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Abstract The problem of multicollinearity associated with the estimation of a func-
tional logit model can be solved by using as predictor variables a set of functional
principal components. The functional parameter estimated by functional principal
component logit regression is often nonsmooth and then difficult to interpret. To solve
this problem, different penalized spline estimations of the functional logit model are
proposed in this paper. All of them are based on smoothed functional PCA and/or
a discrete penalty in the log-likelihood criterion in terms of B-spline expansions of
the sample curves and the functional parameter. The ability of these smoothing ap-
proaches to provide an accurate estimation of the functional parameter and their clas-
sification performance with respect to unpenalized functional PCA and LDA-PLS are
evaluated via simulation and application to real data. Leave-one-out cross-validation
and generalized cross-validation are adapted to select the smoothing parameter and
the number of principal components or basis functions associated with the considered
approaches.
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1 Introduction

A part of the literature has recently been concerned with functional data in a wide
variety of statistical problems, and with developing procedures based on smoothing
techniques. A functional data set provides information about functions (curves, sur-
faces, etc.) varying over a continuum. The argument of the sample functions is often
time, but may also be a different magnitude as spatial location, wavelength or prob-
ability. A magistral compilation of models working with sample curves and interest-
ing applications in different fields are collected in Ramsay and Silverman (2005) and
Ramsay and Silverman (2002), respectively.

The aim of the functional logit model (FLM) is to predict a binary response vari-
able from a functional predictor and also to interpret the relationship between the
response and the predictor variables. In the last years, the FLM was applied in dif-
ferent contexts. A FLM was applied to predict if human foetal heart rate responds
to repeated vibroacoustic stimulation (Ratcliffe et al. 2002). The FLM was consid-
ered in the more general framework of functional generalized linear models in James
(2002). A nonparametric estimation procedure of the generalized functional linear
model for the case of sparse longitudinal predictors was proposed in Müller (2005).
This extension included functional binary regression models for longitudinal data and
was illustrated with data on primary biliary cirrhosis. An alternative nonparametric
classification method was studied in Ferraty and Vieu (2003).

In order to reduce the infinite dimension of the functional predictor and to solve the
multicollinearity problem associated with the estimation of the FLM, a reduced num-
ber of functional principal components can be used as predictor variables to provide
accurate estimation of the functional parameter (Escabias et al. 2004). A climato-
logical application to establish the relationship between the risk of drought and time
evolution of temperatures was carried out by Escabias et al. (2005). The relationship
between lupus flares and stress level was analyzed by using a principal component
logit model in Aguilera et al. (2008). A functional PLS based solution was also pro-
posed by Escabias et al. (2007). The problem associated with these approaches is that
in many cases the estimated functional parameter is not smooth and therefore difficult
to interpret. The main objective of this paper is to solve this problem by introducing
different penalties based on P-splines.

The functional linear model was the first regression model extended to the case of
functional data. In order to estimate an accurate functional parameter, a smoothing
estimation approach based on penalizing the least squares criterion in terms of the
squared norm of a B-spline expansion of the functional parameter was introduced by
Cardot et al. (2003). A smoothed principal component regression based on ordinary
least squares regression on the projection of the covariables on a set of eigenfunc-
tions was also considered. When the functional predictor is corrupted by some error,
the functional parameter was estimated by total least squares by using smoothing
splines (continuous spline penalty based on the integral of the squared second deriva-
tive of the functional parameter) (Cardot et al. 2007). Two versions of functional PCR
for scalar response using B-splines and discrete roughness penalty were proposed in
Reiss and Ogden (2007). In one of them, the penalty is introduced in the construc-
tion of the principal components. In the other one, a penalized likelihood estimation
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is considered. The smoothing parameter was found by fitting a linear mixed model.
These penalized PCR approaches did not consider the functional form of the sample
paths but only the approximation in terms of basis functions of the functional param-
eter. When both the response and the predictor variables are functional, the idea of
discrete roughness penalties based on the absolute values of the basis function coeffi-
cient differences (corresponding to the LASSO) and the squares of these differences
(according to the P-spline methodology) was extended to the functional linear model
setting by penalizing the interpretable directions of the regression surface in Harezlak
et al. (2007). From a Bayesian point of view, approaches to control the modes of vari-
ation in a set of noisy and sparse curves were proposed by van der Linde (2008) where
Demmler–Reinsch basis was used to get smooth weight functions in the functional
PCA estimation.

In the general context of functional generalized linear models (FGLM), differ-
ent penalized likelihood estimations with B-spline basis were proposed to solve the
roughness problem of the functional parameter. The FGLM with P-spline penalty in
the log-likelihood criterion was developed in Marx and Eilers (1999). The benefits
of this functional model were compared with functional PLS and PCR. A penalized
estimation of the functional parameter via penalized log-likelihood was proposed by
Cardot and Sarda (2005). This estimation is quite similar to the one provided by Marx
and Eilers (1999) with the main difference coming from the continuous penalty that
was expressed as the norm of the derivative of given order of the function. A practical
mechanism to combine the GLM via penalized log-likelihood, the general additive
models (Hastie and Tibshirani 1990) and the varying-coefficient model (Hastie and
Tibshirani 1993) into a general additive structure was introduced by Eilers and Marx
(2002).

In this work, we propose four different methods based on penalized spline
(P-spline) estimation of the functional logit regression model by considering the func-
tional form of the sample paths and the functional parameter in terms of B-spline
basis expansions. The considered approaches are based on smoothed functional prin-
cipal component logit regression (FPCLOR) and functional logit regression via pe-
nalized log-likelihood.

In the FPCLOR context, three different versions of penalized estimation ap-
proaches based on smoothed functional principal component analysis (FPCA) are
introduced. On the one hand, FPCA of P-spline approximation of sample curves
(Method II) is performed. On the other hand, a discrete P-spline penalty that pe-
nalizes the roughness of the principal component weight functions is included in the
own formulation of FPCA (Method III). The third smoothed FPCLOR approach is
carried out by introducing the penalty in the likelihood estimation of the functional
parameter in terms of a reduced set of functional principal components (Method IV).
Moreover, direct P-spline likelihood estimation in terms of B-spline functions is also
considered (Method V).

The good performance of the proposed methods with respect to non-penalized
FPCLOR (Method I) and LDA-PLS is evaluated via two different data simulations,
a functional version of the well-known waveform data and a smooth principal com-
ponent reconstruction of the Ornstein–Uhlenbeck process. This study is completed
with an application to real data whose aim is to estimate the quality of cookies (good
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or bad) on the basis of the curves of resistance of dough during the kneading process
(functional data classification).

2 Functional logit model

The main objective of this paper consists in estimating the link between a binary ran-
dom variable Y and a functional predictor X = {X(t)}t∈T . It will be assumed without
loss of generality that X is a centered second order stochastic process whose sample
paths belong to the space L2(T ) of square integrable functions with the usual inner
product defined by 〈f,g〉 = ∫

T
f (t)g(t) dt . This means that E(X(t)) = 0, ∀t ∈ T .

Let {x1(t), x2(t), . . . , xn(t)} be a sample of the functional variable X and
{y1, y2, . . . , yn} be a random sample of Y associated with them. That is, yi ∈ {0,1},
i = 1, . . . , n. The functional logistic regression model is given by

yi = πi + εi, i = 1, . . . , n,

where πi is the expectation of Y given xi(t) modeled as

πi = P
[
Y = 1

∣
∣
{
xi(t) : t ∈ T

}] = exp{α + ∫
T

xi(t)β(t) dt}
1 + exp{α + ∫

T
xi(t)β(t) dt} , i = 1, . . . , n, (1)

with α being a real parameter, β(t) a functional parameter, and {εi : i = 1, . . . , n}
independent errors with zero mean. The logit transformations can be expressed as

li = ln

[
πi

1 − πi

]

= α +
∫

T

xi(t)β(t) dt, i = 1, . . . , n. (2)

In the functional logit model, we have to take into account different aspects. Firstly,
we cannot continuously observe the functional form of the sample paths. As much
we can observe each sample curve xi(t) in a finite set of discrete sampling points
{ti0, ti1, . . . , timi

∈ T , i = 1, . . . , n}, so that the sample information is given by the
vectors xi = (xi0, . . . , ximi

)′, with xik being the observed value for the ith sample
path xi(t) at time tik (k = 0, . . . ,mi ). Secondly, it is impossible to estimate the infi-
nite functional parameter with a finite number of observations n. In order to solve at
the same time the two questions, a functional estimation approach based on approxi-
mating the sample paths and the functional parameter in terms of basis functions was
proposed (Escabias et al. 2007). Different basis such as trigonometric functions (see
Aguilera et al. 1995 and Ratcliffe et al. 2002), cubic spline functions (see Aguilera
et al. 1996 and Escabias et al. 2005), or wavelet functions (see Ocaña et al. 2008) can
be used depending on the nature of the functional predictor sample paths.

Let us consider that both the sample curves and the functional parameter are ap-
proximated as a weighted sum of basis functions as follows:

xi(t) =
p∑

j=1

aijφj (t), β(t) =
p∑

k=1

βkφk(t), (3)

with p being the number of basis functions. Choosing the order of the expansion p is
an important problem. If p is increased, the fit to the data is better, but we risk fitting
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noise or variation that affects the raw data. On the other hand, if p is too small, we
may miss some important characteristics of the underlying smooth function.

Then, the FLM (2) turns into a multiple logit model whose design matrix is the
product between the matrix of basis coefficients of the sample paths and the matrix
of inner products between basis functions (Escabias et al. 2004). So, the logit trans-
formations in matrix form are given by

L = Xβ, (4)

where L = (l1, . . . , ln) is the vector of logit transformations, X = (1|AΨ ), with A =
(aij )n×p being the matrix of basis coefficients of the sample paths, Ψ = (ψjk)p×p

the matrix of inner products between basis functions (ψjk = ∫
T

φj (t)φk(t) dt), 1 =
(1, . . . ,1)′ an n-dimensional vector of ones, and β = (β1, . . . , βp)′ the vector of basis
coefficients of β(t).

In order to estimate the multiple logit model (4), we must first approximate the
basis coefficients of each sample curve from its discrete time observations (rows of
matrix A). When the sample curves are smooth and observed with error, least squares
approximation in terms of B-spline basis is an appropriate solution for the problem of
reconstructing their true functional form. Other alternatives to B-spline approxima-
tion are techniques such as interpolation or projection in a finite-dimensional space
generated by basis functions. More recently, nonparametric techniques were used for
approximating functional data (Ferraty and Vieu 2006).

B-splines are constructed from polynomial pieces joined at a set of knots. Once the
knots are given, B-splines can be evaluated recursively for any degree of the polyno-
mial by using a numerically stable algorithm (De Boor 2001). Considering the least
squares approximation in terms of B-spline basis, the vector of basis coefficients of
each sample curve that minimizes the least squares error (xi − Φiai)

′(xi − Φiai)

is given by âi = (Φ ′
iΦi)

−1Φ ′
ixi , with Φi = (φj (tik))mi×p and ai = (ai1, . . . , aip)′.

These approximated sample curves are known as regression splines. The choice of
the number of knots is an important problem when working with regression splines
because they do not control the degree of smoothness of the estimated curve. If too
many knots are selected, you have an overfitting of the data. On the other hand, too
few knots provide an underfitting. This problem is solved in this paper by using pe-
nalized splines. In this case, the smoothness of the approximated curve is controlled
by the smoothing parameter.

2.1 Penalized estimation with basis expansions

The log-likelihood function for the multiple model (4) is given by

L(β) =
n∑

i=1

ln(1 − πi) +
n∑

i=1

yi ln

(
πi

1 − πi

)

= −
n∑

i=1

ln

(

1 + exp

(
p∑

j=0

Xijβj

))

+
p∑

j=0

(
n∑

i=1

yiXij

)

βj . (5)

Then, the likelihood equations in matrix form are

y′X = π̂ ′X,



256 M. Carmen Aguilera-Morillo et al.

where y = (y1, . . . , yn)
′, π̂ = (π̂1, . . . , π̂n)

′ is the vector of likelihood estimators of

π = (π1, . . . , πn)
′, with π̂i = exp(

∑p
j=0 Xij β̂j )

1+exp(
∑p

j=0 Xij β̂j )
and β̂j the likelihood estimators of

the basis coefficients of the functional parameter β(t) in the FLM. Solving the likeli-
hood equations by mean of the iterative Newton–Raphson method, the vector of basis
coefficients of the functional parameter at iteration t is given by

β(t) = β(t−1) + [
X′ Diag

(
π

(t−1)
i

(
1 − π

(t−1)
i

))
X

]−1
X′(y − π

(t−1)
i

)
. (6)

The maximum likelihood estimate of the parameters of the logit model can be calcu-
lated by iterative reweighted least squares as the limit of a sequence of weighted least
squares estimates, where the weight matrix changes each cycle. See Agresti (1990)
for a detailed study of this least squares procedure.

The estimation of this model is affected by multicollinearity due to the high corre-
lation between the columns of the design matrix. On the one hand, this problem can
be solved by logit regression of the response on a set of uncorrelated variables as,
for example, principal components. On the other hand, the problem can be solved by
using a penalized estimation of the regression coefficients based on the differences
of order d between adjacent coefficients (Le Cessie and Van Houwelingen 1992). In
order to obtain a more accurate and smoother estimation of the functional parameter,
this methodology is extended in this section to the functional logit model by intro-
ducing a penalty in the log-likelihood estimation of the multiple logit model given by
Eq. (4). This penalty is based on B-spline basis expansions of the sample curves and
the functional parameter, and a simple discrete penalty that measures the roughness
of the parameter function by summing the squared d th order differences between
adjacent B-spline coefficients (P-spline penalty).

Let us consider the basis expansion of the functional parameter given by Eq. (3).
Then, the penalized log-likelihood of the FLM with logit transformation given by (4)
is given by

L∗(λ,β) = L(β) − λ

2
β ′Pdβ,

where β = (β1, . . . , βp)′ is the vector of basis coefficients of β(t), λ is the smoothing
parameter, and Pd = (�d)′�d , with �d the matrix of differences of order d given by
the (p − d) × p matrix

�d =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
d

0

) (
d

1

) (
d

2

)

. . .

(
d

d

)

0 0 . . .

0

(
d

0

) (
d

1

)

. . .

(
d

d − 1

) (
d

d

)

0 . . .

0 0

(
d

0

)

. . .

(
d

d − 2

) (
d

d − 1

) (
d

d

)

. . .

...
...

...
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Let us observe that the vector of differences of order d of the vector β is given by
�dβ and its components are the differences of order 1 of the vector of differences of
order d − 1 given by

d∑

j=0

(
d

j

)

βk+j k = 1, . . . , p − d.

The most common penalty matrix is P2 = (�2)′�2, with �2 the (p − 2) × p matrix
of differences of order 2 given by

�2 =

⎛

⎜
⎜
⎜
⎝

1 −2 1 0 0 . . .

0 1 −2 1 0 . . .

0 0 1 −2 1 . . .

· · · · · . . .

⎞

⎟
⎟
⎟
⎠

.

In this case, the Newton–Raphson solution for the penalized likelihood estimators
will be

β(t) = β(t−1) + [
X′ Diag

(
π

(t−1)
i

(
1 − π

(t−1)
i

))
X + λPd

]−1
X′(y − π

(t−1)
i

)
. (7)

The number of basis functions p and the smoothing parameter λ are selected
by means of a double generalized cross validation (double-GCV) procedure (see
Sect. 4.4 for more details). Henceforth, this method will be called Method V.

3 Penalized estimation of functional principal component logit regression

As said before, the logit regression model given by Eq. (4) is affected by multi-
collinearity. In order to solve the problems of high dimension and high correlation
between the covariates of this model, a reduction dimension approach based on using
as covariates a reduced set of functional principal components of the predictor curves
was proposed (Escabias et al. 2004).

In general, the FLM can be rewritten in terms of functional principal components
as

L = α1 + Γ γ, (8)

where Γ = (ξij )n×p is a matrix of functional principal components of the sample
paths {x1(t), . . . , xn(t)}, γ is the vector of coefficients of the model and α is the
intercept.

An accurate estimation of the functional parameter can be obtained by considering
only a set of q optimum principal components as predictor variables, so that Γ =
(ξij )n×q (q < p).

Then, the vector β of basis coefficients is given by β = Fγ , where the way of es-
timating F depends on the kind of functional principal component analysis (FPCA)
used to estimate the functional model and the kind of likelihood estimation (penal-
ized or non-penalized). According to it, four different methods are considered in this
paper.
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3.1 Method I: non-penalized functional principal components logit regression

A simple way to estimate the functional parameter is by means of non-penalized
functional logit regression on an optimum set of principal components. This method
known as non-penalized functional principal component logit regression (FPCLOR)
was performed by Escabias et al. (2004).

In the standard formulation of FPCA, the ith principal component is given by

ξij =
∫

T

xi(t)fj (t) dt, i = 1, . . . , n, (9)

where the weight function or factor loading fj is obtained by solving
{

maxf var[∫
T

xi(t)f (t) dt]
s.t. ‖f ‖2 = 1 and

∫
f�(t)f (t) dt = 0, � = 1, . . . , j − 1.

The weight functions fj are the solutions to the eigenequation Cfj = λjfj ,
with λj = var[ξj ] and C being the sample covariance operator defined by Cf =∫

c(·, t)f (t) dt in terms of the sample covariance function

c(s, t) = 1

n

n∑

i=1

xi(s)xi(t).

In practice, functional PCA has to be estimated from discrete time observations of
each sample curve xi(t) that is approximated in terms of basis functions. If we assume
that the sample curves are represented in terms of basis functions as in expression (3),

the functional PCA is then equivalent to the multivariate PCA of AΨ
1
2 matrix, with

Ψ
1
2 being the square root of the matrix of the inner products between B-spline basis

functions (Ocaña et al. 2007). Then, matrix F that provides the relation between the
basis coefficients of the functional parameter and the parameters estimated in terms

of principal components is given by F = Ψ
− 1

2
p×pGp×n, where G is the matrix whose

columns are the eigenvectors of the sample covariance matrix of AΨ 1/2. In this case,
the matrix of basis coefficients A is computed by using least squares approximation
with B-spline basis and γ is estimated by maximum likelihood without penalty. The
optimum number of principal components of the predictor curves used as covariates
is chosen by GCV (see Sect. 4.3).

3.2 Method II: FPCLOR on P-spline smoothing of the sample curves

When the sample paths are observed with noise, the estimation of the FLM based on
FPCA of regression splines provides a noisy functional parameter. This is because of
regression splines do not control the smoothness of the sample paths. In order to quan-
tify the roughness of a curve, a continuous penalty based on the integrated squared
second derivative of the function was first introduced by Reinsch (1967). The com-
putation of this continuous penalty in terms of B-splines basis functions was consider
in O’Sullivan (1986). This approximation was called smoothing splines. The compu-
tational problem of this approach lies in the calculation of the integrals of products
of the d th order derivatives between B-spline basis functions. A penalty based on
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differences of order d between coefficients of adjacent B-splines (P-spline penalty)
was introduced by Eilers and Marx (1996). With this kind of penalty, the choice and
position of knots are not determined and it is sufficient to choose a relatively large
number of equally spaced basis knots (Ruppert 2002).

Therefore, a penalized estimation of the FLM based on FPCA of the P-spline
approximation of the sample curves is proposed. The basis coefficients in terms of
B-splines are computed by introducing a discrete penalty in the least squares criterion

(xi − Φiai)
′(xi − Φiai) + λa′

iPdai,

where Pd = (�d)′�d . The solutions are then given by âi = (Φ ′
iΦi + λPd)−1Φ ′

ixi . In
the P-spline approach, the selection of the smoothing parameter λ is very important
because it measures the rate of exchange between fit to the data and variability of the
function. The bigger the λ, the smoother the approximated curve. On the other hand,
if λ is smaller, the curve tends to become more variable since there is less penalty
placed on its roughness. A nonparametric strategy for the choice of the P-spline pa-
rameters was performed by Currie and Durban (2002), where mixed model (REML)
methods were applied for smoothing parameter selection. In our paper, the smoothing
parameter is chosen by leave-one-out cross validation (Sect. 4.1).

Once the P-spline approximation of sample curves has been performed, the multi-

variate PCA of AΨ
1
2 matrix is carried out as explained above. The difference between

smoothed FPCA via P-splines and non-penalized FPCA is only the way of comput-
ing the basis coefficients (rows of matrix A), with or without penalty, respectively.
Then, an optimum set of principal components is selected and the FPCLOR is car-

ried out. In this case, F = Ψ
− 1

2
p×pGp×n, where G is the matrix whose columns are the

eigenvectors of the sample covariance matrix of AΨ 1/2, with A the basis coefficients
matrix estimated with P-splines penalty. In this method, γ is estimated via maximum
likelihood without penalty.

The optimum number of principal components is chosen by GCV (see Sect. 4.3
for more details).

3.3 Method III: FPCLOR on P-spline smoothing of the principal components

In this section, we propose obtaining the principal components by maximizing a pe-
nalized sample variance that introduces a discrete penalty in the orthonormality con-
straint between weight principal component functions.

Taking into account the basis expansion of the sample paths given by (3),
the principal component weight function fj admits the basis expansion fj (t) =∑p

k=1 bjkφk(t) and var[∫ xi(t)f (t) dt] = b′Ψ V Ψ b, with b being the vector of basis
coefficients of the weight functions, Ψ the matrix of inner products between basis
functions, and V = n−1A′A, where A = (aij )n×p is the matrix of basis coefficients
of the sample paths.

The ith principal component is now defined as in Eq. (9) and the basis coefficients
of the factor loading fj are obtained by solving

{
maxb

b′Ψ V Ψ b
b′(Ψ +λPd)b

s.t. ‖f ‖2 = b′Ψ b = 1 and b′Ψ bl + b′Pdbl = 0, � = 1, . . . , j − 1,
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where λ is the smoothing parameter estimated by leave-one-out cross validation (see
Sect. 4.2) and Pd the penalty matrix defined in Sect. 2.1.

Then, this variance maximization problem is converted into an eigenvalue prob-
lem, Ψ V Ψ b = δ(Ψ + λPd)b, so that, applying the Cholesky factorization LL′ =
Ψ + λPd , the P-spline smoothing of FPCA turns into a classical PCA of the matrix
AΨ (L−1)′.

Finally, we carry out the FPCLOR on an optimum set of principal components
obtained by the P-spline smoothing of FPCA. Then, the estimated vector β of basis
coefficients of the functional parameter is given by β̂ = F γ̂ = (L−1)′Gγ̂ , where
G is the matrix of eigenvectors of the sample covariance matrix of AΨ (L−1)′ and
γ is estimated by the maximum likelihood criterion without penalty. The optimum
number of principal components to be included in the model as regressors is chosen
by GCV (see Sect. 4.3).

3.4 Method IV: FPCLOR with P-spline penalty in the maximum likelihood
estimation

As developed in Reiss and Ogden (2007) for the functional linear model, we propose
a smoothed version of FPCLOR that uses B-splines and roughness penalty in the
regression. This penalized regression version of FPCLOR incorporates a penalty in
the maximum likelihood estimation.

Taking into account the FLM in terms of non-penalized principal components and
Eq. (3), the estimator of the basis coefficients of the functional parameter corresponds
to β̂ = F γ̂ , where F is exactly the same as in Sect. 3.1 and γ is estimated by means
of penalized likelihood.

Now the design matrix corresponds to X = (1|Γ ), where Γ = (ξij )n×q is a matrix
of an optimal set of q functional principal components of the sample paths. Then,
the penalized log-likelihood of the functional principal components logit model (4)
is given by

L∗(λ, γ ) = L(γ ) − λ

2
γ ′Pdγ,

with γ = (γ1, . . . , γq)′ being the vector of the regression coefficients, Pd the penalty
matrix defined in Sect. 2.1, with dimension (q × q) in this case, and L(γ ) given by
Eq. (5).

The optimal number of principal components and the smoothing parameter are
chosen by a double GCV procedure (see Sect. 4.4 for more details).

4 Model selection

Penalized FPCLOR requires selecting an optimal number q of functional principal
components and the smoothing parameter λ. Using P-spline smoothing of FPCA,
the problems of high dimension, multicollinearity, and roughness in the covariables
are solved. As cited in Reiss and Ogden (2007), and according to Marx and Eilers
(1999) and Cardot et al. (2003), it is often assumed that the number of basis functions
considered for computing P-splines has little impact as long as there are sufficiently
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many knots to capture the variation in the functional parameter. Methods based on
smoothed FPCA (Methods II and III) select λ in a previous step to the selection of
the number q of principal components.

On the other hand, when the smoothing is applied in the likelihood estimation
of the functional parameter coefficients (Methods IV and V), the sample paths are
approximated by regression splines. It is known that regression splines do not con-
trol the degree of smoothness in the curves. Therefore, the selection of the number
of predictor variables (non-penalized principal components for Method IV and ba-
sis functions for Method V) is essential. The optimal number of predictors and the
smoothing parameter are selected in these cases by a double-GCV procedure.

4.1 Choosing λ in Method II

For Method II (Sect. 3.2) the smoothing parameter λ was selected prior to the re-
gression. In order to select the same smoothing parameter for the n fitted P-splines,
a leave-one-out cross-validation (CV) method based on minimizing the mean of the
cross-validation errors over all P-splines is applied in this paper. This CV criterion
consists of selecting the smoothing parameter λ that minimizes the expression

CV (λ) = 1

n

n∑

i=1

√√
√
√

mi∑

k=0

(
xik − x̂

(−k)
ik

)2
/(mi + 1),

where x̂
(−k)
ik are the values of the ith sample path estimated at the time tik avoiding the

kth observation knot in the iterative estimation process. The number of observation
knots of the ith sample path corresponds to mi + 1.

4.2 Choosing λ in Method III

As in the previous section, selecting a suitable smoothing parameter is very impor-
tant to control the smoothness of the weight function associated with each principal
component. In this paper, CV (leave-one-out) method described in Ramsay and Sil-
verman (2005) has been adapted by considering the discrete roughness penalty based
on P-splines. It consists of selecting the value of λ that minimizes

CV (λ) = 1

p

p∑

q=1

CVq(λ),

where

CVq(λ) = 1

n

n∑

i=1

∥
∥xi − x

q(−i)
i

∥
∥2

,

with x
q(−i)
i = ∑q

�=1 ξ
(−i)
i� f

(−i)
� being the reconstruction of the sample curve xi in

terms of the first q principal components estimated from the sample of size n− 1 that
includes all sample curves except xi .
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4.3 Choosing the number of principal components in Methods I, II, and III

The optimal number q of functional principal components for Methods I, II, and III is
chosen by the GCV procedure following the notes given in Craven and Wahba (1979)
and Ramsay and Silverman (2005). The objective is to minimize

GCV(q) =
(

n

n − tr(Hq)

)(
MSE(q)

n − tr(Hq)

)

, (10)

where MSE(q) = 1
n

∑n
i=1(yi − ŷ

q
i )2 and Hq is the “hat” matrix given by

Hq = W
1/2
q X

(
X′WqX

)−1
X′W 1/2

q ,

with Wq = Diag[π̂q
i (1 − π̂

q
i )] as the weight matrix. The design matrix X depends on

the considered method as follows:

Method I: X = (1|Γ ), with Γ being the matrix comprising the columns of the first q

functional principal components of AΨ 1/2, with A the matrix of basis coefficients
of the sample paths estimated via regression splines, and Ψ 1/2 the square root of
the matrix of the inner products between B-spline basis functions.

Method II: X = (1|Γ ), with Γ being the matrix comprising the columns of the first q

functional principal components of AΨ 1/2, with A the basis coefficients estimated
via penalized splines (P-splines).

Method III: X = (1|Γ ), with Γ being the matrix comprising the columns of the first
q functional principal components of AΨ (L−1)′, with A the matrix of basis coef-
ficients of the sample paths estimated via regression splines, and L given by the
Cholesky decomposition.

4.4 Choosing the number of predictors and the smoothing parameter in Methods IV
and V

In Methods IV and V, the log-likelihood is penalized and the parameters of the model
are simultaneously chosen by a double-GCV. In Method IV, the double-GCV consists
in computing the GCV error (10) for each number of principal components q and
each λ of a grid of possible values. Then, q is selected by minimizing the mean of
the GCV error over all possible values of λ. Once q is selected, the value of λ with
the lowest GCV error is chosen. In Method V, the procedure is the same by replacing
the number q of principal components by the number p of basis functions.

The design matrix X of Methods IV and V corresponds to

Method IV: X = (1|Γ ), with Γ being the matrix comprising the columns of the q

first functional principal components of AΨ 1/2 and A the matrix of basis coeffi-
cients of the sample paths estimated via regression splines.

Method V: X = (1|AΨ ), with A being the matrix of basis coefficients of the sample
paths approximated by regression splines.

When the log-likelihood criterion is penalized by using P-splines, the “hat” matrix
is given by

H = W 1/2X
(
X′WX + λPd

)−1
X′W 1/2,

with Pd defined as in Sect. 2.1.
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5 Simulation study

The good performance of the proposed penalized estimation approaches to estimate
the parameter function and to predict the response is evaluated in this section on two
different simulation schemes, and the results compared with the ones provided by
non-penalized FPCLOR (Method I).

On the other hand, the ability of the proposed approaches to forecast a binary
response and classify a set of curves has also been compared with a competitive clas-
sification procedure as the partial least squares approach for functional linear discrim-
inant analysis (FLD-PLS) introduced by Preda et al. (2007) and its basis expansion
estimation with B-spline basis proposed in Aguilera et al. (2010). It is important to
clarify that we can compare our results with the prediction errors and classification
rates given by this procedure but the estimated parameter functions are not compa-
rable because they correspond to different regression models from a theorist point of
view.

Functional linear discriminant analysis is used to classify a set of sample curves
in the two groups defined by a binary response. Taking into account the equivalence
between linear discriminant analysis and linear regression, it is known that the dis-
criminant function is the functional parameter associated with the functional linear
regression of Y on {X(t) : t ∈ T } with Y recoded as

Y =
{−√

p0/p1 if Y = 1,
√

p1/p0 if Y = 0,

where p0 = P [Y = 0] and p1 = P [Y = 1]. The FLD-PLS approach is based on using
functional partial least squares to estimate the functional parameter associated with
this functional linear model. For a detailed study of this classification procedure, the
interested lector is referred to Preda et al. (2007).

5.1 Case I: simulation of waveform data

This data set was introduced by Breiman et al. (1984) and used later by Hastie et al.
(1994), Ferraty and Vieu (2003), and Escabias et al. (2007). Following the simulation
scheme developed in Escabias et al. (2007), 1000 curves of two different classes of
sample curves were simulated with 500 curves for each one according to the random
functions

x(t) = uh1(t) + (1 − u)h2(t) + ε(t) (class 1),

x(t) = uh1(t) + (1 − u)h3(t) + ε(t) (class 2),

with u and ε(t) being uniform and standard normal simulated random variables, re-
spectively, and

h1(t) = max
{
6 − |t − 11|,0

}
, h2(t) = h1(t − 4), h3(t) = h1(t + 4).

Each sample curve was simulated at 101 equally spaced points in the interval [1,21].
An example of simulated sample paths for class 1 (a) and class 2 (b) is shown in
Fig. 1. The binary response variable was defined as Y = 0 for the curves of the first
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Fig. 1 Case I. Simulated sample curves for class 1 (a) and class 2 (b) in one of the 100 simulations

Fig. 2 Case I. Estimated
functional parameter for one of
the 100 simulations. The
functional parameter is
estimated by Method I (black
short dashed line), Method II
(red solid line), Method III (blue
dotted line), Method IV (green
dashed and dotted line), and
Method V (pink large dashed
line) (Color figure online)

class and Y = 1 for the ones of the second class. After simulating the data, least
squares approximation (with and without penalty) in terms of the cubic B-spline
functions defined on 30 equally spaced knots in the interval [1,21] was performed for
each sample curve. When working with P-splines, the number of basis knots is not so
critical and only a large number of equally spaced knots is needed. The choice of the
P-splines parameters was discussed by Eilers and Marx (1996), Ruppert (2002), and
Currie and Durban (2002). For the case of equally spaced observations, they conclude
that using one knot for every four or five observations up to a maximum of 40 knots
is often sufficient.

In order to corroborate the good performance of the penalized estimation ap-
proaches proposed in this paper, 100 repetitions of this simulation scheme were car-
ried out. The functional parameter estimated by means of the five different methods
presented in previous sections are displayed in Fig. 2 for one of the simulations. The
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Table 1 Case I. Mean and
standard deviation (S.D.) for the
GCV errors of the models
estimated by Methods I, II, III,
IV, and V

Method GCV error

Mean S.D.

Method I 0.00003 0.000008

Method II 0.00003 0.000007

Method III 0.00002 0.000007

Method IV 0.00014 0.000112

Method V 0.00022 0.000120

mean of the estimated functional parameters over the 100 simulations is plotted in
Fig. 3 for each of the five estimation approaches and for FLD-PLS next to confidence
bands computed as the mean ±2 the standard deviation. The functional parameter
estimated by FLD-PLS (discriminant function) is not comparable with the others be-
cause is associated with different regression models.

Let us observe that there are important differences between the estimations pro-
vided by the non-penalized FPCLOR approach (Method I) and the other four meth-
ods based on penalized estimation of the FLM. The functional parameter estimated
by non-penalized FPCLOR (Method I) is not smooth and affected by high variabil-
ity. It is therefore difficult to interpret and needs to be smoothed. The estimations
provided by Methods II, III, and V are quite similar, but sometimes the estimations
provided by Method V are over-smoothed and lose the control in the extremes of the
observation interval. On the other hand, when the P-spline penalty is introduced in the
log-likelihood criterion of a FPCLOR model (Method IV), the estimated functional
parameter is smoother than the one given by Method I, but it is not smooth enough
and is affected by some variability. Therefore, the necessity of using smoothed func-
tional principal components as explicative variables is obvious. The best estimations
are achieved with Methods II and III, providing the smoothest parameter functions
with the least variability.

In order to compare the goodness of fit and the forecasting ability of the five es-
timation approaches the box-plots related to the area under ROC curve and the MSE
distributions (on 100 test samples) are shown in Fig. 4. It can be observed that Meth-
ods I, II, and III based on non-penalized principal component logit regression result
in much more accurate predictions than Methods IV and V based on penalized likeli-
hood estimation. Among them, Method II achieves the highest area under ROC curve
and Method III the smallest MSE and GCV error (see Table 1 for GCV errors). Let
us observe that the FLD-PLS approach gets the highest prediction error, but has good
classification ability similar to Methods II and III.

5.2 Case II: simulation of the Ornstein–Uhlenbeck process

In order to obtain more general conclusions about the behavior of the proposed meth-
ods, a second simulation study where the functional parameter is known has been
developed.

Let us consider {Ot : t ∈ [0, T ]} the well known zero mean Gaussian process
known as the Ornstein–Uhlenbeck process. The simulated sample paths were com-



266 M. Carmen Aguilera-Morillo et al.

Fig. 3 Case I. Mean of the functional parameters and the confidence bands (computed as the mean ±2
the standard deviation) estimated by Methods I, II, III, IV, V and FLD-PLS over the 100 simulations
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Fig. 4 Case I. Area under ROC curve and MSE distribution (for the test samples of the 100 repetitions)
given by Methods I, II, III, IV, V and FLD-PLS

puted taking into account the decomposition of this process in terms of principal
components truncated at the 14th term

O14(t) =
14∑

i=1

λifi(t)ξi ,

with λi and fi being the eigenvalues and eigenfunctions associated with the covari-
ance function given by C(t, s) = P exp(−α|t − s|), and ξi being the corresponding
principal components that have distribution N(0,1). This principal component recon-
struction is a smooth version of the Ornstein–Uhlenbeck process that explains 99.4 %
of its total variance.

In order to have noisy observations, a random error ε(t) with distribution N(0, σ 2)

was added so that the simulated process is given by

X(t) = O14(t) + ε(t). (11)

The variance of the errors σ 2 was chosen by controlling R2 = Var[O14]/Var[X] close
to 0.8. The parameters used for the simulation were T = 4, P = 1, and α = 0.1. In
this study, 200 samples of 100 and 50 sample curves of the contaminated process
given by Eq. (11) were simulated for training and test samples, respectively, at 41
equally spaced knots in the interval [0,4].

In order to simulate the binary response associated with each sample path xi , we
have considered the parameter function

β(t) = 6 cos(0.25πt) − 0.5 sin(0.25πt)

and computed the expectations πi according to Eq. (1). Then, the associated response
value yi was simulated by a Bernoulli distribution with parameter πi .

Let us remember that the main purpose of this work is to improve the estimation
of the functional parameter in functional logit regression, providing in addition a
good classification rate. In order to check the ability of the proposed penalized spline
approaches to estimate the functional parameter of the logit model provided by the six
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methods, the mean of the estimated functional parameters over the 200 simulations
is plotted in Fig. 5 next to the original parameter function and the confidence bands
(computed as the mean ±2 the standard deviation). The integrated mean squared error
with respect to the original functional parameter was also computed for each method
by using the following expression:

IMSEβ =
(

1

T

∫

T

(
β(t) − ˆβ(t)

)2
)1/2

.

The box plots with the distribution of the IMSEβ for the five estimation approaches
of the functional parameter associated with the logit model are displayed in Fig. 6.
The means and standard deviations of these errors appear in Table 2.

Let us observe that Methods I (non-penalized FPCLOR approach) and IV provide
the least smooth estimates with the worst results given by Method IV that is affected
by high variability. On the other hand, Methods II and III provide again similar results
with smoother estimates affected by high variability in the extremes of the observa-
tion interval. By observing the estimated mean functions, it can be observed again
that the estimations provided by Method V are over-smoothed and have less variabil-
ity than those by Methods II and III. The integrated errors with respect to the original
parameter function are also higher for Method V than for Methods II and III. The
discriminant function associated with the FLD-PLS approach is noisy and affected
by a very high degree of variability (see Fig. 7).

The forecasting performance and classification ability of the six methods can be
tested by comparing the distributions of the mean squared error (MSE) and ROC
area displayed in Fig. 8. According to the MSE, Methods III and V are quite similar,
providing the smallest prediction errors, while FLD-PLS gives the highest prediction
errors. With respect to the ROC area, Methods III and V achieve also the highest val-
ues followed by Method II and FLD-PLS. On the other hand, Method IV provides the
worst classification performance (smallest area under the ROC curve), although in all
cases the ability of the considered methods to classify the curves is very good with
a median greater than 93 %. From this simulation, we can conclude that Method III
provides an accurate estimation of the functional parameter and has the best classi-
fication ability followed by Methods V and II that give similar results. In addition,
Method III outperforms competitive methods such as FLD-PLS in both predictive
and classification ability.

5.3 Computational considerations

All process have been analyzed in the same experimental conditions (computers with
the same conditions). Specifically, the simulations are run on a cluster of 30 blade
servers each one with two Intel XEON E5420 processors running at 2.5 GHz and
with 16GB of RAM memory. Each processor has four cores, and the experiments
are carried out on virtualized Windows XP machines, each one with one virtualized
processor and 1GB of RAM memory. Twenty-five Windows XP systems have been
simultaneously used to carry out the simulation procedures.

The numerical results presented in this paper have been obtained by using the
R project software for statistical computing (http://www.r-project.org/). The authors

http://www.r-project.org/
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Fig. 5 Case II. Mean of the
functional parameters and the
confidence bands (computed as
the mean ±2 the standard
deviation) (at left) and the true
functional parameter (solid line)
superposed with the mean of the
estimated functional parameters
(dashed line) (at right) provided
by Methods I, II, III, IV, and V
over 200 simulations
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Fig. 6 Case II. Box-plot of the
distribution of the IMSEβ for
the estimated parameter
functions on 200 repetitions
given by Methods I, II, III, IV,
and V

Fig. 7 Case II. Mean of the
functional parameters and the
confidence bands (computed as
the mean ±2 the standard
deviation) estimated by
FLD-PLS method over 200
simulations

Table 2 Case II. Mean and
standard deviation of the IMSEβ Method I Method II Method III Method IV Method V

Mean 3.1893 1.8931 1.8166 8.0691 2.5332

SD 9.4394 2.0289 1.8645 4.1827 1.3898

have developed their own scripts with R code by using specific functions of the R
packages: fda, stats, design, and plsr. When functions for estimating the proposed
penalized spline methods had not been available in the R packages, the authors have
developed original R functions.
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Fig. 8 Case II. Area under ROC curve and MSE distribution (for the test samples of the 200 repetitions)
given by Methods I, II, III, IV, V and FLD-PLS

6 Real data application

The good performance of Methods II and III based on smoothed functional principal
component analysis was proved in Sect. 5. These methods are now compared with
non-penalized FPCLOR on a real data set based on the biscuit productions of the
manufacturer Danone.

The manufacturer Danone aims to use only flour that guarantees good product
quality. The quality of a biscuit depends on the quality of the flour used to make it.
In this paper, smoothed functional principal component logit regression models are
applied in order to estimate the quality of the biscuits.

There are several kinds of flour that are distinguished by their composition. The
quality of cookies made with each flour can be good or bad. The aim is to classify a
cookie as good or bad from the resistance (density) of the dough observed in a certain
interval of time during the kneading process. To solve this problem, a functional logit
model is used to estimate the quality (Y ) that takes value Y = 1 if the quality of a
cookie is good and Y = 0 if bad. For a given flour, the resistance of dough is recorded
every two seconds during the first 480 seconds of the kneading process. Thus, the
predictor data set is given by a set of curves {X(ti), i = 0, . . . ,240} observed at 241
equally spaced time points in the interval [0,480]. After kneading, the dough is pro-
cessed to obtain biscuits. The sample consists of 90 different flours whose curves of
resistance during the kneading process are considered independent realizations of the
continuous stochastic process X = {X(t) : t ∈ [0,480]}. Of the 90 observations, we
have 40 for Y = 0 (bad cookies) and 50 for Y = 1 (good cookies). The sample paths
are displayed in Fig. 9. Different versions of functional discriminant analysis based
on functional PLS regression were applied to classify these curves in Preda et al.
(2007) and Aguilera et al. (2010).

The sample of 90 flours is randomly divided into a training sample of size 60 (35
good and 25 bad) and a test sample of size 30 with the same number of curves for the
two classes. In order to obtain more general conclusions, 100 different random divi-
sions of the sample of 90 flours into training and test samples were considered. Taking
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Fig. 9 Danone data set. Sample curves of resistance of dough for good (left) and bad (right) flours

Fig. 10 Danone data set. Functional parameter estimated from one of the training samples (left) and the
mean of the functional parameters estimated from the 100 training samples (right) by using Method I
(black solid line), Method II (red long dashed line), and Method III (blue dashed and dotted line) (Color
figure online)

into account that the resistance of dough is a smooth curve measured with error, the
reconstruction of the true functional form was carried out by using a cubic B-splines
basis defined on 28 equally spaced knots in the interval [0,480]. Once the sample
curves were approximated, P-spline smoothed functional principal component logit
regression was performed (Methods II and III). Both methods were compared with
the well known non-penalized functional principal components logit regression pro-
posed in Escabias et al. (2004). The estimated functional parameter from one of the
training samples is shown in Fig. 10. The mean of the functional parameters estimated
by Methods I, II, and III for the 100 different divisions of the sample in training and
test samples are displayed in Fig. 11 next to confidence bands computed as the mean
±2 the standard deviation.

It is clearly observed that the functional parameter estimated by non-penalized
FPCLOR (Method I) is not smooth. On the other hand, methods based on smoothed
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Fig. 11 Danone data set. Mean of the functional parameters over 100 training samples and confidence
bands (computed as the mean ±2 the standard deviation) estimated for Methods I, II, and III

Fig. 12 Danone data set. Mean
of the functional parameters and
the confidence bands (computed
as the mean ±2 the standard
deviation) estimated by
FLD-PLS method, over the
100 simulations

functional principal components (Methods II and III) control the roughness of the
estimated curve, providing an accurate and smooth estimation of the parameter func-
tion. From Fig. 12, it can be seen that the functional parameter associated with the
FLD-PLS approach is not smooth at all. Let us remember that this curve is not com-
parable to the functional parameter of the logit model displayed in Fig. 11.

In order to check the ability of P-spline smoothing FPCLOR approaches to fore-
cast the binary response and to classify the curves as good or bad, the box-plots of the
distribution of area under ROC curve, MSE and CCR with cutpoint 0.5 (for the 100
test samples) are shown in Fig. 13. The mean and standard deviation of the misclas-
sification errors with cut point 0.5 can be seen in Table 3. It can be observed that the
penalized spline approaches provide smaller prediction errors than the non-penalized
FPCLOR and FLD-PLS. On the other hand, the area under the ROC curve is higher
for FLD-PLS, although the differences between the four methods are not significant
and all give very high ROC area with median greater than 97 %. By comparing Meth-
ods II and III based on P-spline smoothing of functional PCA, it can be concluded
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Fig. 13 Danone data set. MSE, area under ROC curve and CCR distributions (for the 100 test samples)
by using Methods I, II, and III

Table 3 Danone data set.
Misclassification rate averaged
over 100 test samples

Method I Method II Method III FLD-PLS

Mean 0.1626 0.1242 0.0885 0.0798

SD 0.2369 0.1861 0.0915 0.0406

that both achieve similar results with Method II providing the highest area under ROC
curve and the smallest MSE. With respect to the misclassification errors, Method III
and LDA-PLS gives the best performance.

7 Conclusions

In order to solve the problem of multicollinearity in functional logit regression and
to control de smoothness of the functional parameter estimated from noisy smooth
sample curves, four different penalized spline (P-spline) estimations of the functional
logit model are proposed in this paper. Let us take into account that the aim of logit
model is not only to classify a set of curves into two groups but mainly to interpret the
relationship between the binary response and the functional predictor in terms of the
functional parameter. Because of this, our main purpose is to improve the estimation
of the functional parameter of a functional logit model, providing in addition a good
classification rate.

A P-spline penalty measures the roughness of a curve in terms of differences
of order d between coefficients of adjacent B-spline basis functions. The proposed
smoothing approaches are based on B-spline expansion of the sample curves and
the parameter function, and P-spline estimation of the functional parameter. The dif-
ference is in how to introduce the penalty in the model. Three of the considered
approaches (Methods II, III, and IV) are based on functional principal component
logit regression that consists in regressing the binary response on a reduced set of
functional principal components. In Method II, the P-spline penalty is introduced by
performing the functional PCA on the P-spline least squares approximation of the
sample curves from discrete observations. Method III introduces the P-spline penalty
in the own formulation of functional PCA and the principal components are com-
puted by maximizing a penalized sample variance that introduces a discrete penalty
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in the orthonormality constraint between the principal components weight functions.
In Method IV, the P-spline penalty is used in the maximum likelihood estimation of
the functional parameter in terms of functional principal components. On the other
hand, direct P-spline likelihood estimation in terms of B-spline functions is also con-
sidered (Method V).

Two simulation studies and an application with real data were performed to test
the ability of the proposed P-spline smoothing approaches to provide an accurate
and smooth estimation of the functional parameter and a good classification perfor-
mance. Leave-one-out cross-validation and generalized cross-validation are adapted
to select the different parameters (smoothing parameter and number of principal com-
ponents or basis functions) associated with the considered approaches. In the case
of the P-spline approximation of the sample curves from equally spaced observa-
tions, a relatively large number of equally spaced basis knots is a good choice for
the definition of the B-spline basis. The results provided by the different smoothing
approaches are compared with the estimations provided by non-penalized FPCLOR
on least squares approximation of sample curves with B-spline basis (Method I) and
by the partial least squares estimation approach for functional linear discriminant
analysis with (FLD-PLS).

From the simulation study and the real data application, it can be concluded that
the estimation of the functional parameter given by the P-spline approaches is much
smoother than the one given by the non-penalized FPCLOR, although in some cases
Method IV gives worse results. In fact, Methods I and IV provide non-smooth es-
timations affected by high variability. The most accurate and smoothest estimations
of the parameter function are provided by Methods II and III, based on P-spline es-
timation of functional PCA with B-spline basis. On the other hand, the estimations
given by Method V are less accurate and oversmoothed. In relation to the forecasting
ability of the proposed methodologies, Methods II and III provide the least prediction
errors, followed by Method V that also gives accurate results. The classification per-
formance of all the methods is very good, with Methods II, III, and V being the most
competitive. On the other hand, the LDA-PLS approach gives very high classification
rates similar to Methods II, III, and V, but its forecasting errors are much higher.

In summary, it can be concluded that the penalized approaches represented by
Methods II and III are preferred because they provide the most accurate estimation of
the parameter function and have the best forecasting and classification performance,
with Method II having lower computational cost.

An intuitive explanation of the fact that Methods II and III provide better estima-
tion of the functional parameter could be that these approaches develop a penalized
smoothing of the sample curves before estimating the regression model and select
the smoothing parameter according to the mean squared error with respect to the ob-
served sample curves. This way, the smoothing of the curves provides smoothed esti-
mation of the functional parameter. On the other hand, the results given by Method V
are not so good because the roughness of the functional parameter is directly penal-
ized in the ML estimation but the smoothing parameter is selected by minimizing
the prediction error without taking into account the smoothness of the sample curves.
Finally, Method IV gives the worst estimations of the functional parameter because
this approach does not penalize the roughness of any of the functions involved in the
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analysis and the penalty is only on the regression coefficients in terms of the non-
penalized principal components.
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