification is 98.8 % and 96 % for the training and testing
samples, respectively. The FGLM and GSAM methods raise to 100 % in the training
sample, and to 98 % and 92 % in the testing sample, respectively.

We have also repeated this analysis 500 times changing at random which data are
included in the training sample and keeping the size of the training sample in 165
observations. The results are summarized in Table 4 and are quite promising. The
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three methods perform well, although FGLM and GSAM methods have a tendency
to overtrain. For the testing sample, the FGKAM procedure has better results with
less variability, slightly better than the other methods. So, the small differences here,
in contrast with the case of continuous response, could be explained pointing out that
for binary responses computed as a cutpoint of a continuous one, only the goodness
of the model around the cut level is relevant.

6 Conclusions

In this paper, we have proposed an algorithm to estimate a wide class of regression
models for functional data with response belonging to the exponential family. This
algorithm (named Generalized Kernel Additive Model or FGKAM for short) is based
on a mixing of the IRLS and Backfitting algorithms adapted to the functional context.
Our proposal is compared with Functional Generalized Linear Models (James 2002;
Escabias et al. 2004, 2006; Cardot and Sarda 2005; Müller and StadtMüller 2005)
and with Generalized Spectral Additive Models (Müller and Yao 2008) in a simula-
tion study and in a real example using the R-package fda.usc (Febrero-Bande and
Oviedo de la Fuente 2012a), where the three proposals are implemented in a inte-
grated way. The FGKAM has proven to be useful in simulations and in application
examples. Nevertheless, some questions arise in the application:

• The algorithm is quite high consuming, especially when the link functions have to
be estimated and the convergence is slow. Due to the functional nature of the data,
the usual techniques in univariate framework for speed up the computations (like
for example, binning) are not available here.

• The search of an automatic optimal bandwidth is a challenging and critical task.
This procedure is invoked repeatedly for every covariate at each iteration, and so,
it must be a fast procedure based on GCV techniques (CV techniques must be
discarded). But the type of penalizing term is an open problem, which is more
complicated here with several covariates

• An obvious extension of the proposed model is to mix functional and scalar co-
variates, the contribution of these covariates being linear or smoothed.
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