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Abstract We develop a procedure for monitoring changes in the error distribution
of autoregressive time series while controlling the overall size of the sequential test.
The proposed procedure, unlike standard procedures which are also referred to, uti-
lizes the empirical characteristic function of properly estimated residuals. The limit
behavior of the test statistic is investigated under the null hypothesis as well as un-
der alternatives. Since the asymptotic null distribution contains unknown parameters,
a bootstrap procedure is proposed in order to actually perform the test and corre-
sponding results on the finite–sample performance of the new method are presented.
As it turns out the procedure is not only able to detect distributional changes but also
changes in the regression coefficient.
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1 Introduction

Change-point analysis for distributional changes with i.i.d. observations and the study
of structural breaks in the parameters of time series has received wide attention; see
for instance Yao (1990), Horváth (1993), Bai (1993), Davis et al. (1995), Einmahl
and McKeague (2003), Hušková et al. (2007, 2008), and Gombay and Serban (2009).
For a full-book treatment on theoretical and methodological issues of change-point
analysis the reader is referred to Csörgő and Horváth (1997).

On the other hand works on structural breaks due to a change in the distribution
of a time series are relatively few. Hušková and Meintanis (2006a, 2006b) develop
detection procedures for distributional changes with i.i.d. observations. In this paper
we extend their results in two ways. First, the observations need no longer be in-
dependent. Instead we assume a linear autoregressive structure. Second, we operate
within the framework of on-line monitoring analysis whereby data are not observed
at once but arrive in a sequential manner—one by one. Then, following each new ob-
servation we would like to know whether our model is still capable of explaining the
current observations. This type of procedure plays an increasingly important role in
applications as data sets are often collected automatically or without significant costs.
Examples include financial data sets, e.g. in risk management (Andreou and Ghysels
2006) or in CAPM models (Aue et al. 2010), as well as medical data sets, e.g. when
monitoring intensive care patients (Fried and Imhoff 2004). More applications can be
found in other areas of applied statistics. The consideration of such data sets leads to
sequential statistical analysis which is also called online monitoring.

To fix the model, let {Xj , j = p + 1, . . . , n} be an AR(p) process defined by the
equation

Xj = βT Xj−1 + εj , (1.1)

where Xj−1 = (Xj−1, . . . ,Xj−p)T , and β = (β1, . . . , βp)T is an unknown regres-
sion parameter. In (1.1) the errors εj are independent, each having a corresponding
distribution function Fj with mean zero and finite variance. Also the AR process is
assumed to be causal, i.e., the characteristic polynomial P(z) = 1−β1z−· · ·−βpzp ,
is assumed to satisfy P(z) �= 0, ∀|z| ≤ 1.

The idea in the sequential testing methods which we consider is as follows: We
suppose that there exists a historic or training data set X1, . . . ,XT , with no change,
i.e., following (1.1) with F1 = · · · = FT . Practically, this is the data set based on
which we estimate the appropriate parameters. In particular, we postulate model (1.1)
with no change in distribution and estimate β as well as the distribution F1 of ε1
from X1, . . . ,XT . Then we start monitoring, i.e., observing the data XT +1,XT +2, . . .

sequentially. After each new observation we decide whether there is evidence of a
change and in this case we terminate the monitoring procedure and decide for the
alternative. Otherwise we continue monitoring.

Here we monitor for a change in the distributional aspect of the errors εj , i.e., we
wish to test the hypotheses

H0 : Fj = F0, j = T + 1, T + 2, . . . vs.

H1 : FT +j = F0, j ≤ T + j0;FT +j = F 0 �= F0, j > T + j0,
(1.2)
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of a change in the distribution Fj , where F0,F
0, and the time of a change j0 ≥ 1,

are considered unknown. As it turns out, however, the monitoring schemes devel-
oped for these distributional changes are also able to detect changes in the regression
coefficient.

In view of the fact that the errors are unobserved, typically one computes the
residuals

ε̂j = Xj − β̂
T

T XT
j−1, (1.3)

from (1.1) by using some standard estimator β̂T := β̂T (X1, . . . ,XT ) of β such as the
least squares estimator, based only on the training data set X1, . . . ,XT , and fulfilling

√
T (β̂T − β) = OP (1), as T → ∞.

Note that for asymptotic considerations we let the length of the historic data set
T go to infinity. Hence the estimation of the model parameters from the historic data
set improves. The total number of observations, however, is random (and possibly
infinite) as we stop monitoring as soon as we can reject.

Based on the estimated residuals in (1.3), several monitoring schemes may
be devised, each corresponding to a standard goodness-of-fit statistic. Traditional
goodness-of-fit tests, however, make use of the empirical distribution function (EDF)
of these residuals, whereas here we utilize the empirical characteristic function (ECF)
of the residuals. This approach was employed by Hušková and Meintanis (2006a,
2006b) in order to test for distributional changes of independent observations in an
off-line setting and was found to have a satisfactory performance. For earlier attempts
to utilize the ECF in the context of testing with time series the reader is referred to
Hong (1999), Epps (1988, 1987).

In particular, the Fourier formulation which we advocate here utilizes the Cramér–
von-Mises type statistics

TCF(j, γ ) = ρj,T (γ )

∫ ∞

−∞
∣∣φ̂T ,T +j (u) − φ̂p,T (u)

∣∣2
w(u)du, (1.4)

where 0 < γ ≤ 1, and

φ̂j1,j2(u) = 1

j2 − j1

j2∑
t=j1+1

eiuε̂t

is the ECF of the residuals. In (1.4), ρj,T (γ ) denotes a weight function needed to
control (asymptotically) the probability α of type-I error for the sequential test pro-
cedure, while w(u) is an extra weight function introduced to smooth out the periodic
components of the ECF.

We reject the null hypothesis when for the first time TCF(j, γ ) ≥ cα for an ap-
propriately chosen critical value cα . In this case we stop monitoring. Otherwise we
continue. The associated stopping rule is given by

τ(T ) =
{

inf{1 ≤ j < LT : TCF(j, γ ) ≥ cα},
∞, if TCF(j, γ ) < cα for all 1 ≤ j < LT .
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We shall distinguish between open-end procedures where LT = ∞ and closed-end
procedures where LT = 	NT 
 + 1 for some N > 0. (Note that the closed-end proce-
dures are sometimes also called curtailed or truncated.)

As in classical hypothesis testing, our aim is to control the overall value of α, i.e.,

lim
T →∞PH0

(
τ(T ) < ∞) = α. (1.5)

In this context Theorem 2.1 below shows how to choose the critical values so
that (1.5) holds, i.e., so that the procedure has asymptotic size α. On the other hand,
Theorems 2.2 and 2.3 show that this monitoring procedure detects a large class of
alternatives with probability one asymptotically, i.e.,

lim
T →∞PH1

(
τ(T ) < ∞) = 1. (1.6)

Thinking of the monitoring procedure in terms of classical statistics yields the
following test statistic

CFT (γ ) = CFT (ε̂p+1, ε̂p+2, . . . ;γ ) := sup
1≤j<LT

TCF(j, γ ), (1.7)

which is only used to obtain asymptotics, whereas the actual calculation is performed
sequentially as already explained above.

We have already pointed out that one can also develop related procedures based
on empirical distribution functions. To this end, denote by F̂T ,T +j (z) and F̂p,T (z)

the EDF based on ε̂T +1, . . . , ε̂T +j and ε̂p+1, . . . , ε̂T , respectively. Lee et al. (2009)
proposed Kolmogorov–Smirnov-type statistic defined by

KSLee
T (ζ ) = sup

1≤j<LT

dj,T (ζ ) sup
z

∣∣F̂T ,T +j (z) − F̂p,T (z)
∣∣, (1.8)

where dj,T (ζ ) = √
T (T /(T +j))ζ j/(T +j) for some ζ > 0 are weights and showed

that the limit null distribution of such test statistic is an asymptotically distribution-
free functional of a two-dimensional Gaussian process. The advantage is that this
limit distribution, unlike the one we obtained for our procedure (cf. Theorem 2.1),
does not depend on the unknown error distribution. However, and in order to obtain
limit properties additional assumptions on the smoothness of the error distribution
are needed. Our preliminary simulation results, not reported in this paper, were in a
good agreement with the simulation study performed in Lee et al. (2009): the KS-test
statistic with Lee’s weights seems to reliably detect the change in the error distribu-
tion only when an early and very large change occurs in a situation with large number
of observations.

Finally we note that along the line of our test procedure based on CFT (γ ) one
can also develop a KS-type test statistics with dj,T (ζ ) in (1.8) replaced by ρ

1/2
j,T (γ ),

where 0 < γ ≤ 1 as in (1.4), i.e.,

KST (γ ) = sup
1≤j<LT

ρ
1/2
j,T (γ ) sup

z

∣∣F̂T ,T +j (z) − F̂p,T (z)
∣∣. (1.9)

Certain comparisons based on simulations using the test statistic KST (γ ) are reported
in Sect. 4.
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2 Asymptotic results

Here we present and discuss results on the asymptotic distribution of the test statistic
CFT (γ ) defined in (1.7) both under the null hypothesis and under some alternatives.
The latter results lead to consistency in the sense of (1.5) as well as (1.6). Note that
we suppress the weight parameter γ , and write CFT for simplicity.

Recall that we work with the sequence {Xj , j = p + 1, . . .} following the model:

Xj = βT Xj−1 + εj , j = p + 1, . . . ,

where Xj−1 = (Xj−1, . . . ,Xj−p)T , β is an unknown p-regression parameter, and
εj , j = 1, . . . are innovations which under the null hypothesis satisfy the following
assumptions:

(A.1) {εj , j = 0,±1, . . .} are i.i.d. random variables with common distribution func-
tion F0 having zero mean, positive variance and E |εj |4 < ∞.

(A.2) The initial values X1, . . . ,Xp are independent of εp+1, . . . ; βp �= 0, and the
roots of the polynomial tp − β1t

p−1 − · · · − βp are less than one in absolute
value.

(A.3) The vector Xp+1 = (Xp, . . . ,X1)
T of initial observations may be written as

Xp+1 =
∞∑

j=0

Bj ep+1−j , (2.1)

where

B =
(

β1, . . . , βp

Ip−1 O

)
and ek = (εk,0, . . . ,0)T , (2.2)

with Ip−1 denoting the (p − 1)-dimensional unit matrix.

It is also assumed that the estimator β̂T = β̂T (X1, . . . ,XT ) of β and the weight
function w(·) satisfy

(A.4)
√

T (β̂T − β) = OP (1), T → ∞.

(A.5) w(t), t ∈ R1, is a symmetric function such that

∫
t4w(t) dt < ∞.

Theorem 2.1 Let {Xt } follow model (1.1) and let Assumptions (A.1)–(A.5) be sat-
isfied. Then under the null hypothesis of no change the following asymptotic results
hold for the test statistic CFT in (1.7).

(a) For the open-end procedure (i.e., LT = ∞) and as T → ∞,
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CFT
D−→ sup

0<t<1

∣∣∣∣∣tγ
(∫

w(u)du − E

∫
cos

(
(ε1 − ε2)u

)
w(u)du

)

+
∞∑

q=1

λq

W 2
q (t) − t

t1−γ

∣∣∣∣∣,

where E denotes the expectation with respect to the innovations ε1, ε2,

ρj,T (γ ) = T

(
j

T + j

)1+γ

, 0 < γ ≤ 1, (2.3)

Wq(·) are independent Wiener processes and λq are square-summable eigenval-
ues which depend on the unknown underlying distribution function F0 (refer to
(6.4)).

(b) For the closed-end procedure (i.e., LT = 	NT 
 + 1) and as T → ∞,

CFT
D−→ sup

0<t<N

cw(t)

∣∣∣∣∣t (1 + t)

(∫
w(u)du − E

∫
cos

(
(ε1 − ε2)u

)
w(u)du

)

+
∞∑

q=1

λq

(
Wq,1(t) − tWq,2(1)

)2 − t (1 + t)

∣∣∣∣∣,

where ρj,T (γ ) = j2

T
cw(

j
T

) and cw(t) ≥ 0 is continuous on (0,N] such that there
exists 0 ≤ α < 1 with limt→0 tαcw(t) < ∞, and Wq,1(·), Wq,2(·) are independent
Wiener processes and λq are as in (a).

Theorem 2.1 shows that the limit distribution depends on unknown quantities that
are determined by the unknown distribution of the innovations εj and consequently
does not provide an approximation for critical values of the CF-statistic. Therefore
a bootstrap procedure suitable for the above sequential setup is useful for practical
applications and will be discussed in Sect. 3 below. Also note that the conditions
on the weight function for the closed-end procedure include in particular the weight
functions as given for the open-end procedure, and that the limit distribution of CFT

is the same if we replace the residuals ε̂j by εj (see Lemma 6.3).

Remark 1 The proposed procedure based on CFT defined in (1.7) can easily be ex-
tended to different models such as regression models or ARMA-sequences among
others. The key to the proofs is to be able to estimate the residuals εj by ε̂j , such that
the limit distribution of the resulting test procedure does not change.

Next we have a look at the asymptotic behavior of CFT under a class of alterna-
tives. In particular, Assumption (A.1) is replaced by the following assumption:

(B.1) {εj , j = 0,±1, . . .} are independent random variables with zero mean, positive
variance and finite moment E |εj |4 < ∞ and having the distribution function
F0 for j ≤ T + j0 and F 0 for j > T + j0, for some j0 ≥ 1, F0 �= F 0.
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Theorem 2.2 Let {Xt } follow model (1.1) and let Assumptions (A.2)–(A.5) and (B.1)
be satisfied, i.e., a change of the error distribution takes place. Let also ρj,T (γ ) be
defined as in (2.3). Then for the open-end procedure and as T → ∞,

CFT → ∞, in probability.

Moreover, if j0 = 	T t0
 with some t0 ≥ 0, then as T → ∞,

CFT /T →P sup
t0<t<∞

(
t

1 + t

)1+γ (
t − t0

t

)2

×
∫ ∣∣ϕ0(u) − ϕ0(u)

∣∣2
w(u)du,

where ϕ0(t) and ϕ0(t) are characteristic functions before and after the change, re-
spectively. The assertion remains true for closed-end procedures if t0 < N and where
the sup is taken over the set t0 < t ≤ N .

The above theorem shows that our test procedure detects distributional changes
of the type described by (1.2), as required. However, it will be shown below that
the test procedure has also some power with respect to changes in the autoregressive
coefficient. So one should also apply a test for a change in the autoregressive param-
eter, which, however, does not have power against distributional changes, in order to
distinguish between the two (Hušková et al. 2007, 2008).

Consider

Xj = βT Xj−1 + δT Xj−1I {j > T + j0} + εj , j ≥ 1, (2.4)

where δ �= 0 and j0 ≥ 1 are both unknown, and all other symbols are as in model
(1.1). As in Hušková et al. (2007) we also assume:

(B.2) The observations Xp+1, . . . follow the model (2.4) with j0 = 	T t0
, t0 ≥ 0;
X1, . . . ,Xp are independent of εp+1, . . . , εT , . . . ; βp �= 0, and the roots of the
polynomial tp − β1t

p−1 − · · · − βp are less than one in absolute value. In
addition, βp + δp �= 0, and the roots of tp − (β1 + δ1)t

p−1 − · · · − (βp + δp)
are also less than one in absolute value, for δ �= 0 fixed.

Theorem 2.3 Let model (2.4) fulfill (A.1), (B.2), (A.3)–(A.5), j0 = 	T t0
 for some
t0 ≥ 0, i.e., a change in the regression coefficient takes place and let ρj,T (γ ) be
defined as in (2.3). Then, for open-end procedures and as T → ∞,

CFT /T →P sup
t0<t<∞

(
t

t + 1

)1+γ (
t − t0

t

)2

×
∫ ∣∣ϕ0(u)

(
ϕX(u) − 1

)∣∣2
w(u)du,

where ϕX(u) is the characteristic function of
∑p

j=1 δjZq−j with {Zq}q being an
AR(p) process with parameters β + δ. The assertion remains true for closed-end
procedures if t0 < N and where the sup is taken over the set t0 < t ≤ N .
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3 Bootstrap procedures

In order to apply the tests we need critical values, and the standard approach would
be to use the quantiles of the asymptotic distribution. However, from Theorem 2.1
it is clear that this is not feasible here as the limit distribution depends on too many
unknown parameters. Therefore, we will apply resampling methods to approximate
the null distribution.

The simplest approach is a classical bootstrap based on the estimated residuals
of the training data: Let UT (p + 1), . . . ,UT (L̃T ) be i.i.d. uniform on p + 1, . . . , T ,
and independent of {Xt }, where we choose L̃T = LT − 1 in case of the closed-end
procedure and L̃T /T → ∞ in case of the open-end procedure. Let

ε∗(t) = ε̂UT (t),

with ε̂j as in (1.3).
The bootstrap critical value cα(X1, . . . ,XT ) is chosen minimal such that

P ∗
T

(
CFT

(
ε∗(1), . . . , ε∗(L̃T );γ ) ≤ cα(X1, . . . ,XT )

) ≥ 1 − α,

where P ∗
T (·) = P(·|X1, . . . ,XT ). We can easily simulate the above conditional dis-

tribution by drawing B random realizations of {UT (·)}.
The above bootstrap scheme only uses the training sample X1, . . . ,XT . There-

fore the following theorem holds under assumptions on the training set only, and no
additional assumptions on the data after monitoring starts are needed.

Theorem 3.1 If X1, . . . ,XT follow model (1.1) fulfilling assumptions (A.1)–(A.5),
then

cα(X1, . . . ,XT )
P−→ cα,

where cα is the α-quantile of the asymptotic distribution in Theorem 2.1.

The above theorem shows that a test using critical values based on the bootstrap
approximation has asymptotic size α and asymptotic power one under the alternatives
in Theorems 2.2 and 2.3. In addition, the bootstrap test is asymptotically equivalent
to the large-sample test which, however, is not feasible as cα depends on too many
unknown parameters; see Theorem 2.1.

Usually a bootstrap procedure is not optimal in case of smaller training data sets.
This is not surprising as we create a data set of length LT from a data set of length T

which is much smaller than LT . In the simpler location setting Kirch (2008) showed
via simulations that this in fact leads to a loss of power. Nevertheless, adaptations of
the above bootstrap schemes, including observations obtained during monitoring, are
possible (cf. Kirch 2008 for the location model and Hušková and Kirch 2011 for a
change in the regression coefficient).

4 Simulation study

In the previous sections we derived monitoring procedures with an asymptotic level α

and asymptotic power 1 for a large class of alternatives. In this section we conduct a
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small simulation study to see how the test behaves for small samples. A more detailed
simulation study including also some extensions and variations of the procedure is in
preparation.

From (1.4) we have by straightforward calculations that the test statistic admits
the following representation:

TCF(j, γ ) = ρj,T (γ )

[
1

j2

T +j∑
t,s=T +1

hw(ε̂ts)

+ 1

(T − p)2

T∑
t,s=p+1

hw(ε̂ts)

− 2

j (T − p)

T +j∑
t=T +1

T∑
s=p+1

hw(ε̂ts)

]
, (4.1)

where ρj,T (γ ) is defined in (2.3), ε̂ts = ε̂t − ε̂s , and

hw(x) =
∫ ∞

−∞
cos(ux)w(u)du. (4.2)

The choice of the weight function w(·) is primarily guided by the desire to render the
integral in (4.2) and the test statistic in (4.1) in closed-form. If this is accomplished
then the procedure can be easily implemented since one can obtain from TCF(j, γ )

the next term TCF(j +1, γ ), by means of a simple recursion. There are several choices
for w(·) that serve the purpose of computational simplicity, the most popular being
exponential-type functions of the form w(u) = exp(−a|u|b), for a > 0 and b = 1 or
b = 2. In the simulations we use w(u) = wa(u) = exp(−a|u|), with several values of
a > 0. Also, the weight function for the sequential procedure is given by (2.3) for γ =
0.1 and γ = 1. We use a historic data set of T = 50 and T = 200 and a monitoring
length NT with N = 4. The residuals ε̂t in (4.1) are obtained by using a standard
least squares estimator calculated from the training sample. For the calculation of the
bootstrap distribution 500 random bootstrap samples have been used.

We have already remarked in Sect. 1 that the KS-statistic (1.8) did not work well
in the setup of our simulation study. Therefore, in order to provide also a comparison
with some procedure based on EDF, we include simulation results for the KS-type
test defined by (1.9). We have used bootstrap critical values obtained by the bootstrap
scheme described in Sect. 3. We are not aware of any theoretical results concerning
the application of bootstrap on the sequential test statistic (1.9) but the behavior of the
bootstrap approximation in our simulation study was “very reasonable” and we have
decided to include these results as an illustration comparing an EDF- and ECF-based
procedure.

The training sample is always an AR(1) process (1.1) with the regression pa-
rameter β = β0 = 0.5 and normally distributed error terms with standard deviation
sd(εi) = σ0 = 1. The symbols β0 = β0 + δ and σ 0 denote the value of the same
parameters after the change at time j0.

We consider the following types of change:
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– Change in the regression coefficient.
– Change in scale.
– Change from a normal distribution to a Student t-distribution with 4 degrees of

freedom.
– Change from a normal distribution to a χ2-distribution with 4 degrees of freedom.

Note that both the Student t-distribution and the χ2-distribution were centered and
standardized.

As usual we assess the quality of the tests by (i) the actually achieved level of the
test as well as the achieved power. However, in a sequential setup it is also of interest
to know (ii) how fast a change is detected by the proposed procedure.

To visualize these properties we use the following.

(i) Achieved Size-Power Curves (ASP) Each blue line corresponds to a specific
combination of (γ, a) and to the null hypothesis, and shows on the y-axis the ac-
tual (observed) level, for a nominal size given by the x-axis. Likewise, each red line
corresponds to a specific combination of (γ, a) and to one specific alternative, and
shows on the y-axis the size-corrected power, i.e., the empirical power of the test cor-
responding to a true (observed) level α, where α is given by the x-axis. These plots
are based on 1 000 repetitions of the procedure.

(ii) Estimated density of the run length (EDR) The run length is the point in time
at which the null hypothesis is rejected. In the plots it is calculated for a true size
5% test (not a nominal one). This was done in order to obtain comparable plots for
all procedures without having to take size-differences into account, which obviously
have an important influence on the run length. The vertical dotted line indicates where
the monitoring starts. This is a lower bound for the run length but—due to artifacts
of the kernel density estimation procedure—it can happen that the estimated density
is positive there. The vertical solid line indicates the position of the change. Note that
the density does not integrate to one since it also attains positive mass corresponding
to the samples for which the null hypothesis was not rejected.

In Fig. 1 we consider the influence of the shape of the weight function given by
(2.3), with respect to the value of γ . Some typical plots are shown for an early as well
as a late change. From these plots it becomes clear that γ = 0.1 detects early changes
better than the procedure based on γ = 1, but at the cost of having a high probability
of falsely detecting late changes before they occur. In addition we observe a power
loss for late changes (and moderate monitoring horizon). This behavior is well known
in sequential change-point analysis and has already been reported in different settings
(cf. e.g. Horváth et al. 2004; note that a γ close to 0 in our setting corresponds to a γ

close to 1/2 in their setting, while γ = 1 in our setting corresponds to γ = 0 in their
setting due to a different normalization). In Fig. 1 the plots are only given for a = 1,
but other values of a lead to similar results.

With Figs. 2 and 3 we assess the influence of the parameter a, which determines
the shape of the weight function wa(u) of the CFT statistic. To this end we fix the
value of γ at γ = 1. Also we compare the new procedure with the Kolmogorov–
Smirnov-type sequential test defined by (1.9). In Fig. 2, plots include a change in
the AR-parameter as well as in the scale of the error distribution. From these plots
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Fig. 1 ASP and EDR plots for the CFT test with normal errors; change in the regression parameter from
β0 = 0.5 to β0 = 0.9 (γ = 0.1 and γ = 1.0, σ0 = σ 0 = 1, a = 1, T = 50, N = 4)

it becomes clear that intermediate values of a hold the level best. However, larger
values lead to more powerful procedures both in terms of overall detection rate as
well as detection delay while still having a reasonable size. They also yield better
results than the Kolmogorov–Smirnov-type test especially in the situation of a change
in scale parameter.

The plots in Fig. 3 include changes in the distribution of the errors from a nor-
mal distribution to a t4-distribution, as well as from a normal distribution to a χ2-
distribution with 4 degrees of freedom. Corresponding results for the Kolmogorov–
Smirnov-type test are also included. According to Fig. 3(a), i.e., for T = 50 and a
change from normal to t4, both procedures have a very low power for small samples
(but are unbiased). Apparently, the difference between the two distributions is not
large enough to be detectable at a satisfying power with a historic sample of size only
T = 50 at hand. However, this is not due to the change-point setting or the sequential
nature of the test, since even in a simple (non-sequential) two-sample situation both
tests have a very low power in distinguishing these two distributions; for a nice review
of two-sample tests, including the Kolmogorov–Smirnov test, the reader is referred
to Dufour and Farhat (2002). This statement is easily verified by a small simulation
study. For example, with two equally sized samples of length 50 we obtain an empiri-



616 Z. Hlávka et al.

Fig. 2 Dependency on a, fixed γ = 1, j0 = 10, T = 50, N = 4, β0 = 0.5, σ0 = 1, normal errors: ASP—as
well as EDR-Plots

cal power (calculated from 500 simulations with 1000 bootstrap replicates) of 0.1 for
the CFT -test with a = 1, and a corresponding power of 0.072 for the KS-test, each at
nominal level 5%.

The size results depicted in Fig. 3 are reasonable for all values of a, but best for
intermediate values of this parameter. Naturally, for the larger historic data set T =
200 (Fig. 3(b)), the power increases and it becomes clear that in this situation small
values of a yield best results in terms of power and detection delay. Furthermore, our
procedure clearly outperforms the Kolmogorov–Smirnov-type test. In Figs. 3(c) and
(d) analogous pictures for a change from a normal to a χ2-distribution with 4 degrees
of freedom can be found. The power is somewhat higher than for the change to a
t4-distribution, but the general conclusions remain the same.

As far as the choice of the weight parameter a is concerned it is clear from the
simulation results that the value of a has some effect on the power properties of
the proposed test. In order to motivate the discussion we shall remain within the
context of the weight function w(t) = e−a|t |, but similar considerations hold for other
weight functions, and the issue of the proper choice of the weight function resembles
that of choosing the kernel in non-parametric density estimation: The choice of the
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Fig. 3 Dependency on a, fixed γ = 1, j0 = 1/5T , N = 4, β0 = β0 = 0.5, σ0 = σ 0 = 1: ASP—as well as
EDR-Plots
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kernel function (resp. weight function) matters less than the choice of the value of the
bandwidth (resp. of the weight parameter a). In this connection note that choosing
a large value of a causes the weight function to decay rapidly, and consequently the
test statistic is dominated, at least asymptotically, by the behavior of the CF around
zero. Since, however, the tail behavior of a distribution is reflected on the behavior
of its CF around zero, putting most of the weight around t = 0 should render the test
statistic powerful against distributions with markedly different tail characteristics. On
the other hand, by ‘moving’ to a smaller value of a we also put weight in differences
in the middle sections of a pair of distributions (which is expected to compensate
for some loss of diagnostic power against distributions with great differences in the
tails). Of course these comments are of qualitative nature and in order to be more
specific one should have in mind concrete alternative directions away from a specific
null hypothesis, which is clearly not possible in our nonparametric context. But even
within a fully parametric setting the problem of choosing a ‘good’ value for a is
far from trivial and the reader is referred to Epps (1999) and Tenreiro (2009) for
a power analysis in the context of testing for normality against specific alternatives.
Otherwise, proper values of a should be determined empirically via Monte Carlo
simulation of the behavior of the test under a wide variety of alternatives. As an
example and based on our simulation results we could suggest a value in the vicinity
of a = 1 as a compromise choice with good overall power properties for the test
statistic.

5 Conclusion

We propose goodness-of-fit procedures for the error distribution of AR models in
the sequential set-up. The new tests utilize an L2-type discrepancy measure between
a couple of empirical characteristic functions (ECFs) of the residuals; the first ECF
includes the residuals computed from a training data set with no change in the dis-
tribution of random errors, while the other ECF is based on the residuals after this
training data set has been observed. Asymptotic results are provided both under the
null hypothesis of no change, as well as under alternative hypotheses. The latter re-
sults imply the consistency of the proposed test in the case of a change in the error
distribution, but also in the case of a change in the parameter of the underlying AR-
model. Additionally, a bootstrap procedure is proposed which is straightforward to
apply, thereby circumventing the drawback that the asymptotic null distribution of
the test statistic is parametric in nature. A simulation study supports our asymptotic
results, by reporting empirical level close to the nominal size even for small samples,
and percentage of rejection under alternatives which suggests that the new test is able
to detect distributional changes as well as changes in the autoregression parameter.
Extra simulation results include favorable comparisons with a Kolmogorov–Smirnov-
type test.

6 Proofs

We start with the proofs of some auxiliary lemmas. D will denote a positive generic
constant.
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Lemma 6.1 Let Assumptions (A.2)–(A.3) and either (A.1) (null hypothesis) or (B.1)
(change in distribution) or (A.1) and (B.2) (change in regression coefficient) be sat-
isfied. Then for an arbitrary κ > 0 there exists A > 0 such that for η > 3/2

(a) P

(
max

1≤k≤Q
k−η

∥∥∥∥∥
T +k∑

j=T +1

Xq,j−1

∥∥∥∥∥
2

≥ A

)
≤ κ,

(b) P

(
max

1≤k≤Q
k−η

∥∥∥∥∥
T +k∑

j=T +1

(
Xq,j−1X

T
q,j−1 − E

(
Xq,j−1X

T
q,j−1

))∥∥∥∥
2

≥ A

)
≤ κ,

(c) max
k≥√

T

∫ ∣∣∣∣∣
1

k

T +k∑
j=T +1

(
g(tεj ) − Eg(tεj )

)∣∣∣∣∣
2

w(t) dt = oP (1),

(d) max
k≥√

T

∫ ∣∣∣∣∣
1

k

T +k∑
j=T +k◦+1

(
g
(
tδT Xq,j

) − Eg
(
tδT Xq,j

))∣∣∣∣∣
2

w(t) dt = oP (1),

where Xq,j = (Xj , . . . ,Xj−q)T , for any fixed q-dimensional vector δ, any bounded
function g with bounded first derivative, and any positive integer Q.

Proof We start with the proof if either (A.1) or (B.2) holds. Assertion (b) is given in
Lemma 4.2 in Hušková et al. (2007) for q = p, the assertion for q �= p and (a) follows
analogously. The key are the following moment bounds given in Corollary 4.1 in
Hušková et al. (2007) in addition to some Hájek–Rényi type inequalities. For some
ρ ∈ (0,1) it holds

E|Xj−vXj−s | ≤ Dρ|v−s|, 1 ≤ v, s ≤ j, j ≥ p,

∣∣cov
(
Xj−vXj−s ,Xj+h−vX

T
j+h−s

)∣∣ ≤ Dρ2|h|, (6.1)

h ≥ 0, 1 ≤ v, s ≤ p, j ≥ p.

To prove (c) first note that due to the boundedness of g it holds for any K > 0 that

∫ ∣∣∣∣∣
1

k

T +k∑
j=T +1

(
g(tεj ) − Eg(tεj )

)∣∣∣∣∣
2

w(t) dt

≤
∫

w(t) dt sup
|t |≤K

∣∣∣∣∣
1

k

T +k∑
j=T +1

(
g(tεj ) − Eg(tεj )

)∣∣∣∣∣
2

+ sup
x∈R

g2(x)

∫
|t |>K

w(t) dt,

where the second summand becomes arbitrarily small for K large enough. Concern-
ing the first summand we apply a uniform law of large numbers for stationary and er-
godic sequences by Ranga Rao (1962). Here, the sequence is even i.i.d. up to T + k0
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and starting at T +k0 and the condition in Ranga Rao (1962) E sup|t |≤K |g(tε0)| < ∞
is fulfilled due to boundedness of g. We get

sup
k≥√

T

sup
|t |≤K

∣∣∣∣∣
1

k

T +k∑
j=T +1

(
g(tεj ) − Eg(tεj )

)∣∣∣∣∣
2

D= sup
k≥√

T

sup
|t |≤K

∣∣∣∣∣
1

k

k∑
j=1

(
g(tεj ) − Eg(tεj )

)∣∣∣∣∣
2

→ 0 a.s.

for T → ∞. This yields the assertion.
For the proof of (d) first consider X̃j = (βT + δT )X̃j−1 + εj , j ≥ T + k0. Further

assume that X̃T +k0−1 fulfills (2.1) with βl replaced by βl + δl and all εl following
F 0. By (B.2) X̃ is stationary and ergodic and the same arguments as in (c) lead to the
assertion with Xj replaced by X̃j . Similar arguments as in Sect. 4 in Hušková et al.
(2007) yield

|Xj − X̃j | ≤ Cρj−T −k0‖XT +k0−1 − X̃T +k0−1‖ (6.2)

for some C > 0, 0 < ρ < 1. Since ‖XT +k0−1 − X̃T +k0−1‖ = OP (1) uniformly
in T , k0 we get by the mean-value theorem and the fact that the first derivative of
g is bounded

sup
k≥√

T

sup
|t |≤K

∣∣∣∣∣
1

k

T +k∑
j=T +k◦+1

(
g
(
tδT Xq,j

) − Eg
(
tδT Xq,j

))∣∣∣∣∣
2

= oP (1) + OP (1)‖δ‖K sup
k≥√

T

1

k

T +k∑
j=T +k0

ρj−T −k0 = oP (1).
�

Lemma 6.2 Under the assumptions of Theorem 2.1, respectively, of Theorem 2.2 it
holds for the open-end as well as closed-end procedure that

sup
1≤j<LT

∣∣TCF(j, γ ) − TCF(j, γ ; ε1, ε2 . . .)
∣∣ = oP (1),

where TCF(j, γ ; ε1, ε2 . . .) denotes the test statistic (1.4) with ε̂i replaced by εi .

Proof We will study the differences Ĉk(t) − Ck(t) and Ŝk(t) − Sk(t) where

Ck(t) = 1

k

T +k∑
j=T +1

cos(tεj ) − 1

T

T∑
j=1+p

cos(tεj ),

Sk(t) is defined analogously with cos(·) replaced by sin(·), and Ĉk(t), Ŝk(t) with εj

replaced by ε̂j . By the Taylor expansion, cos(t ε̂j ) = cos(tεj )− t (ε̂j − εj ) sin(tεj )+
RjC(t), where RjC(t) is a remainder term. Then Ĉk(t) can be decomposed:

Ĉk(t) − Ck(t) = Ĉk1(t) + Ĉk2(t)
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with

Ĉk1(t) = −
(

1

k

T +k∑
j=T +1

t (ε̂j − εj ) sin(tεj ) − 1

T

T∑
j=1+p

t (ε̂j − εj ) sin(tεj )

)
,

Ĉk2(t) = 1

k

T +k∑
j=T +1

RjC(t) − 1

T

T∑
j=1+p

RjC(t).

Since |RjC(t)| ≤ Dt2(β − β̂T )T Xj−1X
T
j−1(β − β̂T ) for some positive D > 0 we

also have

∣∣Ĉk2(t)
∣∣2 ≤ Dt4

(
(β − β̂T )T

(
1

k

T +k∑
j=T +1

Xj−1X
T
j−1 + 1

T

T∑
j=p+1

Xj−1X
T
j−1

)

× (β − β̂T )

)2

.

Recall that by the Cauchy–Schwarz inequality xT Ax ≤ ‖x‖2 ‖A‖F ≤ DxT Ax ≤
‖x‖2 ‖A‖, where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖ the Euclidean norm.
Hence we get by (A.4) and Lemma 6.1 that

∣∣Ĉk2(t)
∣∣2 ≤ Dt4‖β − β̂T ‖4

(∥∥∥∥∥
1

k

T +k∑
j=T +1

Xj−1X
T
j−1

∥∥∥∥∥
2

+
∥∥∥∥∥

1

T

T∑
j=p+1

Xj−1X
T
j−1

∥∥∥∥∥
2)

= OP (1)
t4

T 2
(6.3)

uniformly in k. Hence by (A.5)

max
1≤k<∞

T

(
k

T + k

)1+γ ∫ ∣∣Ĉk2(t)
∣∣2

w(t) dt = OP (1)
1

T

∫
t4w(t) dt = oP (1).

Next we show the negligibility of Ĉk1(t). We use the decomposition

Ĉk1(t) = (β − β̂T )T
(

t

k
Ak1(t) − t

T
B1(t) + t

k
Ak2(t) − t

T
B2(t)

)
,

where

Ak1(t) =
T +k∑

j=T +1

Xj−1
(− sin(tεj ) + E sin(tεj )

)
,

Ak2(t) = −E
(
sin(tε1)

) T +k∑
j=T +1

Xj−1
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and B1(t), B2(t) are defined analogously with the sum taken from p + 1 to T .
By (A.4) one obtains

∣∣Ĉk1(t)
∣∣2 = OP (1)

1

T

∥∥∥∥
(

t

k
Ak1(t) − t

T
B1(t) + t

k
Ak2(t) − t

T
B2(t)

)∥∥∥∥
2

uniformly in k and t . {Ak1(t), σ (X1, . . . ,XT +k), k ≥ 1} is a martingale for each
t ∈ R1 with EAk1(t) = 0, varAk1(t) ≤ Dk. Consequently

{∫
t2

∥∥Ak1(t)
∥∥2

w(t) dt, σ (X1, . . . ,XT +k), k ≥ 1

}

is a nonnegative submartingale with

E
∫

t2
∥∥Ak1(t)

∥∥2
w(t) dt ≤ Dk.

By Chows inequality (cf. e.g. Chow and Teicher 1997, Sect. 7.4, Theorem 8) it holds
for a nonnegative submartingale Sk , vl ≥ vl+1 ≥ 0 and λ > 0

λP
(

max
1≤l≤n

vlSl > λ
)

≤
n∑

l=2

vlE(Sl − Sl−1) + v1ES1

=
n−1∑
l=1

(vl − vl+1)ESl + vnESn.

If vnESn → 0 as n → ∞ we get

λP
(

max
1≤l≤n

vlSl > λ
)

≤
∑
l≥1

(vl − vl+1)ESl.

From this we can conclude with vl = T −1−γ lγ−1 for l = 1, . . . , T and vl = l−2 for
l > T (D > 0 is a generic constant which may change from line to line)

λP

(
max

1≤k<∞

(
k

k + T

)1+γ 1

k2

∫
t2

∥∥Ak1(t)
∥∥2

w(t) dt > λ

)

≤ λP

(
max

1≤k<∞
vl

∫
t2

∥∥Ak1(t)
∥∥2

w(t) dt > λ

)

≤ DT −1−γ

T∑
k=1

kγ−1 +
∑
k≥T

k−2 ≤ DT −1 = o(1),

where the last line follows from the mean-value theorem.
By Lemma 6.1

max
1≤k<∞

∥∥∥∥∥
T +k∑

j=T +1

Xj−1

∥∥∥∥∥
2

1

k2

(
k

T + k

)1+γ

= oP (1),
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which implies

max
1≤k<∞

(
k

k + T

)1+γ 1

k2

∫
t2

∥∥Ak2(t)
∥∥2

w(t) dt = oP (1).

Similar relations hold true also for B1(t) and B2(t). It is in fact an easier situation
since the random part does not depend on k.

Combining the above arguments we obtain

max
1≤k<∞

T

(
k

T + k

)1+γ ∫ ∥∥Ĉk1(t)
∥∥2

w(t) dt = oP (1).

Analogous argument for Ŝk(t)−Sk(t) complete the proof for the open-end procedure,
the result for the closed-end procedure is obtained analogously. �

Lemma 6.3 The assertions of Theorem 2.1 hold under the same assumptions if one
replaces CFT (ε̂p+1, ε̂p+2, . . . ;γ ) by CFT (εp+1, εp+2, . . . ;γ ).

Proof The proof is very close to the proof of Theorem A in Hušková and Meintanis
(2006a). Therefore we only give a sketch here. Let h(x, y) = ∫

cos(u(x −y))w(u)du

and h̃(x, y) = h(x, y)−Eh(x, ε1)−Eh(ε2, y)+Eh(ε1, ε2). Analogous to the decom-
position (18) in Hušková and Meintanis (2006a) we get

∫ ∞

−∞
∣∣φ̃T ,T +k(u) − φ̃p,T (u)

∣∣2
w(u)du = Ak1 + Ak2 + Ak3,

where

Ak1 = T + k

kT

(∫
w(u)du − Eh(ε1, ε2)

)
,

Ak2 = 1

k2

T +k∑
v1=T +1

T +k∑
v2=T +1
v2 �=v1

h̃(εv1 , εv2) + 1

T 2

T∑
v1=1

T∑
v2=1
v2 �=v1

h̃(εv1, εv2)

− 2

T k

T∑
v1=1

T +k∑
v2=T +1

h̃(εv1 , εv2),

Ak3 = − 2

k2

T +k∑
v=T +1

(
E
(
h(εv, ε0) | εv

) − Eh(ε1, ε2)
)

− 2

T 2

T∑
v=1

(
E
(
h(εv, ε0) | εv

) − Eh(ε1, ε2)
)
,

where ε0, ε1, . . . i.i.d. Note that Zν = E(h(εv, ε0) | εv)−Eh(ε1, ε2) are i.i.d. with zero
mean and finite variance, hence an application of the Hájek–Rényi inequality e.g. for
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the first term of Ak3 and the open-end procedure as T → ∞ for arbitrary η > 0 and
0 < γ ≤ 1 yields

P

(
max
k≥1

T

T + k

(
k

k + T

)γ 1

k

∣∣∣∣∣
T +k∑

j=T +1

Zj

∣∣∣∣∣ ≥ η

)

≤ Cη−2

(
1

T 2γ

T∑
k=1

1

k2−2γ
+

∑
k≥T

1

k2

)
→ 0

for some C > 0. A similar expression holds for the second term of Ak3 and in case of
the closed-end procedure. This shows that Ak3 is asymptotically negligible.

We investigate Ak2 now. Analogously to Hušková and Meintanis (2006a) there
exist orthonormal functions gj (·) and eigenvalues λj such that

h̃(x, y)
L2

ε=
∞∑

j=1

λjgj (x)gj (y), i.e.,

lim
L→∞ E

(
h̃(ε1, ε2) −

L∑
j=1

λjgj (ε1)gj (ε2)

)2

= 0,

Egj (ε1) = 0, Eg2
j (ε1) = 1, Egj (ε1)gk(ε2) = 0, j �= k,

Eh̃2(ε1, ε2) =
∞∑

j=1

λ2
j < ∞.

(6.4)

Let h̃L(x, y) = ∑L
s=1 λsgs(x)gs(y) and Ak2(L) defined as Ak2 with h̃ replaced

by h̃L. As in Hušková and Meintanis (2006a)

Sk :=
∑

1≤i<j≤k

(̃
h(εi, εj ) − h̃L(εi, εj )

)

is a martingale and therefore we get by the Hájek–Rényi inequality for the open-end
procedure and the first term of Ak2 − Ak2(L) for all η > 0 and some C > 0

P

(
max
k≥1

T

T + k

(
k

k + T

)γ 1

k
|Sk| ≥ η

)

≤ 1

η2

∑
k≥1

1

k2
E
(̃
h(ε1, ε2) − h̃L(ε1, ε2)

)2 ≤ C

η2

∞∑
j=L+1

λ2
j

L→∞−→ 0

and a similar expression for the closed-end procedure and the other terms. Hence for
any η1, η2 > 0 and all L ≥ L0 (for some L0) it holds

P
(

max
k≥T

ρk,T (γ )
∣∣Ak2 − Ak2(L)

∣∣ ≥ η1

)
≤ η2.
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It holds

Ak2(L) =
L∑

q=1

λq

(
T

k2
B2

1 (q, k) − T + k

T k
− B2(q, k)

)
,

B1(q, k) = 1√
T

T +k∑
v=T +1

(
gq(εv) − 1

T

T∑
j=1

gq(εj )

)
,

B2(q, k) = 1

k2

T +k∑
v=T +1

(
g2

q(εv) − 1
) + 1

T 2

T∑
v=1

(
g2

q(εv) − 1
)
.

By the strong law of large numbers we get (as maxk≤logT
ρk,T

k
→ 0)

max
k

ρk,T (γ )B2(q, k) → 0 a.s.

Concerning B1(q, k) we first note that it is sufficient also in case of the open-end
procedure to consider the supremum up to DT for some D large enough.

To this end, note that by the Hájek–Rényi inequality for any η > 0 and some C > 0

P

(
max
k≥DT

(
k

k + T

)1/2+γ /2
T 1/2

k

∣∣∣∣∣
T +k∑

v=T +1

gq(ev)

∣∣∣∣∣ ≥ η

)

≤ C

η2
T

∑
k≥DT

1

k2
+ C

Dη2
≤ 2C

η2

1

D
,

which becomes arbitrarily small for D large enough, hence it is sufficient to consider
the maximum up to DT even in case of the open-end procedure.

Similarly, using again the Hájek–Rényi inequality one can see that the maximum
over k ≤ δT is negligible for δ small enough (in case of the open-end procedure)
(γ �= 0):

P

(
max
k≤δT

√
T

k2

(
k

T + k

)1+γ
∣∣∣∣∣

T +k∑
v=T +1

gq(ev)

∣∣∣∣∣ ≥ η

)

≤ C

η2
T

∑
k≤δT

1

k1−γ (T + k)1+γ
≤ C

−η2
T −γ

∑
k≤δT

1

k1−γ
≤ C

η2
δγ ,

which becomes arbitrarily small for δ → 0. The result for the closed-end procedure
is obtained similarly. Now, we can use the functional limit theorem and get (noting
that { 1√

T

∑T +k
v=T +1 gq(ev) : k} and 1

T

∑T
j=1 gq(ej ) are independent)

max
δT ≤k<DT

ρk,T (γ )

L∑
q=1

λq

(
T

k2
B2

1 (q, k) − T + k

T k

)
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= max
δT ≤k<DT

ρk,T (γ )

L∑
q=1

λq

(
T

k2

(
Wq,1

(
k

T

)
− k

T
Wq,2(1)

)2

− T + k

T k

)
+ oP (1),

where Wq,1(·),Wq,2(·), q = 1, . . . ,L are independent Wiener processes. For the
open-end procedure we still need to note that

T 2

k2

(
k

T + k

)1+γ

=
(

T

T + k

)2(
T + k

k

)1−γ

.

Similar arguments as before yield that this has the same asymptotic distribution
as the complete maximum over 1 ≤ k < ∞ for the open-end procedure, respec-
tively, 1 ≤ k ≤ NT for the closed-end procedure. In the proof of Theorem 2.1.
Horváth et al. (2004) show that (t ≈ k/T )

sup
k≥1

|Wq,1(
k
T

) − k
T

Wq,2(1)|
T +k
T

( k
T +k

)(1−γ )/2

D−→ sup
t≥0

|Wq,1(t) − tWq,2(1)|
(1 + t)( t

1+t
)(1−γ )/2

.

After an index transformation l = t/(1 + t) they further obtain

max
t≥0

|Wq,1(t) − tWq,2(1)|
(1 + t)( t

1+t
)(1−γ )/2

D= sup
0≤l≤1

|Wq(l)|
l(1−γ )/2

,

where Wq(·) are independent Wiener processes.
Similar arguments as above yield that it is asymptotically equivalent to consider

the complete sum over q ≥ 1.
Taking the negligibility of Ak3 into account analogous arguments as above give

the limit behavior as given in Theorem 2.1 for the joint supremum supk≥1 |Ak1 +
Ak2 + Ak3|, thus completing the proof. �

Proof of Theorem 2.1 It follows immediately from Lemmas 6.2 and 6.3. �

Proof of Theorem 2.2 By Lemma 6.2 it is sufficient to consider the statistic CFT ,
where ε̂t are replaced by εt . By Lemma 6.1 (g = cos, sin) it follows

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣∣∣∣
1

k

T +k∑
j=T +1

(
exp(itεj ) − E

(
exp(itεj )

))∣∣∣∣∣
2

w(t) dt = oP (1),

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣∣∣∣
1

T

T∑
j=1

(
exp(itεj ) − E

(
exp(itεj )

))∣∣∣∣∣
2

w(t) dt = oP (1).

From this we can conclude immediately that CFT = OP (1/T ) as well as the limit
distribution of CFT /T in case of k0 = 	t0T 
. �

The following lemma is needed to prove Theorem 2.3.
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Lemma 6.4 Under the assumptions of Theorem 2.3 it holds for the open-end proce-
dure

(
CFT (ε̂p+1, ε̂p+2, . . . ;γ ) − CFT (εp+1, εp+2, . . . ;γ )

)
/T

P−→ sup
t0<t<∞

(
t

t + 1

)1+γ (
t − t0

t

)2 ∫ ∣∣ϕ0(u)
(
ϕX(u) − 1

)∣∣2
w(u)du. (6.5)

For the closed-end procedure an analogous assertion holds where the supremum is
taken over t0 < t < N .

Proof We follow the lines of the proof of Lemma 6.2. We study the differences

Ĉk(t) − CA
k (t), Ŝk(t) − SA

k (t),

where Ĉk(t), Ŝk(t) are as in the proof of Lemma 6.2,

CA
k (t) = 1

k

T +k∑
j=T +1

cos
(
t
(
εj + δT Xj−1I {j > T + k0}

)) − 1

T

T∑
j=1+p

cos(tεj ),

and SA
k (t) is defined analogously with cos(·) replaced by sin(·). By a Taylor expan-

sion

cos(t ε̂j ) − cos
(
t
(
εj + δT Xj−1I {j > T + k0}

))

= −t
(
ε̂j − εj − δT Xj−1I {j > T + k0}

)
sin

(
t
(
εj + δT Xj−1I {j > T + k0}

))

+ RA
jC(t),

where RA
jC(t) is a remainder term. Then Ĉk(t) can be decomposed as follows:

Ĉk(t) = CA
k (t) + ĈA

k1(t) + 1

k

T +k∑
j=T +1

RA
jC(t) − 1

T

T∑
j=1+p

RjC(t)

with RjC(t) as in the proof of Lemma 6.2 and

ĈA
k1(t) = −

(
1

k

T +k∑
j=T +1

t
(
ε̂j − (

εj + δT Xj−1I {j > T + k0}
))

× sin
(
t
(
εj + δT Xj−1I {j > T + k0}

))

− 1

T

T∑
j=1+p

t (ε̂j − εj ) sin(tεj )

)
.
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Similarly as in the proof of Lemma 6.2 we get

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣∣∣∣
1

k

T +k∑
j=T +1

RA
jC(t) − 1

T

T∑
j=1+p

RjC(t)

∣∣∣∣∣
2

w(t) dt = oP (1).

Concerning ĈA
k1(t) we use the decomposition

ĈA
k1(t) = (β − β̂T )T

(
t

k
AA

k1(t) − t

T
B1(t) + t

k
AA

k2(t) − t

T
B2(t)

)
,

where B1(t), B2(t) are as in the proof of Lemma 6.2 and

AA
k1(t) =

T +k∑
j=T +1

Xj−1
(− sin

(
t
(
εj + δT Xj−1I {j > T + k0}

))

+ E
(
sin

(
t
(
εj + δT Xj−1I {j > T + k0}

))|Xj−1|
))

,

AA
k2(t) = −

T +k∑
j=T +1

Xj−1E
(
sin

(
t
(
εj + δT Xj−1I {j > T + k0}

))|Xj−1|
)
.

Negligiblity of B1(t), B2(t) follows from the proof of Lemma 6.2 and of AA
k1(t)

analogously. The term AA
k2(t) has to be treated more carefully. Notice that by Jensen’s

inequality, by Lemma 6.1, and the fact that EX2
j−l ≤ C for some C > 0:

max
1≤k<∞

(
k

k + T

)1+γ 1

k2

∫
t2

∥∥AA
k2(t)

∥∥2
w(t) dt

≤
∫

t2w(t) dt

p∑
l=1

max
1≤k<∞

1

k

T +k∑
j=T +1

X2
j−l = OP (1).

Combining the above arguments we have

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∥∥Ĉk(t) − CA
k (t)

∥∥2
w(t) dt

= OP

(
T −1) = oP (1).

Analogous arguments hold for Ŝk(t) − SA
k (t) as well as the closed-end procedure.

Noticing that

E
(
CA

k (t) + iSA
k (t)

) = ϕ0(t)
(
ϕX(t) − 1

)max(0, k − k0)

k

it remains to show

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣CA
k (t) − ECA

k (t)
∣∣2

w(t) dt = oP (1)

which follows by Lemma 6.1 (g = cos, sin). �
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Proof of Theorem 2.3 To prove our theorem it suffices to show that, T → ∞,

CFT (εp+1, εp+2, . . . ;γ )/T = oP (1) (6.6)

in addition to (6.5). The latter follows immediately from Lemma 6.4, while assertion
(6.6) follows from Lemma 6.3. �

Proof of Theorem 3.1 The proof follows along the line of the proof of Theorem 2.1
but certain parts are more delicate since we work now with a triangular array.

Denote by E∗,var∗,P ∗ etc. expectation, variance and probability w.r.t. ε∗(p),

ε∗(p + 1), . . . given X1,X2, . . . , i.e., for example E∗(·) = E(·|X1,X2, . . .).
We have to study conditional limit behavior of

CF∗
T = CFT

(
ε∗(p + 1), ε∗(p + 2), . . . ;γ )

= max
1≤k≤T N

T

(
k

T + k

)1+γ ∫ ∞

−∞
∣∣ϕ∗

T ,T +k(u) − ϕ∗
p,T (u)

∣∣2
w(u)du,

where

ϕ∗
T ,T +k(u) = 1

k

T +k∑
j=T +1

exp
{
iuε∗(j)

}
, u ∈ R1, k ≥ 1

and an analogous expression for ϕ∗
p,T . First, we show that we can replace ϕ∗ by

ϕ̃∗
T ,T +k(u) = 1

k

T +k∑
j=T +1

exp{iuεUT (j)}

and an analogous expression for ϕ̃∗
p,T (u), C̃F

∗
T = CFT (εUT (p+1), εUT (p+2), . . . ;γ ).

Precisely, we will show that for any η1, η2 > 0 it holds for T large enough

P ∗(∣∣CF∗
T − C̃F

∗
T

∣∣ ≥ η1
) ≤ η2 + oP (1).

The proof is essentially analogous to the proof of Lemma 6.2 and will only be
sketched. The decompositions remain true but Xj has to be replaced by XUT (j) and
εUT (j). In the notation we indicate this by ∗, e.g. Ĉ∗

k1(t).
By an application of the Hájek–Rényi inequality it holds for any D > 0

P ∗
(

max
k

∥∥∥∥∥
1

k

T +k∑
j=T +1

XUT (j−1)XT
UT (j−1) − E∗XUT (1)XT

UT (1)

∥∥∥∥∥ ≥ D

)

≤ 1

D2
var∗

∥∥XUT (p+1)XT
UT (p+1)

∥∥∑
k≥1

1

k2

≤ 1

D2
C

1

T − p

T∑
j=p+1

∥∥Xj XT
j

∥∥2 ≤ 1

D2

(
C + oP (1)

)
,
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where C > 0 is now and in the following a generic constant which can change from
line to line. This leads similarly by the analog of (6.3) to

P ∗
(

max
1≤k<∞

T

(
k

T + k

)1+γ ∫ ∣∣Ĉ∗
k2(t)

∣∣2
w(t) dt ≥ η

)
≤ ε + oP (1) (6.7)

for any η, ε > 0. The decomposition of Ĉ∗
k1(t) is slightly different than in the proof

of Lemma 6.2. Let

Ĉ∗
k1(t) = (β − β̂T )T

(
t

k
Ĉ∗

k11(t) − t

T
Ĉ∗

k12(t)

)
,

where

Ĉ∗
k11(t) = −

T +k∑
j=T +1

(
XUT (j)−1 sin(tεUT (j)) − E∗(XUT (j)−1 sin(tεUT (j))

))
,

and Ĉ∗
k12(t) is defined analogously with the sum taken from p+1 to T . The assertion

follows analogously to the assertion for Ĉk1(t) in the proof of Lemma 6.2 proving
(6.7).

The remainder of the proof is close to the proof of Lemma 6.3, so we only sketch
the differences. Equation (6.7) shows that it is sufficient to study

∫ ∞

−∞
∣∣ϕ̃∗

T ,T +k(u) − ϕ̃∗
p,T (u)

∣∣2
w(u)du = Ak1 + A∗

k2 + A∗
k3 + A∗

k4,

where Ak1 is as in the proof of Lemma 6.3 and

A∗
k2 = 1

k2

T +k∑
v1=T +1

T +k∑
v2=T +1
v2 �=v1

h̃(εUT (v1), εUT (v2)) + 1

T 2

T∑
v1=1

T∑
v2=1
v2 �=v1

h̃(εUT (v1), εUT (v2))

− 2

kT

T∑
v1=1

T +k∑
v2=1+T

h̃(εUT (v1), εUT (v2)),

A∗
k3 = − 2

k2

T +k∑
v=T +1

(
E
(
h(εUT (v), ε0)|εUT (v)

) − E∗E
(
h(εUT (v), ε0)|εUT (v)

))

− 2

T 2

T∑
v=p+1

(
E
(
h(εUT (v), ε0)|εUT (v)

) − E∗E
(
h(εUT (v), ε0)|εUT (v)

))
,

A∗
k4 = −2

k + T

kT

(
E∗E

(
h(εUT (p+1), ε0)|εUT (p+1)

) − Eh(ε1, ε2)
)
.
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As for Ak3 in the proof of Lemma 6.3 we obtain by an application of the Hájek–Rényi
inequality for any η > 0

P ∗
(

max
k≥1

T

(
k

T + k

)1+γ

|A∗
k3| ≥ η

)
= oP (1).

Furthermore it holds

max
k≥1

T

(
k

T + k

)1+γ ∣∣A∗
k4

∣∣

≤ 1

T − p

∣∣∣∣∣
T∑

j=p+1

(
E
(
h(εj , ε0)|εj

) − Eh(ε1, ε2)
)∣∣∣∣∣ = oP (1).

Define

S∗
k :=

∑
1≤i<j≤k

(̃
h(εUT (i), εUT (j)) − h̃L(εUT (i), εUT (j))

)
.

As T → ∞ an application of the Markov inequality yields

E∗S∗
k = k(k − 1)

2

1

T 2

T∑
v1=1

T∑
v2=1

(̃
h(εv1, εv2) − h̃L(εv1, εv2)

) = OP (1)
k2

T

√∑
j≥L

λ2
j

for some C by Lemma A in Serfling (1980), p. 183, which shows that

sup
k≥1

T

T + k

(
k

k + T

)γ 1

k

∣∣E∗S∗
k

∣∣

becomes sufficiently small for L large enough. S∗
k − E∗S∗

k can be expressed as a
linear combinations of martingales (cf. Serfling 1980, pp. 178–179), therefore the
Hájek–Rényi inequality yields, as T → ∞,

P ∗
(

max
k≥1

T

T + k

(
k

k + T

)γ 1

k

∣∣S∗
k − E∗S∗

k

∣∣ ≥ A

)

≤ C

A2

∑
k≥1

1

k2

1

T 2

T∑
j=1

T∑
v=1

(̃
h(εj , εv) − h̃L(εj , εv)

)2

= C

A2

∞∑
j=L+1

λ2
j + oP (1)

for each L, for the open-end procedure and the first term of Ak2(̃h) − Ak2(̃hL) for
all A > 0 and some C > 0. The right hand side becomes arbitrarily small for L large
enough. Hence for any A1,A2 > 0 and all L ≥ L0 (for some L0) T large, it holds

P
(

max
k≥T

ρk,T (γ )
∣∣A∗

k2 − A∗
k2(L)

∣∣ ≥ A1

)
≤ A2,
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where

A∗
k2(L) =

L∑
q=1

λq

(
T

k2
B∗2

1 (q, k) − T + k

T k
− B∗

2 (q, k)

)
,

B∗
1 (q, k) = 1√

T

T +k∑
v=T +1

(
gq(εUT (v)) − 1

T

T∑
j=1

gq

(
εUT (j)

))
,

B∗
2 (q, k) = 1

k2

T +k∑
v=T +1

(
g2

q(εUT (v)) − 1
) + 1

T 2

T∑
v=1

(
g2

q(εUT (j)) − 1
)
.

We start with the term B∗
2 (q, k). First note that for r > 1

E∗∣∣g2
q(εUT (1)) − 1

∣∣2 = T r−1 1

T r

T∑
v=1

(
g2

q(εv) − 1
)2 = oP

(
T r−1) (6.8)

by Theorem 5.2.3 (i)(α) in Chow and Teicher (1997) since

∑
j≥1

P
((

g2
q(εv) − 1

)r ≥ j r
) =

∑
j≥1

P
(∣∣g2

q(εv) − 1
∣∣ ≥ j

) = E
∣∣g2

q(εv) − 1
∣∣ < ∞.

According to Shorack and Wellner (1986), inequality 4 (p. 858) in addition to the von
Bahr Esseen inequality (Shorack and Wellner 1986, p. 858) it holds for i.i.d. random
variables with mean 0 for 1 < r ≤ 2

E max
1≤k≤T

(|Sk|r
) ≤ cT E|X1|r

for some c > 0, Theorem 1.1 in Fazekas and Klesov (2000) then gives for b1 ≥ · · · ≥
bT > 0

E
(

max
1≤k≤T

bk|Sk|
)r ≤ c E|X1|r

T∑
k=1

br
k

for some c > 0. We have to distinguish the cases k ≤ T and k ≥ T . By the above
inequality for 1 < r < min(2,1/(1 − γ )), i.e., 0 ≤ r(1 − γ ) < 1, and (6.8) it holds

E∗
(

max
k≤T

T

T + k

(
1

T + k

)γ 1

k1−γ

∣∣∣∣∣
T +k∑

v=T +1

(
g2

q(εUT (v)) − 1
)∣∣∣∣∣

)

≤ T −rγ
T∑

k=1

1

kr(1−γ )
E∗∣∣g2

q(εUT (1)) − 1
∣∣2 = oP (1).
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Similarly for r = 2

E∗
(

max
k>T

T

(
k

T + k

)1+γ 1

k2

∣∣∣∣∣
T +k∑

v=T +1

(
g2

q(εUT (v)) − 1
)∣∣∣∣

)

≤ T 2
∑
k>T

1

k4
E∗∣∣g2

q(εUT (1)) − 1
∣∣2 = oP (1).

An application of the Markov inequality yields the negligibility of B∗
2 (q, k).

It remains to show that the process {(B∗
1 (1, 	T s
), . . . ,B∗

1 (L, 	T s
)); s ∈ [0,A]}
converges weakly (conditionally) to a Wiener process for all A > 0. The convergence
of the finite-dimensional distributions follows e.g. from Singh (1981), Theorem 1,
while tightness follows by Theorem 15.6 in Billingsley (1968) and the finiteness of
the second moments. We can then conclude as in the proof of Lemma 6.3. �
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