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Abstract We introduce a modeling and mathematical framework in which the prob-
lem of registering a functional data set can be consistently set. In detail, we show
that the introduction, in a functional data analysis, of a metric/semi-metric and of a
group of warping functions, with respect to which the metric/semi-metric is invariant,
enables a sound and not ambiguous definition of phase and amplitude variability. In-
deed, in this framework, we prove that the analysis of a registered functional data set
can be re-interpreted as the analysis of a set of suitable equivalence classes associated
to original functions and induced by the group of the warping functions. Moreover,
an amplitude-to-total variability index is proposed. This index turns out to be useful
in practical situations for measuring to what extent phase variability affects the data
and for comparing the effectiveness of different registration methods.

Keywords Functional data analysis · Phase variability · Amplitude variability ·
Registration · Alignment · Synchronization · Warping

Mathematics Subject Classification (2000) 62H05 · 62H35 · 62H99 · 62A01

1 Introduction

The problem of data registration (also known as curve alignment or synchronization)
is often encountered in the recent statistical literature. Generally speaking, it is en-
countered when the ith subject can be thought associated to an unknown function
yi(x) for which some point-wise (and maybe noisy) evaluations are available and the
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variability between subjects is assumed to be related not only to the dependent vari-
able y but also to the independent one x; in a very wide sense, registering data means
identifying this second source of variability and removing it by means of subject-
dependent suitable transformations of the independent variable.

Statistical papers devoted to this issue can be parted in two groups: the longitudinal
data analysis (LDA) inspired works and the functional data analysis (FDA) inspired
ones. Some examples relevant to the former approach can be found in Lawton et al.
(1972), Lindstrom and Bates (1990), Ke and Wang (2001), Altman and Villarreal
(2004), and Brumback and Lindstrom (2004). Instead, some examples relevant to the
latter approach—which the present work belongs to—can be found in Ramsay and Li
(1998), Kneip et al. (2000), Liu and Müller (2004), Ramsay and Silverman (2005),
James (2007), Kaziska and Srivastava (2007), Kneip and Ramsay (2008), Sangalli et
al. (2009), Tang and Muller (2009), and Sangalli et al. (2010).

Even though many real-world problems can indifferently be tackled by means of
both approaches, some differences occur between data sets that are typically analyzed
by means of LDA techniques or FDA techniques: indeed, in LDA-inspired works,
data typically show low within-subject signal-to-noise ratio and small within-subject
sample size while, in FDA-inspired works, they typically show high within-subject
signal-to-noise ratio and large within-subject sample size. Maybe also because of
these differences, the two approaches are remarkably different also from a model-
ing perspective: LDA-inspired works usually consider data as realizations of random
vectors whose distributions are fully modeled in a parametric way; FDA-inspired
works are instead typically non-parametric, very few modeling assumption are pos-
tulated and observations are considered as discrete point-wise evaluations of smooth
underlying random functions. Consequently, in LDA-inspired works, model charac-
terization is achieved by means of likelihood maximization (for instance, the problem
of data registration is simply managed by introducing and estimating subject-specific
random effects), while in FDA-inspired works, model characterization is achieved
by means of minimization or maximization of functionals defined in a suitable
∞-dimensional functional space which data are assumed to belong to. The similar-
ities and differences between LDA and FDA are widely discussed in Ke and Wang
(2001), Davidian et al. (2004), and Valderrama (2007).

FDA is a late but quickly growing branch of statistics that considers data sets
made of curves or surfaces as realizations of random functions (i.e., random vari-
ables whose image is an ∞-dimensional functional space). First theoretical studies
about ∞-dimensional random variables are dated to the beginning of the twentieth
century while first applications to real-world data are found in the last decade of the
same century. This gap is probably mainly due to the technology development: in-
deed, on the one hand, technology has made the acquisition of almost time and/or
space-continuous measures (representable as curves or surfaces in general) more and
more frequent in engineering, physics, economy, medicine, climatology, and in many
other fields; and, on the other hand, the technological progress has also provided
the statistical community with computational facilities for dealing with these kind of
data.

Since the 1990s, the research activity in FDA has been continuously growing. As a
result, a number of monographs entirely devoted to FDA and focusing on both theory
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and applications have been published (e.g., Ramsay and Silverman 2005; Ferraty and
Vieu 2006; Ferraty and Romain 2011) and also some top level journals have recently
dedicated special issues to FDA: Statistica Sinica edited by Davidian et al. (2004),
Computational Statistics and Data Analysis by González Manteiga and Vieu (2007),
Computational Statistics by Valderrama (2007), and Journal of Multivariate Analysis
by Ferraty (2010).

Most of the FDA tools that are commonly used in applications are derived from ex-
tensions to ∞-dimensional separable Hilbert spaces (typically L2) of corresponding
multivariate analysis tools previously developed for finite-dimensional data. Because
of the general non-existence of the probability density function for random functions,
these extensions can be quite troublesome, and thus, nowadays, a lot of effort has
been put in this direction. For instance, Delaigle and Hall (2010) defined a concept
of log-density for functional data and the consequent concept of modal function; Fer-
raty et al. (2010) proved the uniform consistency of kernel estimators in functional
data analysis; Cuevas et al. (2007) compared five different notions of depth and the
following concepts of median function and trimmed-mean function.

These recent works and many others rely on the concept of small ball probability
(Ferraty and Vieu 2006) which, in some sense, replaces the concept of probability
density in functional data analysis at a certain resolution scale. The concept of small
ball probability is intrinsically related to the metric (or semi-metric) nature of the
functional space which functional data belong to, and not to its Hilbertian nature.
The idea that metric (or semi-metric) spaces are the natural setting for a theoretical
and practical investigation of many FDA tools first appeared in a pioneering work
by Ferraty and Vieu (2002); in that work, in the framework of non-parametric func-
tional regression, the authors show, in a real application and in a simulation study,
how the use of semi-metrics different from the one induced by the L2-norm can dra-
matically improve the predictive power of a regression model. More recently, Ferraty
et al. (2010) explicitly stated that “in fact, as a statistician, an important task con-
sists in building a semi-metric adapted to the functional variable”, i.e., a semi-metric
satisfying some requested properties giving soundness and theoretical support to the
analysis. The present work shares this idea with the latter work: indeed, we will pro-
pose a property of invariance—with respect to a group of transformations—that, we
think, should be requested by the semi-metrics used in functional data analysis if a
functional data registration is thought to be needed (i.e., if part of the variability is
considered due to the independent variable).

Functional data registration is often a necessary step to achieve a successful func-
tional data analysis. Naively speaking, a registration of a functional data set is consid-
ered to be any procedure that aims at making the n observed functions as similar as
possible by means of n suitable transformations of the abscissas. These transforma-
tions are commonly named warping functions, and the variability of the functional
data set imputable to them is usually named phase variability; finally, the residual
variability observed among the aligned functions is named amplitude variability.
Many basic tools of functional data analysis exclusively focus on amplitude vari-
ability (e.g., mean curve or functional principal component analysis), indeed, the
evaluations of the functions at the same abscissa are implicitly assumed as realiza-
tions of independent and identically distributed random functions. If phase variability
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is present in the data, which is not necessarily true, and thus, if its presence is ne-
glected, it can act as a confounding factor jeopardizing the whole statistical analysis
because of wrong matchings occurring across subjects or, more technically—as we
will show—because of the wrong metric (or semi-metric) used.

Although many successful methods have already been proposed in the literature,
a clear theoretical analysis about the soundness and the meaningfulness of the prob-
lem of functional data registration is still missing: Davidian et al. (2004) mentions the
problem of curve registration as a “domain which has attracted a certain level of atten-
tion but could still benefit from further study”. This work is one of the first attempts to
put in a coherent mathematical framework this key problem of functional data anal-
ysis with the aim of providing statisticians with a clear mind-set and a practical tool
through which setting and comparing different registration methods. Recently, also in
Kneip and Ramsay (2008), some effort has been done in this direction. Though that
work and the present one differ in many aspects (indeed, the driving idea of Kneip
and Ramsay (2008) is the concept of amplitude convex space of the aligned func-
tions, while here the driving idea is the concept of phase equivalence classes for the
non-aligned functions), the basic assumptions which each approach relies on do not
appear incompatible, hopefully leaving space for a possible future integration of the
two. It is worth mentioning also a less recent work by Liu and Müller (2004): this
work—even if of no practical interest since it does not suggest any idea about how to
register a functional data set in practice—has the peculiarity of being the first paper,
to our knowledge, to propose a metric that explicitly takes into account amplitude
and phase variability.

The present paper is structured as follows: in Sect. 2, the issue of registering a
function with respect to another one is tackled. In detail: in Sect. 2.1, the necessary
mathematical framework, which will also be used in the following sections, is intro-
duced; in Sect. 2.2, the problem of registering a function with respect to another is
declined in the introduced mathematical framework and an amplitude-to-total vari-
ability ratio α2 is proposed; in Sect. 2.3, a discussion about the number of equivalence
classes related to phase variability is undertaken. In Sects. 3 and 4, the theory devel-
oped in Sect. 2 is generalized to the problem of registering a set of functions in the
presence and absence of a reference function, respectively. In Sect. 5, the theory is
further extended to deal with the registration of functions when a semi-metric is used
in place of a metric. In Sect. 6, a couple of real applications presented in the litera-
ture are presented and discussed in the light of the theory here presented. Finally, in
Sect. 7, the links between our approach and other recent directions of research also
related to the concept of semi-metric are discussed and some hints for future research
are proposed.

2 Registration of a pair of functions

In this section, we deal with the easiest case of functional data registration: this is the
problem of registering two functions one with respect to the other one.
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2.1 Mathematical framework

In order for a functional data registration problem to be meaningful and mathemati-
cally consistent according to our theory, some basic properties of the set F which the
functional data belong to and of the set W of warping functions are demanded:

(a) F = {f : Ω ⊆ R
p → Ψ ⊆ R

q} is a metric space equipped with a metric d : F ×
F → R

+
0 ;

(b) W is a subgroup—with respect to ordinary composition ◦—of the group of the
continuous automorphisms: Ω ⊆ R

p → Ω ⊆ R
p;

(c) ∀f ∈ F and ∀h ∈ W we have that f ◦ h ∈ F ;
(d) Given any couple of elements f1, f2 ∈ F and an element h ∈ W , the distance

between f1 and f2 is invariant under the composition of f1 and f2 with h, i.e.,

d(f1, f2) = d(f1 ◦ h,f2 ◦ h); (1)

we will refer to this property as W -invariance of d .

Thanks to properties (a)–(d), it is possible to define a semi-metric dW : F × F →
R

+
0 that is jointly determined by the metric d and the group W (a proof can be found

in Appendices A and B):

Theorem 1 (Definition of the semi-metric dW ) Under properties (a)–(d),

dW (f1, f2) := min
h1,h2∈W

d(f1 ◦ h1, f2 ◦ h2),

when defined, is a semi-metric.

Sufficient conditions for the existence of the minimum are reported in Appen-
dices A and B. Like any other semi-metric, dW induces a partition of the space F in
to a quotient set that we will indicate as F (i.e., two functions belong to the same
equivalence class of F if their semi-distance is zero). The W -invariance of the origi-
nal metric d provides a bijective correspondence between the equivalence classes of
the quotient set F and the orbits of the action of the group W on the set F . Thus,
we can define a metric dF : F × F → R

+
0 on F that is consistent with the original

metric d on F (a proof can be found in Appendices A and B); let [f ] indicate the
equivalence class of F which f belongs to:

Theorem 2 (Definition of the metric dF ) Under properties (a)–(d),

dF
([f1], [f2]

) := dW (f1, f2)

is a metric.

In Sect. 2.2, we will show how the notions introduced above can be used to de-
fine a sound notion of phase and amplitude variability. Before that, it is useful to
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report some bounding properties linking dF ([f1], [f2]) with d(f1, f2) (proofs are in
Appendices A and B):

0 ≤ dF
([f1], [f2]

) ≤ d(f1, f2), (2)

with bounds characterized as follows:

dW (f1, f2) = 0 ⇔ ∃h1, h2 ∈ W such that f1 ◦ h1 = f2 ◦ h2, (3)

dW (f1, f2) = d(f1, f2) ⇔ h1 = h2 = 1 is a minimizing couple. (4)

Remarks The minimizing couple, if it exists, is never unique (except for W = {1}).
Indeed, because of the W -invariance of d , if (h1, h2) is a minimizing couple, any
other couple of the form (h1 ◦ h,h2 ◦ h) with h ∈ W is still a minimizing couple.
Thus, without loss of generality, h1 (or h2) can be fixed equal to a convenient element
of W—for instance, 1—and h2 (or h1) taken accordingly.

2.2 The problem of registration revisited

We are now ready to revisit the problem of functional data registration in the light
of the results shown in the previous section. We will start from the problem of reg-
istering a pair of functions f1 and f2. In order to help the reader, in Fig. 1, a naive
representation of this revisit is reported.

Definition 3 Functions f̃1 ∈ [f1] and f̃2 ∈ [f2] are said to be mutually-registered
representatives of equivalence classes [f1] and [f2] (or in more familiar terms, simply
mutually-registered) if and only if d(f̃1, f̃2) = dF ([f1], [f2]).

In other words, two functions are mutually-registered representatives of their
equivalence classes if and only if the distance between the two functions coincides
with the distance between their respective equivalence classes. By Theorems 1 and 2,
we have the following equivalent definition of mutually-registered representatives of
[f1] and [f2]:

Definition 4 Given f1 and f2 ∈ F and a minimizing couple h1 and h2 ∈ W (i.e., h1
and h2 such that d(f1 ◦ h1, f2 ◦ h2) = dF ([f1], [f2])), f̃1 = f1 ◦ h1 and f̃2 = f2 ◦ h2
are said to be mutually-registered representatives of [f1] and [f2].

Note that, even if both f1 and f̃1 ∈ [f1], and both f2 and f̃2 ∈ [f2], only
d(f̃1, f̃2) = dF ([f1], [f2]) while d(f1, f2) ≥ dF ([f1], [f2]). Moreover, since given a
couple of elements f1 and f2 ∈ F there is not a unique minimizing couple h1 and h2,
there is not a unique couple f̃1 and f̃2 of mutually-registered representatives of [f1]
and [f2]. It is worth mentioning two special couples of mutually-registered represen-
tatives of [f1] and [f2]: the one corresponding to h1 = 1 and the other corresponding
to h2 = 1. In the former case, f̃1 = f1, while in the latter case f̃2 = f2.

Definition 5 Given a couple f1 and f2, and a couple of mutually-registered repre-
sentatives f̃1 and f̃2 such that f̃1 = f1 and h1 = 1, f̃2 is said to be a f1-registered
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Fig. 1 Naive representation of
the mathematical framework
introduced: registration of a
couple of functions (top), and
registration of a set of functions
with respect to a target function
f0 (bottom). Full dots refer to
non-registered functions, empty
dots to registered functions, and
circumference arcs to
equivalence classes

representative of [f2] (or in less formal but more familiar terms, f̃2 is said to be
a registered version of f2 with respect to f1). We will refer to it as f̃2→1 and to
the corresponding warping function as h2→1. The definitions of f̃1→2 and h1→2 are
analogous.

Note that the uniqueness of f̃2→1 and f̃1→2 cannot be guaranteed, in general. In
particular, if f̃2→1 and f̃1→2 are unique (like in most practical cases), their definition
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can be made more explicit. Indeed, under the assumption of uniqueness, since the f1-
registered representative of [f2] is the element ∈ [f2] minimizing the distance with
f1, we have that

f̃2→1 = arg min
f ∈[f2]

d(f,f1),

f̃1→2 = arg min
f ∈[f1]

d(f,f2),

with h1→2 = (h2→1)
−1.

According to this framework, registering a function f1 ∈ F with respect to a func-
tion f2 ∈ F —according to a metric d and a class of warping functions W—simply
means replacing f1 with f̃1→2. Just to keep the notation as simple as possible, in the
rest of the paper, we will assume, without loss of generality, f̃2→1 and f̃1→2 to be
unique. Note that we are not talking about the uniqueness of the minimizing couple
(f̃1, f̃2), that is instead intrinsically non-unique.

The introduction of a quotient set F over F (dependent on the choices for d and
W ) is the key to a clear and not ambiguous definition of Phase Variability and Am-
plitude Variability. We are quite sure to come across the heuristic sense of many
authors, by defining the phase variability as the one that can occur between func-
tions belonging to the same equivalence class, i.e., the variability within equivalence
classes; note that if f1 and f2 belong to the same equivalence class, we have that
0 = dF ([f1], [f2]). Coherently, the amplitude variability is the variability between
functions not belonging to the same equivalence class and not imputable to phase
variability, i.e., the variability between equivalence classes; we can thus say that the
difference between f1 and f2 is imputable only to amplitude variability in the case
dF ([f1], [f2]) = d(f1, f2).

Given the fact that 0 ≤ dF ([f1], [f2]) ≤ d(f1, f2), we can define an amplitude-
to-total variability ratio bounded between 0 and 1, useful in practical situations and
measuring to what extent phase and amplitude variability contribute to total variabil-
ity:

α2 = d2
F ([f1], [f2])
d2(f1, f2)

;

and then we can simply characterize the two extreme situations as follows:

– presence of phase variability only, when α2 = 0, i.e., dF ([f1], [f2]) = 0;
– presence of amplitude variability only, when α2 = 1, i.e., dF ([f1], [f2]) =

d(f1, f2).

The two extreme situations can be equivalently characterized as follows:

– presence of phase variability only, when f̃2→1 ≡ f1 (and thus also f̃1→2 ≡ f2),
i.e., f1 and f2 can be made identical by means of suitable warping functions;

– presence of amplitude variability only, when f̃2→1 ≡ f2 (and thus also f̃1→2 ≡
f1), i.e., warping f1 and f2 can only make them more distant.
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2.3 How many equivalence classes?

Given a set F and a metric d that is invariant with respect to some groups, the quotient
set F depends only on the group W ; to emphasize this dependency, in this subsection
we will use the notation FW to indicate the quotient set associated to the group W ,
and the notation P (FW) to indicate its powerset.

It is immediate to prove that if W is replaced by a sub-group W ′, the number of
equivalence classes can only increase, i.e.,

W ′ ⊂ W �⇒ P (FW ′) ⊇ P (FW).

Equivalently, if W is replaced by a sup-group W ′ (such that d is also W ′-invariant),
the number of equivalence classes can only decrease, i.e.,

W ′ ⊃ W �⇒ P (FW ′) ⊆ P (FW).

More generally, within a functional data analysis, the replacement of the group W

with the group W ′ ⊂ W might cause the partitioning of former equivalence classes
(associated to W ) into new classes (associated to W ′). This kind of variability that
occurs between new classes associated to W ′ being subsets of the same old class asso-
ciated to W is exactly the variability that according to W ′ is considered as part of the
amplitude variability while according to W is considered as part of phase variability.
Of course, the opposite occurs if the group W is replaced by a group W ′ ⊃ W .

In other words, given d , choosing W is the same as defining phase variability. It is
worth mentioning the two extreme situations for the choice of W :

– W = {1}: in this case, each element of F is equivalent only to itself, i.e., F ≡ F .
We are thus assuming that no phase variability is present in the functional data;

– W = F : in this case, all elements of F are equivalent, i.e., only one equivalence
class exists coinciding with the whole set F . We are thus assuming that no ampli-
tude variability is present in the functional data.

Note that while the former case can always occur, the latter one can occur only if F

is a subgroup of the group of the continuous automorphisms: Ω ⊆ Rp → Ω ⊆ Rp .

3 Registration of a set of functions in presence of a target function

We have just shown that, under the introduced framework, registering f2 with re-
spect to f1 means replacing f2 with a function f̃2→1 ∈ [f2] whose distance to f1 is
minimal. In the same framework, it is straightforward to define the registration of a
functional data set {fi}i=1,2,...,n with respect to a target function f0. Indeed register-
ing the set {fi}i=1,2,...,n with respect to f0 means replacing the set {fi}i=1,2,...,n with
the set {f̃i→0}i=1,2,...,n (or simply, {f̃i}i=1,2,...,n) whose distances to f0 are minimal
over the relevant equivalence classes:

{fi}i=1,2,...,n �−→
{
f̃i = arg min

f ∈[fi ]
d(f0, f )

}

i=1,2,...,n
.
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In other words, registering the set {fi}i=1,2,...,n with respect to f0 consists in finding
in [f1], [f2], . . . , [fn], the n functions that are the closest to f0.

Also in this case, we can define an amplitude-to-total variability ratio:

α2 =
∑n

i=1 d2
F ([fi], [f0])∑n

i=1 d2(fi, f0)
;

we can still simply characterize the two extreme situations as follows:

– presence of phase variability only, when α2 = 0;
– presence of amplitude variability only, when α2 = 1.

The two extreme situations can be equivalently characterized as follows:

– presence of phase variability only, when for i = 1,2, . . . , n: f̃i ≡ f0;
– presence of amplitude variability only, when for i = 1,2, . . . , n: f̃i ≡ fi .

4 Registration of a set of functions in absence of a target function

In most practical problems, the focus is on registering a functional data set
{fi}i=1,2,...,n with respect to “itself”, since a target function f0 is generally not avail-
able. Also in this case, it is still meaningful to talk about registration: roughly speak-
ing, it is straightforward to assert that registering the set {fi}i=1,2,...,n would consist
in replacing the set {fi}i=1,2,...,n with a set {f̃i}i=1,2,...,n ∈ [f1] × [f2] × · · · × [fn] of
functions that are “as close as possible”.

A natural approach to formalize the notion of “as close as possible” is to introduce
an auxiliary reference function f̂0 ∈ F such that {f̃i}i=1,2,...,n ∪ {f̂0} is the solution
of the following minimization problem:

min
f̃i∈[fi ]∧f̂0∈F

(
n∑

i=1

d2(f̃i , f̂0)

)

. (5)

In other words, registering a set {fi}i=1,2,...,n means registering each function of the
set with respect to the sample Frechet mean of the registered set. Also in this case,
sufficient conditions for the existence of a solution of the minimization problem (5)
can be found (see Appendices A and B for details). Note that, also in this case, the
solution is never unique (except for W = {1} where the solution might be unique).
Indeed, because of the W -invariance of d , if {f̃i}i=1,2,...,n ∪ {f̂0} is a solution of the
minimization problem (5) any other set of the form {f̃i ◦ h}i=1,2,...,n ∪ {f̂0 ◦ h}, with
h ∈ W , is still a solution.

Also in this case, we can define an amplitude-to-total variability ratio:

α2 =
∑n

i=1 d2
F ([fi], [f̂0])

∑n
i=1 d2(fi, f̂0)

.

Note that in this case (i.e., when a target function f0 is not present but needs to be
estimated) some care is needed to correctly compute the α2 index:
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– First, note that α2 compares (numerator) the deviations of the registered functions
from their Frechet mean with (denominator) the deviations of the original functions
from the Frechet mean of the registered functions and not from their Frechet mean
as one might expect! This mistake has been made—more or less explicitly—in
many works dealing with the registration of functional data, providing, of course,
an underestimation of the total variability and consequently an overestimation of
the contribution of the amplitude variability to the total variability, even provid-
ing hardly interpretable situations in which the amplitude variability seems to be
greater than the total one (e.g., Kneip and Ramsay 2008).

– Second, note that the α2 ratio is not invariant under a joint warping of the so-
lution set {f̃i}i=1,2,...,n ∪ {f̂0} along the same warping function h. Indeed, even if
{f̃i ◦h}i=1,2,...,n ∪{f̂0 ◦h} is still a solution of (5), in the computation of α2, the nu-
merator does not change while the denominator may change from

∑n
i=1 d2(fi, f̂0)

to
∑n

i=1 d2(fi, f̂0 ◦ h). It is natural to assume that, among all possible solutions of
the minimization problem (5), the one that is “as close as possible” to the original
situation is the natural candidate to be the “right one”. Formally, it means that given
a solution {f̃i}i=1,2,...,n ∪ {f̂0}, the solution {f̃i ◦ h}i=1,2,...,n ∪ {f̂0 ◦ h} to be used
to compute the α2 ratio is the one minimizing the total variability, i.e., given [f̂0],
the following constraint on f̂0 has to be introduced in the minimization problem
(5) in order to identify the correct solution:

n∑

i=1

d2(fi, f̂0) = min
f ∈[f̂0]

(
n∑

i=1

d2(fi, f )

)

. (6)

Thus, the constrained minimization problem can be restated in a simpler way as
follows: Given a set {fi}i=1,2,...,n, find the reference class [f̂0] such that

[f̂0] = arg min
[f ]∈F

(
n∑

i=1

d2
F

([fi], [f ])
)

and take as representatives of the equivalence classes those functions {f̃i}i=1,2,...,n

that are registered with respect to f̂0, that is, that function belonging the refer-
ence class [f̂0] such that its average squared distance to the original functions is
minimal.

Neglecting constraint (6) causes, of course, an overestimation of the total vari-
ability and consequently an underestimation of the contribution of the amplitude
variability to the total variability. This constraint essentially avoids the drifting
apart of the registered functions from the original ones. Similar constraints have
been used in the literature for the same purpose. For instance, in both Sangalli et
al. (2009) and Kneip and Ramsay (2008) the constraint 1

n

∑n
i=1 hi = 1 was used,

asserting that under this constraint the functions remain unwarped on average. Un-
fortunately, the latter constraint, even if heuristically equivalent to constraint (6),
is not formally equivalent to it. Moreover, it requires the group W to be also a
(convex) linear space.

If we take care of the points discussed above, also in this case, we can simply
characterize the two extreme situations as follows:
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– presence of phase variability only, when α2 = 0;
– presence of amplitude variability only, when α2 = 1.

The two extreme situations can be equivalently characterized as follows:

– presence of phase variability only, when for i = 1,2, . . . , n: f̃i ≡ f̂0;
– presence of amplitude variability only, when for i = 1,2, . . . , n: f̃i ≡ fi .

Solving the minimization problem (5) might, of course, be not trivial. Even if
any numerical minimization method can be used to approximate the solution, the
proof of Lemma A.2 (see Appendices A and B) suggests all methods belonging to
the family of the so-called Procrustes fitting criteria to be good candidates to solve
this minimization problem. In particular, in the same way of Ramsay and Li (1998),
Kneip et al. (2000), and Sangalli et al. (2009), an iterative search of a minimum can
be performed, alternating minimization and expectation steps:

Minimization: {f̃ [k+1]
i }i=1,2,...,n = {arg min

f̃i∈[fi ] (
∑n

i=1 d2(f̃i , f̂
[k]
0 ))}i=1,2,...,n.

In these steps, each function of the set {fi}i=1,2,...,n is registered with respect to
the Frechet mean of the set {f̃ [k]

i }i=1,2,...,n;

Expectation: f̂
[k+1]
0 = arg min

f̂0∈F
(
∑n

i=1 d2(f̃
[k+1]
i , f̂0)).

In these steps, the Frechet mean of the set {f̃ [k+1]
i }i=1,2,...,n is computed.

The algorithm can be initialized identifying f̂
[0]
0 with the Frechet mean of the ini-

tial set {fi}i=1,2,...,n. Moreover, since
∑n

i=1 d2(f̃
[k]
i , f̂

[k]
0 ) can only decrease as k

increases and it is lower bounded by 0, the algorithm can be stopped when

n∑

i=1

d2(f̃ [k]
i , f̂

[k]
0

) −
n∑

i=1

d2(f̃ [k+1]
i , f̂

[k+1]
0

)
< ε.

Note that, at least theoretically, a small difference between
∑n

i=1 d2(f̃
[k]
i , f̂

[k]
0 ) and

∑n
i=1 d2(f̃

[k+1]
i , f̂

[k+1]
0 ) can be associated with big distances between f̃

[k]
i and

f̃
[k+1]
i . This is compatible with the W -invariance of d and the non-uniqueness of

the solution of the minimization problem (5). Indeed, in some cases, the algorithm
might approach the set of all possible solutions, targeting at each step a different solu-
tion. This should not create any concern since after any expectation step the function
f̂

[k+1]
0 has to be replaced by a suitable equivalent function f̂

[k+1]
0 ◦ h satisfying con-

straint (6).

5 Ancillary variability

In many (or maybe most) situations, d is not a metric but a semi-metric. In this fre-
quent case, the presented theory still holds if F is replaced with F̄ , where F̄ is the
quotient set induced by the equivalence relation d(f1, f2) = 0 defined by the semi-
metric d .

It is important to point out that if d is a semi-metric, a further kind of variability
is evident: we named it Ancillary Variability. Thus, when d is a semi-metric, we can
coherently define ancillary, phase and amplitude variability as follows:
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– Ancillary variability is the one that can occur between functions belonging to the
same equivalence class of F̄ ;

– Phase variability is the one that can occur between equivalence classes of F̄ be-
longing to the same equivalence class of F ;

– Amplitude variability is the one that can occur between different equivalence
classes of F .

Also in this case we can characterize some extreme situations:

– presence of ancillary variability only, when d(f1, f2) = 0;
– presence of phase and ancillary variability only, when dF ([f1], [f2]) = 0;
– presence of amplitude and ancillary variability only, when dF ([f1], [f2]) =

d(f1, f2).

Note that in this case, in the definition of the index α2, the ancillary variability
contributes neither to amplitude nor to total variability. Indeed, according to d , it is
actually a non-variability. For this reason, the easiest approach to functional data reg-
istration in these cases should be that of setting the analysis, from the very beginning,
in terms of elements of F̄ and induced metric dF̄ rather than in terms of the original
elements of F and the original semi-metric d . Moreover, note that the α2 index is not
defined if d(fi, fj ) = 0 for all i, j = 1, . . . , n, that is the unrealistic situation of no
total variability in the functional data set (e.g., if d was a metric, it would be the case
of all identical functions).

6 Examples presented in the literature

The theory hereby developed is able to put in a unique theoretical framework many
approaches to functional data registration that have already appeared in the literature.
As particular implementations of our method (of course, if suitably re-interpreted),
we illustrate two recent papers in which a registration of complex functional data
is performed: Sangalli et al. (2009) and Kaziska and Srivastava (2007). Even if of
sure interest, the aim of this section is not to compare the performances of different
registration procedures compatible with our theory, but rather to show, from a prac-
tical point of view, how this theory can be used to clarify the concept of ancillary,
phase, and amplitude variability standing behind a given registration procedure, and
to quantify their relative importance.

In Sangalli et al. (2009), a registration of 65 three-dimensional curves representing
65 human Internal Carotid Artery centerlines ⊂ R

3 is performed. In Fig. 2, the first
derivatives of these centerlines before and after registration are reported. It is easy to
identify in this work the set F , the group W , and the semi-metric d :

F = {
f ∈ C1(

R;R
3) : f (s) �≡ c with c ∈ R

3},

W = {
h ∈ C1(R;R) : h(s) = ms + q with m ∈ R

+, q ∈ R
}
,
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d(f1, f2) =
√√√√1 − 1

3

∑

k=x,y,z

〈f ′
1k, f ′

2k〉L2(Ω)

‖f ′
1k‖L2(Ω)‖f ′

2k‖L2(Ω)

.

The corresponding notions of ancillary, phase, and amplitude variability are thus im-
plicitly defined:

– Ancillary variability is the one that can occur between functions f1 and f2 that are
equal up to an increasing affine transformation of homologous components, i.e.,

f1, f2 ∈ F : ∃Ak ∈ R
+, Bk ∈ R : f1k(s) = Akf2k(s) + Bk.

– Phase variability is the one that can occur between functions f1 and f2 that are
equal up to an increasing affine transformation of the abscissa, i.e.,

f1, f2 ∈ F : ∃m ∈ R
+, q ∈ R : f1(s) = f2(ms + q).

– Amplitude variability is the one that cannot been removed by the data by means of
increasing affine transformations of neither the homologous components nor the
abscissa.

Moreover, we are able to compute α2 = 33%, i.e., the amplitude variability ac-
counts for nearly just 1/3 of the variability of the 65 Internal Carotid Artery center-
lines, supporting the importance of having registered this functional data set before
performing any further analysis (Fig. 2).

It is worth noticing that the group W used in Sangalli et al. (2009) is not compact,
and thus in general their choice for W and d cannot guarantee the existence of a
solution for the associated minimization problem. On the other hand, the lack of
compactness of W should not raise any concern in practical situations. Indeed, in real
applications, data are usually only slightly misaligned, and therefore a marked local
minimum is usually present. So, by simply introducing some “reasonable” constraints
on the warping functions (i.e., large enough to gather the local minimum and small
enough not to obtain an artificial minimum at the boundary of the constraint) we can
re-obtain a meaningful and well posed minimization problem.

Kaziska and Srivastava (2007), in the first part of their work regarding the anal-
ysis of human shapes, deal with the registration of simple closed (i.e., periodic) bi-
dimensional curves ⊂ R

2. Also in this work, it is easy to identify the set F , the group
W , and the metric d :

F = C,

W = S
1 × D,

d(f1, f2) = dC (f1, f2);
where C (the preshape space in the work) is the set of all continuous 2π -periodic
functions mapping [0,2π] into a closed curve ⊂ R

2 of length 2π and average di-
rection π ; S

1 is the group of the translation of the abscissa; D is the group of
the automorphisms [0,2π] �−→ [0,2π]; the distance dC , even if not clearly stated,
appears to be the distance induced by the usual inner product 〈·, ·〉L2([0,2π]), i.e.,
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Fig. 2 The 65 first derivatives f ′
ix

, f ′
iy

, and f ′
iz

before registration (top) and the 65 first derivatives f̃ ′
ix

,

f̃ ′
iy

, and f̃ ′
iz

after registration (bottom). The first derivatives of the estimated Frechet mean f̂0 are reported
in black. Courtesy of Sangalli et al. (2009)

dC (f1, f2) = ‖f1 − f2‖L2([0,2π]); for completeness, the quotient set F is indicated
in the work as S (the shape space).

It is important to mention that, as declared by the authors, the original functions do
not belong to C ; the original curves are indeed preprocessed—i.e., rotated, translated,
and scaled in R

2—such that their average length is 2π and their average direction is
π . In this case, the ancillary variability (here the one imputable to rotation, transla-
tion, and scaling in R

2) is explicitly removed before the analysis.
The corresponding notions of ancillary, phase, and amplitude variability come

straightforward:

– As just pointed out, there is no ancillary variability between functions of C since
this is removed before the analysis;
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– Phase variability is the one that can occur between functions representing the same
curve in R

2 by means of a different parametrization, i.e., functions that are equal
up to a change in the origin of the abscissa and an automorphism of the abscissa;

– Amplitude variability is the one that can occur between functions representing
different curves in R

2 after the phase variability has been removed, i.e., after the
two abscissas have been matched by means of a joint translation and automorphism
h ∈ S

1 × D minimizing dC (f1, f2 ◦ h).

Note that the choice of d = dC and W = D does not completely agree with the
theory here developed, in the sense that they do not satisfy (d), i.e., dC is not (S1 ×
D)-invariant (it is actually only S

1-invariant, thanks to the periodicity of functions
belonging to C ). This means that here two curves can be made arbitrarily more/less
close simply by jointly changing the parametrization of the two curves. There are
two main consequences due to the non-D-invariance of dC : first, the quotient set F
is not formally defined and thus the phase and amplitude variability are not soundly
defined; second, if the registration procedure is performed anyway, one will likely
find meaningless and unusable results from a practical point of view. This degeneracy
problem (known as the shape distortion problem) occurring with the joint use of the
group of automorphisms and of the L2-norm has already been noticed in Brumback
and Lindstrom (2004), Ramsay and Silverman (2005), and Kneip and Ramsay (2008).

Kaziska and Srivastava (2007), like Ramsay and Silverman (2005), get out of
this degeneracy problem by introducing in the minimization process a penaliza-
tion term. Indeed, even if in the declared theoretical framework the registration
problem is introduced as the minimization over h ∈ S

1 × D of the functional
‖f1 − f2 ◦ h‖L2([0,2π]), in the search for the solution, the functional λ‖f1 − f2 ◦
h‖2

L2([0,2π]) + (1 − λ)‖h′‖2
L2([0,2π]) is actually minimized.

In the light of the present work, we are convinced that the necessity of introducing
a reasonable penalization term or reasonable constraints to make meaningful the re-
sults of a registration procedure is in general an evidence of a mismatch between the
phase variability as actually defined by W and the phase variability as thought by the
statistician.

For this reason, we think that the correct way to get out of degeneracy problems
is not to introduce a penalization term or constraints (we are aware that, even if not
theoretically sound, these solutions are, however, practically easy and efficient) but
to replace W with a suitable group and to redefine phase and amplitude variability
consequently. Of course, this second approach is definitely not trivial and poses new
challenging questions for future research.

7 Discussion

The key idea of this work is that the choice for the metric (or semi-metric) d used to
perform a functional data analysis should be strictly connected with the nature of the
phase variability that the statistician expects to affect the data. In a very wide sense,
we state that statisticians, while performing a functional data analysis, should deal
with phase variability simply by using suitable semi-metric (i.e., dW in the paper) able
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to take in to account the misalignment between curves imputable to phase variability.
We also showed that W -invariant metrics (or semi-metrics) (i.e., d in the paper)—
with W being the group of warping functions associated to phase variability—provide
a natural way to build such semi-metrics (i.e., dW in the paper).

On the whole, by introducing the semi-metric dW , we managed to formalize the
problem of registration by showing that performing an analysis of a functional data
set using a semi-metric dW is either equivalent to performing an analysis of suitable
equivalence classes using the metric dF (i.e., our theoretical abstraction) and equiva-
lent to performing an analysis of the registered functions using the original metric d

(i.e., the usual approach used in applications).
The search for suitable metrics (or semi-metrics) for dealing with functional data

is a highly discussed topic also in other areas of FDA (e.g., Ferraty and Vieu 2006).
This search is driven by both theoretical and practical reasons:

– from a theoretical point of view, the non-straightforward definition of the notion
of probability density function for random functions (Delaigle and Hall 2010) has
made the concept of small ball probability (which is, of course, of metric nature)
fundamental for many important theoretical results of FDA: for example, the proof
of the uniform consistency of kernel estimators in functional data analysis (Ferraty
et al. 2010). Thus, in FDA, choosing a suitable metric could make or not make a
functional data analysis theoretically sound;

– from a practical point of view, it is universally accepted that a good choice for
the metric is the key point for performing a successful functional data analysis.
See, for instance, Ferraty and Vieu (2002) where it is shown that the use of differ-
ent semi-metrics different from the one induced by the L2-norm can dramatically
improve/worsen the predictive power of a non-parametric regression model.

The concept of metric is central also in the recent literature dealing with the prob-
lem of defining concepts alternative to the sample mean that are able to capture the
main features of the functional data set even if not exactly aligned. For instance, De-
laigle and Hall (2010), after having defined a concept of log-density for functional
data, defined a consequent concept of modal function (related to the maximal value
of the log-density of the first r sample functional principal components); Cuevas et al.
(2007), after having compared five different notions of depth for functional data, de-
fined a consequent concept of median function (i.e., the deepest function of the data
set) and 0.25-trimmed mean function (i.e., the average of the 75% deepest functions
of the data set).

Despite of their apparent distance, methods for registering functional data and
methods for computing “meaningful mean functions” (like the ones mentioned
above) are very close not only in the methods but also in the aims: indeed, they
are both urged by the presence of misalignment between functions. With respect
to our particular registration approach, these alternative ways of dealing with phase
variability—even if still dependent on the particular choice for the metric—have the
advantage of not requiring strong properties of the metric, unlike we do, and thus
leaving space for a wide variety of possible metrics. As a drawback, they just pro-
vide a phase-variability-corrected “mean function”, leaving uncorrected the original
functions. Our approach provides instead both a phase-variability-corrected “mean
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function” (i.e., the reference function f̂0) and the phase-variability-corrected func-
tions (i.e., the registered functions f̃i ).

In the present paper, we also propose an amplitude-to-total variability ratio α2 use-
ful for quantifying both the importance of amplitude variability and the effectiveness
of a registration procedure: it is zero when there is only phase variability and thus the
registration procedure can perfectly align the original functions; and it is one when
there is no phase variability and thus the registration procedure leave the original
functions unaffected. The index α2 is here proposed as a purely descriptive tool. It
is of paramount interest to investigate in the future the possibility of using it as an
inferential tool for testing the absence/presence of phase variability. Identifying the
distribution a suitable test statistic derived from α2 under the null hypothesis of the
absence of phase variability—which, of course, will depend on the sample size n—is
not straightforward. It will require the introduction of a probabilistic model for both
amplitude and phase variability and, probably, also an “anova-inspired” decomposi-
tion of total variability in amplitude and phase variability. For this reason, our future
research in this topic will focus also on the search for pairs of compact subgroups
of the group of the automorphisms and invariant metrics/semi-metrics satisfying this
latter requirement.

In our opinion, a clear definition of phase and amplitude variability should be a
milestone of the future research activity in functional data analysis (FDA) for at least
two reasons:

– first, these two concepts, distinctive of functional data analysis, support the charac-
terization of functional data analysis as a statistical research area itself, not making
it just a simple generalization of multivariate analysis;

– second, an obscure definition of phase and amplitude variability will sentence func-
tional data registration to be considered just a preprocessing method for the actual
statistical analysis, while—we think—it should be rather considered as a decom-
position of the functional data variability in two equally worthy parts.

The present work is just a first attempt to provide a theoretically sound definition
of phase and amplitude variability in the light of similar naive concepts used in the
literature and in line with present research tendencies of FDA.

Acknowledgements We want to thank Laura Maria Sangalli and Piercesare Secchi for having stimu-
lated this work: the idea of a coherence between the metric and the class of warping functions—which this
work starts from—emerged while working with them within the AneuRisk Project. We also want to thank
Marco Fuhrman for his comments. Thanks also to the associate editor and to the referees: their comments
and their suggested references significantly improved the “statistical flavor” of the work, really pointing
out its statistical novelty.

Appendix A: Auxiliary lemmas

Lemma A.1 (Sufficient condition for the existence of the minimizing couple) If
W is compact and ∀f ∈ F the map f ◦ : W → F is continuous, then ∀f1, f2 ∈
F, ∃ minh1,h2∈W d(f1 ◦ h1, f2 ◦ h2).
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Lemma A.2 (Sufficient condition for the existence of a solution of the minimization
problem (5)) If W is compact and ∀f ∈ F the map f ◦ : W → F is continuous, then
a solution of the problem (5) exists.

Appendix B: Proofs

Proof of Lemma A.1 d is continuous since triangular inequality implies |d(f1, f2) −
d(f1, f3)| ≤ d(f2, f3); the maps f1◦ and f2◦ are demanded to be continuous; thus
d(f1 ◦ h1, f2 ◦ h2) is continuous in h1 and h2. Moreover, d(f1 ◦ h1, f2 ◦ h2) is lower
bounded (≥ 0). Since W is compact, the extreme value theorem ensures the minimum
to exist. �

Proof of Lemma A.2 [f1], [f2], . . . , [fn] are compact sets ⊆ F since W is compact
and for i = 1,2, . . . , n, fi◦ : h ∈ W �−→ (f1 ◦ h) ∈ F is continuous. The functional∑n

i=1 d2(f̃i , f̂0) is lower bounded, so inf
f̃i∈[fi ] ∧ f̂0∈F

(
∑n

i=1 d2(f̃i , f̂0)) ≥ 0. The

compactness of the set [fi] guarantees that the inferior limit occurs in correspondence
of functions f̃i belonging to the set [fi]. Moreover, in correspondence of the inferior
limit, we have that f̂0 belongs to the sample Frechet mean set of a set of function
belonging to a compact set, i.e.,

⋃
i=1,2,...,n[fi]. It is known that the sample Frechet

mean set is non-empty and compact. So we can find an element f̂0 belonging to the
sample Frechet mean set at which the functional takes value equal to its inferior limit.
Thus the inferior limit is also a minimum. �

Proof (Theorem 1: positive semi-definiteness of dW ) From the positive definiteness
of d , f1 = f2 ⇒ d(f1, f2) = 0; from (2), d(f1, f2) = 0 ⇒ dW (f1, f2) = 0. �

Proof (Theorem 1: symmetry of dW ) The symmetry of dW descends from the sym-
metry of d , indeed if (h̄1, h̄2) is a minimizing couple for d(f1 ◦h1, f2 ◦h2), then (h̄2,
h̄1) is a minimizing couple for d(f2 ◦ h2, f1 ◦ h1), providing the same minimum. �

Proof (Theorem 1: triangular inequality for dW ) The triangular inequality for dW

descends from the triangular inequality for d and from the W -invariance of d . Let (h̄1,
h̄2) and (h̄2, h̄3) be minimizing couples for d(f1 ◦h1, f2 ◦h2) and d(f2 ◦h2, f3 ◦h3),

respectively, i.e.,

dW (f1, f2) = d(f1 ◦ h̄1, f2 ◦ h̄2), (B.1)

dW (f2, f3) = d(f2 ◦ h̄2, f3 ◦ h̄3). (B.2)

As already stressed, because of the W -invariance of d and without loss of generality,
h̄2 of the former couple can be fixed equal to h̄2 of the latter couple. The couple (h̄1,
h̄3) is not in general a minimizing couple for d(f1 ◦ h1, f3 ◦ h3), thus,

dW (f1, f3) ≤ d(f1 ◦ h̄1, f3 ◦ h̄3). (B.3)
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The triangular inequality for d applied to f1 ◦ h̄1, f2 ◦ h̄2, and f3 ◦ h̄3 provides:

d(f1 ◦ h̄1, f3 ◦ h̄3) ≤ d(f1 ◦ h̄1, f2 ◦ h̄2) + d(f2 ◦ h̄2, f3 ◦ h̄3). (B.4)

Finally—by chaining (B.3), (B.4), (B.1), and (B.2)—the triangular inequality for dW

is obtained:

dW (f1, f3) ≤ d(f1 ◦ h̄1, f3 ◦ h̄3)

≤ d(f1 ◦ h̄1, f2 ◦ h̄2) + d(f2 ◦ h̄2, f3 ◦ h̄3)

= dW (f1, f2) + dW (f2, f3). �

Proof ((2): lower bound) d(f1 ◦ h1, f2 ◦ h2) ≥ 0 ∀h1, h2 ∈ W ⇒ minh1,h2∈W d(f1 ◦
h1, f2 ◦ h2) ≥ 0. �

Proof ((2): upper bound) minh1,h2∈W d(f1 ◦h1, f2 ◦h2) ≤ d(f1, f2) since d(f1, f2)

= d(f1 ◦ 1, f2 ◦ 1). �

Proof ((3): ⇒) By Theorem 1, dW (f1, f2) = 0 implies that there exists a couple
(h1,h2) such that d(f1 ◦ h1, f2 ◦ h2) = 0; the positive definiteness of d implies that
d(f1 ◦ h1, f2 ◦ h2) = 0 ⇒ f1 ◦ h1 = f2 ◦ h2. �

Proof ((3): ⇐) The positive definiteness of d implies that f1 ◦h1 = f2 ◦h2 ⇒ d(f1 ◦
h1, f2 ◦h2) = 0; since 0 is also a lower bound, this couple is also a minimizing couple,
then dW (f1, f2) = 0. �

Proof ((4)) Proof is immediate by Theorem 1. �

Proof (Theorem 2: positive definiteness of dF ) Let “
.=” be the equivalence relation

induced on F by the semi-metric dW .
Sufficient condition: [f1] = [f2] implies that ∀f̄1 ∈ [f1] and f̄2 ∈ [f2] ⇒

f̄1
.= f̄2; moreover, f̄1

.= f̄2 ⇒ dW (f̄1, f̄2) = 0; but, by definition, dW (f̄1, f̄2) =
dF ([f1], [f2]), and thus dF ([f1], [f2]) = 0. Necessary condition: dF ([f1], [f2]) = 0
implies that dW (f̄1, f̄2) = 0 ∀f̄1 ∈ [f1] and f̄2 ∈ [f2]; thus ∀f̄1 ∈ [f1] and f̄2 ∈ [f2]
we have that f̄1

.= f̄2; thus any f̄1 ∈ [f1] is equivalent to any f̄2 ∈ [f2] and vice versa,
which means that [f1] = [f2]. �

Proof (Theorem 2: symmetry of dF ) Let us take two elements f̄1 and f̄2 ∈ F

such that f̄1 ∈ [f1] and f̄2 ∈ [f2]; by definition, dF ([f1], [f2]) = dW (f̄1, f̄2) and
dF ([f2], [f1]) = dW (f̄2, f̄1); moreover, the symmetry of dW ensures dW (f̄1, f̄2) =
dW (f̄2, f̄1), and thus the symmetry of dF is proven. �

Proof (Theorem 2: triangular inequality for dF ) Let us take three elements f̄1,
f̄2, and f̄3 ∈ F such that f̄1 ∈ [f1], f̄2 ∈ [f2], and f̄3 ∈ [f3]; by definition,
dF ([f1], [f3]) = dW (f̄1, f̄3), dF ([f1], [f2]) = dW (f̄1, f̄2), and dF ([f2], [f3]) =
dW (f̄2, f̄3); moreover, the triangular inequality for dW ensures dW (f̄1, f̄3) ≤
dW (f̄1, f̄2) + dW (f̄1, f̄3), and thus the triangular inequality for dF is proven. �
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